JP7277466B2 - 疾患の予防および/または治療における使用のためのワクチン - Google Patents

疾患の予防および/または治療における使用のためのワクチン Download PDF

Info

Publication number
JP7277466B2
JP7277466B2 JP2020533356A JP2020533356A JP7277466B2 JP 7277466 B2 JP7277466 B2 JP 7277466B2 JP 2020533356 A JP2020533356 A JP 2020533356A JP 2020533356 A JP2020533356 A JP 2020533356A JP 7277466 B2 JP7277466 B2 JP 7277466B2
Authority
JP
Japan
Prior art keywords
herv
cells
protein
isd
env
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020533356A
Other languages
English (en)
Other versions
JP2020531053A (ja
Inventor
ホルスト ピーダ
ティリオン クリスティアン
ノイキアヒ ラッセ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inprother Aps
Original Assignee
Inprother Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inprother Aps filed Critical Inprother Aps
Publication of JP2020531053A publication Critical patent/JP2020531053A/ja
Priority to JP2023076962A priority Critical patent/JP2023100875A/ja
Application granted granted Critical
Publication of JP7277466B2 publication Critical patent/JP7277466B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/235Adenoviridae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4713Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • C12N2710/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24123Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10071Demonstrated in vivo effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Diabetes (AREA)
  • Rehabilitation Therapy (AREA)
  • Rheumatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)

Description

本開示は、疾患の予防および/または治療における使用のためのワクチンに関する。特に、疾患は、内在性レトロウイルスに由来する可能性があり、すなわち、癌などである。本発明のワクチンは特に、真核細胞においてウイルス様粒子を形成することができるウイルスに関する。本発明のある特定の実施形態において、ウイルスによってコードされたウイルス様粒子(VE-VLP)は、内在性レトロウイルスに対する免疫原性応答を発達させるために患者の体内において産生される。
100年超も前、癌の発達は、免疫系と密に関係しているという見解がなされ、今日、規則的な基盤を基にして、免疫系が癌を生じるのを防御することは十分に確立されている。その一方で、悪性細胞は、免疫監視を回避し、悪性細胞が致命的な能力を展開するための戦略の元となる。
免疫細胞は、腫瘍細胞を検出および殺滅することができるが、この系は、癌により世界中で年間ほぼ900万件の死亡から明白なように、必ずしも機能的であるとは限らない。腫瘍細胞に対する特異的免疫応答を誘導するための予防接種アプローチは、癌免疫療法において比較的古いトピックであるが、なおも開発下にあり、まさに近年、関連する結果を得られ始めた。1つの予防接種戦略は、減弱した腫瘍細胞、例えば、顆粒球マクロファージコロニー刺激因子(GM-CSF)をしばしば分泌する照射された自家腫瘍または同種腫瘍細胞株を用いた予防接種を包含する。いずれの場合においても、注射された材料は、実際の腫瘍において存在しそうである癌抗原を包含する。他の予防接種戦略には、特異的免疫応答を誘導するペプチドまたは蛋白質の投与が含まれる。これらの抗原は、アジュバントとの組み合わせにおいて直接注射されるか、またはDNAプラスミドもしくはウイルスベクターによってコードされるかのいずれかである。
免疫療法アプローチは常に改善中であるが、広範に作用しかつ非常に効率的なワクチンはまだない。このことに対する詳しい理由とは、すでに説明されている腫瘍細胞による免疫抑制である。
内在性レトロウイルス(ERV)は、遠い祖先におけるレトロウイルスによる古代の感染の証拠である。感染の際、ウイルスRNAをプロウイルスDNAへと逆転写させ、これがホストゲノム内へと組み込まれた。結局はプロウイルスをゲノム株の細胞内へと組み込み、遺伝性となり、内在性レトロウイルスを生じた。何百万年にもわたって、ウイルスDNAを後世に残し、集団に固定された。今日、どのヒトゲノムも、約8%の内在性レトロウイルスDNAからなるが、これらは、前者のレトロウイルスのまさに遺物である。突然変異、欠失および挿入により、レトロウイルス遺伝子のほとんどは不活性となり、ゲノムから完全に失われた。今日、機能的な完全長の内在性レトロウイルスは、ヒトにはもう存在しない。しかしながら、ERVは、異なる機能的蛋白質を用いて宿主ゲノム内へといくつものコピーを組み込むことをもたらす複製過程を経験した。したがって、いくつかの場合において、相同ERVの程度はなおもウイルス粒子を産生する能力を有する。ヒトERVのK型(HERV-K、HML2)は、ヒトゲノムにおいて最も近年獲得されたERVのうちの1つであり、このファミリーのメンバーは、ほぼすべてのウイルス蛋白質について完全長のオープンリーディングフレームを残したままであった。
異なる研究は、ERV発現と癌の発達および進行との間の関係を強調してきた。ヒト腫瘍におけるERVの検出は、新たな予防接種戦略の見通しのある抗癌療法における新たな分野を開いた。ヒトERV(HERV)についての顕著な例は、前立腺癌、乳癌、卵巣癌、リンパ腫、黒色腫、白血病および肉腫と関係しているK型HERV(HERV-K)である。さらなる例は、大腸癌において発現するHERV-H、ならびに精巣癌、卵巣癌、乳癌、リンパ腫および白血病におけるシンシチン1である。
ERV蛋白質の発現が発達中の腫瘍の原因であるのかまたは結果であるのかを決定することは必ずしも容易ではない。それにもかかわらず、癌細胞内の条件がERVの発現を可能にすることは公知である。腫瘍細胞内での低メチル化の一般的な状態は、健常細胞においてDNAメチル化によって通常不活性にされたERV遺伝子の活性化を促進する(Downey,R.F.,et al.,Human endogenous retrovirus K and cancer:Innocent bystander or tumorigenic accomplice? Int J Cancer,2015.137(6):p.1249~1257.およびGimenez,J.,et al.,Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control.Nucleic Acids Res,2010.38(7):p.2229~2246。また、外来性因子は、ERV発現を促進することができる。ヒトERVの活性化は例えば、ウイルス感染により観察された。HERV-W発現は、インフルエンザおよび単純ヘルペスウイルス感染後に検出された(Nellaker,C.,et al.,Transactivation of elements in the human endogenous retrovirus W family by viral infection.Retrovirology,2006.3:p.44)のに対し、HERV-Kは、エプスタイン・バーウイルス感染後に存在していた(Sutkowski,N.,et al.,Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen.Immunity,2001.15(4):p.579~589)。ERV発現をもたらす機序にもかかわらず、癌細胞は、これらの蛋白質の活性化を、選択的圧力によって維持しており、このことは、腫瘍におけるERVの有益な効果を示している(Leong,S.P.,et al.,Expression and modulation of a retrovirus-associated antigen by murine melanoma cells.Cancer Res,1988.48(17):p.4954~4958。)
ヒト腫瘍がERV蛋白質と関係しているだけでなく、マウス癌細胞もERVを発現している。このことは、腫瘍進行に及ぼすERVの効果を試験し、ERVターゲティング療法アプローチを検査するための完全なモデル生体を提供している。1つのERVモデルは、黒色腫と関係したレトロウイルス(MelARV)であり、これは、マウスゲノム中に存在するマウス白血病ウイルス(MuLV)のプロウイルスから生じる。ほとんどの近交系マウス系は、1つまたは2つの不活性MuLVコピーを含有している(Li,M.,et al.,Sequence and insertion sites of murine melanoma-associated retrovirus.J Virol,1999.73(11):p.9178~9186。)しかしながら、AKRマウス系は、ゲノム内に3つの挿入を有しており、自然発生リンパ腫の頻繁な発生率を生じる生涯において早期のMuLVの高い産生を特徴とする。C57BL/6のような他のマウス系は、生涯において後期にのみMuLV粒子を自然発生的に産生する。いくつかの他のマウス癌モデルは、ヒトERVと類似して、MuLV/MelARVを同様に発現する。
ウイルス宿主の免疫系は、感染に対する天然の防御機序であるので、多くのウイルス、特にレトロウイルスは、この監視を逃れるための戦略を発展させてきた。異なるウイルス科中でみることができる1つの機序[Duch et al.,国際公開第2013/050048号]は、異なるレベルで免疫系の抑制を生じるエンベロープ蛋白質(Env)における免疫抑制性ドメインの発達である。ナチュラルキラー(NK)細胞、CD8 T細胞または調節性T(Treg)細胞を含む免疫細胞は、ISDを含有するウイルスによって影響を及ぼされることができる[Schlecht-Louf et al.(2010)]。
多くのERVは、免疫抑制性ドメイン(ISD)を有する蛋白質を含有しており、このようなドメインはまた、MelARV Env蛋白質において認めることができる(Schlecht-Louf,G.,et al.,Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses.Proc Natl Acad Sci U S A,2010.107(8):p.3782~3787、およびMangeney,M.and T.Heidmann,Tumor cells expressing a retroviral envelope escape immune rejection in vivo.Proc Natl Acad Sci U S A,1998.95(25):p.14920~14925.)。Envを形質導入した腫瘍細胞は、追加の外来性抗原にもかかわらずより迅速に成長した。この観察は、Env蛋白質によって仲介される局所的な免疫抑制効果によって説明された。ISDは、マクロファージ、NK細胞およびT細胞などの阻害によって示されるように、先天免疫系および適応免疫系の両方に影響している(Lang,M.S.,et al.,Immunotherapy with monoclonal antibodies directed against the immunosuppressive domain of p15E inhibits tumour growth.Clin Exp Immunol,1995.102(3):p.468~475)。さらに、調節性T細胞サブセットに及ぼす効果が示唆されてきており、それが他の免疫細胞を順に抑制する(Mangeney,M.,et al.,Endogenous retrovirus expression is required for murine melanoma tumor growth in vivo.Cancer Res,2005.65(7):p.2588~2591)。ISDによる免疫抑制の詳細な機序は、まだ完全には理解されていないが、効果は、ISD内でCKS-17ペプチドによって大部分が仲介されるように見える。CKS-17は、大部分がサイトカイン発現を変化させることによって、免疫系に及ぼす多様な効果を有する(Haraguchi,S.,R.A.Good,and N.K.Day-Good,A potent immunosuppressive retroviral peptide:cytokine patterns and signaling pathways.Immunol Res,2008.41(1):p.46~55.)。
ERV発現腫瘍細胞を標的とするための第1の治療アプローチのうちの1つは、モノクローナル抗体の投与を含んでいた。したがって、HERV-K Envを標的とする抗体は、乳癌細胞株の腫瘍成長を低減させることができた。Wang-Johanning et al.は、抗HERV-K Envモノクローナル抗体の観察された効果が、癌細胞周期の変化およびアポトーシスの上昇によって仲介されることを示した。Wang-Johanning et al.(Wang-Johanning,F.,et al.,Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors.J Natl Cancer Inst,2012.104(3):p.189~210)によって検査されていないこのような抗体の別の考えられ得る効果は、免疫抑制の予防であり得る。MelARV Envのように、HERV-K Env蛋白質は、ISDを含有し、免疫調節機能を有する(Morozov,V.A.,V.L.Dao Thi,and J.Denner,The transmembrane protein of the human endogenous retrovirus--K(HERV-K) modulates cytokine release and gene expression.PLoS One,2013.8(8):p.e70399)。Wang-Johanning et al.によって検査されたアプローチは、免疫不全無胸腺マウスにおける異種移植片腫瘍を含んでいた。したがって、HERV-Kの効果は、NK細胞などの先天免疫細胞に影響するのみであり得る。
