JP7277619B2 - 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム - Google Patents

非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム Download PDF

Info

Publication number
JP7277619B2
JP7277619B2 JP2022000962A JP2022000962A JP7277619B2 JP 7277619 B2 JP7277619 B2 JP 7277619B2 JP 2022000962 A JP2022000962 A JP 2022000962A JP 2022000962 A JP2022000962 A JP 2022000962A JP 7277619 B2 JP7277619 B2 JP 7277619B2
Authority
JP
Japan
Prior art keywords
light
reflector
lens
display system
augmented reality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022000962A
Other languages
English (en)
Other versions
JP2022040218A (ja
JP2022040218A5 (ja
Inventor
ジェイ シッソム ブラッドリー
レイジング ホール ハイディ
リチャード カーティス ケビン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of JP2022040218A publication Critical patent/JP2022040218A/ja
Publication of JP2022040218A5 publication Critical patent/JP2022040218A5/ja
Priority to JP2023076534A priority Critical patent/JP2023109808A/ja
Application granted granted Critical
Publication of JP7277619B2 publication Critical patent/JP7277619B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12102Lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Eyeglasses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Projection Apparatus (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Integrated Circuits (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

(関連出願の相互参照)
本願は、2016年2月26日に出願され“LIGHT OUTPUT SYSTEM WITH REFLECTOR AND LENS FOR HIGHLY SPATIALLY UNIFORM LIGHT OUTPUT”と題された米国仮出願第62/300,742号の35 U.S.C. § 119(e)の下での優先権の利益を主張するものであり、この開示は、全体が参照により本明細書中に援用される。
本願はまた、2014年11月27日に出願された米国出願第14/555,585号、2015年4月18日に出願された米国出願第14/690,401号、2014年3月14日に出願された米国出願第14/212,961号、2014年7月14日に出願された米国出願第14/331,218号の各々の全体を参照により援用する。
本開示は、光出力システムに関し、より具体的には、反射体およびレンズを有する、光出力システムに関する。いくつかの実施形態では、光出力システムは、拡張および仮想現実イメージングならびに可視化システムの一部であってもよい。
イメージングおよび可視化システムは、光を光変調デバイスの中に出力し、次いで、光を変調および投影し、画像を視認者の眼内に形成する、システムを利用してもよい。現代のイメージングおよび可視化システムの必要性を満たすことができる、光投影システムを開発する継続的必要性がある。
いくつかの実施形態では、光学システムが、提供される。光学システムは、光入力開口部と、光出力開口部と、光入力開口部と光出力開口部との間に延在する、反射内部側壁とを備える、反射体を備える。光学システムはまた、反射体の光出力開口部に近接するレンズを備える。反射体の側壁は、実質的に角度が均一な光出力を提供するように成形されてもよく、レンズは、実質的に角度が均一な光出力を実質的に空間的に均一な光出力に変換するように構成されてもよい。いくつかの実施形態では、反射体は、反射体のアレイのうちの1つであって、各反射体は、関連付けられたレンズを反射体の出力開口部の前方に有する。
光学システムはさらに、レンズを通して反射体によって出力された光を受信するように構成される、光変調デバイスを備えてもよい。光学システムはまた、導波管のスタックをさらに備えてもよく、各導波管は、光変調デバイスからの光を受信するように構成される、光内部結合光学要素を備える。各導波管の光内部結合光学要素は、スタックの中への光の伝搬軸に沿って見られるように、他の導波管の光内部結合光学要素から空間的にオフセットされてもよい。反射体の空間配列は、平面図に見られるように、光内部結合光学要素の空間配列と1対1で対応および整合してもよい。
本発明は、例えば、以下を提供する。
(項目1)
光学システムであって、
反射体であって、
光入力開口部と、
光出力開口部と、
前記光入力開口部と前記光出力開口部との間に延在する反射内部側壁と
を備える、反射体と、
前記反射体の光出力開口部に近接するレンズと
を備える、光学システム。
(項目2)
光エミッタを前記反射体の光入力開口部にさらに備える、項目1に記載の光学システム。
(項目3)
光源は、発光ダイオードである、項目2に記載の光学システム。
(項目4)
前記反射体は、反射体のアレイのうちの1つであり、各反射体は、関連付けられたレンズを前記反射体の出力開口部の前方に有する、項目1に記載の光学システム。
(項目5)
前記反射体のアレイは、一体型本体内の開口部の側壁によって形成される、項目4に記載の光学システム。
(項目6)
前記反射体は、反射体のグループを形成し、各グループの反射体は、他のグループの反射体と比較して、前記反射体の光入力開口部と光出力開口部との間に異なる長さを有する、項目4に記載の光学システム。
(項目7)
前記反射体の長さは、各反射体と関連付けられた光源によって放出される光の波長に応じて変動する、項目6に記載の光学システム。
(項目8)
前記反射体と関連付けられた光源は、光源のグループを形成し、各グループは、異なる波長範囲の光を放出する、項目7に記載の光学システム。
(項目9)
前記光源は、光源の3つまたはそれを上回るグループを形成する、項目7に記載の光学システム。
(項目10)
前記光源は、光源の3つのグループを形成し、前記グループの第1のものは、赤色光を放出し、前記グループの第2のものは、緑色光を放出し、前記グループの第3のものは、青色光を放出する、項目9に記載の光学システム。
(項目11)
前記レンズを通して前記反射体によって出力された光を受信するように構成される光変調デバイスをさらに備える、項目4に記載の光学システム。
(項目12)
前記光変調デバイスは、液晶ディスプレイ(LCD)またはデジタル光処理(DLP)ディスプレイを備える、項目11に記載の光学システム。
(項目13)
導波管のスタックをさらに備え、各導波管は、前記光変調デバイスからの光を受信するように構成される光内部結合光学要素を備える、項目11に記載の光学システム。
(項目14)
各導波管の光内部結合光学要素は、前記スタックの中への前記光の伝搬軸に沿って見られるように、他の導波管の光内部結合光学要素から空間的にオフセットされる、項目13に記載の光学システム。
(項目15)
前記反射体の空間配列は、平面図に見られるように、前記光内部結合光学要素の空間配列と1対1で対応する、項目14に記載の光学システム。
(項目16)
前記導波管のスタックの各導波管は、前記導波管のスタックの他の導波管の少なくともいくつかと比較して異なる発散量を伴う光を出力するように構成される光外部結合光学要素を備える、項目13に記載の光学システム。
(項目17)
前記側壁は、前記反射体の高さに沿って延在する中央平面に沿って得られる断面に見られるように、ある曲率の複合放物面型集光器(CPC)を有し、前記中央平面は、相互に直交する、項目1に記載の光学システム。
(項目18)
2つの対向内部側壁のCPC曲率は、前記内部側壁のうちのその他のもののCPC曲率と異なる、項目18に記載の光学システム。
(項目19)
前記内部側壁のうちのその他のものは、同一CPC曲率を有する、項目18に記載の光学システム。
(項目20)
前記側壁のそれぞれは、前記反射体の高さに沿って延在する軸に対して横方向の平面に沿って得られる断面に見られるように、実質的に近いプロファイルを有する、項目18に記載の光学システム。
(項目21)
前記側壁は、前記光入力端部から前記光出力端部まで実質的に線形に延在する、項目1に記載の光学システム。
(項目22)
前記側壁は、実質的に角度が均一な光出力を提供するように成形され、前記レンズは、前記実質的に角度が均一な光出力を実質的に空間的に均一な光出力に変換するように構成される、項目1に記載の光学システム。
(項目23)
前記反射体は、偶数の側壁から成る、項目1に記載の光学システム。
(項目24)
前記反射体は、8つまたはそれを上回る側壁を備える、項目1に記載の光学システム。
(項目25)
前記反射体の光出力開口部は、第2の軸より第1の軸に沿って広い形状を有する、項目1に記載の光学システム。
(項目26)
前記光出力開口部は、楕円形形状を有する、項目25に記載の光学システム。
(項目27)
前記光出力開口部は、前記第1の軸に沿って直線辺および前記第2の軸に沿って湾曲辺を伴う、形状を有する、項目25に記載の光学システム。
(項目28)
前記反射体の光出力開口部および光入力開口部は、異なる形状を有する、項目25に記載の光学システム。
(項目29)
マスクを反射体の前方にさらに備え、前記マスクは、前記光出力開口部と整合されるマスク開口部を有し、前記マスク開口部は、前記光出力開口部と異なる形状または異なるサイズのうちの1つまたはそれを上回るものを有する、項目1に記載の光学システム。
(項目30)
前記マスクは、前記レンズの前方にある、項目29に記載の光学システム。
図1は、ARデバイスを通した拡張現実(AR)のユーザのビューを図示する。
図2は、ウェアラブルディスプレイシステムの実施例を図示する。
図3は、ユーザのための3次元画像をシミュレートするための従来のディスプレイシステムを図示する。
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
図5A-5Cは、曲率半径と焦点半径との間の関係を図示する。
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。
図7は、導波管によって出力された出射ビームの実施例を図示する。
図8は、各深度平面が複数の異なる原色を使用して形成される画像を含む、スタックされた導波管アセンブリの実施例を図示する。
図9Aは、それぞれ、内部結合光学要素を含む、スタックされた導波管のセットの実施例の断面側面図を図示する。
図9Bは、図9Aの複数のスタックされた導波管の実施例の斜視図を図示する。
図9Cは、図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。
図10は、複合放物面型集光器(CPC)のプロファイルを有する、反射体の実施例を図示する。
図11は、反射体およびレンズを有する、光学システムの実施例を図示する。
図12は、光エミッタ、反射体、およびレンズを有する、光学システムの実施例を図示する。
図13は、図11-12の光学システムからの光出力の実施例を図示する。
図14A-14Fは、異なる形状を伴う光入力開口部および光出力開口部を有する、反射体の実施例を図示する。 図14A-14Fは、異なる形状を伴う光入力開口部および光出力開口部を有する、反射体の実施例を図示する。 図14A-14Fは、異なる形状を伴う光入力開口部および光出力開口部を有する、反射体の実施例を図示する。 図14A-14Fは、異なる形状を伴う光入力開口部および光出力開口部を有する、反射体の実施例を図示する。 図14A-14Fは、異なる形状を伴う光入力開口部および光出力開口部を有する、反射体の実施例を図示する。 図14A-14Fは、異なる形状を伴う光入力開口部および光出力開口部を有する、反射体の実施例を図示する。
図15Aおよび15Bは、それぞれ、図14A-14Cおよび14D-14Fの反射体の光出力のための均一性マップの実施例を図示する。 図15Aおよび15Bは、それぞれ、図14A-14Cおよび14D-14Fの反射体の光出力のための均一性マップの実施例を図示する。
図16は、レンズと併せた図14A-14Cの反射体のための角度空間内の光出力の強度を示すマップの実施例を図示する。
図17A-17Bは、それぞれ、図14A-14Cおよび14D-14Fの反射体のアレイの実施例の斜視図を図示する。
図18は、光エミッタ、反射体、およびレンズのアレイと、マスクとを有する、光学システムの実施例の斜視図を図示する。
図19は、反射体のアレイと、配線等の光エミッタ構造のためのくぼみとを有する、材料の本体の実施例の斜視図を図示する。
図20A-20Bは、異なる高さを伴う反射体を有する、材料の本体の実施例の斜視図を図示する。
図21A-21Eは、反射体の実施例の種々の図を図示する。 図21A-21Eは、反射体の実施例の種々の図を図示する。 図21A-21Eは、反射体の実施例の種々の図を図示する。 図21A-21Eは、反射体の実施例の種々の図を図示する。 図21A-21Eは、反射体の実施例の種々の図を図示する。
図22A-22Bは、図21の反射体の付加的斜視図を図示する。 図22A-22Bは、図21の反射体の付加的斜視図を図示する。
図22C-22Dは、それぞれ、反射体の光出力開口部側および光入力開口部側から見たときの図21の反射体の斜視図を図示する。 図22C-22Dは、それぞれ、反射体の光出力開口部側および光入力開口部側から見たときの図21の反射体の斜視図を図示する。
図23Aおよび23Bは、それぞれ、丸みを帯びたプロファイルを有し、かつ内部側壁の交差点における鋭的角を有する、反射体の光出力のための均一性マップの実施例を図示する。 図23Aおよび23Bは、それぞれ、丸みを帯びたプロファイルを有し、かつ内部側壁の交差点における鋭的角を有する、反射体の光出力のための均一性マップの実施例を図示する。
図面は、例示的実施形態を図示するために提供され、本開示の範囲を限定することを意図するものではない。
ディスプレイシステムは、光エミッタからの光を変調し、次いで、視認者によって視認するために、その光を投影させることによって、画像を形成し得る。いくつかのイメージングシステムは、光エミッタのアレイを利用し得、そのそれぞれは、独立して、光を光変調器に提供する。光エミッタは、種々の課題を提示する。例えば、光エミッタのアレイを伴うシステムは、複雑であり得、複数の構造が、光の伝搬を光変調器に指向するために利用される。アセンブリの複雑性に起因して、システムは、製造が困難であり得る。
加えて、ディスプレイシステムによって形成される画像の明るさ均一性は、光変調器によって光エミッタから受信された光の空間均一性に依存し得ることを理解されたい。その結果、良好な明るさ均一性を伴う画像を表示するために、光変調器によって受信された光は、空間的に均一であることが望ましい。
有利には、いくつかの実施形態によると、反射体と、反射体の光出力開口部に近接するレンズとを伴う、光学システムは、高空間均一性および高効率を伴う光出力を提供する。好ましくは、反射体は、実質的に角度が均一な光出力を提供するように成形され、レンズは、本角度が均一な光出力を空間的に均一な光出力に変換するように構成される。反射体は、光エミッタからの光を収容および/または受信するための光入力開口部と、その受信された光を出力するための光出力開口部とを有する。いくつかの実施形態では、光エミッタは、ランバート角度分布を伴う光を放出する。いくつかの実施形態では、光エミッタは、延在された光源であって、例えば、発光ダイオードであってもよい。いくつかの実施形態では、光入力および出力開口部の形状は、異なってもよい。いくつかの実施形態では、レンズは、反射体の光出力開口部に近接する(例えば、その前方にある)。