ERVを標的とすることによって腫瘍を根絶するのを助けることができる適応免疫応答の別の部分は、T細胞を含む。例えば、IL-2との組み合わせにおいてMuLV Envエピトープに対する養子免疫細胞移入したT細胞は、黒色腫の肺への転移を根絶することができた(Yang,J.C.and D.Perry-Lalley,The envelope protein of an endogenous murine retrovirus is a tumor-associated T-cell antigen for multiple murine tumors.J Immunother,2000.23(2):p.177~183)。同様の実験は、HERV-Kについてヒト化マウスモデルにおいて実施された。T細胞を遺伝子修飾して、癌細胞上のHERV-K Envを認識するキメラ抗原受容体(CAR)をT細胞表面上に発現させた。細胞毒性CART細胞は、腫瘍細胞を溶解することができ、転移および腫瘍の成長を防止した。
抗体またはT細胞の直接的注射に加えて、より実用的で、安価で、かつ効率的な戦略とは、予防接種による免疫応答の誘導である。単純なアプローチは、ウイルスによってコードされた抗原を用いた予防接種である。しかしながら、この方法は、DCがまず、単離および培養された後に、規定されたHLA制限ペプチドでパルス化されマウスまたは患者へと再注射されなければならないので、むしろ厄介である。
より簡潔なワクチン戦略は、組換えアデノウイルスによってコードされているウイルス様粒子(VLP)上での免疫系に対する抗原(例えば、ウイルスエンベロープ蛋白質)の提示である(図1)。これらの粒子は、ウイルス核酸を含有しておらず、それゆえ、非感染性である。それにもかかわらず、VLPは、非常に免疫原性があり、示された蛋白質は、自然な流れで提示される。例えば、VLP内に組み込まれたウイルスEnv蛋白質は、ウイルス様表面上に提示され、これが正確な折りたたみおよび立体配座を促進する。強力な免疫原性の利点に加えて、VLPを用いた予防接種戦略は、実用的な利点も含む。したがって、VLPは、たった1つのまたは数個の蛋白質から構築されるので、産生するのが比較的容易であり、産生は、細胞培養物中で実施されることができる。
ウイルスまたはウイルス関連疾患(例えば、ERV発現癌)に対して予防接種するために、全Env蛋白質を免疫系に対して理想的に示して、完全蛋白質標的に対する免疫応答を確保すべきである。しかしながら、Env蛋白質は、ISDを含有するので、ワクチン自体は、免疫抑制能を有しており、免疫かアプローチにとって望ましくない。この欠点を回避するために、突然変異をISD内へ導入して、免疫抑制を防止するのと同時に、標的蛋白質の天然の立体配座を維持した。
ウイルス蛋白質のISDにおける不活性化している突然変異を検査した最初のもののうちの1つは、Schlecht-Louf et al.であった[Schlecht-Louf et al.(2010)]。免疫抑制性シンシチンと非免疫抑制性シンシチン1との間の比較試験[Mangeney et al.(2007)]に基づいて、Schlecht-Louf et al.は、Env蛋白質の一般的な構造および機能性を切除することなく、ISDの活性を不能にする突然変異を特定した。この突然変異戦略を他のウイルス起源(例えば、HTLVおよびXMRV)の蛋白質に適用し、フレンドマウス白血病ウイルス(F-MLV)についてより広範に検査した。この試験は、ISDによるNK細胞およびT細胞の両方の抑制を明らかにしただけでなく、Env蛋白質において突然変異したISDを含んでいる生の弱毒化F-MLVウイルスが野生型ISD配列を有する同じウイルスに対するワクチンとして機能することも示した。防御は、抗体レベルの上昇およびF-MLVエピトープに対するT細胞応答によった。彼らの発見は最終的には、ヒト前立腺癌および慢性疲労症候群と関連付けられてきた異種指向性マウス白血病ウイルス関連ウイルス(XMRV)に焦点を当てた特許出願国際公開第2011/092199号において明らかにされた。この故、国際公開第2011/092199号は、具体的にはXMRVにおけるISD突然変異、および予防接種戦略のためのこのようなISD突然変異を受けたウイルスの利用に関する。
ISD突然変異の別の適用は、特許出願国際公開第2014/195510号において説明された。この場合、ウイルスによる免疫抑制を低下させると同時に、その天然の立体配座をなおも維持するために、ISDの突然変異がネコ免疫不全ウイルス(FIV)において導入された。国際公開第2014/195510号は、特異的な突然変異が、MBPに結合した、または植え付けた腫瘍細胞において形質導入されたFIV Env蛋白質に対する抗体応答を、予防接種アプローチにおいて投与するときに上昇させたことを説明している。したがって、国際公開第2014/195510号は、FIV EnvのISDにおける突然変異およびFIVまたは他のレンチウイルスによる感染に対する予防接種アプローチにおけるこのような突然変異した蛋白質の使用に関する。
ウイルスEnv蛋白質におけるより広範な範囲のISD突然変異を取り扱う別のアプローチは、特許出願国際公開第2013/050048号において説明されている。特に、国際公開第2013/050048号は、エンベロープ付きのRNAウイルスにおけるISDをまず特定した後、これらのドメインを突然変異させて、予防接種中の免疫抑制を低下させることによって抗原を生成することに関する。ISD特定戦略は、4つのパラメータに基づいており、該パラメータとは、1)エンベロープ付きのRNAウイルスの融合蛋白質内にペプチドが位置すること、2)ペプチドが膜と相互作用することができること、3)ペプチドの一次構造(配列)における高度の相同性が、ウイルスの目、科、亜科、属、または種内のいずれかに存在すること、4)所与の立体配座における融合蛋白質の表面の位置が、3次元構造または抗体染色によって明らかにされる、免疫抑制性ドメインの特色であること、である。関心対象のウイルスEnvにおける潜在的なISDの特定の後、免疫抑制機能を確認し、その後、突然変異をISD内に導入し、少なくとも25%の免疫抑制の低減を確認した。全体として、国際公開第2013/050048号は、エンベロープ付きのRNAウイルスにおけるISDの特定、ISDの突然変異したペプチドの生成、およびワクチンとしての該ペプチドの利用、ならびに抗体の生成を説明している。
アデノウイルスベクター中にコードされかつウイルスカプシドの表面上での同時抗原提示の重要性は、Bayer et al.[Bayer et al.(2010)]によって示された。B細胞受容体を交差連結するのを助ける規則正しい構造で抗原を提示する利点は、すでに公知である。しかしながら、GagならびにEnvサブユニットであるgp70およびp15Eなどの異なるF-MLV蛋白質をコードすることによって、アデノウイルスカプシド蛋白質pIX上にこのような抗原を同時に提示しながら、Bayer et al.は、コードされかつカプシドに提示された抗原の組み合わせのみが機能的抗体のレベルを上昇させることができることを示した。この観察に起因して、アデノウイルスカプシド上の提示がB細胞受容体を架橋するために役立つ一方で、コードされた抗原がB細胞の親和性の成熟を促進する必須のCD4 T細胞応答に必要とされるという事実を得た。この予防接種戦略を用いて、Bayer et al.は、負荷後のF-MLVのウイルス量を低減させることができた。しかしながら、標的抗原に対するCD8 T細胞応答の上昇の兆候は観察することができなかった。
Shoji et al.は主として、アデノウイルス系HIVワクチンの最適化に焦点を当てた。コドン最適化戦略および多様なプロモーターの使用にも関わらず、Shoji et al.は、開裂可能なフリン部位(F2A)を介して連結された、アデノウイルス中のGagおよびEnv蛋白質を同時にコードした。このことによって、両蛋白質の同時発現が可能となり、したがってGag系VLPの原位置での形成が可能となった。Shoji et al.の研究において、この設定は、VLPの原位置での形成を促進しなかった他の提示戦略と比較して最高の免疫応答を示した[Shoji et al., 2012]。
Duch et al.2011(米国特許出願公開第2011/0305749号明細書)は、VLP系レトロウイルスHIVワクチンを製造し、ISDが突然変異したHIVエンベロープ蛋白質の免疫原性上昇を実証した。VLP免疫原を製造し、生体外で精製した。
米国特許出願公開第2012/189647号明細書は、野生型エンベロープ蛋白質の膜貫通サブユニットの免疫抑制性ドメインの突然変異から結果として生じる突然変異したエンベロープ蛋白質に関する。米国特許出願公開第2009/324553号明細書は、定方向ターゲティングにおよびウイルス粒子と他の細胞膜との制御された融合に適用可能なキメラポリトロープウイルスエンベロープポリペプチドに関する。
加えて、Hohn et al.[Hohn et al.,2014]による公表は、HERV-K113のコドン最適化版がCMVプロモーター下で発現したとき、ウイルス集合体の種類および形態が変化したことを説明している。特に、VLPは、細胞表面で保持されており、Envを欠失していた。
ウイルスEnv蛋白質においてISDを突然変異させ、かつアデノウイルスを用いてウイルス抗原をコードしかつ提示する先の戦略にもかかわらず、ISDの突然変異を採用する過去の予防接種戦略は、ウイルス感染を予防することを専ら目的としていた[Schlecht-Louf et al.2010、国際公開第2011/092199号、国際公開第2014/195510号、米国特許出願公開第2011/0305749号、国際公開第2014/195510号]。それゆえ、自己抗原に対する寛容を破壊する必要性がなおもある。その上、ウイルス様粒子の原位置合成の系は、HIV Envおよびマラリア抗原について以前使用されたことがある[Luo et al.(2003)、Sohji et al.(2011)、Andersson et al.(2016)、Andersson & Holst(2016)、Andersson et al.(2017)]が、原位置で合成されたVLP上での、ISDが突然変異したERV Envの提示については使用されたことがない。その上、Hohn et al.による知見を考慮して、VLP、特にHERV-K VLPの製造を可能にする効率的な系についての必要性もある。
本発明は、内在性レトロウイルスによって生じる疾患の予防および/または治療に有効なワクチンを製造することを目的とする。本発明のワクチンは、CD4 T細胞またはCD8 T細胞によって始まる応答経路の両方のうちのいずれかに由来する改善された免疫応答を示す。
発明の概要
本発明は、ウイルス様粒子(VLP)をコードすることができるアデノウイルスベクターを含む、疾患の予防および/または治療における使用のためのワクチンに関するものであり、該VLPは、不活性型免疫抑制性ドメイン(ISD)を提示する。
HIV、バキュロウイルス、レンチウイルスおよびアデノウイルスを含む、VLPを製造するためのいくつかのウイルスベクターは、ワクチンの開発において使用される。本発明者らは、不活性型ISDを有するERVをコードするアデノウイルスベクターが、驚くべきことに、例えば、不活性型ISDと組み合わされたときのHIVベクターよりも良好に挙動することを示す。したがって、本発明は、腫瘍における免疫抑制の促進を結果として生じる予期せぬ高い免疫応答を用意する。
アデノウイルスベクターのうちのいかなるものも、本発明において満足に挙動することが期待されるが、それは目下、アデノウイルスベクターが哺乳動物アデノウイルス型、ヒトアデノウイルス型、チンパンジーアデノウイルス型、またはゴリラアデノウイルス型に由来するときに最良の結果が取得されることになるという選択肢である。ヒトアデノウイルスベクターは、少なくとも52の異なる血清型、例えば、1、2、5、19、28、35、および40型で存在する。ヒトアデノウイルスが選択されるとき、ヒトアデノウイルスベクターは、D群ベクター、ヒトアデノウイルス血清型Ad5、ヒトアデノウイルス血清型Ad19a、ヒトアデノウイルス血清型Ad26、またはチンパンジーアデノウイルス血清型に由来する。本発明者らは、良好な前臨床免疫化結果により、本発明のワクチンベクターのための出発点としてアデノウイルス5型(Ad5)を使用した。Ad5が標的蛋白質に対する十分な強力な免疫応答を誘導する理由は、抗原提示細胞(APC)内への効率的な輸送によるだけでなく、先天免疫を刺激するベクター自体のアジュバント特性にもよる。加えて、IFN、IL-6、IL-12、IL-15およびTNF-αのような免疫刺激性サイトカインの転写および放出が誘導される。これらのサイトカインは、免疫系において重要な役割を有しており、適応免疫応答の細胞のための活性化因子として機能する。Ad5の詳しい利点は、導入遺伝子発現を防止するであろうことから、ベクターに対する免疫応答が強過ぎないことである。Ad5は、適応免疫応答をなおも活性化させながら、導入遺伝子発現を可能にするレベルにまで先天免疫を平衡状態にする。組換えアデノウイルス血清型28および組換えアデノウイルス血清型35が感染し、組換えアデノウイルス血清型5と比較してより効率的にヒトおよびマウスの両方の樹状細胞の試験管内成熟化および活性化をもたらすことを示した、Matthew J.Johnson et al(J Immunol 2012;188:6109~6118)による公表に関して、Ad5は本明細書で報告される実験における所望の応答を示すことは予期されていなかった。加えて、組換えアデノウイルス血清型28および組換えアデノウイルス血清型35が、rAd5および偽感染対照と比較して、単球などの抗原提示細胞のアポトーシスを上昇させることは、Matthew J.Johnson et al(Vaccine 32(2014)717~724)による別の論文において示されている。
免疫抑制性ドメイン(ISD)は、自然感染と同様の、ERV活性化によって誘導される腫瘍促進炎症性環境を同時に保有しながら、腫瘍に対して抗腫瘍免疫応答を平衡状態にする機序とみることができる。ISDは、マクロファージ、NK細胞およびT細胞などを阻害することにより、先天および適応免疫系の両方に影響を及ぼしている。しかしながら、ISDによる免疫抑制の詳細な機序は、今なお完全には理解されていない。本発明によって実証されるように、ISDの不活性化は、この応答をかなり上昇させる。
ISDセグメントは、1つ以上のアミノ酸の突然変異または欠失によって不活性化されていてもよい。不活性化が突然変異によって実施される場合、アミノ酸のうちの1つ以上は他の19の天然アミノ酸のうちから通常選択される異なるアミノ酸と交換される。欠失の場合、ISD領域におけるアミノ酸のうちのいずれか1つ以上は欠失していてもよい。当業者は、どのアミノ酸を交換して、場合により初回試行の査定を経て、満足のいく免疫応答に至らせるかについての適切な知識および経験を有することになる。