いくつかの実施形態では、反射体の内部反射表面の曲率は、断面側面図に見られるように、楕円形、双曲線、または双円錐形状の輪郭に従ってもよい。いくつかの実施形態では、反射体の内部反射表面は、反射体が比較的に大光出力開口部からより小さい光入力開口部へとテーパ状になるにつれて、略線形プロファイルを有してもよい。好ましくは、反射体の反射表面は、エミッタ表面内に固定される設計形状またはサブ開口に対応する縁光線のセットを実質的にコリメートするように成形される。縁光線の1つを上回るセットが、反射体の設計内に含まれてもよいことを理解されたい。例えば、+/-50ミクロンの軸方向光エミッタ偏移を可能にするように設計される反射体は、各セットを実質的にコリメートするように選定される反射体形状を用いて、本範囲に及ぶ縁光線のいくつかのセットとともに設計されてもよい。いくつかの実施形態では、反射体の反射表面の結果として生じる形状は、若干、理想化された軸外放物線断面から逸脱し得るが、複合放物面型集光器(CPC)の形状に実質的に類似し得る。レンズおよび光エミッタに関する形状およびパラメータは、所望のレベルの空間的に均一な光出力および効率を達成するように併せて選定されてもよいことを理解されたい。
いくつかの実施形態では、反射体の反射内部表面は、複合放物面型集光器(CPC)のプロファイル(断面側面図から見ると)を有し、本プロファイルまたは曲率は、少なくとも反射体の高さ軸に沿って延在する2つの中央平面に沿って得られる断面に存在し、中央平面は、相互に直交する。反射体の高さは、光入力開口部と光出力開口部との間の距離であることを理解されたい。
いくつかの好ましい実施形態では、反射体の内部表面は、複数の側面を有してもよく、それらの側面は全て、側面図に見られるように、CPCプロファイルを有してもよい。加えて、反射体の高さ軸に対して横方向の平面に沿って得られる断面側面図に見られるように、全ての内部側壁は、線形または平坦であってもよい。したがって、内部側壁は、ファセットであると見なされ、角をこれらの内部側壁の交差点に形成し得る。好ましくは、内部側壁の交差点におけるこれらの角は、前述のように、側壁の線形性質に起因して、鋭角である。いくつかの実施形態では、2つの対向内部側壁は、他の内部側壁と異なるCPCプロファイルを有してもよい。いくつかの実施形態では、それらの他の内部側壁は全て、同一CPCプロファイルである。いくつかの他の実施形態では、少なくとも2つの内部側壁または全ての内部側壁は、実質的に線形であって、反射体の光入力端部から光出力端部まで延在する。好ましくは、内部側壁の総数は、6つまたはそれを上回る、もしくはより好ましくは、8つまたはそれを上回る。
いくつかの実施形態では、複数の反射体および関連付けられたレンズは、例えば、光変調器に出力される、離散し空間的に分離された光源を提供する、アレイを形成する。例えば、異なる光エミッタは、光を各反射体および関連付けられたレンズの中に出力してもよい。いくつかの実施形態では、マスクが、レンズの前方に提供され、所望の断面形状を伴う光出力を提供してもよい。いくつかの実施形態では、光エミッタの少なくともいくつかは、光エミッタのその他と異なる波長の光を放出してもよい。いくつかの実施形態では、反射体の少なくともいくつかは、反射体のその他と異なる高さを有してもよい。いくつかの実施形態では、反射体、レンズ、および/またはマスクは、材料の別個のプレート内に形成されてもよく、これは、後に、光出力モジュールに組み立てられてもよい。
CPCは、従来、例えば、太陽熱集熱装置内で光を収集する、またはスポットライト用途において光を出力するために使用されていることを理解されたい。CPCは、良好な角度均一性を伴う光を出力するが、光は、特に、CPCが円形形状をその出力開口部に有する場合、低光強度を円形形状の内部に伴う円形形状を形成し得る。そのような円形形状は、容認不可能に空間的に非均一な光出力を示し、これは、イメージングシステム内における光を提供するためのCPCの使用を妨害し得る。
しかしながら、角度が均一な光出力を提供するプロファイルを有する反射体をレンズと併用して、非常に空間的に均一な光出力が提供され得ることが見出されている。いくつかの実施形態では、レンズは、レンズを通して通過後、光が非常に空間的に均一な光に変換されるように、反射体の非常に角度が均一な光出力を利用し、フーリエ変換を本光に行う。
有利には、高空間均一性は、非常に空間的に均一な光出力が所望される種々の光学システム内で、光出力システムが利用されることを可能にする。例えば、光学システムは、ディスプレイシステムであってもよく、光出力システムは、画像を形成するために、光を光変調デバイスの中に出力してもよい。光出力システムはまた、高効率を提供し得、これは、画像明るさを増加させることができる。例えば、光入力および出力表面の形状は、それぞれ、光エミッタおよび出力された光を受信する表面の形状に合致するように選定されてもよい。本合致は、高効率を促進し、光エミッタ光からの非常に高割合の光が、受信表面に到達する。加えて、反射体は、材料の1つまたはそれを上回る一体型本体内に形成されてもよく、これは、反射体間の光漏出をブロックしながら、製造を簡略化し、コンパクト構造を提供する利点を提供することができる。加えて、マスク開口部等の他の関連付けられた構造もまた、反射体上にオーバーレイされ得る、一体型本体内に形成されてもよく、これは、それらの構造の製造および統合された光学システムの中へのそれらの構造の後続組立を簡略化することができる。いくつかの実施形態では、反射体およびレンズは、4-D光成形を達成するように構成される。
ここで、図を参照するが、同様の参照番号は、全体を通して同様の特徴を指す。
図1を参照すると、拡張現実場面1が、描写される。現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しており、デジタル的に再現された画像またはその一部が、現実であるように見える、もしくはそのように知覚され得る様式でユーザに提示される。仮想現実または「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透明性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実または「AR」シナリオは、典型的には、ユーザの周囲の実際の世界の可視化に対する拡張としてのデジタルまたは仮想画像情報の提示を伴う。複合現実または「MR」シナリオは、一種のARシナリオであって、典型的には、自然世界の中に統合され、それに応答する、仮想オブジェクトを伴う。例えば、MRシナリオは、実世界内のオブジェクトによってブロックされて見える、または別様にそれと相互作用するように知覚される、AR画像コンテンツを含んでもよい。図1は、拡張現実場面1が、図示されており、AR技術のユーザには、背景における人々、木々、建物を特徴とする実世界公園状設定20と、コンクリートプラットフォーム30とが見える。ユーザはまた、実世界プラットフォーム1120上に立っているロボット像40と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ50等の「仮想コンテンツ」を「見ている」と知覚する。これらの要素50、40は、実世界には存在しないという点において「仮想」である。ヒトの視知覚系は、複雑であって、他の仮想または実世界画像要素間における仮想画像要素の快適で、自然のような感覚で、かつ豊かな提示を促進する、AR技術の生成は、困難である。
図2は、ウェアラブルディスプレイシステム60の実施例を図示する。ディスプレイシステム60は、ディスプレイ70と、そのディスプレイ70の機能をサポートするための種々の機械的および電子モジュールならびにシステムとを含む。ディスプレイ70は、フレーム80に結合されてもよく、これは、ディスプレイシステムユーザまたは視認者90によって装着可能であって、ディスプレイ70をユーザ90の眼の正面に位置付けるように構成される。ディスプレイ70は、いくつかの実施形態では、アイウェアと見なされてもよい。いくつかの実施形態では、スピーカ100が、フレーム80に結合され、ユーザ90の外耳道に隣接して位置付けられるように構成される(いくつかの実施形態では、示されない別のスピーカが、随意に、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供してもよい)。ディスプレイシステムはまた、1つまたはそれを上回るマイクロホン110または他のデバイスを含み、音を検出してもよい。いくつかの実施形態では、マイクロホンは、ユーザが、入力またはコマンドをシステム60に提供することを可能にするように構成され(例えば、音声メニューコマンドの選択、自然言語質問等)、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にしてもよい。マイクロホンはさらに、周辺センサとして構成され、オーディオデータ(例えば、ユーザおよび/または環境からの音)を収集してもよい。いくつかの実施形態では、ディスプレイシステムもまた、周辺センサ120aを含んでもよく、これは、フレーム80と別個であって、ユーザ90の身体(例えば、ユーザ90の頭部、胴体、四肢等上)に取り付けられてもよい。周辺センサ120aは、いくつかの実施形態では、ユーザ90の生理学的状態を特徴付けるデータを取得するように構成されてもよい。例えば、センサ120aは、電極であってもよい。
図2を継続して参照すると、ディスプレイ70は、有線導線または無線コネクティビティ等の通信リンク130によって、ローカルデータ処理モジュール140に動作可能に結合され、これは、フレーム80に固定して取り付けられる、ユーザによって装着されるヘルメットまたは帽子に固定して取り付けられる、ヘッドホン内に埋設される、または別様にユーザ90に除去可能に取り付けられる(例えば、リュック式構成、ベルト結合式構成において)等、種々の構成で搭載されてもよい。同様に、センサ120aは、通信リンク120b、例えば、有線導線または無線コネクティビティによって、ローカルプロセッサおよびデータモジュール140に動作可能に結合されてもよい。ローカル処理およびデータモジュール140は、ハードウェアプロセッサならびに不揮発性メモリ(例えば、フラッシュメモリまたはハードディスクドライブ)等のデジタルメモリを備えてもよく、両方とも、データの処理、キャッシュ、および記憶を補助するために利用されてもよい。データは、a)画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、ジャイロスコープ、および/または本明細書に開示される他のセンサ等のセンサ(例えば、フレーム80に動作可能に結合される、または別様にユーザ90に取り付けられ得る)から捕捉された、および/またはb)可能性としてそのような処理または読出後にディスプレイ70への通過のための遠隔処理モジュール150および/または遠隔データリポジトリ160(仮想コンテンツに関連するデータを含む)を使用して取得および/または処理されたデータを含む。ローカル処理およびデータモジュール140は、これらの遠隔モジュール150、160が相互に動作可能に結合され、ローカル処理およびデータモジュール140に対するリソースとして利用可能であるように、有線または無線通信リンクを介して等、通信リンク170、180によって、遠隔処理モジュール150および遠隔データリポジトリ160に動作可能に結合されてもよい。いくつかの実施形態では、ローカル処理およびデータモジュール140は、画像捕捉デバイス、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープのうちの1つまたはそれを上回るものを含んでもよい。いくつかの他の実施形態では、これらのセンサのうちの1つもしくはそれを上回るものは、フレーム80に取り付けられてもよい、または有線もしくは無線通信経路によってローカル処理およびデータモジュール140と通信する、独立構造であってもよい。
図2を継続して参照すると、いくつかの実施形態では、遠隔処理モジュール150は、データおよび/または画像情報を分析ならびに処理するように構成される、1つまたはそれを上回るプロセッサを備えてもよい。いくつかの実施形態では、遠隔データリポジトリ160は、インターネットまたは「クラウド」リソース構成における他のネットワーキング構成を通して利用可能であり得る、デジタルデータ記憶設備を備えてもよい。いくつかの実施形態では、遠隔データリポジトリ160は、情報、例えば、拡張現実コンテンツを生成するための情報をローカル処理およびデータモジュール140および/または遠隔処理モジュール150に提供する、1つまたはそれを上回る遠隔サーバを含んでもよい。いくつかの実施形態では、全てのデータが、記憶され、全ての計算は、ローカル処理およびデータモジュール内で行われ、遠隔モジュールからの完全に自律的な使用を可能にする。
ここで図3を参照すると、「3次元」または「3-D」としての画像の知覚は、視認者の各眼への画像の若干異なる提示を提供することによって達成され得る。図3は、ユーザに関する3次元画像をシミュレートするための従来のディスプレイシステムを図示する。眼210、220毎に1つの2つの明確に異なる画像190、200が、ユーザに出力される。画像190、200は、視認者の視線と平行な光学軸またはz-軸に沿って距離230だけ眼210、220から離間される。画像190、200は、平坦であって、眼210、220は、単一の遠近調節された状態をとることによって、画像上に合焦し得る。そのような3-Dディスプレイシステムは、ヒト視覚系に依拠し、画像190、200を組み合わせ、組み合わせられた画像の深度および/または尺度の知覚を提供する。
しかしながら、ヒト視覚系は、より複雑であって、深度の現実的知覚を提供することは、より困難であることを理解されたい。例えば、従来の「3-D」ディスプレイシステムの多くの視認者は、そのようなシステムが不快であることを見出す、または深度の感覚を全く知覚しない場合がある。理論によって限定されるわけではないが、オブジェクトの視認者は、輻輳・開散(vergence)運動および遠近調節(accommodation)の組み合わせに起因して、オブジェクトを「3次元」として知覚し得ると考えられる。相互に対する2つの眼の輻輳・開散運動の移動(すなわち、瞳孔が、眼の視線を収束させ、オブジェクトに固定させるための相互に向かった、またはそこから離れるように移動する、眼の回転)は、眼の水晶体および瞳孔の集束(または「遠近調節」)と密接に関連付けられる。通常条件下では、眼の水晶体の焦点を変化させる、または眼を遠近調節し、1つのオブジェクトから異なる距離における別のオブジェクトに焦点を変化させることは、「遠近調節-輻輳・開散運動反射」ならびに瞳孔拡張または収縮として知られる関係下、同一距離までの輻輳・開散運動における整合的変化を自動的に生じさせるであろう。同様に、輻輳・開散運動における変化は、正常条件下では、水晶体形状および瞳孔サイズの遠近調節における整合的変化を誘起するであろう。本明細書に記載されるように、多くの立体視または「3-D」ディスプレイシステムは、3次元視点がヒト視覚系によって知覚されるように、各眼への若干異なる提示(したがって、若干異なる画像)を使用して、場面を表示する。しかしながら、そのようなシステムは、とりわけ、単に、場面の異なる提示を提供するが、眼が全画像情報を単一の遠近調節された状態において視認すると、「遠近調節-輻輳・開散運動反射」に対抗して機能するため、多くの視認者にとって不快である。遠近調節と輻輳・開散運動との間のより優れた整合を提供するディスプレイシステムは、3次元画像のより現実的かつ快適なシミュレーションを形成し得る。
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。図4を参照すると、z-軸上の眼210、220からの種々の距離におけるオブジェクトは、それらのオブジェクトが合焦するように、眼210、220によって遠近調節される。眼210、220は、特定の遠近調節された状態をとり、z-軸に沿って異なる距離においてオブジェクトに合焦させる。その結果、特定の遠近調節された状態は、特定の深度平面におけるオブジェクトまたはオブジェクトの一部が、眼がその深度平面のための遠近調節された状態にあるとき合焦するように、関連付けられた焦点距離を有する、深度平面240のうちの特定の1つと関連付けられると言え得る。いくつかの実施形態では、3次元画像は、眼210、220毎に画像の異なる提示を提供することによって、また、深度平面のそれぞれに対応する画像の異なる提示を提供することによってシミュレートされてもよい。例証を明確にするために、別個であるように示されるが、眼210、220の視野は、例えば、z-軸に沿った距離が増加するにつれて重複し得ることを理解されたい。加えて、例証を容易にするために、平坦として示されるが、深度平面の輪郭は、深度平面内の全ての特徴が特定の遠近調節された状態における眼と合焦するように、物理的空間内で湾曲され得ることを理解されたい。
オブジェクトと眼210または220との間の距離はまた、その眼によって視認されるようなそのオブジェクトからの光の発散の量を変化させ得る。図5A-5Cは、距離と光線の発散との間の関係を図示する。オブジェクトと眼210との間の距離は、減少距離R1、R2、およびR3の順序で表される。図5A-5Cに示されるように、光線は、オブジェクトまでの距離が減少するにつれてより発散する。距離が増加するにつれて、光線は、よりコリメートされる。換言すると、点(オブジェクトまたはオブジェクトの一部)によって生成される光場は、点がユーザの眼から離れている距離の関数である、球状波面曲率を有すると言え得る。曲率は、オブジェクトと眼210との間の距離の減少に伴って増加する。その結果、異なる深度平面では、光線の発散度もまた、異なり、発散度は、深度平面と視認者の眼210との間の距離の減少に伴って増加する。単眼210のみが、例証を明確にするために、図5A-5Cおよび本明細書の他の図に図示されるが、眼210に関する議論は、視認者の両眼210および220に適用され得ることを理解されたい。
理論によって限定されるわけではないが、ヒトの眼は、典型的には、有限数の深度平面を解釈し、深度知覚を提供することができると考えられる。その結果、知覚された深度の高度に真実味のあるシミュレーションが、眼にこれらの限定数の深度平面のそれぞれに対応する画像の異なる提示を提供することによって達成され得る。異なる提示は、視認者の眼によって別個に集束され、それによって、異なる深度平面上に位置する場面のための異なる画像特徴に合焦させるために要求される眼の遠近調節に基づいて、および/または焦点がずれている異なる深度平面上の異なる画像特徴の観察に基づいて、ユーザに深度合図を提供することに役立ててもよい。
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム250は、複数の導波管270、280、290、300、310を使用して3次元知覚を眼/脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ260を含む。いくつかの実施形態では、ディスプレイシステム250は、図2のシステム60であって、図6は、そのシステム60のいくつかの部分をより詳細に図式的に示す。例えば、導波管アセンブリ260は、図2のディスプレイ70の一部であってもよい。ディスプレイシステム250は、いくつかの実施形態では、ライトフィールドディスプレイと見なされてもよいことを理解されたい。加えて、導波管アセンブリ260はまた、接眼レンズとも称され得る。
図6を継続して参照すると、導波管アセンブリ260はまた、複数の特徴320、330、340、350を導波管間に含んでもよい。いくつかの実施形態では、特徴320、330、340、350は、1つまたはそれを上回るレンズであってもよい。導波管270、280、290、300、310および/または複数のレンズ320、330、340、350は、種々のレベルの波面曲率または光線発散を用いて画像情報を眼に送信するように構成されてもよい。各導波管レベルは、特定の深度平面と関連付けられてもよく、その深度平面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス360、370、380、390、400は、導波管のための光源として機能してもよく、画像情報を導波管270、280、290、300、310の中に投入するために利用されてもよく、それぞれ、本明細書に説明されるように、眼210に向かって出力のために各個別の導波管を横断して入射光を分散させるように構成されてもよい。光は、画像投入デバイス360、370、380、390、400の出力表面410、420、430、440、450から出射し、導波管270、280、290、300、310の対応する入力表面460、470、480、490、500の中に投入される。いくつかの実施形態では、入力表面460、470、480、490、500はそれぞれ、対応する導波管の縁であってもよい、または対応する導波管の主要表面の一部(すなわち、世界510または視認者の眼210に直接面する導波管表面のうちの1つ)であってもよい。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波管の中に投入され、クローン化されたコリメートビームの全体場を出力してもよく、これは、特定の導波管と関連付けられた深度平面に対応する特定の角度(および発散量)において眼210に向かって指向される。いくつかの実施形態では、画像投入デバイス360、370、380、390、400のうちの単一の1つは、複数(例えば、3つ)の導波管270、280、290、300、310と関連付けられ、その中に光を投入してもよい。
いくつかの実施形態では、画像投入デバイス360、370、380、390、400はそれぞれ、それぞれ対応する導波管270、280、290、300、310の中への投入のために画像情報を生成する、離散ディスプレイである。いくつかの他の実施形態では、画像投入デバイス360、370、380、390、400は、例えば、画像情報を1つまたはそれを上回る光学導管(光ファイバケーブル等)を介して画像投入デバイス360、370、380、390、400のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。画像投入デバイス360、370、380、390、400によって提供される画像情報は、異なる波長または色(例えば、本明細書に議論されるように、異なる原色)の光を含んでもよいことを理解されたい。
いくつかの実施形態では、導波管270、280、290、300、310の中に投入される光は、光プロジェクタシステム520によって提供され、これは、光モジュール540を備え、これは、発光ダイオード(LED)等の光エミッタを含んでもよい。光モジュール540からの光は、ビームスプリッタ550を介して、光変調器530、例えば、空間光変調器によって指向および修正されてもよい。光変調器530は、導波管270、280、290、300、310の中に投入される光の知覚される強度を変化させるように構成されてもよい。空間光変調器の実施例は、シリコン上液晶(LCOS)ディスプレイを含む、液晶ディスプレイ(LCD)を含む。画像投入デバイス360、370、380、390、400は、図式的に図示され、いくつかの実施形態では、これらの画像投入デバイスは、光を導波管270、280、290、300、310の関連付けられたものの中に出力するように構成される、共通投影システム内の異なる光経路および場所を表し得ることを理解されたい。
いくつかの実施形態では、ディスプレイシステム250は、光を種々のパターン(例えば、ラスタ走査、螺旋走査、リサジューパターン等)で1つまたはそれを上回る導波管270、280、290、300、310の中に、最終的には、視認者の眼210に投影するように構成される、1つまたはそれを上回る走査ファイバを備える、走査ファイバディスプレイであってもよい。いくつかの実施形態では、図示される画像投入デバイス360、370、380、390、400は、光を1つまたは複数の導波管270、280、290、300、310の中に投入するように構成される、単一走査ファイバまたは走査ファイバの束を図式的に表し得る。いくつかの他の実施形態では、図示される画像投入デバイス360、370、380、390、400は、複数の走査ファイバまたは走査ファイバの複数の束を図式的に表し得、それぞれ、光を導波管270、280、290、300、310のうちの関連付けられた1つの中に投入するように構成される。1つまたはそれを上回る光ファイバは、光を光モジュール540から1つまたはそれを上回る導波管270、280、290、300、310に伝送するように構成されてもよいことを理解されたい。1つまたはそれを上回る介在光学構造が、走査ファイバまたは複数のファイバと、1つまたはそれを上回る導波管270、280、290、300、310との間に提供され、例えば、走査ファイバから出射する光を1つまたはそれを上回る導波管270、280、290、300、310の中に再指向してもよいことを理解されたい。
コントローラ560は、画像投入デバイス360、370、380、390、400、光源540、および光モジュール530の動作を含む、スタックされた導波管アセンブリ260のうちの1つまたはそれを上回るものの動作を制御する。いくつかの実施形態では、コントローラ560は、ローカルデータ処理モジュール140の一部である。コントローラ560は、例えば、本明細書に開示される種々のスキームのいずれかに従って、導波管270、280、290、300、310への画像情報のタイミングおよびプロビジョニングを調整する、プログラミング(例えば、非一過性媒体内の命令)を含む。いくつかの実施形態では、コントローラは、単一の一体型デバイスまたは有線もしくは無線通信チャネルによって接続される分散型システムであってもよい。コントローラ560は、いくつかの実施形態では、処理モジュール140または150(図2)の一部であってもよい。
図6を継続して参照すると、導波管270、280、290、300、310は、全内部反射(TIR)によって、光を各個別の導波管内で伝搬させるように構成されてもよい。導波管270、280、290、300、310はそれぞれ、主要な上部および底部表面ならびにそれらの主要な上部表面と底部表面との間に延在する縁を伴う、平面である、または別の形状(例えば、湾曲)を有してもよい。図示される構成では、導波管270、280、290、300、310はそれぞれ、光を再指向させ、各個別の導波管内で伝搬させ、導波管から、画像情報を眼210に出力することによって、光を導波管から抽出するように構成される、外部結合光学要素570、580、590、600、610を含んでもよい。抽出された光はまた、外部結合光と称され得、光を外部結合する光学要素はまた、光抽出光学要素と称され得る。抽出された光のビームは、導波管によって、導波管内で伝搬する光が光抽出光学要素に衝打する場所において出力され得る。外部結合光学要素570、580、590、600、610は、例えば、本明細書にさらに議論されるような回折光学特徴を含む、格子であってもよい。説明を容易にし、図面を明確にするために、導波管270、280、290、300、310の底部主要表面に配置されて図示されるが、いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、本明細書にさらに議論されるように、上部および/または底部主要表面に配置されてもよい、ならびに/もしくは導波管270、280、290、300、310の体積内に直接配置されてもよい。いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、透明基板に取り付けられ、導波管270、280、290、300、310を形成する、材料の層内に形成されてもよい。いくつかの他の実施形態では、導波管270、280、290、300、310は、モノリシック材料片であってもよく、外部結合光学要素570、580、590、600、610は、その材料片の表面上および/または内部に形成されてもよい。
図6を継続して参照すると、本明細書に議論されるように、各導波管270、280、290、300、310は、光を出力し、特定の深度平面に対応する画像を形成するように構成される。例えば、眼の最近傍の導波管270は、眼210にコリメートされた光(そのような導波管270の中に投入された)を送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の上方の導波管280は、眼210に到達し得る前に、第1のレンズ350(例えば、負のレンズ)を通して通過する、コリメートされた光を送出するように構成されてもよい。そのような第1のレンズ350は、眼/脳が、その次の上方の導波管280から生じる光を光学無限遠から眼210に向かって内向きにより近い第1の焦点面から生じるように解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の上方の導波管290は、眼210に到達する前に、その出力光を第1のレンズ350および第2のレンズ340の両方を通して通過させる。第1のレンズ350および第2のレンズ340の組み合わせられた屈折力は、眼/脳が、第3の導波管290から生じる光が次の上方の導波管280からの光であったよりも光学無限遠から人物に向かって内向きにさらに近い第2の焦点面から生じるように解釈するように、波面曲率の別の漸増量を生成するように構成されてもよい。
他の導波管層300、310およびレンズ330、320も同様に、スタック内の最高導波管310は、人物に最も近い焦点面を表す集約焦点力のために、その出力をそれと眼との間のレンズの全てを通して送出するように構成される。スタックされた導波管アセンブリ260の他側の世界510から生じる光を視認/解釈するとき、レンズ320、330、340、350のスタックを補償するために、補償レンズ層620が、スタックの上部に配置され、下方のレンズスタック320、330、340、350の集約力を補償してもよい。そのような構成は、利用可能な導波管/レンズ対と同じ数の知覚される焦点面を提供する。導波管の外部結合光学要素およびレンズの集束側面の両方とも、静的であってもよい(すなわち、動的または電気活性ではない)。いくつかの代替実施形態では、いずれかまたは両方とも、電気活性特徴を使用して動的であってもよい。
いくつかの実施形態では、導波管270、280、290、300、310のうちの2つまたはそれを上回るものは、同一の関連付けられた深度平面を有してもよい。例えば、複数の導波管270、280、290、300、310が、同一深度平面に設定される画像を出力するように構成されてもよい、または導波管270、280、290、300、310の複数のサブセットが、深度平面毎に1つのセットを伴う、同一の複数の深度平面に設定される画像を出力するように構成されてもよい。これは、それらの深度平面において拡張された視野を提供するようにタイリングされた画像を形成する利点を提供し得る。
図6を継続して参照すると、外部結合光学要素570、580、590、600、610は、導波管と関連付けられた特定の深度平面のために、光をその個別の導波管から再指向させることと、本光を適切な量の発散またはコリメーションを伴って出力することとの両方を行うように構成されてもよい。その結果、異なる関連付けられた深度平面を有する導波管は、外部結合光学要素570、580、590、600、610の異なる構成を有してもよく、これは、関連付けられた深度平面に応じた、異なる発散量を用いて光を出力する。いくつかの実施形態では、光抽出光学要素570、580、590、600、610は、体積または表面特徴であってもよく、これは、具体的角度において光を出力するように構成されてもよい。例えば、光抽出光学要素570、580、590、600、610は、体積ホログラム、表面ホログラム、および/または回折格子であってもよい。いくつかの実施形態では、特徴320、330、340、350は、レンズではなくてもよい。むしろ、それらは、単に、スペーサ(例えば、クラッディング層および/または空隙を形成するための構造)であってもよい。
いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、回折パターンまたは「回折光学要素」(また、本明細書では、「DOE」とも称される)を形成する、回折特徴である。好ましくは、DOEは、ビームの光の一部のみがDOEの各交差点を用いて眼210に向かって偏向される一方、残りがTIRを介して導波管を通して移動し続けるように、十分に低い回折効率を有する。画像情報を搬送する光は、したがって、様々な場所において導波管から出射するいくつかの関連出射ビームに分割され、その結果、導波管内でバウンスする本特定のコリメートされたビームに関して、眼210に向かって非常に均一パターンの出射放出となる。