本発明のある特定の実施形態において、ISDは、アミノ酸のうちの少なくとも1つを欠失させたまたは異なるアミノ酸と交換した、ペプチド配列LANQINDLRQTVIW(配列番号1)、LASQINDLRQTVIW(配列番号2)、LQNRRGLDLLTAEKGGL(配列番号3)、LQNRRALDLLTAERGGT(配列番号4)、LQNRRGLDMLTAAQGGI(配列番号5)、またはYQNRLALDYLLAAEGGV(配列番号6)を有する。元のものとは異なるアミノ酸が天然アミノ酸から選択されることが好ましい。本出願の例において使用されるAd5においてコードされたERVのISDセグメントは、次のアミノ酸配列、すなわちLQNRRGLDLLFLKEGGL(配列番号7)を有する。ISDは、アミノ酸配列において1つ以上の突然変異を実施することによって不活性化されることができる。単一のアミノ酸を交換することは現に適切であり、すなわち、本発明において好ましく使用されるISDは、次の配列、すなわちLQNRRGLDLLFLKRGGL(配列番号8)を有する。
ISDセグメントの上流または下流の領域における1つ以上のアミノ酸を交換することは好ましいかもしれない。この突然変異は、感染するウイルスがなおも機能することができるように、ドメインの構造を保存するよう企図された代償性突然変異である。図3に示す具体的な実施形態において、ISD領域に隣接する第3のアミノ酸は、A→F突然変異で交換される。
本発明により不活性化されることになるISDについて、免疫抑制能は、元のISDによって実施される免疫抑制と比較して70%以上低減することを必要とする。本発明の好ましい実施形態において、ISDは、元のISDによって実施される免疫抑制と比較して90%以上など、95%以上など、99%以上など、80%以上不活性化される。
本発明は、身体の免疫系に対して抗原を提示するための一般的なプラットフォームを提供する。したがって、原則として、免疫応答を上げることが望ましいいかなる種類の蛋白質についてのコード化も、アデノウイルスベクター内に組み込むことができる。本発明の好ましい態様において、抗原は、内在性レトロウイルスエンベロープ蛋白質(ERV Env)またはこのような蛋白質に由来する免疫原性蛋白質である。ウイルスによってコードされたウイルス様粒子のワクチンは、ERV Envを、適応免疫系の細胞に抗原を提示する樹状細胞(DC)へと指向することが概して考えられている。MHCクラスI上での提示は、CD8+ T細胞の活性化および増殖を誘導する。ERV Envの抗原に特異的なこれらの細胞毒性Tリンパ球(CTL)は、腫瘍に浸潤して、個々の抗原を提示する細胞を殺滅させる。専門的な抗原提示細胞(APC)によるMHCクラスII上での抗原の提示は、CD4+ T細胞を活性化し、該CD4+ T細胞がその後、B細胞を共活性化する。循環中のERV Env標的蛋白質またはVLP上に提示された抗原に遭遇する活性化型B細胞は、ERV Envに特異的な抗体を放出する。これらの抗体は、癌細胞上の該抗体の標的を結合して、悪性細胞の破壊および食作用を誘導することができる。このように、ERV特異的抗体は、腫瘍の成長および転移を防止するためのベールである。腫瘍細胞の再獲得した免疫原性は、異なる腫瘍結合抗原および腫瘍特異的抗原を認識する1セットの多様な腫瘍特異的T細胞のプライミングが可能である。この新たにプライミングされかつ増量したCTLは、腫瘍に浸潤して、悪性細胞を殺滅させる。
本発明のワクチンは原則として、いくつかの哺乳動物種を免疫化するために使用することができるが、実際、マウスモデルにおいて開発されてきており、本発明の好ましい態様におけるERV蛋白質は、ヒト内在性レトロウイルス(HERV)蛋白質またはその免疫原性部分である。どのヒトゲノムも、約8%の内在性レトロウイルスDNAからなると概算されてきた。しかしながら、内在性レトロウイルスDNAのほとんどは、先のレトロウイルスの残存物に過ぎない。ERVは、遠い祖先において古代にレトロウイルスに感染したという証拠である。感染の際、ウイルスRNAは、プロウイルスDNAへと逆転写され、これが宿主ゲノム内へと組み込まれた。結局、プロウイルスは、生殖細胞系の細胞内へと組み込まれ、遺伝性となり、内在性レトロウイルスを生じるもととなった。何百万年にもわたって、ウイルスDNAは後世へと伝わり、集団内に固定された。そのことは、ヒトゲノムの大部分がアデノウイルスベクターの抗原コード部分として使用されることができることに従っている。現に、HERVは好ましくは、HERV-K、HERV-H、HERV-W、HERV-FRD、およびHERV-Eからなる群のうちで選択される。より具体的には、HERV-Kは、HERV-K108(=ERVK-6)、ERVK-19、HERV-K115(=ERVK-8)、ERVK-9、HERV-K113、ERVK-21、ERVK-25、HERV-K102(=ERVK-7)、HERV-K101(=ERVK-24)、HERV-K110(=ERVK-18)からなる群のうちで選択されることができ、HERV-Hは、HERV-H19(=HERV-H_2q24.3)、HERV-H_2q24.1からなる群のうちで選択されることができ、HERV-Wは、ERVW-1(=シンシチン1)として選択されることができ、かつHERV-FRDは、ERVFRD-1(=シンシチン2)として選択されることができる。
アデノウイルスベクターは、コードされたERV蛋白質を免疫系に提示して、適切な免疫学的応答を立てることができるように構築される。本発明の適切な態様において、ERV蛋白質エピトープまたはその免疫原性部分は、膜貫通ドメインとISDとの間に位置づけられる。
本明細書で報告する実験は、Ad5だけでなく別のアデノウイルス血清型、すなわちAd19においても、アデノウイルスによってコードされたISD突然変異型HERV-K VLPの適用を示す(実施例15~実施例17を参照されたい)。すでに、HERV-Kは、癌の発現と関係づけられており、HIVと類似の試験管内活性を有する機能的エンベロープISDドメインを含有することが示されている(Morozov et al.2013)。マウスでは、HERV-Kは外来抗原であり、同様のISDドメイン活性を用いて、ISD突然変異は演繹的には、免疫応答を亢進するはずである可能性はなかった。しかしながら、驚くべきことに、ISD突然変異には、HERV-K Env p15EおよびSUドメイン蛋白質に向けての抗体応答、T細胞応答および抗癌防御を高めることが発見された。HERV-Kにおける突然変異は、ウイルス科がISD配列において異なるので、MelARVについて本明細書に開示するものとは異なっている。しかしながら、本明細書に提供する情報および普遍的な一般的な知識に基づいて、当業者は、他のウイルス科においてもISDを不活性化する適切な突然変異を特定することができる。本明細書で使用するHERV-K突然変異は、ウイルスの感染力およびHERV-KとHIV-1との間の部位特異的保存を保存するよう示されたHIVにおけるISD突然変異によってもたらされた(Morozov et al 2012)。ベクターをトランスフェクトした細胞の分析の際、HERV-K突然変異の細胞内発現および細胞表面発現の上昇が認められ(実施例15および図24を参照されたい)、このことは、免疫原性の上昇を説明するために、かつVLPを形成することができてもできなくてもよい何らかの遺伝子発現プラットフォームおよびコンストラクトを用いて、HERV-KファミリーEnv蛋白質においてISD突然変異をなすための追加の機構上の理論的根拠を提供するために寄与することができる。
したがって、本発明は、ERVエンベロープ蛋白質またはその免疫原性部分をコードする核酸分子にも関し、この中で、該蛋白質のISDは、ISDを不活性にする突然変異を含有する。好ましくは、ERVは、ヒト内在性レトロウイルス(HERV)であり、より好ましくはHERVは、HERV-Kである。ISDにおける突然変異がQ525をアラニンと置き換え、それにより突然変異を受けたISDの配列がNSQSSIDQKLANAINDLRQT(配列番号50)(NSQSSIDQKLANQINDLRQT(配列番号49)の代わり)となることがさらに好ましい。異なる配列を用いたISDにおける対応する突然変異も想定されることは理解される。さらなる好ましい実施形態において、核酸分子はアデノウイルスベクター内に含まれる。より好ましくは、アデノウイルスベクターは、アデノウイルスベクター19型(Ad19)である。この核酸を含んでいるアデノウイルスベクターがVLPをコードすることはさらに好ましい。本発明はさらに、該核酸分子または該ベクターによってコードされた蛋白質に関する。この核酸分子、ベクターまたはコードされた蛋白質は、疾患の治療または予防において使用されることになっており、疾患は好ましくは癌である。治療されることになっている癌は、対応するERVを発現する癌である。好ましくは、治療は、「初回免疫-追加免疫-投与計画」を含み、このなかで、まず、アデノウイルスまたは核酸分子を用いた初回免疫が投与された後、より後期のMVAウイルス、アデノウイルスまたはDNA追加免疫の投与が行われる。好ましくは、追加免疫は、MVA追加免疫である。初回免疫および追加免疫についての異なるタイミングが想定される。特に、最少残存病変に罹患している癌患者では、初回免疫と追加免疫との間の長い間隔が可能である。好ましい投与計画では、追加免疫は、初回免疫の4~8週間後に投与される。
本発明によるワクチンの好ましい態様において、アデノウイルスベクターの蛋白質産物には、gag蛋白質、2Aペプチド、およびエンベロープ蛋白質(Env)が含まれる。さらに、Env蛋白質は、表面単位(gp70)、開裂部位、および膜貫通単位(p15E)を含むことができる。加えて、膜貫通単位(p15E)は、融合ペプチド、免疫抑制性ドメイン(ISD)、膜貫通アンカー、および細胞質尾部を含むことができる。
ワクチンの免疫抑制を改善するために、p15Eまたはその免疫原性部分がアデノウイルスカプシド蛋白質pIXに連結されることは適切であるかもしれない。このことを達成するために、p15EをpIXのC末端へN末端で融合させた。pIXの非常に規則正しい構造およびアデノウイルス表面上のその結合抗原は、B細胞受容体を架橋するのを助ける。別の利点として、pIXは通常、三量体として提示され、天然の三量体形態において結合型p15E抗原を提示するのを同様に助け得る。この修飾は、CD1マウスにおける特異的抗体の誘導を上昇させることが示された。
本発明のある特定の態様において、アデノウイルスベクターによってコードされたシグナルペプチドは、Gaussiaルシフェラーゼ由来のシグナルペプチド(LucSP)と交換される。このシグナルペプチドは、グルコシル化状態を変化させずに蛋白質の細胞外膜への輸送を上昇させる。したがって、このシグナルペプチドを天然の配列の代わりに含むことは、直接向かうものにより合成された蛋白質の膜への移動を有し、該蛋白質は該膜においてVLP内へと組み込まれる。
本発明の別の態様において、膜貫通アンカーおよびアデノウイルスベクターによってコードされた細胞質尾部は、インフルエンザA型ウイルス赤血球凝集素由来の膜貫通ドメインおよび細胞質尾部と交換される。挿入は、細胞表面上およびVLP上での組換え蛋白質の発現を上昇させ、このことは、強くかつ幅広い抗体応答を結果として生じる。好ましい実施形態において、膜貫通ドメインおよびアデノウイルスベクターによってコードされた細胞質尾部は、インフルエンザA型ウイルス赤血球凝集素H3N2由来の膜貫通ドメインおよび細胞質尾部(HA-TMCT)と交換される。
本発明の別の態様において、三量体化配列は、シグナルペプチドに隣接して提供される。三量体化配列は、蛋白質に付加されて、自然な提示を容易にすることができる。好ましい態様において、三量体化配列はGCN4である。
アデノウイルスベクターの蛋白質産物は通常、gag蛋白質を含み、gag蛋白質は、外来性レトロウイルスgag蛋白質または内在性レトロウイルスgag蛋白質である。
アデノウイルスベクターは通常、ウイルス様粒子の産生のために細胞を必要とする。したがって、アデノウイルスベクターは細胞を感染させ、VLPのための構成要素を産生する。本発明のある特定の態様において、VLPは、単離された細胞株内で産生される。適切な例としては、Sf9細胞、ベロ細胞、HeLa細胞などが挙げられる。しかしながら、VLPが、アデノウイルスベクターによって感染した患者の身体の細胞内で産生されることは現に所望される。この産生はまた、ウイルスによってコードされたウイルス様粒子(VE-VLP)と称され、VLPの産生のための中間的な宿主が回避されるという利点を有する。
本発明はまた、ウイルス様粒子(VLP)の形成が可能である標的蛋白質をコードする核酸コンストラクトに関し、標的蛋白質は、免疫抑制性ドメイン(ISD)を含み、該ISDは不活性である。
本発明は、癌の予防および/または治療に特に適している。本発明によって治療される癌の種類は、特に制限されておらず、前立腺癌、乳癌、卵巣癌、リンパ腫、黒色腫、白血病、肉腫、大腸癌、精巣癌、卵巣癌、乳癌、リンパ腫、肺癌、および肝癌を含む。
ある特定の条件下で、初回免疫-追加免疫投与計画を用いて患者を治療することは有利であり得る。したがって、本発明の実施形態のうちの1つにおいて、癌の予防および/治療におけるワクチンの使用は、先に開示したワクチンを用いた追加免疫の少なくとも5日前に先の核酸コンストラクトを用いて患者を初回免疫するステップを含む。
本発明はまた、アデノウイルスベクターに由来するVLPとは異なるウイルスによってコードされたVLPを用いて、先に開示したワクチンについて患者の曝露の5日以上後に患者を後治療するステップを含む、先に開示したワクチンに対する癌の予防および/または治療における使用のためのワクチンに関する。ある特定の実施形態において、アデノウイルスベクターに由来するVLPとは異なるウイルスをコードしたVLPは、改変型Vaccina Ankara(MVA)に由来するVLPである。
さらに、CMVプロモーターの下でコドンを最適化したHERV-K113に関して、Hohn et al.2014によって報告されたものとは対照的に、使用される発現カセット、すなわち、強力なプロモーターの下で再度Gagを用いた1:1の比において発現したEnvを用いたGag-p2A-Envは、細胞膜での保持を結果として生じなかった。代わりに、(Hohn et al.によって報告された結果とはこれもまた対照的に、Envも含有したVLPが発現した。このことは、Gag-p2A-Envを用いた遺伝子プラットフォームが、p2a(または対応する機能的リンカー)を有さないコンストラクトと比較してより良好に実施することを示している。
したがって、本発明はさらに、Gag蛋白質とERVエンベロープ蛋白質(Env)またはその免疫原性部分とをコードする核酸分子に関し、GagおよびEnvを接続する未処置のゲノム構造は、機能的リンカーによって置き換えられている。好ましくは、該機能的リンカーはp2Aである。言い換えれば、本発明はまた、Gag機能的リンカー-Env発現カセット、好ましくはGag-p2A-Envカセットを含む核酸分子に関する。好ましくは、ERVは、HERV-Kである。より好ましくは、ERVは、HERV-K113である。HERV-K配列は、HERV-Kコンセンサス塩基配列、より好ましくは、コドンを最適化したコンセンサス塩基配列である。さらにより好ましくは、HERV-Kのコドンを最適化したコンセンサス塩基配列は、次のアミノ酸配列(配列番号55)である。