いくつかの実施形態では、1つまたはそれを上回るDOEは、能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であってもよい。例えば、切替可能なDOEは、ポリマー分散液晶の層を備えてもよく、その中で微小液滴は、ホスト媒体中に回折パターンを備え、微小液滴の屈折率は、ホスト材料の屈折率に実質的に整合するように切り替えられてもよい(その場合、パターンは、入射光を著しく回折させない)、または微小液滴は、ホスト媒体のものに整合しない屈折率に切り替えられてもよい(その場合、パターンは、入射光を能動的に回折させる)。
いくつかの実施形態では、カメラアセンブリ630(例えば、可視光および赤外線光カメラを含む、デジタルカメラ)が、眼210および/または眼210の周囲の組織の画像を捕捉し、例えば、ユーザ入力を検出する、および/またはユーザの生理学的状態を監視するために提供されてもよい。本明細書で使用されるように、カメラは、任意の画像捕捉デバイスであってもよい。いくつかの実施形態では、カメラアセンブリ630は、画像捕捉デバイスと、光(例えば、赤外線光)を眼に投影する光源とを含んでもよく、その光は、次いで、眼によって反射され、画像捕捉デバイスによって検出され得る。いくつかの実施形態では、カメラアセンブリ630は、フレーム80(図2)に取り付けられてもよく、カメラアセンブリ630からの画像情報を処理し得る、処理モジュール140および/または150と電気通信してもよい。いくつかの実施形態では、1つのカメラアセンブリ630が、眼毎に利用され、各眼を別個に監視してもよい。
ここで図7を参照すると、導波管によって出力された出射ビームの実施例が、示される。1つの導波管が図示されるが、導波管アセンブリ260(図6)内の他の導波管も同様に機能し得、導波管アセンブリ260は、複数の導波管を含むことを理解されたい。光640が、導波管270の入力表面460において導波管270の中に投入され、TIRによって導波管270内を伝搬する。光640がDOE570上に衝突する点では、光の一部は、導波管から出射ビーム650として出射する。出射ビーム650は、略平行として図示されるが、本明細書に議論されるように、また、導波管270と関連付けられた深度平面に応じて、ある角度(例えば、発散出射ビームを形成する)において眼210に伝搬するように再指向されてもよい。略平行出射ビームは、眼210からの遠距離(例えば、光学無限遠)における深度平面に設定されるように現れる画像を形成するように光を外部結合する、外部結合光学要素を伴う導波管を示し得ることを理解されたい。他の導波管または他の外部結合光学要素のセットは、より発散する、出射ビームパターンを出力してもよく、これは、眼210がより近い距離に遠近調節し、網膜に合焦させることを要求し、光学無限遠より眼210に近い距離からの光として脳によって解釈されるであろう。
いくつかの実施形態では、フルカラー画像が、原色、例えば、3つまたはそれを上回る原色のそれぞれに画像をオーバーレイすることによって、各深度平面において形成されてもよい。図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。図示される実施形態は、深度平面240a-240fを示すが、より多いまたはより少ない深度もまた、検討される。各深度平面は、第1の色Gの第1の画像、第2の色Rの第2の画像、および第3の色Bの第3の画像を含む、それと関連付けられた3つまたはそれを上回る原色画像を有してもよい。異なる深度平面は、文字G、R、およびBに続くジオプタ(dpt)に関する異なる数字によって図に示される。単なる実施例として、これらの文字のそれぞれに続く数字は、ジオプタ(1/m)、すなわち、視認者からの深度平面の逆距離を示し、図中の各ボックスは、個々の原色画像を表す。いくつかの実施形態では、異なる波長の光の眼の集束における差異を考慮するために、異なる原色に関する深度平面の正確な場所は、変動してもよい。例えば、所与の深度平面に関する異なる原色画像は、ユーザからの異なる距離に対応する深度平面上に設置されてもよい。そのような配列は、視力およびユーザ快適性を増加させ得、および/または色収差を減少させ得る。
いくつかの実施形態では、各原色の光は、単一専用導波管によって出力されてもよく、その結果、各深度平面は、それと関連付けられた複数の導波管を有してもよい。そのような実施形態では、文字G、R、またはBを含む、図中の各ボックスは、個々の導波管を表すものと理解され得、3つの導波管は、深度平面毎に提供されてもよく、3つの原色画像が、深度平面毎に提供される。各深度平面と関連付けられた導波管は、本図面では、説明を容易にするために相互に隣接して示されるが、物理的デバイスでは、導波管は全て、レベル毎に1つの導波管を伴うスタックで配列されてもよいことを理解されたい。いくつかの他の実施形態では、複数の原色が、例えば、単一導波管のみが深度平面毎に提供され得るように、同一導波管によって出力されてもよい。
図8を継続して参照すると、いくつかの実施形態では、Gは、緑色であって、Rは、赤色であって、Bは、青色である。いくつかの他の実施形態では、マゼンタ色およびシアン色を含む、光の他の波長と関連付けられた他の色も、加えて使用されてもよい、または赤色、緑色、もしくは青色のうちの1つまたはそれを上回るものに取って代わってもよい。
本開示全体を通した所与の光の色の言及は、その所与の色として視認者によって知覚される、光の波長の範囲内の1つまたはそれを上回る波長の光を包含するものと理解されると理解されたい。例えば、赤色光は、約620~780nmの範囲内である1つまたはそれを上回る波長の光を含んでもよく、緑色光は、約492~577nmの範囲内である1つまたはそれを上回る波長の光を含んでもよく、青色光は、約435~493nmの範囲内である1つまたはそれを上回る波長の光を含んでもよい。
いくつかの実施形態では、光源540(図6)は、視認者の視覚的知覚範囲外の1つまたはそれを上回る波長、例えば、赤外線および/または紫外線波長の光を放出するように構成されてもよい。加えて、ディスプレイ250の導波管の内部結合、外部結合、および他の光再指向構造は、例えば、イメージングおよび/またはユーザ刺激用途のために、本光をディスプレイからユーザの眼210に向かって指向および放出するように構成されてもよい。
ここで図9Aを参照すると、いくつかの実施形態では、導波管に衝突する光は、その光を導波管の中に内部結合するために再指向される必要があり得る。内部結合光学要素が、光をその対応する導波管の中に再指向および内部結合するために使用されてもよい。図9Aは、それぞれが内部結合光学要素を含む、複数またはセット660のスタックされた導波管の実施例の断面側面図を図示する。導波管はそれぞれ、1つもしくはそれを上回る異なる波長または1つもしくはそれを上回る異なる波長範囲の光を出力するように構成されてもよい。スタック660は、スタック260(図6)に対応してもよく、スタック660の図示される導波管は、複数の導波管270、280、290、300、310の一部に対応してもよいが、画像投入デバイス360、370、380、390、400のうちの1つまたはそれを上回るものからの光が、光が内部結合のために再指向されることを要求する位置から導波管の中に投入されることを理解されたい。
スタックされた導波管の図示されるセット660は、導波管670、680、および690を含む。各導波管は、関連付けられた内部結合光学要素(導波管上の光入力面積とも称され得る)を含み、例えば、内部結合光学要素700は、導波管670の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素710は、導波管680の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素720は、導波管690の主要表面(例えば、上側主要表面)上に配置される。いくつかの実施形態では、内部結合光学要素700、710、720のうちの1つまたはそれを上回るものは、個別の導波管670、680、690の底部主要表面上に配置されてもよい(特に、1つまたはそれを上回る内部結合光学要素は、反射性偏向光学要素である)。図示されるように、内部結合光学要素700、710、720は、その個別の導波管670、680、690の上側主要表面(または次の下側導波管の上部)上に配置されてもよく、特に、それらの内部結合光学要素は、透過性偏向光学要素である。いくつかの実施形態では、内部結合光学要素700、710、720は、個別の導波管670、680、690の本体内に配置されてもよい。いくつかの実施形態では、本明細書に議論されるように、内部結合光学要素700、710、720は、他の光の波長を透過しながら、1つまたはそれを上回る光の波長を選択的に再指向するような波長選択的である。その個別の導波管670、680、690の片側または角に図示されるが、内部結合光学要素700、710、720は、いくつかの実施形態では、その個別の導波管670、680、690の他の面積内に配置されてもよいことを理解されたい。
図示されるように、内部結合光学要素700、710、720は、相互から側方にオフセットされてもよい。いくつかの実施形態では、各内部結合光学要素は、その光が別の内部結合光学要素を通して通過せずに、光を受信するようにオフセットされてもよい。例えば、各内部結合光学要素700、710、720は、図6に示されるように、光を異なる画像投入デバイス360、370、380、390、および400から受信するように構成されてもよく、光を内部結合光学要素700、710、720の他のものから実質的に受信しないように、他の内部結合光学要素700、710、720から分離されてもよい(例えば、側方に離間される)。
各導波管はまた、関連付けられた光分散要素を含み、例えば、光分散要素730は、導波管670の主要表面(例えば、上部主要表面)上に配置され、光分散要素740は、導波管680の主要表面(例えば、上部主要表面)上に配置され、光分散要素750は、導波管690の主要表面(例えば、上部主要表面)上に配置される。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の底部主要表面上に配置されてもよい。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の上部および底部両方の主要表面上に配置されてもよい、または光分散要素730、740、750は、それぞれ、異なる関連付けられた導波管670、680、690内の上部および底部主要表面の異なるもの上に配置されてもよい。
導波管670、680、690は、例えば、材料のガス、液体、および/または固体層によって離間ならびに分離されてもよい。例えば、図示されるように、層760aは、導波管670および680を分離してもよく、層760bは、導波管680および690を分離してもよい。いくつかの実施形態では、層760aおよび760bは、低屈折率材料(すなわち、導波管670、680、690の直近のものを形成する材料より低い屈折率を有する材料)から形成される。好ましくは、層760a、760bを形成する材料の屈折率は、導波管670、680、690を形成する材料の屈折率を0.05もしくはそれを上回るかまたは0.10もしくはそれを下回る。有利には、より低い屈折率層760a、760bは、導波管670、680、690を通して光の全内部反射(TIR)(例えば、各導波管の上部および底部主要表面間のTIR)を促進する、クラッディング層として機能してもよい。いくつかの実施形態では、層760a、760bは、空気から形成される。図示されないが、導波管の図示されるセット660の上部および底部は、直近クラッディング層を含んでもよいことを理解されたい。
好ましくは、製造および他の考慮点を容易にするために、導波管670、680、690を形成する材料は、類似または同一であって、層760a、760bを形成する材料は、類似または同一である。いくつかの実施形態では、導波管670、680、690を形成する材料は、1つまたはそれを上回る導波管間で異なってもよい、および/または層760a、760bを形成する材料は、依然として、前述の種々の屈折率関係を保持しながら、異なってもよい。
図9Aを継続して参照すると、光線770、780、790が、導波管のセット660に入射する。光線770、780、790は、1つまたはそれを上回る画像投入デバイス360、370、380、390、400(図6)によって導波管670、680、690の中に投入されてもよいことを理解されたい。
いくつかの実施形態では、光線770、780、790は、異なる色に対応し得る、異なる性質、例えば、異なる波長または異なる波長範囲を有する。内部結合光学要素700、710、720はそれぞれ、光が、TIRによって、導波管670、680、690のうちの個別の1つを通して伝搬するように、入射光を偏向させる。いくつかの実施形態では、内部結合光学要素700、710、720はそれぞれ、他の波長を下層導波管および関連付けられた内部結合光学要素に透過させながら、1つまたはそれを上回る特定の光の波長を選択的に偏向させる。
例えば、内部結合光学要素700は、それぞれ、異なる第2および第3の波長または波長範囲を有する、光線780および790を透過させながら、第1の波長または波長範囲を有する、光線770を選択的に偏向させるように構成されてもよい。透過された光線780は、第2の波長または波長範囲の光を偏向させるように構成される、内部結合光学要素710に衝突し、それによって偏向される。光線790は、第3の波長または波長範囲の光を選択的に偏向させるように構成される、内部結合光学要素720によって偏向される。
図9Aを継続して参照すると、偏向された光線770、780、790は、対応する導波管670、680、690を通して伝搬するように偏向される。すなわち、各導波管の内部結合光学要素700、710、720は、光をその対応する導波管670、680、690の中に偏向させ、光を対応する導波管の中に内部結合する。光線770、780、790は、光をTIRによって個別の導波管670、680、690を通して伝搬させる角度で偏向される。光線770、780、790は、導波管の対応する光分散要素730、740、750に衝突するまで、TIRによって個別の導波管670、680、690を通して伝搬する。
ここで図9Bを参照すると、図9Aの複数のスタックされた導波管の実施例の斜視図が、図示される。前述のように、内部結合された光線770、780、790は、それぞれ、内部結合光学要素700、710、720によって偏向され、次いで、それぞれ、導波管670、680、690内でTIRによって伝搬する。光線770、780、790は、次いで、それぞれ、光分散要素730、740、750に衝突する。光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820に向かって伝搬するように、光線770、780、790を偏向させる。
いくつかの実施形態では、光分散要素730、740、750は、直交瞳エクスパンダ(OPE)である。いくつかの実施形態では、OPEは、光を外部結合光学要素800、810、820に偏向または分散し、いくつかの実施形態では、また、外部結合光学要素に伝搬するにつれて、本光のビームまたはスポットサイズを増加させてもよい。いくつかの実施形態では、光分散要素730、740、750は、省略されてもよく、内部結合光学要素700、710、720は、光を直接外部結合光学要素800、810、820に偏向させるように構成されてもよい。例えば、図9Aを参照すると、光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820と置換されてもよい。いくつかの実施形態では、外部結合光学要素800、810、820は、光を視認者の眼210(図7)に指向させる、射出瞳(EP)または射出瞳エクスパンダ(EPE)である。OPEは、少なくとも1つの軸においてアイボックスの寸法を増加させるように構成されてもよく、EPEは、OPEの軸と交差する、例えば、直交する軸においてアイボックスを増加させてもよいことを理解されたい。例えば、各OPEは、光の残りの部分が導波管を辿って伝搬し続けることを可能にしながら、OPEに衝打する光の一部を同一導波管のEPEに再指向するように構成されてもよい。OPEへの衝突に応じて、再び、残りの光の別の部分は、EPEに再指向され、その部分の残りの部分は、導波管等を辿ってさらに伝搬し続ける。同様に、EPEへの衝打に応じて、衝突光の一部は、導波管からユーザに向かって指向され、その光の残りの部分は、EPに再び衝打するまで、導波管を通して伝搬し続け、その時点で、衝突する光の別の部分は、導波管から指向される等となる。その結果、内部結合された光の単一ビームは、その光の一部がOPEまたはEPEによって再指向される度に、「複製」され、それによって、図6に示されるように、クローン化された光のビーム野を形成し得る。いくつかの実施形態では、OPEおよび/またはEPEは、光のビームのサイズを修正するように構成されてもよい。