Figure 0007277466000001
Figure 0007277466000002
HERV-KがそのISD(先の配列において下線を付しかつ太字で印刷されている)において突然変異を含有することはさらに好ましい。このような突然変異を含有する特に好ましい配列を配列番号48に示す。
核酸分子がアデノウイルスベクターであることはさらに好ましい。核酸が遺伝子ワクチンとして、特に疾患、好ましくは癌の予防および/または治療において使用されることができることが想定される。あるいは核酸分子はまた、VLP、特にHERV-K VLPを試験管内で製造するために使用されることができる。結果として生じたVLPを次に、免疫療法において、特に疾患、好ましくは癌の予防および/または治療において使用されることができる。この脈絡においても、処置されるべき癌がERVを発現する癌であることは理解される。
加えて、本発明はまた、Gag蛋白質とERVエンベロープ蛋白質(Env)またはその免疫原性部分とをコードする核酸分子によってコードされたVLPに関し、GagおよびEnvを接続する未処置のゲノム構造は、機能的リンカーによって置き換えられている。好ましくは、該機能的リンカーはp2Aである。ERVがHERV-Kであることはさらに好ましい。より好ましくは、ERVはHERV-K113である。好ましくは、該VLPは、Hohn et al.によって説明される方法により製造されるHERV-K113 VLPと比較して多量のEnvを含有する。先に記載したとおり、免疫療法におけるこのようなVLPの使用が想定される。その上、本発明は、疾患の予防および/または治療における使用のための核酸分子またはVLPに関する。疾患は癌であることが好ましい。癌が、対応するERVを発現する癌であることは理解される。
本開示の次の詳細な部分において、態様、実施形態および実施は、図面において示される例となる実施形態に関してより詳細に説明されることとなる。
図1は、ウイルスベクターによってコードされたウイルス様粒子の機序を開示する。ウイルスGagおよびEnv蛋白質についてコードする組換えアデノウイルス(Ad5)を含むワクチン。注射の際、Ad5は、細胞を感染させ、コードされた蛋白質の発現を誘導する。GagおよびEnvは、両蛋白質の等モル濃度の発現だけでなく、翻訳の際の分離も確保する、自己開裂可能なペプチド(p2A)を介して結合する。構造蛋白質Gagは単独で、細胞膜の出芽およびウイルス様粒子(VLP)の形成を誘導するのに十分である。VLP形成の間、Envは、Gagと会合して、放出されたVLP内へと組み込まれる。したがって、Ad5ベクターを用いた予防接種は、VLPの表面上の標的蛋白質Envを免疫系に提示するVLPの産生を誘導する。 図2は、MuLV/MelARVエンベロープ蛋白質の模式的構造を示す。エンベロープ蛋白質(Env)は、2つのサブユニットからなる。(左)膜貫通サブユニットp15E(TM)は、細胞膜内に固定されており、免疫抑制性ドメイン(ISD)および融合ペプチドを含有している。p15Eは、ジスルフィド架橋を介して表面サブユニットgp70(SU)へ共有結合している。p15Eおよび特にISDは、gp70によって遮蔽されている。(右)蛋白質サブユニットは、プロセシング中に開裂し、膜へ輸送される前駆体蛋白質として発現している。図面は、Mangeney et al 2007から改良されている。 図3は、ワクチンによってコードされたMelARV Env(p15E)のISDにおける突然変異を示す。p15EのISDにおける2つのアミノ酸を突然変異させて、免疫抑制機序を不活性化させた。したがって、次のアミノ酸変化、すなわちE14→R14およびA20→F20を行った。 図4は、768tetおよび捕獲pBGHのベクターマップを示す。関連する遺伝子を有するDNAベクターである768tet(A)および捕獲pBGH(B)である。プラスミド内に存在する追加の遺伝子は、ベクターマップには示されていない。標的蛋白質をまず発現ベクター768tet(A)内へとクローン化する。標的蛋白質を含む発現カセットをその後、ヒトAd5(hAd5)ゲノムベクターである捕獲pBGH(B)内へと、相同組換えによってクローン化して、産生細胞株内で組換えウイルスを産生させた。 図5は、組換えAd5産生のためのステップを開示する。スキームは、標的蛋白質の捕獲pBGH内へのクローン化後のウイルス産生の過程を示す。組換えAd5の産生には、組換えウイルスを含有する「ウイルス溶解物」、「3日間溶解物」および「大規模溶解物」を生じる連続したステップが含まれる。 図6:p15E特異的抗体応答のELISA分析に使用したペプチド。矢印によって「TM(p15E)」とされたMelARV Envの領域をペプチドとして合成し、予防接種したマウス由来の血清試料のELISA分析に使用した。 図7:CD1マウスにおけるAd5-MelARV-ISDによって誘導された抗体応答。(A)予防接種したCD1マウスの血清中のp15E特異的抗体(予防接種タイムラインIV)。マウスにまず、MelARV、MelARV-ISDまたはGFPについてコードするDNAを予防接種した(グラフの下に記載)後、異なるAd5追加免疫を行った(凡例)。追加免疫に使用したワクチンは、Ad5-MelARV(暗灰色)、Ad5-MelARV-ISD(明灰色)またはAd5-GFP(白色)であった。p15Eに結合している抗体をELISAによって分析した。棒は、SEを用いたLEV76対照血清に対する平均吸光度を示す。試料サイズは、各群n=5とした。 (B)B16F10-GP特異的抗体。B16F10-GP細胞を(A)についてのものと同じマウスの血清とともにインキュベートした。フローサイトメトリーを用いて、マウスIgGに対するAPC結合二次抗体で結合抗体を検出した。各ワクチン群の平均蛍光強度を平均としてSEMと共に提示している。星印は、群間の有意差を示しており、(P≦0.05)、**(P≦0.01)、***(P≦0.001)とした。 図8:Ad-MelARV-ISDを予防接種したC57BL/6マウスにおける抗体応答および転移計数。予防接種タイムラインIIIによる初回免疫-追加免疫投与計画において、マウスにDNA-MelARVおよびAd5-MelARV(DNA+Ad5-MelARV)またはDNA-MelARV-ISDおよびAd5-MelARV-ISD(DNA+Ad5-MelARV-ISD)を予防接種した。(A)B16F10-GP細胞に対する癌特異的抗体の結合。腫瘍細胞に特異的な予防接種したマウスの血清中の抗体を、マウスIgGに対するAPC結合二次抗体を用いたフローサイトメトリーによって分析した。棒は、各群における結合抗体の平均蛍光強度を示す。 (B)p15Eに結合している抗体をELISAによって分析した。値は、各群の平均をSEMとともに示す。 (C)予防接種したマウスにB16F10-GPを静脈内負荷し、肺転移を14日後に分析した。横線は、各群における転移の平均数を示す。群は、n=7(DNA+Ad5-MelARV)またはn=8(DNA+Ad5-MelARV-ISD)のマウスを含む。 図9:Balb/CマウスにおけるAd5-MelARV-ISDによって誘導されたT細胞応答のELISPOT解析。Ad5(Ad5-MelARVまたはAd5-MelARV-ISD)による単回の予防接種の21日後に、Balb/Cマウスの脾臓を分離した。脾細胞をAH1で刺激し、活性型免疫細胞をELISPOTアッセイにおけるIFNγ産生によって検出した。結果を106個の脾細胞あたりのスポット(IFNγ産生細胞)数として計算した。棒は、各群におけるスポットの平均数(n=59)をSEMとともに示す。星印は、PBS対照に対する有意差を示し、(P≦0.05)、**(P≦0.01)、***(P≦0.001)である。 Balb/CマウスにおけるAd5-MelARV-ISDによって誘導されたT細胞応答のICS解析。図9におけるのと同じ脾細胞を、AH1による刺激の際の細胞内染色(ICS)によるT細胞内でのサイトカインIFNγおよびTNFαの産生について解析した。図面は、脾臓全体における活性化型(CD44+)、IFNγまたはTNFα産生CD8+ T細胞の総数を示す。(A)IFNγ陽性CD8+ T細胞。 (B)TNFα陽性CD8+ T細胞。 (C)各マウスにおけるIFNγ産生CD8+ T細胞の積分幾何平均を、IFNγ+細胞の平均蛍光強度を乗じたIFNγ+ CD8+ T細胞数から計算した。 (D)二重陽性CD8+ T細胞。横線は各群の平均を示す。星印は、群間の有意差を示し、(P≦0.05)、**(P≦0.01)、***(P≦0.001)である。 図11:Ad5-MelARV対Ad5-MelARV-ISDを予防接種したCD1マウスにおけるAd5特異的抗体の力価。予防接種タイムラインIVにより、CD1マウスにAd5-MelARVまたはAd5-MelARV-ISDを予防接種した。ELISAプレートをAd5粒子でコーティングすることによって、Ad5特異的抗体について血清をELISAによって分析した。各マウスからの血清を1:2の連続希釈において検査して、抗体力価を取得した。陽性結果についてのカットオフ値は、背景のOD450の4倍とした。棒は、各群の平均力価をSEMとともに示す。群は、n=5のマウスを含有していた。星印は、群間の有意差を示し、(P≦0.05)、**(P≦0.01)、***(P≦0.001)である。 図12:アデノウイルスpIX蛋白質上に提示されたp15Eのアミノ酸配列からの抜粋。全配列を配列表:pIX-p15E(配列番号51;pIX-p15E-ISD(配列番号52)、pIX-p15E-切端-Cあり(配列番号53)、pIX-p15E-切端-Cなし(配列番号54)に表す。 組換えpIXを提示するアデノウイルスベクターの特徴づけ。(A)組換えpIXをコードするpcDNA3-pIX-タグリンカー-xxxプラスミドをHEK293細胞内へとトランスフェクトし、正確な発現を確認した。トランスフェクトした細胞の細胞溶解物を、抗pIX抗体を用いたウェスタンブロット法によって分析した。ライン1)pIX-p15E、ライン2)pIX-p15E-ISD、ライン3)pIX-p15E_切端-Cあり、ライン4)pIX-p15E_切端-Cなし、ラインGFP pIX-GFP。 (B)産生されかつ精製されたウイルスを、抗pIX抗体を用いたウェスタンブロット法によって組換えpIXの積分について分析した。ラインの番号は、Ad5ベクター上に提示された(A)におけるのと同じpIX改変を表すのに対し、ライン
Figure 0007277466000003
は、pIX改変されていない未処置のAd5を表す。
Ad5-pIXを予防接種されたCD1マウスにおける抗体応答。(A)pIXが改変されたAd5ワクチン(縞状の棒)をCD1マウスにおいて検査し(予防接種タイムラインIV)、改変されていない対応物(プレーンの棒)と比較した。アデノウイルス(未処置または組換えpIXを提示するAd5-MelARVまたはAd5-MelARV-ISD)を、DNA-MelARVまたはDNA-MelARV-ISDのいずれかを用いて、DNA初回免疫予防接種の基本に関して検査した。GFPを予防接種したマウスは、陰性対照として機能した。MelARV Env膜貫通サブユニットp15Eのペプチドに対する抗体の結合を450nmで評価し、標準的なLEV76対照血清の吸光度に対して正規化した。 (B)(A)におけるのと同じ血清試料を、B16F10-GP癌細胞に対する結合について分析した。フローサイトメトリーを用いて、マウスIgGに対するAPC結合二次抗体により結合抗体を検出し、平均蛍光強度によって定量した。LEV76対照血清および二次抗体のみ(2.Abのみ)はそれぞれ、陽性対照および陰性対照として機能した。棒は、各群(n=5)の平均をSEMとともに示す。星印は、群間の有意差を示し、(P≦0.05)、**(P≦0.01)、***(P≦0.001)である。 図15:Ad5-MelARV_pIX-p15Eを予防接種したC57BL/6マウスにおける抗体応答および転移計数。予防接種タイムラインVにより、Ad5-MelARV_pIX-p15Eまたはこのウイルスの未処置版(Ad5-MelARV)をマウスに予防接種した。GFPを予防接種したマウスは、陰性対照として機能した。(A)予防接種したマウスにおけるB16F10-GP腫瘍細胞に対する抗体応答をフローサイトメトリーによって分析した。LEV76対照血清は、陽性対照として含めた。二次抗体のみ(2.Abのみ)とともにインキュベートした腫瘍細胞は、陰性対照として機能した。(B)p15E特異的抗体応答をELISAにより分析した。450nmにおいて測定された吸光度をLEV76対照血清に対して正規化した。(A)および(B)における各群は、n=5のマウスを含んでいた。示された値は、SEMとともにある各群の平均である。(C)B16F10-GP細胞による負荷の際の予防接種したマウスにおける腫瘍転移の数。横線は、各群の平均を示す。(D)B16F10-GP特異的抗体と転移計数との間の相関。(E)p15E特異的抗体および転移計数の相関。陰性対照(GFP対照)は、相関の計算において含めなかった。 図16:ワクチン改善戦略:VLP上の提示を改善するための機能的ドメインを有するキメラMelARV Env蛋白質。2つの改変したワクチンを、完全長のMelARV Env(Ad5-LucSP_MelARV_Ha-TMCT)またはp15E単独(Ad5-LucSP_GCN4_p15E_Ha-TMCT)のいずれかを用いて産生した。Ad5-LucSP_MelARV_Ha-TMCTにおいて、MelARV Envの未処置のシグナルペプチドをルシフェラーゼシグナルペプチド(LucSP)について交換した。さらに、未処置の膜貫通ドメインおよび細胞質尾部(TMCT)を、インフルエンザA型ウイルス赤血球凝集素H3N2の対応する配列(HA-TMCT)について変化させた。Ad5-LucSP_GCN4_p15E_HA-TMCTにおいて、p15Eのみを完全長のEnv蛋白質の代わりにコードした。p15Eは同様に、HA-TMCTを含有しており、LucSPをN末端に付加した。加えて、三量体化配列(GCN4)を含めた。 図17:キメラMelARV Env蛋白質をコードする組換えAd5による感染の際の細胞におけるMelARV Envの発現。改変型MelARV Env配列(Ad5-LucSP_MelARV_Ha-TMCTおよびAd5-LucSP_GCN4_p15E_Ha-TMCT)を用いたワクチンウイルスを、感染したベロ細胞上での標的蛋白質の発現について検査した。結果を比較するために、Ad5-MelARVおよびAd5-MelARV-ISDを同様に含めた。ベロ細胞に改変型ウイルスを感染させ、細胞上での標的蛋白質の発現をMelARV Envに対する多様な抗体:(A)19F8(抗p15E、ISDを標的)、(B)4F5(抗p15E)、(C)MM2-9B6(抗gp70)、(D)MM2-3C6(抗gp70)、(E)MM2-9A3(抗gp70)を用いて分析した。感染細胞に対する抗体の結合をフローサイトメトリーによって個々の蛍光結合二次抗体を用いて検出した。棒(n=1)は、蛍光結合抗体によって誘起される平均蛍光強度を表す。 図18:キメラMelARV EnvをコードするAd5に感染した細胞内での標的蛋白質の発現およびVLP放出の分析(ウェスタンブロット法):ベロ細胞を改変型ウイルスに感染させた。細胞溶解物および放出したVLPを標的蛋白質の発現について、多様な抗体:(A)抗p2A(MelARV Gag)、(B)4F5(抗p15E)、(C)MM2-9B6(抗gp70)を用いたウェスタンブロット法によって分析した。追加的に、感染した細胞の上清をウェスタンブロット法によって、p15E(4F5)(D)およびgp70(MM2-9B6)(E)の分泌について分析した。ライン1)A5d-MelARV、ライン2)Ad5-MelARV-ISD、ライン3)Ad5-LucSP_GCN4_p15E_Ha-TMCT、ライン4)Ad5-LucSP_MelARV_Ha-TMCT、ライン
Figure 0007277466000004
陰性対照ウイルス。期待されたバンドのサイズを表6に列挙する。
図19:キメラMelARV EnvをコードするAd5に感染した細胞における標的蛋白質の発現およびVLP放出の分析(ELISA):ベロ細胞をプロトタイプおよび改変型のウイルスに感染させた:ライン1)A5d-MelARV、ライン2)Ad5-MelARV-ISD、ライン3)Ad5-LucSP_GCN4_p15E_Ha-TMCT、ライン4)Ad5-LucSP_MelARV_Ha-TMCT、ライン
Figure 0007277466000005
陰性対照ウイルス。ELISAプレートを感染ベロ細胞からの細胞溶解物、上清(SN)または精製されたVLPでコーティングした。MelARV Env蛋白質およびGag蛋白質の存在を、一次抗体(抗p2A、MM2-9B6、4F5および19F8)の結合によって検出した。(A)抗p2A抗体は、Gagの発現を示した。(B)MM2-9B6結合は、MelARV Env表面サブユニットgp70の発現を可視化した。(C)(D)4F5および19F8(ISD結合)は、膜貫通サブユニットp15Eへ結合した。
図20:HIV ISD抗体との比較を示す。 図21:HIV ISD-T細胞についての比較を示し、図中、
Figure 0007277466000006
である。
図22:ワクチン設計を改善するために従った戦略:ワクチンにおいてコードされたHERV-K Env蛋白質のISDドメイン(p15E)における点突然変異。グルタミン(Q)(「Ad19_HERV-K」を参照されたく、コード配列を配列番号43に示す)をアラニン(A)へ突然変異させて(「HERV-K-ISD」、コード配列を配列番号44に示す)、免疫抑制効果に介在するISDドメインを不活性化させた。図面は、(Mangeney et al.2007)から改変した。 図23:ウイルスをトランスフェクトされた細胞のSNおよび細胞溶解物からのHERV-K Env蛋白質のおよびGag蛋白質(VLP)の検出。Ad19_HERV-K WT/ISD突然変異体をトランスフェクトしたA549細胞およびベロ細胞のSNおよび細胞溶解物における機能的Gag蛋白質(A)およびEnv蛋白質(B)の存在は、正方形の囲みによって強調されている。およそ90、80および40kDaの分子質量は、次表において示すようにそれぞれ80、90、80、および42kDaの、HERV-K Gag、HERV-K Env完全長未加工前駆体(シグナルペプチドありおよびなし)、およびHERV-K p15E(TM、Env)の報告された値と等価であった。
Figure 0007277466000007
Figure 0007277466000008
その上、Ad5_MelARV_Gag蛋白質(65kDa)はまた、両細胞株(A1およびA2)の細胞溶解物およびSNにおいて検出され、HERV-K蛋白質およびMelARV Gag蛋白質の両方が、同じウサギポリクローナル抗p2A抗体によって認識されることができることを意味した。
図24:Ad19_HERV-K_野生型/ISD突然変異体トランスフェクションの際の細胞表面内部および細胞表面上でのHERV-K Envの発現。HERV-1811抗体を使用して、A549感染細胞の細胞内および細胞表面上の両方でHERV-K Env蛋白質の産生および存在を示した。Ad19_HERV-K Env野生型(中間的な灰色透明)感染細胞/ISD突然変異体(暗灰色透明)感染細胞は、多量のHERV-K Envを発現したのに対し、HERV-K EnvについてコードするAd5ベクターに感染した細胞(非常に明灰色透明)は、より低い標的蛋白質発現を示し、Ad19トランスフェクションがAd5のトランスフェクションよりも効率的である可能性があることを示唆した。Ad19ベクターによってコードされた無関係抗原に感染した細胞(明灰色)は、非感染細胞(暗灰色)と一致しており、したがって、いかなるシグナルも示さなかった。 図25:Balb/CマウスにおけるAd19_HERV-Kによって誘起されるCD8+ T細胞応答のICS解析。図面は、各マウス脾臓内に含有されるTNFα分泌活性化型(CD44+)CD8+ T細胞の総数を示す。(A)異なるアデノウイルスワクチン(初回免疫-追加免疫)後に非追加免疫
Figure 0007277466000009
およびMVA_Env追加免疫投与計画により免疫化したマウスからのIFNγ陽性CD8+ T細胞の数。(B)IFNγおよびTNFα二重陽性CD8+ T細胞の百分率。(C)IFNγ陽性CD8+ T細胞の平均蛍光強度(MFI)。星印()は、有意差を示し、(P≦0.05)、**(P≦0.01)、***(P≦0.001)である。
図26:治療用予防接種を受けている腫瘍負荷したマウスの生存曲線。本発明者らのAd19_HERV-K野生型/ISD突然変異体ワクチン(中間的な灰色および暗灰色)が腫瘍の成長および転移を低減させまたは予防する有効性を、HERV-K Env標的蛋白質を発現するRENCA細胞を負荷したBALB/Cマウスにおいて検査した。本発明者らのワクチンを、HERV-Kを発現しない無関係ワクチン(黒色)、および標的蛋白質を発現しないMVAワクチン(明灰色)と比較した。40日後(最終エンドポイント)で安楽死させたマウスの肺を、肺への転移の進行に関して盲検順位分類した。Kaplan-Meierの概算式を用いて、予防接種したマウスの異なる群の生存を解析した。異なる統計検定(対数順位、WilcoxonおよびTarone-Ware)生存曲線を比較し、p値が0.05未満のとき、有意()とみなした。 図27:ゲート処理戦略。矢印のついた黒色のゲートは、どの集団が次のプロットをゲート処理するために使用されたかを示す。この図面は、アデノウイルス系ワクチン(初回免疫+MVA Env(追加免疫)で免疫化したBALB/cマウスからの陽性結果から作成された。 図28:ヒト乳癌組織(H841)のHERV-K染色。組織試料をヒト乳房腫瘍から取得した。該試料を4μmに薄片化し、(A)非免疫化マウス(採血前血清)ならびに(B)Ad19_HERV-K_ISD(8週間後)およびMVA_Env(2か月後)の予防接種投与計画を用いて追加免疫したAd5_HERV-K_Envから取得した、1:1000希釈した一次抗体で染色した。1:500希釈したビオチン標識した抗マウス二次抗体をその後用いて、癌細胞をヘマトキシリン/エオシンで最終的に染色した。HERV-K特異的染色(暗灰色)を、予防接種したマウスからの高力価HERV-K抗体が、HERV-K標的蛋白質を発現する癌組織を染色することができることを確証する右側組織スライドにおいて、明確に可視化した。 図29:トランスフェクトした細胞から分泌したVLPの形態特性。A549細胞に、Gag_p2A_Env蛋白質についてコードするAd19_HERV-K ISD突然変異体をトランスフェクトした。細胞を24時間後に固定し、放出されたVLP(およそ100nmの円)を、透過型電子顕微鏡を用いて観察した。
以下に、配列の個々の要素が次のとおり示される未処置の配列を示す。
シグナルペプチド
表面サブユニット
膜貫通サブユニット
免疫抑制性ドメイン(ISD/ISD)
膜貫通ドメイン
細胞質尾部
本発明は、免疫抑制性ドメインにおけるアミノ酸のうちの1、2またはそれより多数が別の天然アミノ酸と交換された以下に記載の配列を網羅する。
1.Env蛋白質についてのアミノ酸配列(配列番号9):
Figure 0007277466000010
を有するHERV-K108(=ERVK-6)、およびアミノ酸配列(配列番号10):
Figure 0007277466000011
を有するGag蛋白質
2.Env蛋白質についてのアミノ酸配列(配列番号11):
Figure 0007277466000012
Figure 0007277466000013
を有するERVK-19、およびアミノ酸配列(配列番号12):
Figure 0007277466000014
を有するGag蛋白質
3.Env蛋白質についてのアミノ酸配列(配列番号13):
Figure 0007277466000015
を有するHERV-K115(ERVK-8)、およびGag蛋白質は、アミノ酸配列(配列番号14):
Figure 0007277466000016
を有する
4.Env蛋白質のアミノ酸配列(配列番号15):
Figure 0007277466000017
と、Gag蛋白質のアミノ酸配列(配列番号16):
Figure 0007277466000018
とを有するERVK-9
5.Env蛋白質のアミノ酸配列(配列番号17):
Figure 0007277466000019
と、Gag蛋白質のアミノ酸配列(配列番号18):
Figure 0007277466000020
Figure 0007277466000021
とを有するHERV-K113
6.Env蛋白質のアミノ酸配列(配列番号19):
Figure 0007277466000022
を有し、Env蛋白質のアミノ酸配列(配列番号20):
Figure 0007277466000023
を有するERVK-21
7.Env蛋白質のアミノ酸配列(配列番号21):
Figure 0007277466000024
Figure 0007277466000025
を有するERVK-25
8.Env蛋白質のアミノ酸配列(配列番号22)::
Figure 0007277466000026
を有する、およびGag蛋白質のアミノ酸配列(配列番号23):
Figure 0007277466000027
を有するHERV-K102=ERVK-7
9.Env蛋白質のアミノ酸配列(配列番号24):
Figure 0007277466000028
を有する、およびGag蛋白質のアミノ酸配列(配列番号25):
Figure 0007277466000029
を有するHERV-K101=ERVK-24
10.Env蛋白質のアミノ酸配列(配列番号26):
Figure 0007277466000030
を有するHERV-K110=ERVK-18
11.Env蛋白質のアミノ酸配列(配列番号27):
Figure 0007277466000031
を有するHERV-H19=HERV-H_2q24.3
12.Env蛋白質のアミノ酸配列(配列番号28):
Figure 0007277466000032
Figure 0007277466000033
を有する、およびGag蛋白質のアミノ酸配列(配列番号29)のアミノ酸配列:
Figure 0007277466000034
を有するHERV-H_2q24.1
13.Env蛋白質のアミノ酸配列(配列番号30):
Figure 0007277466000035
を有するHERV-W=ERVM-1=シンシチン1
14.Env蛋白質のアミノ酸配列(配列番号31):
Figure 0007277466000036
を有するHERV-FRD=ERVFRD-1=シンシチン2
15.Env蛋白質のアミノ酸配列(配列番号32および33):
Figure 0007277466000037
を有する、およびGag蛋白質のアミノ酸配列(配列番号34~38):
Figure 0007277466000038
を有するHERV-E
16.Env蛋白質のアミノ酸配列(配列番号339):
Figure 0007277466000039
を有する、およびGag蛋白質のアミノ酸配列(配列番号40):
Figure 0007277466000040
を有するHERV-E
HERV-Kについての標的癌は、前立腺癌、乳癌、卵巣癌、リンパ腫、黒色腫、白血病および肉腫である。HERV-Hについての標的癌は、大腸癌である。HERV-Wについての標的癌は、精巣癌、卵巣癌、乳癌、リンパ腫および白血病であり、HERV-Eについての標的癌は、肺癌および肝癌である。
以下に示される材料および方法は、後続の実施例について共通である。
プロトタイプのワクチン(DNA-MelARVおよびAd5-MelARV)は、強力なヒトサイトメガロウイルス前初期プロモーター(CMVプロモーター)の下で遺伝子MelARVgag_p2A_envをコードするDNAプラスミド(768tet)またはアデノウイルス5型(Ad5)からなった。この遺伝子は、自己開裂可能なペプチドp2Aを介して連結されたMelARV蛋白質GagおよびEnvを同時に発現した。Gagがウイルス様粒子(VLP)の形成を誘導したのに対し、標的蛋白質Envは、形成するVLP内へと組み込まれた。
さらに、腫瘍細胞内で発現するヒト内在性レトロウイルスK型(HERV-KまたはHML-2)のエンベロープ(Env)蛋白質を標的とするようワクチンを設計し、細胞免疫応答および液性免疫応答の誘導ならびに抗癌有効性について検査した。
設計されたワクチンは、DNAプラスミド(768tet)、アデノウイルス5型(Ad5)、またはアデノウイルス19型(Ad19a)のいずれかを含み、これらの各々は、群特異的抗原(Gag)およびEnv遺伝子(HERV-KGag_p2A_Env)を強力なヒトサイトメガロウイルス前初期プロモーター(CMVプロモーター)の下でコードする。これら2つの蛋白質は、自己開裂可能なペプチドp2Aをリンカーと同時に発現し、該リンカーは、ウイルス様粒子(VLP)形成に関与するGag蛋白質と会合したままである。Env蛋白質は、形成するVLPへ組み込まれ、標的として機能して特異的免疫応答を生じる。
免疫応答の誘導に関してワクチンを改善するためにワクチンによってコードされたMelARV EnvにおけるISDの不活性化型突然変異を調製して、ワクチン自体による免疫抑制効果を防止した。2つの点突然変異をEnv膜貫通サブユニットp15Eの配列において誘導した。ISDの14-位のグルタミン酸をアルギニンと置換し、20-位のアラニンをフェニルアラニンと交換した(図3)。
HERV-Kワクチンにおいて、ワクチンによって誘導される免疫応答を、HERV-K Env蛋白質の膜貫通(TM)サブユニット、すなわちp15Eの免疫抑制性ドメイン(ISD)において点突然変異を導入することによって亢進した。この修飾は、ISDの52-位におけるグルタミンとアラニンとの置き換えを包含していた(Schlecht-Louf et al.2010)(図22を参照されたい)。この変化は、ワクチン自体が免疫抑制効果を生じるのを防止するために、ドメインの不活性化を惹起した。
細胞培養
種々の細胞株を異なる実験において使用した。細胞株はすべて、37℃で、加湿雰囲気中で5%COで維持した。