故に、図9Aおよび9Bを参照すると、いくつかの実施形態では、導波管のセット660は、原色毎に、導波管670、680、690と、内部結合光学要素700、710、720と、光分散要素(例えば、OPE)730、740、750と、外部結合光学要素(例えば、EP)800、810、820とを含む。導波管670、680、690は、各1つの間に空隙/クラッディング層を伴ってスタックされてもよい。内部結合光学要素700、710、720は、(異なる波長の光を受信する異なる内部結合光学要素を用いて)入射光をその導波管の中に再指向または偏向させる。光は、次いで、個別の導波管670、680、690内にTIRをもたらすであろう角度で伝搬する。示される実施例では、光線770(例えば、青色光)は、前述の様式において、第1の内部結合光学要素700によって偏光され、次いで、導波管を辿ってバウンスし続け、光分散要素(例えば、OPE)730、次いで、外部結合光学要素(例えば、EP)800と相互作用する。光線780および790(例えば、それぞれ、緑色および赤色光)は、導波管670を通して通過し、光線780は、内部結合光学要素710上に入射し、それによって偏向される。光線780は、次いで、TIRを介して、導波管680を辿ってバウンスし、その光分散要素(例えば、OPE)740、次いで、外部結合光学要素(例えば、EP)810に進むであろう。最後に、光線790(例えば、赤色光)は、導波管690を通して通過し、導波管690の内部結合光学要素720に衝突する。光内部結合光学要素720は、光線が、TIRによって、光分散要素(例えば、OPE)750、次いで、TIRによって、外部結合光学要素(例えば、EP)820に伝搬するように、光線790を偏向させる。外部結合光学要素820は、次いで、最後に、光線790を視認者に外部結合し、視認者はまた、他の導波管670、680からの光も受信する。
図9Cは、図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。図示されるように、導波管670、680、690は、各導波管の関連付けられた光分散要素730、740、750および関連付けられた外部結合光学要素800、810、820とともに、垂直に整合されてもよい。しかしながら、本明細書に議論されるように、内部結合光学要素700、710、720は、垂直に整合されない。むしろ、内部結合光学要素は、好ましくは、非重複する(例えば、上下図に見られるように、側方に離間される)。本明細書でさらに議論されるように、本非重複空間配列は、1対1ベースで異なるリソースから異なる導波管の中への光の投入を促進し、それによって、具体的光源が具体的導波管に一意に結合されることを可能にする。いくつかの実施形態では、非重複の空間的に分離される内部結合光学要素を含む、配列は、偏移瞳システムと称され得、これらの配列内の内部結合光学要素は、サブ瞳に対応し得る。
いくつかの実施形態では、光エミッタからの光は、反射体およびレンズを使用して成形される。図10は、複合放物面型集光器(CPC)のプロファイルを有する、反射体2000の実施例を図示する。反射体2000は、光入力開口部2002と、光出力開口部2004とを有し、両方とも、円形であってもよい。光入力開口部は、光(例えば、光線2010、2020、2030)を光エミッタ(図示せず)から受信してもよい。光は、反射体の壁2040から反射し、光出力開口部2004を通して反射体2000から出射する。着目すべきこととして、出力された光線2010、2020、2030は、高度な角度均一性を有し、相互に略平行に反射体から出射し得る。したがって、縁光線は、CPCによってコリメートされる。しかしながら、出力された光の空間均一性は、不良である。望ましくなく、反射体2010から出射する光は、リングの形状におけるホットスポットを形成し得る。
図11-12を参照すると、レンズ(例えば、フーリエ変換レンズ)が、反射体の角度が均一な光出力を空間的に均一な光出力に変換するために利用されてもよい。図11は、反射体2110と、レンズ2120とを有する、光学システム2100の実施例を図示する。反射体2110は、光入力開口部2102と、光出力開口部2104とを有し、光入力開口部2102から光出力開口部2104に延在する、内部側壁2112a、2112bを伴う。内部側壁2112a、2112bは、湾曲され、角度が均一な光出力をレンズ2120に提供する。いくつかの実施形態では、側壁2112a、2112bは、CPCプロファイルを有する。すなわち、内部側壁2112a、2112bの曲率は、複合放物面型集光器のものに追従する。いくつかの実施形態では、内部側壁2112a、2112bは、楕円形、双曲線、または双円錐形状の輪郭に追従し得ることを理解されたい。いくつかの他の実施形態では、内部側壁2112a、2112bは、実質的に線形であってもよく、これは、レンズ21020が非常に空間的に均一な光を出力するために十分に角度が均一な光出力を提供することが見出されている。側壁2112a、2112bは、図示される断面では別個として示されるが、実際の3次元反射体では、2112aおよび2112bは、単に、連続表面の対向側であることを理解されたい。好ましくは、側壁2112a、2112bは、鏡面反射体である。いくつかの実施形態では、側壁2112a、2112bは、反射材料から形成されてもよい、および/または反射材料で裏打ちされてもよい。
図12は、光を反射体2110の中に放出するように位置付けられる光エミッタ2140を有する、光学システム2100の実施例を図示する。いくつかの実施形態では、光エミッタ2140は、光入力開口部の外側にある。いくつかの他の実施形態では、光エミッタ2140は、反射体2110の内部体積の内側に位置付けられる。いくつかの実施形態では、光エミッタ2140は、ランバート放射パターンを有する。光エミッタ2140は、例えば、電気エネルギーを光に変換する、例えば、発光ダイオード(LED)、白熱電球、蛍光灯電球、または他のデバイスであってもよい。
図11および12を継続して参照すると、レンズ2120は、光出力開口部2104に近接する。いくつかの実施形態では、レンズ2120は、光出力開口部2104の前方またはそこに直接位置する。いくつかの他の実施形態では、レンズ2120は、反射体2110の内側に位置してもよい。好ましくは、レンズ2120から光エミッタ2140までの距離は、レンズの焦点距離と実質的に等しい。加えて、レンズから光変調器(図示せず)までの距離もまた、好ましくは、レンズの焦点距離と実質的に等しい。
レンズ2120の例証は、概略であることを理解されたい。また、レンズ2120は、反射体2110の角度が均一な光出力を空間的に均一な光出力に変換するように構成される、光学透過性構造であることを理解されたい。例えば、図示されるように、光エミッタ2140によって放出される光線2130は、それらが実質的に同一方向に伝搬するように、側壁2112a、2112bから反射される。レンズ2120は、次いで、本角度が均一な出力をレンズ2120から離れるように伝搬する空間的に均一な光2130に変換する。レンズは、いくつかの実施形態では、単一レンズであってもよい。いくつかの他の実施形態では、レンズ2120は、二重レンズまたはレンズ系等の複合レンズであってもよい。好ましくは、レンズ2120は、光出力開口部2104の面積の実質的に全体を横断して延在する。
図13は、図11-12の光学システム2100から出力された光の実施例を図示する。光は、光エミッタ2140から離れてレンズ2120の中に、次いで、レンズ2120から光変調器209bに伝搬する。レンズ2120および光変調器209bは、本図では、線として図式的に表される。本明細書に記載されるように、光エミッタ2140とレンズ2120との間の距離は、レンズの焦点距離と等しくてもよく、レンズ2120と光変調器209bとの間の距離もまた、レンズの焦点距離と等しくてもよい。
いくつかの実施形態では、反射体2110は、同一形状、例えば、円形である、光入力開口部と、光出力開口部とを有する。いくつかの他の実施形態では、光入力開口部および光出力開口部の形状は、異なる。図14A-14Fは、異なる形状を伴う光入力開口部と、光出力開口部とを有する、反射体の実施例を図示する。光入力開口部および光出力開口部の形状を変動させる能力は、異なる形状または縦横比を有する、光エミッタおよび光変調器を効率的に合致させる利点を提供することができる。
図14A-14Cは、段階的楕円形形状を伴う、反射体2110を図示する。図14Aは、視認者に面した光出力開口部2104を伴う、斜視図である。図14Bは、図14Aの平面14Bを直視する、側面図である。図14Cは、ここでは、図14Aの平面14Cを直視する、別の側面図である。平面14Bは、平面14Cに直交する。図示されるように、いくつかの実施形態では、反射体2110の光入力開口部2102は、円形形状を有し、これは、平面14Aおよび14Bに沿って見られるように、光出力開口部2104が楕円形形状を有するように、異なるレートで段階的に拡張する。例えば、側壁2112aおよび2112bは、側壁2112cおよび2112dより大きいレートで外方に拡張する。いくつかの実施形態では、切り欠き2114が、光入力開口部2102に存在し、側壁2112cの中に延在してもよい。切り欠き2114は、光エミッタ(例えば、光エミッタ2140、図12)のためのコネクタ(例えば、ワイヤボンド)が収容されることを可能にし得る。
図14D-14Fは、長方形光入力開口部2102を伴う、反射体2110を図示する。図14Dは、視認者に面した光出力開口部2104を伴う、斜視図である。図14Eは、図14Dの平面14Eを直視する側面図である。図14Fは、ここでは、図14Dの平面14Fを直視する別の側面図である。平面14Eは、平面14Fに直交する。図示されるように、いくつかの実施形態では、反射体2110の光入力開口部2102は、長方形形状(例えば、正方形形状)を有し、これは、光出力開口部2104が異なる長さおよび幅を伴う長方形形状を有するように、段階的に拡張する。正方形光入力開口部2102は、多くのLED等の正方形光エミッタに噛合するために有益であり得ることを理解されたい。一方、反射体2110が光を光変調器209b(図6)に提供するために使用される用途では、光変調器209bは、画像を標準的縦横比において生成するように構成されてもよく、1つの寸法は、別の交差寸法より大きい(例えば、縦横比は、4:3、16:9等であってもよい)。図14Dに図示されるように、光出力開口部2104は、2つの曲線辺2104c、2104dによって継合される、2つの直線辺2104a、2104bを有してもよい。
図14A-14Fを参照すると、平面14A、14B、14E、および14Fは、反射体2110の種々の図示される実施形態を実質的に二分する、中央平面である(少なくとも光出力開口部2104を参照すると)。光出力開口部2104から光入力開口部2102までの距離は、反射体2110の高さであると見なされ得、平面14A、14B、14E、および14Fは、それぞれ、反射体2110の高さ軸に沿って延在する軸を有すると見なされ得ることを理解されたい。加えて、対の中央平面14Aおよび14B、および、14Eおよび14Fは、相互に直交する。好ましくは、中央平面14A、14B、14E、および14Fに見られるように、内部側壁2112a、2112b、2112c、2112dはそれぞれ、CPCプロファイルに追従し、ある曲率の複合放物面型集光器を有する。
反射体と、レンズとを備える、光学システムは、非常に空間的に均一な光出力を提供する。図15Aおよび15Bは、それぞれ、図14A-14Cおよび14D-14Fの反射体の光出力に関する均一性マップの実施例を図示する。これらのマップでは、異なる色は、異なる光強度を示す。有利には、図示されるように、色および強度は、非常に均一であって、高空間均一性を示す。
光出力はまた、良好な角度均一性を有する。図16は、本明細書の実施形態による、レンズと併せた図14A-14Cの反射体に関する角度空間内の光出力の強度を示す、マップの実施例を図示する。Vは、光出力開口部2104(図14A)の主(より長い)軸に沿った光出力の角度広がりに対応し、Hは、光出力開口部2104の副(短)軸に沿った光出力の角度広がりに対応し、対角線は、光出力開口部の対角線に沿った光出力の角度広がりに対応する。着目すべきこととして、V、H、および対角線毎のカットオフは、鋭的であって、光がレンズから出射する角度が類似し、それらの角度の外側に最小限の迷光を伴うことを示す。
いくつかの実施形態では、反射体およびレンズシステムは、反射体およびレンズのアレイの一部を形成してもよい。反射体は、単に、適切に成形された体積内に形成され得るため、反射体のアレイは、材料の単一本体内に形成されてもよい。図17A-17Bは、それぞれ、図14A-14Cおよび14D-14Fの反射体のアレイの実施例の斜視図を図示する。図17Aは、図14D-14Fに関して議論されるように、楕円形光出力開口部を有する、反射体を示し、図17Bは、直線および湾曲辺を伴う伸長出力開口部を有する、反射体を示す。図17Aおよび17Bの両方において、複数の反射体2110は、材料2200の本体、例えば、材料のプレート内に形成されてもよい。例証を容易にするために、類似であるように示されるが、本体2200内の反射体のサイズおよび/または形状は、いくつかの実施形態では、変動してもよいことを理解されたい。
本体2200は、反射体2110の所望の形状を維持するために十分な機械的完全性を有する、種々の材料から形成されてもよいことを理解されたい。好適な材料の実施例は、金属、プラスチック、およびガラスを含む。本明細書に議論されるように、本体2200は、プレートであってもよい。いくつかの実施形態では、本体2200は、材料の連続した一体型部品である。いくつかの他の実施形態では、本体2200は、材料の2つまたはそれを上回る部品をともに継合することによって形成されてもよい。
反射体2110は、種々の方法によって、本体2200内に形成されてもよい。例えば、反射体2110は、本体2200を機械加工することによって、または別様に材料を除去し、反射体2110を刻設することによって、形成されてもよい。いくつかの他の実施形態では、反射体2110は、本体2200が形成されるにつれて、形成されてもよい。例えば、反射体2110は、本体2200がその所望の形状に成型されるにつれて、本体2200に成型されてもよい。いくつかの他の実施形態では、反射体2110は、本体2200の形成後、材料の再配列によって形成されてもよい。例えば、反射体2110は、インプリンティングによって形成されてもよい。
いったん反射体2110の輪郭が形成されると、反射体体積は、さらなる処理を受け、所望の反射度を有する内側表面を形成してもよい。いくつかの実施形態では、本体2200の表面自体が、反射性であってもよく、例えば、本体は、反射金属から形成される。そのような場合、さらなる処理は、単に、反射体2110の内部表面を平滑化し、その反射率を増加させることを含んでもよい。いくつかの他の実施形態では、反射体2110の内部表面は、反射コーティングで裏打ちされてもよい。
前述のような反射体2110の成形は、反射体の光出力が角度空間内で成形されることを可能にし、非対称角度分布を提供することを理解されたい。有利には、反射体形状は、本明細書に記載のように、所望のディスプレイ縦横比に合致する、光出力を提供するために使用されてもよい。いくつかの他の実施形態では、所望の縦横比は、レンズの前方に設置されたマスクを使用して達成されてもよい。
図18は、光エミッタ2140、反射体2110、およびレンズ2120のアレイと、マスク2400とを有する、光学システムの実施例の斜視図を図示する。いくつかの実施形態では、光エミッタ2140は、支持基板2300、例えば、印刷回路基板上に搭載される。光エミッタ2140および反射体2110の空間レイアウトは、好ましくは、各光エミッタ2140が個々の対応する反射体2110と垂直に整合されるように合致される。いくつかの実施形態では、光エミッタ2140、反射体2110、およびレンズ2120のアレイ、随意に、マスク2400は、光モジュール540(図6)を形成してもよい。