HEK293:HEK293は、ヒト胚腎培養物から生じるが、共有されたアデノウイルス5型(Ad5)DNAを用いた形質転換によって作製した[ATCC.293[HEK-293].[2017年6月8日引用]、https://www.lgcstandards-atcc.org/Products/All/CRL-1573.aspx?geo_country=deから入手可能。]。この細胞株の利点には、容易な成長および効率的なトランスフェクションが含まれる。別の利点は、Ad5 E1遺伝子の発現である[Kovesdi,I.and S.J.Hedley,Adenoviral producer cells.Viruses,2010.2(8):p.1681-703。]。複製が欠損している組換えAd5ワクチンが通常、投与され、このことは該ワクチンが、E1のようなウイルス複製にとって必須の遺伝子において欠失していることを意味する。この場合、欠失している遺伝子は、ウイルス産生の間、外部に提供されなければならない。HEK293細胞は、複製を要する蛋白質を提供し、それゆえ、ウイルス産生の間、産生細胞として使用されることができる[Kovesdi,I.and S.J.Hedley,Adenoviral producer cells.Viruses,2010.2(8):p.1681-703。]。本実験では、10%熱失活ウシ胎児血清(FBS)、L-グルタミン(2mM)、ピルビン酸Na(1mM)およびペニシリン+ストレプトアビジン(Pen/Strep)を補充したダルベッコ変法イーグル培地(DMEM)中でHEK293細胞を維持した。
HEK293_T-REx_アデノウイルス毒素産生(Avtoxic)(アデノウイルス毒素産生細胞):アデノウイルス毒性産生細胞は、改変されたHEK293細胞であり、これを用いて、ウイルス産生中のAd5によりコードされた組換え蛋白質の発現を防止する。これらの組換え蛋白質の発現を阻害することは必要とされており、その理由は、コードされた標的蛋白質のうちの一部がHEK293細胞に対して毒性であり、ウイルス産生に干渉するからである[Cottingham,M.G.,et al.,Preventing spontaneous genetic rearrangements in the transgene cassettes of adenovirus vectors.Biotechnol Bioeng,2012.109(3):p.719~28。]。HEK細胞を2つのステップで改変して、異なる蛋白質抑制機序を含めた。第一の機序には、T-REx系による抑制が含まれていた[Fisher,T.Inducible Protein Expression-T-REx(商標)System.2011[2017年6月8日引用]、https://www.thermofisher.com/dk/en/home/references/protocols/proteins-expression-isolation-and-analysis/protein-expression-protocol/inducible-protein-expression-using-the-trex-system.htmlから入手可能]。T-REx-293細胞を遺伝子改変して、テトラサイクリン抑制因子蛋白質(Tet抑制因子)を発現させ、これが、Tetオペレーターに結合して抑制する。このことは、強力なCMVプロモーターの制御下で組換え標的蛋白質の発現をもたらす。
T-REx系が標的蛋白質の発現を防止する上で完全には有効でないので、T-REx-293細胞株をSirion Biotech GmbH(Martinsried,Germany)によってさらに改変した。新たな細胞株HEK293_T-REx_アデノウイルス毒素発生(アデノウイルス毒素発生細胞)は、短鎖ヘアピンRNA(shRNA)を発現し、これは、標的蛋白質と一緒に転写されるp2TSと呼ばれる伝令RNA(mRNA)配列を標的とする。shRNAは、p2TS含有mRNAの分解を生じ、したがって、組換え蛋白質のさらなる抑制を生じる。アデノウイルス毒素発生細胞を、10%熱失活FBS、L-グルタミン(2mM)、ピルビン酸Na(1mM)およびPen/Strepを補充したDMEM中に維持した。
HEK293(CCS)-shmir-pIX_221-ピューロ(pIX-細胞):pIX-細胞は、ウイルスカプシド蛋白質pIX上に抗原を提示するAd5-pIXウイルスの産生に使用される改変型HEK293細胞である。天然pIX蛋白質は、HEK293細胞において発現するアデノウイルスE1遺伝子によってコードされる。ウイルス粒子内への未処置のpIXの組込みを防止し、かつ組換えpIXの組込みを容易にするために、HEK293によりコードされたpIXを、pIX細胞内でshRNA発現によって抑制した。ウイルス産生中のshRNAの転写をドキシサイクリンによって誘導した。加えて、ピューロマイシンによるshRNA発現細胞の選択を可能にするピューロマイシンN-アセチル-トランスフェラーゼ(PAC)をコードするpac遺伝子を細胞に形質導入した。したがって、10%熱失活FBS、L-グルタミン(2mM)、ピルビン酸Na(1mM)、Pen/Strepおよび0.5μg/mLピューロマイシンを補充したDMEM中で細胞を維持した。
B16F10-GP:B16細胞株は、C57BL/6Jマウス系から生じるマウス黒色腫細胞株である[ATCC.B16-F10.[2017年6月8日引用]、https://www.lgcstandards-atcc.org/Products/All/CRL-6475.aspx?geo_country=deから入手可能]。B16F10は、より増殖性があり、かつC57BL/6マウスにおける転移を分析するために頻繁に使用される変異体である。マウス内へのB16細胞の静脈内注射後、肺への転移について10回連続選択によって該変異体を取得した[Fidler,I.J.,Selection of successive tumour lines for metastasis.Nat New Biol,1973.242(118):p.148-9.、Fidler,I.J.and G.L.Nicolson,Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines.J Natl Cancer Inst,1976.57(5):p.1199~202。]。本実験において使用される細胞株B16F10-GPは、リンパ球性脈絡髄膜炎ウイルス(LCMV)の糖蛋白質の免疫優性エピトープ(GP33-41)を追加的に発現する[Prevost-Blondel,A.,et al.,Tumor-Infiltrating Lymphocytes Exhibiting High Ex Vivo Cytolytic Activity Fail to Prevent Murine Melanoma Tumor Growth In Vivo.The Journal of Immunology,1998.161(5):p.2187~2194。]。10%熱失活FBS、L-グルタミン(2mM)、ピルビン酸Na(1mM)およびPen/Strepを補充したDMEM中で細胞を維持した。
CT26:CT26は、Balb/Cマウス系由来のマウス結腸癌細胞株であり、Anders Elm Pedersen博士から取得した。この細胞株を使用して、マウスにおける原発腫瘍成長を検査した[ATCC.CT26.WT.[2017年6月8日引用]、https://www.lgcstandards-atcc.org/products/all/CRL-2638.aspx?geo_country=de#generalinformationから入手可能]。10%熱失活FBS、L-グルタミン(2mM)、ピルビン酸Na(1mM)およびPen/Strepを補充したRoswell Park Memorial Institute培地(RPMI)中で細胞を維持した。
4T1-Luc:4T1は、Balb/Cマウス系から生じるマウス乳癌細胞株である。マウスの乳房脂肪片内へ注射すると、細胞は、肺、肝臓、リンパ節および脳へ転移する原発腫瘍を形成する[ATCC.4T1.[2017年8月4日引用]、https://www.lgcstandards-atcc.org/Products/All/CRL-2539.aspx?geo_country=de#characteristicsから入手可能]。細胞株にルシフェラーゼレポーター蛋白質(Luc)を安定してトランスフェクトした。10%熱失活FBS、L-グルタミン(2mM)、ピルビン酸Na(1mM)およびPen/Strepを補充したRPMI中で細胞を維持した。
ベロ細胞:ベロ細胞は、アフリカミドリザル(Cercopithecus aethiops)由来の霊長類腎細胞株[ATCC.Vero.[2017年6月8日引用]、https://www.lgcstandards-atcc.org/products/all/CCL-81.aspx?geo_country=de#characteristicsから入手可能]である。この細胞株は、新たなビリオンの支持的産生なしでヒトAd5感染によって非常に導入可能であり、それゆえ、Ad5-ワクチンによる蛋白質発現およびVLP放出を分析するのに使用した。10%熱失活FBS、L-グルタミン(2mM)、ピルビン酸Na(1mM)およびPen/Strepを補充したDMEM中で細胞を維持した。
A549細胞は、ウイルストランスフェクションを提供するのに適したヒト肺上皮細胞である。それゆえ、VLP産生のための関心対象の配列を含有するアデノウイルストランスフェクションのためにA549細胞を用いた。ウェスタンブロット(WB)技術を経てVLPの分泌を分析し、蛍光標示式細胞分取法(FACS)を用いて細胞表面におけるVLPの存在を検出し、電子顕微鏡(EM)を用いて可視化した。これらの細胞を、10%熱失活FBS、Pen/Strep、およびピルビン酸ナトリウム(1mM)を補充したHamのF-12培地のKaighnの変法物(HamのF-12K培地)中で維持した。
Gag蛋白質およびEnv蛋白質を発現するRenca細胞。Renca細胞は、マウス(Mus musculus)腎上皮細胞である。該細胞は、balb/Cマウスにおける腎腺癌に由来する。腫瘍の成長および進行は、ヒト腎細胞癌において観察されるものに正確に類似しており、特に肝臓および肺への自発転移を模倣している。次の例において使用される細胞は、Barbara Shnierle博士教授(Langen,Germany)によって親切に提供された。次の例のうちの一部において、ヒト内在性レトロウイルスK型(HERV-K)Env蛋白質またはGag蛋白質を発現させるために、細胞を改変した。このことによって、マウスにおけるHERV-K蛋白質を発現する腫瘍が誘導され、ERV蛋白質を発現するヒト癌に向けられた本発明者らの新規の予防接種戦略を検査するための適切なマウスモデルを創出するのが可能となった。これらの細胞を、pH7.2における10%熱失活FBS、20×106IU/L Penおよび5g/L Strep、2.9g/L L-グルタミン(2mM)、ならびに3.7g/Lピルビン酸ナトリウム(1mm)を補充したRoswell Park Memorial Institute培地(RPMI-1640)中で維持した。
ニワトリ胚線維芽細胞(CEF)の初代培養物は、ウイルス培養に広範に使用されている。Jens Toft,Lohmann(Denmark)製の11日齢のニワトリ卵を使用して、(Staib et al.2004)からのプロトコルにより、CEF培養物を調製した。この場合、CEF細胞を、HERV-K EnvおよびGag外来抗原についてコードする改変型Vaccina Virus Ankara(MVA)の産生のために使用した。この特異的な型の細胞を用いて作業するための理由は、MVA複製が鳥類細胞に限定されているからであり、哺乳動物細胞の大部分においてMVAが再生せず、この目的に適していないことを意味している(Altenburg et al.2014)。CEF細胞を、3.7g/Lピルビン酸ナトリウム、10%熱失活FBS、および1%(v/v)抗生物質-抗真菌薬(GibcoTM,15240062)を補充したRPMIからなるCEF培地中で培養した。
ベビーハムスター腎線維芽細胞(BHK-21細胞)は元々、ベビーシリアゴールデンハムスター腎細胞(Mesocricetus auratus)に由来した。以下の例において使用される具体的な細胞株は、Allan Randrup Thomsen教授(University of Copenhagen,Denmark)によって供給された。BHK-12細胞をMVA EnvおよびGagの滴定に使用し、その理由は、該細胞がMVA複製を可能にする数少ない細胞株のうちの1つであることが公知だからである。該細胞を、3.7g/Lピルビン酸ナトリウム、10%熱失活FBS、および1%(v/v)抗生物質-抗真菌薬(GibcoTM,15240062)を補充したRPMIからなるCEF培地中で維持した。
プラスミドコンストラクト
組換えアデノウイルスを作製するために、標的蛋白質を改変型アデノウイルスベクター捕獲pBGHへとクローン化した。このベクターは、E1遺伝子およびE3遺伝子に欠失があるAd5ゲノムを含有する。さらに、該ベクターは、CMVプロモーターおよび3’ポリアデニル化(ポリA)尾部を必要とし、かつTetオペレーターの下で組換えタンパク質を発現するベクター768tetに対する相同領域を含有する(図4)[Becker,T.C.,et al.,Use of recombinant adenovirus for metabolic engineering of mammalian cells.Methods Cell Biol,1994.43 Pt A:p.161~89。]。それゆえ、標的蛋白質をまず、768tet内へとサブクローニング、PCRクローニングまたはGibsonアセンブリによって挿入し、その後、相同組換え(図5)を介して捕獲pBGH内へとクローン化した(図4)。アデノウイルスのpIX改変のために、標的蛋白質を共通の発現ベクターpcDNA3内へとクローン化し、該発現ベクターは、pIXおよびリンカー配列(FLAGタグを含有)に続いて制限部位を追加的にコードして、関心対象の遺伝子(pcDNA3_pIX_タグリンカー_xxx、xxx=標的抗原)を挿入した。発現ベクターを産生細胞内へとトランスフェクトして、これらの細胞内での組換えpIXの発現を誘導した。使用した異なるプラスミドコンストラクトを表1に列挙する。
Figure 0007277466000041
Figure 0007277466000042
Figure 0007277466000043
Figure 0007277466000044
クローン化
異なるクローン化戦略を使用して、アデノウイルスワクチンの製造および検査のための新たなDNAコンストラクトを構築した。
サブクローニング
サブクローニングのために、標的DNA配列をあるプラスミド(ドナーベクター)から別のプラスミド(標的ベクター)へと移した。ドナーおよび標的ベクターを、ライゲーション部位において制限消化を介して切断した。再ライゲーションを防止するために、標的ベクターを、DNAの5’末端および3’末端で脱リン酸化を触媒するウシ腸管アルカリホスファターゼ(CIP)で処理した。消化したDNAを、GelGreen色素(#41004,Biotium)を含有する1%アガロースゲル上で分離した。所望のDNAバンドを切り出し、DNA内容物を、E.Z.N.A.Gel Extraction Kit(D2500;OMEGA bio-tek)を用いて抽出した。簡潔には、ゲルを1容積結合緩衝液(XP2)中に溶解し、HiBind(登録商標)DNA Mini Column上に負荷した。2回洗浄した後、カラムを乾燥させ、DNAを溶離緩衝液中で2回溶離した。
精製後、ベクターおよび挿入物を1:3の化学量論比で混合した。2つのDNA断片のライゲーションを、Instant Sticky-end Ligase Master Mix(M0370;New England BioLabs)を用いて触媒した。ライゲートした産物をXL1-Blue Competent Cells(#200249,Agilent Technologies)内へと形質転換した。形質転換のために、DNAを細菌懸濁液へ添加し、氷上で10分間インキュベートした。その後、細胞を42℃で45秒間の熱ショックによって透過性にした。氷上で2分間のインキュベーション後、Super Optimal Broth培地(SOC培地)を添加し、細菌を37℃で1時間振盪させながらインキュベートした。細菌懸濁液を、個々の抗生物質を含有するLysogenyブロス培地(LB培地)アガープレート上で画線し、37℃で一晩インキュベートした。
正確なコンストラクトについてスクリーニングするために、いくつかの細菌コロニーをミニプラスミド調製物について増大させた(以下の「0 DNA調製物」を参照されたい)。単離されたプラスミドDNAを制限消化によって切断し、ゲル電気泳動法によって分析した。
HERV-Kコンストラクト(および対応する対照)のために、サブクローニングを実施して、関心対象の配列を含有するDNAコンストラクト(DNA_ISD突然変異体_coHERV-K-P2TSおよびDNA_coHERV-K-P2TS)を、アクセプタープラスミド768(TetO)-SO-alb-CIDR内へと挿入した。これを行うために、挿入物およびアクセプターをまず、PIR1およびXL1-Blue細胞、ならびにカナマイシン選択マーカーおよびアンピシリン選択マーカーをそれぞれ用いて増幅した。コンストラクトはすべて、XbaI(New England Biolabs,R0145)およびSwaI(New England Biolabs,R0604)をNEBuffer(商標)3.1(New England Biolabs,B7203)と一緒に37℃で1時間30分使用して消化し、その理由は、NEBuffer3.1を用いるとXbaI酵素の活性が75%に過ぎないからである。DNAを、1%アガロースゲル+GelGreen色素を用いた電気泳動法(100V、200A、1時間)によって分離した。挿入物を含有するバンドおよび768(TetO)を含有するバンドを切り出し、製造元の指針に従ってE.Z.N.A.(登録商標)Gel Extraction Kit(Omega bio-tek,D2500)を用いて精製し、20μLの超純水(UPW)中に溶離した。
コンストラクトをライゲートするために、40ngのアクセプターベクターおよび120ngの各挿入物を、瞬間粘着末端リガーゼマスターミックス(2×)の1:2希釈物とともに37℃で15~30分間インキュベートした。XL1-Blue細胞を用いて形質転換を行い、ミニ調製を用いてDNAを取得した(以下に説明するとおり)。次に、検査切断を実施して、関心対象の配列がアクセプターベクター内へと適切に挿入されたかどうかを証明した。もしそうなら、新たな形質転換およびミディ調製(以下に説明するとおり)を実施して、より高濃度のDNAを取得した。
PCRクローニング
サブクローニングとは対照的に、PCRクローニングは、ポリメラーゼ連鎖反応(PCR)における挿入物の生成を特徴とする。標的配列を、特異的伸長プライマーを用いてドナーベクターからPCRを介して増幅して、酵素制限部位を挿入する。プライマーをTAG Copenhagenに注文し、テンプレートおよびPfuUltra II Hotstarter PCR Master Mix(#600850,Agilent Genomics)と混合した。PCRを95℃で2分間インキュベートすることによって開始して、Taqポリメラーゼを活性化させ、DNAテンプレートの完全な変性を促進した。初回のステップに続いて、95℃での変性、60℃でのアニーリングおよび72℃でのDNA伸長を30周期とした。PCRは、最終ステップを72℃で3分間で完了して、DNA伸長を終了する。
DNAを反応混合物からE.Z.N.A.Gel Extraction Kit(D2500;OMEGA bio-tek)プロトコル「酵素反応からの精製(Purification from enzymatic reaction)」を用いて単離した。残余のゲノムDNAを除去するために、精製されたPCR産物を、メチル化DNAを切断する酵素であるDpnI(R0176,New England BioLabs)で処理した。DNAを、特異的制限部位での酵素消化に供し、E.Z.N.A.Gel Extraction Kitを用いて精製した。標的ベクターの消化およびライゲーションを、すでに説明したサブクローニングプロトコルにより実施した。
HERV-Kコンストラクト(および対応する対照)の文脈において、相同組換えを用いて続行するために、HERV-K 野生型/ISD突然変異体配列の内側に含有されるNotI部位は、除去されなければならず、それにより、NotIはその後、プラスミドを正確に線状化するために使用されることができ、適切な組換えが可能であった。これを行うために、先に説明したサブクローニング手順から取得したいずれの配列(768(TetO)-SP-alb-CSP-HERV-K 野生型/ISD突然変異体)も、NEBuffer(商標)3.1(New England Biolabs,B7203)と一緒にXbaI(New England Biolabs,R0145)およびBspEI(New England Biolabs,R0540)を用いて37℃で1.5時間切断し、GelGreen色素を含有する1%アガロースゲル上での電気泳動法によって分離した。取り出されるべきNotI部位を含有するDNAバンドを消化し、E.Z.N.A.(登録商標)Gel Extraction Kitを用いて溶離した。
PCR反応に使用した順方向プライマーは、HERV-K Env配列の3’末端で、具体的にはBspEI制限部位(5’-CCCGTGTCCGGACCTGAG-3’、配列番号45)でアニーリングしていたのに対し、逆方向プライマーは、HERV-K Env配列の5’末端で、XbaI制限部位(5’-GTTCTAGACTTGTCCTGAATTTTCTGGTTA-3’、(配列番号46)でアニーリングしていた。逆方向プライマーは、NotI部位における修飾を除去するために、該修飾を含有していた。プライマーをTAG Copenhagen A/S(Copenhagen,Denmark)から取得した。
10ngのテンプレートDNA(1ng/μL)、10μMの各プライマーおよび1:2希釈のPfuUltra II Hotstart PCR Master Mix(Agilent Technologies,600850)を使用して、各DNAコンストラクトについて反応混合物を調製した。PCR反応は、初回変性ステップ(95℃、5分)、次いで、変性ステップ(95℃、30秒)、アニーリングステップ(58℃、25秒)、および最終伸長ステップ(72℃、45秒)を含む、35周期のループからなった。最終的に、最後の伸長ステップを実施し(72℃、10分)、試料を4℃で保存した。
PCR産物をアクセプタープラスミドと一緒にゲル電気泳動法によって分離し、所望のバンドを収集し、先に本明細書の「サブクローニング」の節において説明したとおり加工し、それゆえ、768(TetO)-HERV-K-Gag-p2A-Env野生型コンストラクトおよびISD突然変異体コンストラクトを取得し、該コンストラクトは、それらの配列中にもはやNotI酵素についての制限部位を含有していなかった。
Gibsonアセンブリ
Gibsonアセンブリを使用して、いくつかのDNA断片を1つのコンストラクトへ組み込んだ。断片を伸長PCRによって増幅して、標的ベクターと相同のオーバーハングを付加した。PCR産物をPCRクローニングについて説明したとおり処理および精製した。標的ベクターを挿入部位での制限消化を介して開環した。断片をアセンブリするために、開環した標的ベクターおよび精製した挿入物を1:3の化学量論比で混合し、50℃で1時間、Gibson Assembly Master Mix(E2611、New England BioLabs)とともにインキュベートした。Master Mixにおける3つの鍵となる酵素は、アセンブリを促進した。エキソヌクレアーゼは、DNAを断片の5’末端から取り出し、相同領域において他の断片とアニールする一本鎖の3’オーバーハングを創生する。ヌクレオチドは、DNAポリメラーゼによって残余の間隙中へと挿入される。最終的に、DNAリガーゼは、アセンブリしたDNAにおいてニックを接合する。先に説明したクローン化技術と同様に、アセンブリしたDNAを細菌内へと形質転換した後、正確なコンストラクトについてスクリーニングした。
組換えアデノウイルスゲノムを生成するための相同組換え
アデノウイルスゲノム(Ad5)内への標的遺伝子の挿入を、E.coliにおける相同組換えによって実施した。相同領域を有する768tetから標的ベクターまでの挿入物(標的遺伝子)を、制限消化を介して切り出し、ゲル電気泳動法によって精製した。アクセプターベクターである捕獲pBGH(Ad5ゲノム)を同様に、制限消化によって線状化した。再ライゲーションを防止するために、切断ベクターをCIP処理へ供した(サブクローニングを参照されたい)。その後、ベクター-DNAをエタノール沈殿によって精製した。簡潔には、DNAを0.3M酢酸ナトリウムおよび70%エタノール中に沈殿させ、-80℃で20分間凍結させ、16.000gで15分間(4℃)遠心分離した。ペレットを70%エタノール中で洗浄し、さらに5分間遠心分離した。室温(RT)で乾燥させた後、DNAを水中に再懸濁した。さらなる再ライゲーションを防止するために、アデノシンオーバーハングを、TempaseホットスタートDNAポリメラーゼ(#230306、Ampliqon)を用いて生成した。その後、DNAを、フェノールクロロホルム抽出を介して精製した。この目的のために、フェノールクロロホルムを反応混合物へ添加した後、16.000gで10分間遠心分離した。上部の水相を新たな反応チューブへ移し、DNAを先に説明したとおり、エタノール沈殿によって抽出した。
ベクターおよび挿入物を相同組換えによって組み込むために、両方の成分を1:3の化学量論比で混合し、電気穿孔受容能力を持つBJ5183細胞へ添加した。細菌を電気穿孔キュベット(#1652086、Bio-Rad)へ移し、遺伝子パルサー機(Bio-Rad)内での25μFD、2.5kVおよび200Ωでの電気穿孔法によって透過性にした。電気穿孔後、細胞をSOC培地中に移し、熱ショックプロトコルにおいて説明したとおりさらに処理した(「サブクローニング」を参照されたい)。
次のプラスミドをSirion biotechによって提供した。
cDNA_HERV-K(Gag_p2A_Env)
cDNA_HERV-K(Gag_p2A_Env-(Q6A)ISD-突然変異体)。
同じコンストラクトだがAd19aベクターによってコードされたものもSirionによって提供された。
cDNAコンストラクトを増幅し、ワクチンとして使用されることができる上述の配列についてコードするAd5ベクターを取得する究極的な目的のクローン化戦略のために、DNAワクチンおよび挿入物ベクターとして使用した。具体的には、hAd5(および対応する対照)においてコードされたHERV-Kコンストラクトについて、関心対象の遺伝子を、E1遺伝子およびE3遺伝子における欠失を有するヒトAd5ゲノムをコードするpBGHプラスミド内へとクローン化した。導入遺伝子をE1の代わりに、関心対象の遺伝子をコードする768tetプラスミドを用いた相同組換えによって挿入した。この戦略を選択したが、その理由は、制限消化およびライゲーションを用いた従来のクローン化が非常に有効ではなく、pBGHベクターが、38kbpを超える非常に大きなプラスミドであるからである。
768tetとpBGH捕獲プラスミドとの間の相同組換えをE.coliにおいて実施した。捕獲ベクターは、関心対象の遺伝子によって置き換えられることになる挿入物として緑色蛍光蛋白質(GFP)を含有していた。
ヒトAd5ゲノムについてコードするpBGHプラスミドが大き過ぎて(<38kbp)、制限酵素消化を使用して所望のコンストラクトを挿入する通常のクローン化戦略を取ることができないので、相同組換えを使用して、E1の代わりにpBGHプラスミドを挿入した。
まず、pBGHアクセプターベクターを、SwaI酵素(New England BioLabs,R0604)を37℃で2時間用いて線状化した。その間、768(TetO)-HERV-K-Gag-p2A-Env野生型およびISD突然変異体をNotI酵素(New England BioLabs,R3189)で1時間消化した。反応産物を、GelGreenを含有する1%アガロースゲル中での電気泳動法によって分離した。組換えに必要とされる相同領域によって隣接されたHERV-K配列をゲルから回収し、DNAを、製造元の指針に従って、E.Z.N.A.(登録商標)Gel Extraction Kit(Omega bio-tek,D2500)を用いて単離し、UPW中に溶離した。
pBGHを消化した後、3’末端および5’末端の両方を、Calf Intestinal Alkaline Phosphatase(30分、37℃、M0290)を用いてリン酸化して、再ライゲーションを防止した。次に、ベクターは、0.3M酢酸ナトリウムおよび70%(v/v)エタノール中でのエタノール沈殿を-80℃で20分間受けた。直後に、試料を遠心分離し(15分、4℃、16,000g)、ペレットを70%(v/v)エタノールで洗浄した。ベクターは、さらなる遠心分離(5分、4℃、16,000g)を受け、結果として生じたペレットをRTで乾燥させておき、最終的にはUPW中で再懸濁した。
pBGHベクターのさらなる再ライゲーションを防止するために、Tempase Hot Start DNAポリメラーゼ(Ampliqon,A230306)で72℃で30分間処理し、これはアデノシンオーバーハングを付加した。フェノール/クロロホルムを添加し、遠心分離して(10分、4℃、16,000g)、DNAを精製し、次にDNAを含有している上部の水相を微量遠心チューブへ移した。DNAは、以前と同様にエタノール沈殿を受けて、DNAをさらに精製し、このDNAをUPW中へと希釈した。
プラスミドはすべて、溶離緩衝液ではなく水中で保存したが、その理由は含塩量が電気穿孔法の効率性に干渉するからである。pBGHベクターおよびHERV-K野生型/ISD突然変異体挿入物を1:3のモル比で、電気穿孔受容能力を持つBJ5183細胞(Agilent,200154)と一緒に合わせた。次に、この混合物を電気穿孔キュベット(Bio-Rad,1652086)へと移し、これを用いて、25μFD、2.5kVおよび200Ωで遺伝子パルサー機(Bio-Rad)で細胞を透過性にした。その後、SOC培地を添加して、形質転換後のE.coli受容能力保持細胞を回収した。次に、該細胞を振盪中のインキュベーターで37℃で1時間インキュベートした。最終的に、この混合物を、カナマイシンを含有するLBアガープレート上へ播種し、37℃で一晩インキュベートした。