いくつかの実施形態では、光エミッタ2140は全て、類似してもよい。いくつかの他の実施形態では、光エミッタ2140の少なくともいくつかは、異なってもよく、例えば、いくつかの光エミッタは、他の光エミッタと異なる波長または波長範囲の光を出力してもよい。例えば、光エミッタ2140は、光エミッタのグループ、例えば、光エミッタの3つのグループを形成してもよく、各グループは、異なる色(例えば、赤色、緑色、および青色)に対応する波長の光を放出する。いくつかの実施形態では、光エミッタの3つを上回るグループ(3つを上回る異なる波長範囲の光を放出するため)が、存在してもよい。光エミッタの異なるグループは、ディスプレイシステム250(図6)等のディスプレイシステムのための異なる原色の光を提供するために利用されてもよい。例えば、各グループの光エミッタは、光線770、780、790(図9A-9B)を放出するために利用されてもよい。
いくつかの実施形態では、光エミッタ、反射体、およびレンズは、光を導波管のスタック660(図9A-9C)に提供するために利用される。そのような実施形態では、光エミッタ2140の空間レイアウトと反射体2110の空間レイアウトとの間の合致に加え、光エミッタ2140および反射体2110はまた、好ましくは、導波管のスタック660内の内部結合光学要素(例えば、内部結合光学要素700、710、720)の空間レイアウトに合致するように配列される。好ましくは、光エミッタ2140および反射体2110の空間レイアウトは、反射体2110の空間配列が、平面図に見られるように、光内部結合光学要素700、710、720の空間配列と1対1で対応するように、内部結合光学要素700、710、720の空間レイアウトに合致する。そのような配列を用いることで、特定の光エミッタからの光は、導波管670、680、690のその他の中に指向されずに、導波管670、680、690のうちの関連付けられた1つの中に確実に指向され得る。
図18を継続して参照すると、光学システム2100が図示されるように配向された状態では、反射体の光入力開口部は、本体2200の底部にあって、光出力開口部は、本体2200の上部にある。好ましくは、本体2200の下側表面は、光が光エミッタから光エミッタに合致する反射体以外の反射体2110の中に有意に伝搬しないように、基板2300の上側表面上に平坦に置かれるように輪郭付けられる。有利には、本体2200の下側表面および基板2300の上側表面は両方とも、平坦であってもよく、これは、本体220と基板2300との間の界面における緊密な嵌合を促進し、望ましくない迷光が個々の反射体2110に到達することを防止し得る。
レンズ2120が、反射体2110の光出力開口部に提供される。図示されるように、各反射体2110は、個々の関連付けられたレンズ2120を有する。いくつかの他の実施形態では、レンズの一部または全部は、材料の単一シート内に形成されてもよい。そのような実施形態では、材料のシートは、好ましくは、薄い、例えば、十分な構造完全性を維持し、レンズをともに保持しながら、反射体間の光漏出を最小限にするために十分に薄い。
図18を継続して参照すると、マスク2400が、レンズ2120の前方に提供される。マスク2400は、光出力のための所望の形状において、開口部2402、例えば、カットアウトを有する。したがって、マスク2400は、空間光成形のために利用されてもよい。開口部2402は、好ましくは、反射体の光出力開口部より小さい面積を有する。いくつかの実施形態では、反射体の中に面するマスク表面(例えば、マスク2400の底部表面)は、反射性であって、これは、光エミッタ2140と、反射体2110と、レンズ2120とを備える、光モジュールの効率および明るさを増加させ得る。いくつかの他の実施形態では、底部表面は、吸収性であって、これは、マスクの底部表面と反射体2110との間のランダム反射を防止することによって、反射体2110から開口部2402を通して通過する光の経路のより高度な制御を提供し得る。
反射体2110の輪郭の画定に加え、本体2200は、他の目的のための他の構造を含んでもよい。図19は、反射体のアレイ2110と、配線等の光エミッタ構造のためのくぼみ2210とを有する、本体2200の実施例の斜視図を図示する。くぼみ2210は、それらが、光エミッタ2140(図18)の一部または光エミッタ2140に接続される構造を収容し得、本体2200が、光漏出を伴わずに、基板2300に対して緊密に嵌合し得るように成形され、そのような深度を有する。反射体2110と同様に、くぼみ2210は、機械加工、成型、およびインプリンティングを含む、種々の方法によって形成されてもよい。
いくつかの実施形態では、本体2200は、均一厚さを有してもよい。いくつかの他の実施形態では、本体2200の厚さは、変動してもよい。図20A-20Bは、異なる高さを伴う反射体を有する、材料の本体2200の実施例の斜視図を図示する。反射体は、本体2200を通して完全に延在するため、反射体のための異なる高さは、本体2200の厚さを異なる高さに設定することによって達成されてもよい。実施例として、図20A-20Bは、3つの高さまたはレベル2200a、2200b、および2200cを図示する。より少ないまたはそれを上回るレベルが、所望に応じて提供されてもよく、レベルは、いくつかの実施形態では、図示されるものと異なるように配列されてもよいことを理解されたい。
反射体2110のための異なる高さは、光エミッタ2140(図18)の異なるグループが異なる波長の光を放出する用途に利点を提供し得る。異なる波長の光は、対応する光エミッタ2140から異なる距離に集束してもよい。その結果、光が最良に集束される距離に基づいて選択された異なる高さを伴う、反射体2110は、光エミッタ2140、反射体2110、およびレンズ2120がディスプレイシステム内で使用される場合、画質の改良を提供することが予期され得る。レンズ2120が関連付けられた光エミッタ2140から1つの焦点距離上に位置付けられる、いくつかの実施形態では、1つの焦点距離に対応する距離は、放出される光の波長と、本体2200の一部の厚さとに伴って変動し、光エミッタ2140および関連付けられた反射体2110およびレンズ2120が、光エミッタ2140からの適切な1つの焦点距離におけるレンズ2120の設置を可能にするように選択され得ることに適応してもよい。
いくつかの他の実施形態では、反射体2110は全て、同一高さを有してもよく、光エミッタ2140の異なるグループのためのレンズ2120は、異なってもよい。例えば、光エミッタ2140の異なるグループのためのレンズ2120は、異なる焦点距離を有し、異なる波長の光によって生じる差異を考慮するように構成されてもよい。
ここで図21A-21Eを参照すると、反射体2110の実施例の種々の図が、図示される。反射体2110は、CPCプロファイルに追従する、種々の形状をとってもよいことを理解されたい。いくつかの実施形態では、反射体2110は、複数の辺またはファセットによって形成されてもよく、それぞれ、側面図に見られるように、CPCプロファイルを有する。すなわち、いくつかの実施形態では、反射体2110の全ての内辺は、各辺が側面図に見られるとき、CPCプロファイルを有してもよい。図21Aの図は、反射体の光入力開口部端部から反射体を見下ろして見られるような反射体2110を示す。図21Bおよび21Cの図は、対向側から見られるような反射体2110を示す。図21Dの図は、図BおよびCに見られる辺に直交する辺から見られるような反射体2110を示す。図21Eの図は、反射体の光出力端部から視認されるような反射体2110の斜視図を示す。側壁2112Aおよび2112Bは両方とも、CPCプロファイルを有してもよく、側壁2112Cおよび2112Dもまた両方とも、CPCプロファイルを有してもよい。加えて、全ての他の辺が、側面図に見られるように、CPCプロファイルを有してもよい。加えて、いくつかの実施形態では、図21Aおよび21Eの図から分かるように、反射体2110の各辺は、反射体2110の高さ軸(入力端部2102から出力端部2104まで延在する)に対して横方向の平面に沿って得られる断面図で視認されるとき、線形または平坦である。
いくつかの実施形態では、2つの対向辺、例えば、辺2112Cおよび2112Dまたは辺2112aおよび2112bは、同一CPCプロファイルを有するが、プロファイルは、全ての他の辺のCPCプロファイルと異なる。加えて、全ての他の辺は、同一CPCプロファイルを有してもよい。したがって、いくつかの実施形態では、反射体2110の全ての内辺の曲率は、一対の対向内辺のもの以外、同一であってもよい。いくつかの他の実施形態では、本明細書に記載されるように、反射体2110の内辺は、楕円形、双曲線、または双円錐形状のものを含む、他の輪郭に追従してもよい、または反射体2110の入力端部2102から出力端部2104まで実質的に線形であってもよい。
好ましくは、総辺数は、偶数、例えば、4、6、8、10、12等である。いくつかの実施形態では、総辺数は、8つまたはそれを上回ってもよく、これは、非常に空間的に均一な光出力を提供することが見出されている。
光入力開口部2102は、下層光エミッタを収容するように定寸されてもよいことを理解されたい。いくつかの実施形態では、光エミッタは、約500μmまたはそれを上回る、600μmまたはそれを上回る、700μmまたはそれを上回る、もしくは800μmまたはそれを上回る最大幅を有してもよい。いくつかの実施形態では、光入力開口部2102は、500μmまたはそれを上回る、600μmまたはそれを上回る、700μmまたはそれを上回る、800μmまたはそれを上回る、900μmまたはそれを上回る、もしくは1mmまたはそれを上回る最大幅を有してもよい。いくつかの実施形態では、光入力開口部2102は、2mm未満、1.5mm未満、または1mm未満の幅を有する。
図22A-22Bは、図21の反射体2110の付加的斜視図を図示する。図22C-22Dは、それぞれ、反射体2110の光出力開口部側および光入力開口部側から見られるような図21の反射体のさらに他の付加的斜視図を図示する。
図23Aおよび23Bは、それぞれ、丸みを帯びたプロファイルを有する反射体(反射体の高さ軸に対して横方向の平面に沿って得られた断面に見られるように)および実質的に線形内部側壁の交差点に鋭角を有する反射体(反射体の高さ軸に対して横方向の平面に沿って得られた断面に見られるように)の光出力に関する均一性マップの実施例を図示する。望ましくなく、図23Aに示されるように、丸みを帯びたプロファイルの反射体は、低強度の面積を有する光出力をマップの中央に提供する。本低強度面積は、それ自体は望ましくないが、マップの中央はまた、視認者の視野の中心であり得、視認者は、本面積内の非均一性に特に高感度を有し得ることを理解されたい。有利には、図23Bに示されるように、図21-22Dに関して前述のような辺毎に鋭角およびCPCプロファイルを有する、8辺反射体は、非常に均一な光出力を提供する。
本発明の種々の例示的実施形態が、本明細書で説明される。非限定的な意味で、これらの実施例を参照する。それらは、本発明のより広く適用可能な側面を例証するように提供される。種々の変更が、説明される本発明に行われてもよく、本発明の精神および範囲から逸脱することなく、均等物が置換されてもよい。
例えば、有利には、複数の深度平面を横断して画像を提供する、ARディスプレイとともに利用されるが、本明細書に開示される拡張現実コンテンツはまた、画像を単一深度平面上に提供するシステムによって表示されてもよい。
加えて、有利には、ディスプレイシステムのための光源として適用されるが、本明細書に開示される反射体およびレンズシステムは、非常に空間的に均一な光が所望される、他の用途において利用されてもよい。さらに、反射体およびレンズの単純な機械的構造は、反射体およびレンズのアレイ内におけるその使用を促進するが、反射体およびシステムはまた、単一反射体および関連付けられたレンズを伴う、光学システム内で使用されてもよい。
また、反射体2110(図14C)は、光エミッタのためのワイヤボンド等のコネクタを収容するための切り欠き2114を有してもよいが、いくつかの他の実施形態では、切り欠き2014は、排除されてもよいことを理解されたい。例えば、側壁2112cは、反射体2110の他の側壁と同一レベルに継続してもよい。そのような実施形態では、突出するワイヤボンドを有していない、光エミッタが、利用されてもよく、反射体2110の側壁は、光エミッタを支持する印刷回路基板等の基板に接触するように延在してもよい。突出するワイヤボンドを伴わない光エミッタの実施例は、フリップチップLEDである。光エミッタにわたって延在するワイヤボンドは、可視アーチファクトを光エミッタを使用して形成される画像内に生産する、陰影を生じさせ得ることが見出されている。有利には、ワイヤボンドを排除し、反射体側壁を光エミッタ基板まで延在させることは、そのようなアーチファクトを排除し、画質を改良し得る。
加えて、特定の状況、材料、組成物、プロセス、プロセスの行為またはステップを、本発明の目的、精神、または範囲に適合させるように、多くの修正が行われてもよい。さらに、当業者によって理解されるように、本明細書で説明および図示される個々の変形例のそれぞれは、本発明の範囲または精神から逸脱することなく、他のいくつかの実施形態のうちのいずれかの特徴から容易に分離され得るか、またはそれらと組み合わせられ得る、離散コンポーネントおよび特徴を有する。全てのそのような修正は、本開示と関連付けられる請求項の範囲内であることを目的としている。
本発明は、本デバイスを使用して行われ得る方法を含む。本方法は、そのような好適なデバイスを提供する行為を含んでもよい。そのような提供は、ユーザによって行われてもよい。換言すると、「提供する」行為は、本方法において必要デバイスを提供するために、取得する、アクセスする、接近する、位置付ける、設定する、起動する、電源投入する、または別様に作用するようにユーザに要求するにすぎない。本明細書に記載される方法は、論理的に可能である記載された事象の任意の順序で、ならびに事象の記載された順序で実行されてもよい。
本発明の例示的側面が、材料選択および製造に関する詳細とともに、上記で記載されている。本発明の他の詳細に関して、これらは、上記の参照された特許および公開に関連して理解されるとともに、概して、当業者によって把握または理解され得る。同じことが、一般的または論理的に採用されるような付加的な行為の観点から、本発明の方法ベースの側面に関して当てはまり得る。
加えて、本発明は、種々の特徴を随意に組み込む、いくつかの実施例を参照して説明されているが、本発明は、本発明の各変形例に関して考慮されるように説明または指示されるものに限定されるものではない。種々の変更が、説明される本発明に行われてもよく、本発明の精神および範囲から逸脱することなく、(本明細書に記載されるか、またはいくらか簡潔にするために含まれないかどうかにかかわらず)均等物が置換されてもよい。加えて、値の範囲が提供される場合、その範囲の上限と下限との間の全ての介在値、およびその規定範囲内の任意の他の規定値または介在値が、本発明内に包含されることが理解される。
また、本明細書で説明される発明の変形例の任意の随意的な特徴が、独立して、または本明細書で説明される特徴のうちのいずれか1つまたはそれを上回る特徴と組み合わせて、記載および請求され得ることが考慮される。単数形の項目の言及は、複数の同一項目が存在する可能性を含む。より具体的には、本明細書で、およびそれに関連付けられる請求項で使用されるように、「1つの(a、an)」、「該(said)」、および「該(the)」という単数形は、特に別様に記述されない限り、複数の指示対象を含む。換言すると、冠詞の使用は、上記の説明ならびに本開示と関連付けられる請求項で、対象項目の「少なくとも1つ」を可能にする。さらに、そのような請求項は、任意の随意的な要素を除外するように起草され得ることに留意されたい。したがって、この記述は、請求項要素の記載に関連する「だけ」、「のみ」、および同等物等のそのような排他的用語の使用、または「否定的」制限の使用のための先行詞としての機能を果たすことを目的としている。
そのような排他的用語を使用することなく、本開示と関連付けられる請求項での「備える」という用語は、所与の数の要素がそのような請求項で列挙されるか、または特徴の追加をそのような請求項に記載される要素の性質を変換するものと見なすことができるかどうかにかかわらず、任意の付加的な要素の包含を可能にするものとする。本明細書で特に定義される場合を除いて、本明細書で使用される全ての技術および科学用語は、請求項の有効性を維持しながら、可能な限り広義の一般的に理解されている意味を与えられるものである。
本発明の範疇は、提供される実施例および/または本明細書に限定されるものではなく、むしろ、本開示と関連付けられる請求項の範囲のみによって限定されるものとする。

Claims (18)

  1. 拡張現実ディスプレイシステムであって、前記拡張現実ディスプレイシステムは、
    光エミッタと、
    前記光エミッタに光学的に結合される反射体であって、前記反射体は、前記光エミッタから光を受光するように構成され、前記反射体は、前記光エミッタから受光された光に対して増加した角度均一性を伴う光を出力するように構成される、反射体と、
    前記反射体に光学的に結合されるレンズであって、前記レンズは、前記反射体から光を受光するように構成され、前記レンズは、前記反射体から出力された光に対して増加した空間均一性を伴う光を出力するように構成される、レンズと、
    前記レンズから光を受光することと、前記レンズから受光された前記光を変調することにより画像を生成することとを行うように構成される空間光変調器と
    を備え
    前記反射体は、共通一体型本体の厚さにわたって延在する開口部として形成された複数の反射体のうちの1つであり、各反射体は、関連付けられたレンズをその反射体の出力開口部の前方に有し、
    前記一体型本体は、高さの異なる表面を有し、一部の反射体は、他の反射体とは異なる高さに出力開口部を有する、拡張現実ディスプレイシステム。
  2. 各反射体は、関連付けられた光エミッタを有し、一部の光エミッタは、他の光エミッタとは異なる波長の光を放出するように構成され、前記表面の高さは、関連付けられた光エミッタによって放出される光の波長に応じて変動する、請求項に記載の拡張現実ディスプレイシステム。
  3. 前記光エミッタは、光源の3つ以上のグループを形成し、各グループは、同一の色の光を放出する、請求項に記載の拡張現実ディスプレイシステム。
  4. 前記光エミッタは、光源の3つのグループを形成し、前記グループのうちの第1のグループの光エミッタは、赤色光を放出し、前記グループのうちの第2のグループの光エミッタは、緑色光を放出し、前記グループのうちの第3のグループの光エミッタは、青色光を放出する、請求項に記載の拡張現実ディスプレイシステム。
  5. 前記空間光変調器は、液晶ディスプレイ(LCD)を備える、請求項1に記載の拡張現実ディスプレイシステム。
  6. 前記液晶ディスプレイは、シリコン上液晶(LCoS)ディスプレイである、請求項に記載の拡張現実ディスプレイシステム。
  7. 前記光エミッタは、複数の光エミッタのうちの1つであり、
    導波管のスタックをさらに備え、前記スタックの各導波管は、光変調デバイスを介して前記複数の光エミッタのうちの関連付けられた光エミッタからの光を内部結合するように構成される光内部結合光学要素を備える、請求項1に記載の拡張現実ディスプレイシステム。
  8. 異なる光内部結合光学要素は、異なる光エミッタの光の経路内にある、請求項に記載の拡張現実ディスプレイシステム。
  9. 前記導波管のスタックの各導波管は、光外部結合光学要素を備え、一部の導波管の光外部結合光学要素は、前記導波管のスタックの他の導波管のうちの一部の導波管の光外部結合光学要素とは異なる発散度を伴う光を出力するように構成される、請求項に記載の拡張現実ディスプレイシステム。
  10. 前記反射体と前記空間光変調器との間にマスクをさらに備える、請求項1に記載の拡張現実ディスプレイシステム。
  11. 前記マスクは、前記レンズと前記空間光変調器との間にある、請求項10に記載の拡張現実ディスプレイシステム。
  12. 前記光源は、発光ダイオードである、請求項1に記載の拡張現実ディスプレイシステム。
  13. 拡張現実ディスプレイシステムであって、前記拡張現実ディスプレイシステムは、
    反射体であって、前記反射体は、
    入力端部と、
    出力端部と、
    前記入力端部と前記出力端部との間に延在する複数の辺であって、前記複数の辺の個数は偶数であり、前記反射体の2つの対向する辺は、第1の断面形状を有し、残りの辺は、前記第1の断面形状とは異なる第2の断面形状を有する、複数の辺と
    を備える、反射体と、
    レンズであって、前記レンズは、前記反射体の前記入力端部から離れて前記レンズの焦点距離に位置する、レンズと
    を備え
    前記反射体は、共通一体型本体の厚さにわたって延在する開口部として形成された複数の反射体のうちの1つであり、各反射体は、関連付けられたレンズをその反射体の出力開口部の前方に有し、
    前記一体型本体は、高さの異なる表面を有し、一部の反射体は、他の反射体とは異なる高さに出力開口部を有する、拡張現実ディスプレイシステム。
  14. 前記第1の断面形状は、第1の複合放物面型集光器(CPC)形状である、請求項13に記載の拡張現実ディスプレイシステム。
  15. 前記第2の断面形状は、第2の複合放物面型集光器(CPC)形状であり、前記第1および第2のCPC形状は異なる、請求項14に記載の拡張現実ディスプレイシステム。
  16. 前記レンズから光を受光することと、前記光を変調することにより画像を形成することとを行うように構成される空間光変調器をさらに備える、請求項13に記載の拡張現実ディスプレイシステム。
  17. 前記入力端部の断面形状は、前記出力端部の断面形状とは異なる、請求項13に記載の拡張現実ディスプレイシステム。
  18. 導波管のスタックをさらに備え、前記スタックの各導波管は、
    光変調デバイスを介して関連付けられた光エミッタから受光された光を内部結合するように構成される光内部結合光学要素であって、異なる光内部結合光学要素は、異なる光エミッタの光の経路内にある、光内部結合光学要素と、
    光外部結合光学要素であって、一部の導波管の光外部結合光学要素は、前記導波管のスタックの他の導波管のうちの一部の導波管の光外部結合光学要素とは異なる発散度を伴う光を出力するように構成される、光外部結合光学要素と
    を備える、請求項13に記載の拡張現実ディスプレイシステム。
JP2022000962A 2016-02-26 2022-01-06 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム Active JP7277619B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023076534A JP2023109808A (ja) 2016-02-26 2023-05-08 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662300742P 2016-02-26 2016-02-26
US62/300,742 2016-02-26
PCT/US2017/019497 WO2017147520A1 (en) 2016-02-26 2017-02-24 Light output system with reflector and lens for highly spatially uniform light output
JP2018543663A JP7007283B2 (ja) 2016-02-26 2017-02-24 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018543663A Division JP7007283B2 (ja) 2016-02-26 2017-02-24 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023076534A Division JP2023109808A (ja) 2016-02-26 2023-05-08 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム

Publications (3)

Publication Number Publication Date
JP2022040218A JP2022040218A (ja) 2022-03-10
JP2022040218A5 JP2022040218A5 (ja) 2022-05-10
JP7277619B2 true JP7277619B2 (ja) 2023-05-19

Family

ID=59680207

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018543663A Active JP7007283B2 (ja) 2016-02-26 2017-02-24 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム
JP2022000962A Active JP7277619B2 (ja) 2016-02-26 2022-01-06 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム
JP2023076534A Pending JP2023109808A (ja) 2016-02-26 2023-05-08 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018543663A Active JP7007283B2 (ja) 2016-02-26 2017-02-24 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023076534A Pending JP2023109808A (ja) 2016-02-26 2023-05-08 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム

Country Status (10)

Country Link
US (4) US10306213B2 (ja)
EP (2) EP3420601B1 (ja)
JP (3) JP7007283B2 (ja)
KR (1) KR20180114193A (ja)
CN (2) CN113608293A (ja)
AU (3) AU2017223997B2 (ja)
CA (1) CA3014821A1 (ja)
IL (2) IL261148B2 (ja)
NZ (5) NZ785411A (ja)
WO (1) WO2017147520A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114193A (ko) 2016-02-26 2018-10-17 매직 립, 인코포레이티드 매우 공간적으로 균일한 광 출력을 위한 반사기 및 렌즈를 가진 광 출력 시스템
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10877275B2 (en) * 2018-02-15 2020-12-29 Hitachi, Ltd. Imageguide for head mounted display
US11971549B2 (en) * 2018-03-12 2024-04-30 Magic Leap, Inc. Very high index eyepiece substrate-based viewing optics assembly architectures
US11103763B2 (en) 2018-09-11 2021-08-31 Real Shot Inc. Basketball shooting game using smart glasses
US11141645B2 (en) 2018-09-11 2021-10-12 Real Shot Inc. Athletic ball game using smart glasses
WO2020190313A1 (en) * 2019-03-20 2020-09-24 Ward Matthew E Mems-driven optical package with micro-led array
KR20210094695A (ko) 2020-01-21 2021-07-30 삼성디스플레이 주식회사 홀로그래픽 디스플레이 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128562A (ja) 2004-11-01 2006-05-18 Nikon Corp 発光装置
JP2006285043A (ja) 2005-04-01 2006-10-19 Yamaha Corp 光源装置
US20060238716A1 (en) 2005-04-25 2006-10-26 Samsung Electronics Co., Ltd. Light source module and image projection apparatus employing the same
JP2006524909A (ja) 2003-04-29 2006-11-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 光源
JP2007065080A (ja) 2005-08-29 2007-03-15 Sony Corp 空間光変調光学装置とこれを用いた虚像光学装置及び投射型画像表示装置
JP2009186794A (ja) 2008-02-07 2009-08-20 Sony Corp 光学装置及び画像表示装置
JP2012222304A (ja) 2011-04-13 2012-11-12 Asahi Glass Co Ltd Ledモジュールおよびledランプ
JP2015119236A (ja) 2013-12-17 2015-06-25 セイコーエプソン株式会社 頭部装着型表示装置

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1993580A (en) 1929-12-03 1935-03-05 Gen Electric Electric terminal connection and method of making the same
US5900982A (en) * 1987-12-31 1999-05-04 Projectavision, Inc. High efficiency light valve projection system
US5037191A (en) * 1989-12-21 1991-08-06 Cheng Dah Y Orthogonal parabolic reflector systems
US6392689B1 (en) * 1991-02-21 2002-05-21 Eugene Dolgoff System for displaying moving images pseudostereoscopically
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US5598281A (en) * 1993-11-19 1997-01-28 Alliedsignal Inc. Backlight assembly for improved illumination employing tapered optical elements
US5839812A (en) * 1995-07-18 1998-11-24 Gl Displays, Inc. Flat parallel light source
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
US5645337A (en) * 1995-11-13 1997-07-08 Interstate Electronics Corporation Apertured fluorescent illumination device for backlighting an image plane
US6163391A (en) * 1998-07-10 2000-12-19 Lucent Technologies Inc. Method and apparatus for holographic data storage
US6320182B1 (en) * 1999-11-30 2001-11-20 Xerox Corporation Light collector for an LED array
US8199388B2 (en) * 2002-11-22 2012-06-12 Inphase Technologies, Inc. Holographic recording system having a relay system
US20050036182A1 (en) * 2002-11-22 2005-02-17 Curtis Kevin R. Methods for implementing page based holographic ROM recording and reading
US7400805B2 (en) * 2003-06-10 2008-07-15 Abu-Ageel Nayef M Compact light collection system and method
DE10361118B4 (de) 2003-12-22 2011-12-22 Auer Lighting Gmbh Stufenlinsenscheinwerfer
US7427146B2 (en) * 2004-02-11 2008-09-23 3M Innovative Properties Company Light-collecting illumination system
WO2005091392A1 (en) 2004-03-18 2005-09-29 Phoseon Technology, Inc. Micro-reflectors on a substrate for high-density led array
USD514570S1 (en) 2004-06-24 2006-02-07 Microsoft Corporation Region of a fingerprint scanning device with an illuminated ring
JP2006283043A (ja) 2005-03-31 2006-10-19 Kyushu Institute Of Technology 固相変態を有しない金属材料の表面改質法および表面改質された固相変態を有しない金属材料
KR100701006B1 (ko) * 2005-05-31 2007-03-29 한국전자통신연구원 포물선 도파로형 평행광 렌즈 및 이를 포함한 파장 가변외부 공진 레이저 다이오드
US9658473B2 (en) 2005-10-07 2017-05-23 Percept Technologies Inc Enhanced optical and perceptual digital eyewear
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
WO2008121158A1 (en) * 2007-04-02 2008-10-09 Inphase Technologies, Inc. Non-ft plane angular filters
WO2008139355A1 (en) 2007-05-11 2008-11-20 Koninklijke Philips Electronics N.V. Illumination system
US7940341B2 (en) * 2007-08-23 2011-05-10 Philips Lumileds Lighting Company Light source for a projector
DE112009001135T5 (de) 2008-05-12 2012-01-12 The Arizona Board Of Regents On Behalf Of The University Of Arizona Photovoltaischer Generator mit sphärischer Abbildungslinse zur Verwendung mit einem parabolischen Solarreflektor
EP2846179B1 (en) * 2009-02-03 2019-10-02 Fraen Corporation Light mixing optics and systems
JP2010271554A (ja) * 2009-05-22 2010-12-02 Konica Minolta Opto Inc ホログラム光学素子を用いた映像表示装置
CN103080643A (zh) * 2009-12-22 2013-05-01 爱尔康研究有限公司 用于白光led照明器的集光器
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
AU2011348122A1 (en) 2010-12-24 2013-07-11 Magic Leap Inc. An ergonomic head mounted display device and optical system
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
DE102011002960B3 (de) * 2011-01-21 2012-04-26 Osram Ag Solarsimulator und Verfahren zum Betreiben eines Solarsimulators
RU2621644C2 (ru) 2011-05-06 2017-06-06 Мэджик Лип, Инк. Мир массового одновременного удаленного цифрового присутствия
US10795448B2 (en) 2011-09-29 2020-10-06 Magic Leap, Inc. Tactile glove for human-computer interaction
EP2766762B1 (en) * 2011-10-12 2019-07-17 Phoseon Technology, Inc. Multiple light collection and lens combinations with co-located foci for curing optical fibers
WO2013085639A1 (en) 2011-10-28 2013-06-13 Magic Leap, Inc. System and method for augmented and virtual reality
CA2858208C (en) 2011-11-23 2019-01-15 Magic Leap, Inc. Three dimensional virtual and augmented reality display system
CN102705783A (zh) * 2012-03-23 2012-10-03 上海理工大学 一种改善led光源照度均匀性的系统
KR102028732B1 (ko) 2012-04-05 2019-10-04 매직 립, 인코포레이티드 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들
WO2013188464A1 (en) 2012-06-11 2013-12-19 Magic Leap, Inc. Multiple depth plane three-dimensional display using a wave guide reflector array projector
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US8885997B2 (en) * 2012-08-31 2014-11-11 Microsoft Corporation NED polarization system for wavelength pass-through
WO2014043196A1 (en) 2012-09-11 2014-03-20 Magic Leap, Inc Ergonomic head mounted display device and optical system
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
KR102507206B1 (ko) 2013-01-15 2023-03-06 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
JP6075083B2 (ja) * 2013-01-25 2017-02-08 セイコーエプソン株式会社 頭部装着型表示装置および頭部装着型表示装置の制御方法
KR102516124B1 (ko) 2013-03-11 2023-03-29 매직 립, 인코포레이티드 증강 및 가상 현실을 위한 시스템 및 방법
NZ751593A (en) 2013-03-15 2020-01-31 Magic Leap Inc Display system and method
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
KR102547756B1 (ko) 2013-10-16 2023-06-23 매직 립, 인코포레이티드 조절가능한 동공간 거리를 가지는 가상 또는 증강 현실 헤드셋들
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
KR102493498B1 (ko) * 2013-11-27 2023-01-27 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
JP6234208B2 (ja) * 2013-12-18 2017-11-22 マイクロソフト テクノロジー ライセンシング,エルエルシー 波長通過のためのned偏光システム
EP4099274B1 (en) 2014-01-31 2024-03-06 Magic Leap, Inc. Multi-focal display system and method
KR102177133B1 (ko) 2014-01-31 2020-11-10 매직 립, 인코포레이티드 멀티-포컬 디스플레이 시스템 및 방법
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
AU2015297035B2 (en) 2014-05-09 2018-06-28 Google Llc Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects
USD759657S1 (en) 2014-05-19 2016-06-21 Microsoft Corporation Connector with illumination region
AU2015266586B2 (en) 2014-05-30 2020-07-23 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
USD752529S1 (en) 2014-06-09 2016-03-29 Comcast Cable Communications, Llc Electronic housing with illuminated region
TWI598633B (zh) * 2014-08-05 2017-09-11 佳能股份有限公司 光源設備,照明裝置,曝光設備,及裝置製造方法
US10036535B2 (en) * 2014-11-03 2018-07-31 Ledvance Llc Illumination device with adjustable curved reflector portions
USD758367S1 (en) 2015-05-14 2016-06-07 Magic Leap, Inc. Virtual reality headset
KR20180114193A (ko) 2016-02-26 2018-10-17 매직 립, 인코포레이티드 매우 공간적으로 균일한 광 출력을 위한 반사기 및 렌즈를 가진 광 출력 시스템
USD805734S1 (en) 2016-03-04 2017-12-26 Nike, Inc. Shirt
USD794288S1 (en) 2016-03-11 2017-08-15 Nike, Inc. Shoe with illuminable sole light sequence

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524909A (ja) 2003-04-29 2006-11-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 光源
JP2006128562A (ja) 2004-11-01 2006-05-18 Nikon Corp 発光装置
CN1993580B (zh) 2004-11-01 2010-09-29 株式会社尼康 光发射器件
JP2006285043A (ja) 2005-04-01 2006-10-19 Yamaha Corp 光源装置
US20060238716A1 (en) 2005-04-25 2006-10-26 Samsung Electronics Co., Ltd. Light source module and image projection apparatus employing the same
JP2007065080A (ja) 2005-08-29 2007-03-15 Sony Corp 空間光変調光学装置とこれを用いた虚像光学装置及び投射型画像表示装置
JP2009186794A (ja) 2008-02-07 2009-08-20 Sony Corp 光学装置及び画像表示装置
JP2012222304A (ja) 2011-04-13 2012-11-12 Asahi Glass Co Ltd Ledモジュールおよびledランプ
JP2015119236A (ja) 2013-12-17 2015-06-25 セイコーエプソン株式会社 頭部装着型表示装置

Also Published As

Publication number Publication date
KR20180114193A (ko) 2018-10-17
US11692689B2 (en) 2023-07-04
US11378256B2 (en) 2022-07-05
AU2017223997A1 (en) 2018-08-30
CA3014821A1 (en) 2017-08-31
EP3420601A4 (en) 2020-01-08
CN109075239B (zh) 2021-08-27
US20190238826A1 (en) 2019-08-01
AU2021261908B2 (en) 2023-10-26
NZ745294A (en) 2020-01-31
AU2021261908A1 (en) 2021-12-02
EP4246039A3 (en) 2023-11-15
IL261148B1 (en) 2023-08-01
JP2022040218A (ja) 2022-03-10
CN109075239A (zh) 2018-12-21
NZ761009A (en) 2024-02-23
AU2017223997B2 (en) 2021-09-16
JP2019514034A (ja) 2019-05-30
AU2024200391A1 (en) 2024-02-08
EP4246039A2 (en) 2023-09-20
US20170251201A1 (en) 2017-08-31
WO2017147520A1 (en) 2017-08-31
EP3420601A1 (en) 2019-01-02
US20230280017A1 (en) 2023-09-07
EP3420601B1 (en) 2023-08-02
IL261148B2 (en) 2023-12-01
NZ761010A (en) 2024-02-23
JP2023109808A (ja) 2023-08-08
JP7007283B2 (ja) 2022-01-24
CN113608293A (zh) 2021-11-05
IL304423A (en) 2023-09-01
US20220333764A1 (en) 2022-10-20
NZ785411A (en) 2024-02-23
NZ760857A (en) 2024-02-23
IL261148A (en) 2018-10-31
US10306213B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
JP7277619B2 (ja) 非常に空間的に均一な光出力のための反射体およびレンズを有する光出力システム
JP7212806B2 (ja) 仮想現実、拡張現実、および複合現実システムのための接眼レンズ
JP7378520B2 (ja) 複数の光エミッタに対する複数の光パイプを有するディスプレイシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7277619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150