相同組換えが適切に実施されたことを確認するために、DNAを本明細書でいかに説明するようなミニ調製を用いて単離した。次に、このDNAを制限酵素を用いて消化し、GelGreen色素を含有する1%アガロースゲル中で分離した。pBGHおよび挿入物についての正確な大きさに対応するバンドを切り出し、E.coli内へと形質転換し、最終的にこのDNAを、後述のとおりミディ調製を経て再度単離した。
DNA調製
Escherichia coli(E.coli)形質転換
形質転換のため、化学的に受容能力を持つE.coli XL1-Blue Supercompetent Cells(Agilent,200236)およびOne Shot(商標)PIR1 Chemically Competent Cells(Thermofisher Scientific,C101010)を使用した。20μLの後者を10ngのプラスミドDNAと一緒にまとめて混合し、氷上で3分間維持した。その後、この混合物にWaterbath TW80(Julabo)で42℃で45秒間熱ショックを与え、再度氷上で3分間置いた。直後に、200μLのCatabolite抑制(SOC)培地(20gトリプトン、5g酵母抽出物、0.58g NaCl、0.19g KCl、3.96gグルコースおよび5.04g MgSO・7HO)含有の200μLのSuper Optimal Brothを試料へ添加し、これを振盪中のインキュベーター内へ入れ、37℃で1時間置いた。最終ステップは、本発明者らのプラスミドが耐性を有する、対応する抗生物質(アンピシリン(Amp):100μg/mL、カナマイシン(Kan):50μg/mL)を含有するLBアガープレート上へ試料を播種することからなり、E.coliアガープレート(Binder)についてはインキュベーター内へ入れ37℃で一晩置いた。
アガロースゲル電気泳動法
形質転換が正確に実施されたかどうかをチェックするために、DNAを精製されたコンストラクトを、臭化エチジウムまたはGelGreen(商標)色素(Biotium,41004)を含有する1%(w/v)アガロースゲル上で泳動して、紫外(UV)光の下でDNAを可視化することができた。1×ローディング緩衝液(6×)を試料へ添加し、この試料をサイズマーカーGeneRuler 1kb Plus DNA Ladder(Thermo Fisher Scientific,SM1331)と一緒にゲルへ負荷した。使用する緩衝液は、トリス-酢酸-エチレンジアミン四酢酸(EDTA)(TAE)緩衝液(4.86g/L Trizma(登録商標)塩基、0.37g/L Na2EDTA・2H2O、および0.11%(v/v)酢酸、pH=8.3)とした。電気泳動法を120Vで1時間、電気泳動用電源EPS3501XL(GE Healthcare)を用いて実施した。
ミニ調製
クローン化後の正確なコンストラクトについてスクリーニングするために、DNAの小規模増幅を実施した。細菌コロニーを3mLまたは5mLのLB培地(関心対象のプラスミドにおける耐性遺伝子によって対応する抗生物質Amp100μg/mLまたはKan50μg/mLを含有)内へと移し、37℃で一晩生育させた。プラスミドDNAの単離を、E.Z.N.A.(登録商標)Plasmid DNA Mini Kit I(D6943,Omega bio-tek)を用いて実施した。簡潔には、細菌を遠心分離によってペレットにし、RNアーゼ含有溶液I(再懸濁緩衝液)中で再懸濁した。溶液II(溶解緩衝液)を添加してDNAを細胞から放出した。反応を終止させ、ゲノムDNAを細胞デブリとともに沈殿させるために、溶液III(中和緩衝液)を添加した。沈殿物を遠心分離によってペレットにし、上清をHiBind(登録商標)DNA Mini Columnへと移した。遠心分離によってDNAをカラム膜へ結合させ、かつHB緩衝液を添加した後、カラムをDNA洗浄緩衝液で2回洗浄し、その後乾燥させた。最終的に、プラスミドDNAを溶離緩衝液中に溶離させた。
ミディ調製
より多量かつより精製されたDNA収量を得るために、100mLのLB培地(ここでも適切な抗生物質を含有)中で一晩生育させたE.coliから、NucleoBond(登録商標)Xtra Midiキット(#740410,AH Diagnostics)を用いてミディ調製を行った。原理は、細菌を再懸濁および溶解することで出発するミニ調製と同様であった。中和後、溶解物を、平衡化したNucleoBond(登録商標)Xtra Column上に負荷し、平衡化緩衝液で洗浄した。残余の細胞デブリを含有する挿入されたカラムフィルターを取り出し、カラムを洗浄緩衝液で洗浄した。DNAを溶離緩衝液中に溶離し、その後、イソプロパノール中で沈殿させた。沈殿したDNAを遠心分離によってペレットにし、70%エタノールで洗浄した。追加の遠心分離ステップの後、上清を取り出し、DNAペレットをRTで乾燥させた。DNAを100μLの10mM Tris-HCl緩衝液(pH8.0)中にまたはE.Z.N.A.(登録商標)Plasmid DNA Mini Kitからの100μLの溶離緩衝液で再構成して、濃度をNanoDrop(商標)2000で決定した。
2.6 ウイルス作製
異なるウイルスを本実験で作製および検査した(表2)。通常の組換えアデノウイルスに加えて、表面上に組換えpIXを提示するAd5ベクターが検査され、異なる手順で作製されなければならなかった。
Figure 0007277466000045
Figure 0007277466000046
Figure 0007277466000047
改変型ISDを有するMelARV Env蛋白質の配列
Env蛋白質は、次の配列(配列番号41)を有する。
Figure 0007277466000048
配列は、ISD配列における灰色の背景文字において元のEからRへと、および灰色によってまた標識されるISDの外側の第3のアミノ酸においてAからFへと交換することによって改変されている。
組換えAd5生成
Ad5生成の出発点は、アデノウイルスゲノムプラスミド捕獲pBGHである。プラスミドは、感染性Ad5粒子の形成に必要とされる遺伝子をすべて含有しているが、遺伝子E1およびE3が欠失している。E1は、ウイルス複製に必要とされ、代わりに、産生細胞株HEK293/アデノウイルス毒素産生によって提供される(Kovesdi,I.and S.J.Hedley,Adenoviral producer cells.Viruses,2010.2(8):p.1681~703)。E3は、ウイルス産生に非必須の遺伝子であり、該ゲノム内で欠失しており、組換え標的遺伝子のための空間を創生する。捕獲クローン化の過程(「0 組換えアデノウイルスゲノムを生成するための相同組換え」を参照されたい)で、これらの標的遺伝子は、相同組換えを介してベクター内へと挿入される。標的蛋白質を捕獲pBGH内へクローン化することおよび後続のウイルス産生の過程を図5に要約する。
アデノウイルス毒素産生細胞を組換え捕獲pBGHベクターに感染させた。この目的のため、細胞をT75培養フラスコへと播種し、50~70%培養密度まで生育させた。ベクターDNAをPI-SceI緩衝液中でPI-SceI(#R0696S、New England BioLabs)を用いた37℃で1時間の制限消化によって線状化した。その後、フェノールクロロホルム精製を「捕獲クローン化」において説明したとおり実施し、DNAをOptiMEM(#11058-021、Invitrogen)中に溶解した。DNA溶液の一部を1%アガロースゲル上に負荷し、プラスミドの正確な切断を確認した。残余のDNAをポリエチレンイミン(PEI)と、1:3のDNA:PEI比で混合した。RTで15分間インキュベートした後、混合物をアデノウイルス毒素産生細胞へ滴下して添加した。トランスフェクトした細胞を正常細胞培養条件下でインキュベートした(「エラー!参考文献の元が見当たらない。細胞培養」を参照されたい)が、培地は16時間後およびその後2~3日ごとに交換した。細胞溶解物が剥離細胞によって明白と視認することができたとき(2~3週間後)、溶解した細胞を含有する細胞培地(「ウイルス溶解物」と呼ぶ)を収集し、-80℃で保存した。
次のステップにおいて、細胞を「ウイルス溶解物」に再感染させて、「3日間溶解物」を取得した。この目的のため、アデノシン毒素産生細胞を6ウェルプレート内で、70%培養密度まで生育させ、ウェルからウェルへと「ウイルス溶解物」の1:10連続希釈で感染させた。感染3日後、最も希釈した完全に溶解したウェルの上清を収穫し、-80℃で凍結させた。このウイルス試料を「3日間溶解物」と呼んだ。
このウイルスを大規模で産生するために(「大規模溶解物」)、アデノシン毒素産生細胞を4つのNunc(商標)Cell Culture Treated TripleFlasks(商標)(500cm)(#132913、Thermo Fisher)内へと播種した。細胞が70%培養密度に到達したとき、フラスコを150μLの「3日間溶解物」に感染させた。細胞の完全な溶解後(およそ3日間)、上清を収穫し、-80℃で凍結させた。
組換えAd5精製
ウイルス精製の第1のステップにおいて、収穫した大規模溶解物へ0.5%のIgepal CA-630(#56741、Sigma-Aldrich)を添加した。RTで10分間のインキュベーションの間、界面活性剤は、残存する細胞の破壊および培地中へのウイルス含有物の放出を生じた。細胞残渣を除去するために、溶解物を12186gで4℃で20分間遠心分離した。上清を回収し、容積の半分を20%ポリエチレングリコール(PEG)+2.5M NaCl溶液として添加し、次いで、4℃で一晩緩徐に振盪させた。このステップの間、上清中のウイルスを沈殿させ、これは、次のステップにおいてウイルスの濃縮を可能にした。沈殿したウイルスを12186gで20分間の遠心分離によってペレットにした。ウイルスペレットを5mLの冷リン酸塩類緩衝液(PBS)中で再懸濁し、15mLのファルコンチューブへ移した。この試料を784gで5分間遠心分離して、残存する細胞残渣を除去した。上清を新品の15mLファルコンチューブへ移し、先の遠心分離ステップを、完全には除去することができない細胞残遺物の少量のペレットしかチューブ内に存在しなくなるまで数回反復した。ウイルス含有上清にほとんどの飽和CsCl溶液を添加して、1.34g/mLの最終密度に到達した。結果として生じる溶液を超遠心分離チューブ(#342413、Beckman Coulter)へと移し、その後密封し、Beckman Coulter Ti 70.1ロータにおいて257,300gで一晩遠心分離した。明確に視認できるウイルスバンドを針および注射器で抽出し、平衡化したPD-19脱塩カラム(#17-0851-01、GE Healthcare)上に負荷した。フロースルー画分を70%グリセロール中に回収し、グリセロール終濃度は10%であった。最大ウイルス濃度(最大濁度)の画分をプールし、分注し、-80℃で保存した。ウイルスの分注物を解凍して凍結するのは2回までとした。
pIX上で抗原を提示する組換えAd5ベクターの生成および精製
Ad5-pIXウイルスの生成を、通常の組換えAd5ウイルスとは異なる戦略を用いて実施した。産生細胞株は、先に説明したHEK293(CCS)-shmir-pIX_221-ピューロ細胞株(pIX細胞)とした。pIX細胞を175cmフラスコ内へ播種し(ウイルス1つにつき4つのフラスコ)、70%培養密度まで生育させた。組換えpIX蛋白質を生成するために、細胞に、pIXを遺伝子融合によって組換え蛋白質にカップリングさせたpcDNA3_pIXプラスミドをトランスフェクトした。ドキシサイクリンを培地に添加(0.5μg/mL)した後、トランスフェクトし、このことは、未処置のpIXの翻訳を阻害するpIX特異的shRNAの転写を誘導した。細胞培養用培地をトランスフェクションの18時間後に交換し、ドキシサイクリンを再度添加した。その後、細胞に5MOI(感染多重度)の個々の基部アデノウイルス(関心対象の組換え蛋白質についてコードするアデノウイルス)を感染させた。ウイルスの複製は、ウイルスの細胞変性効果が視認できるまで、通常の培養条件下で48時間行わせた。細胞を収集し、750gで10分間の遠心分離によってペレットにした。ペレットを0.5%デオキシコール酸ナトリウム含有PBS中で再懸濁し、RTで30分間インキュベートして、細胞を分解し、ウイルスを放出した。産生細胞株からのゲノムDNAを消化するために、0.2M MgCl2および0.05mg/mL DNAse I(A3778、AppliChem)を添加し、37℃で1時間インキュベートした。細胞デブリを3000gで15分間の遠心分離によって除去し、CsClをウイルス含有上清に添加して、終濃度を1.34g/mLとした。ウイルスをAd5精製について先に説明したとおり、CsCl勾配において超遠心分離した。抽出したウイルスバンドを透析膜(Spectra/Por(登録商標)Dialysis Membrane,300kDa,#131450,Biotech CE Tubing)へ移し、PBS中で4℃で一晩透析した。最終的に、ウイルスを10%グリセロール中で分注し、-80℃で保存した。
ウイルス滴定
実験の再現性のため、精製されたウイルスを滴定して、1mLあたりの感染単位数(IFU/mL)を取得した。平底△処理した表面の96ウェルプレートをポリリジンで15分間コーティングし、PBSで3回洗浄した。HEK293細胞をウェル中へ、100μLの培地中の5×10個の細胞濃度で播種した。ウイルスを培地中で10倍連続希釈で希釈し、1:50の希釈で出発した。50μLの希釈因子5×10~5×10を96ウェルプレート中の細胞懸濁液へ二つ組で添加した。感染細胞を通常の細胞培養条件下で48時間インキュベートした。培地を除去した後、ウェルをRTで乾燥させ、細胞を冷メタノールで-20℃で10分間固定した。その後、ウェルを、1%ウシ血清アルブミン(BSA)を含有するPBSで3回洗浄した。ウイルス感染細胞を検出するために、抗Ad5ヘキソン抗体(1E11、#sc-51746、Santa Cruz Biotechnologies)をPBS+BSA中に1:1000の希釈で添加し、37℃で1時間インキュベートした。PBS+BSAで3回洗浄した後、PBS+BSA中に1:500希釈した、セイヨウワサビペルオキシダーゼ(HRP)に結合したマウス免疫グロブリンに対する二次抗体(#P0447、Dako)を、ウェル中で37℃で1時間インキュベートした。残余抗体を洗い出し、ウイルスプラークを3,3’-ジアミノベンジジン(DAB)基質を用いてRTで10分間可視化した。
ウイルスの力価を決定するために、適切な希釈のプラークを20倍の倍率の顕微鏡下で計数した。およそ100個のプラークが検出されるまで、いくつかの視界を各ウェルにおいて計数した。1mLあたりのIFUの最終数を、次式を用いて計算した。
Figure 0007277466000049
Figure 0007277466000050
=1視野あたりの平均プラーク数(計数されたプラーク総数/計数された視野)、VF=20倍の倍率での1ウェルあたりの視野数(52.7視野/ウェル)、DF=計数されたウェルにおけるウイルスの希釈因子(例えば、500,000×)、W=1mLのウイルス希釈物あたりの感染ウェル数(1000μL/mL/50μL/ウェル=20ウェル/mL)、P=プラーク数。
追加の品質管理として、1mL当たりの感染単位の測定された濃度(IFU/mL)をウイルス粒子(VP)計数と比較した。VP/mLをNanoDrop(商標)2000を用いて、260nmにおける吸光度を測定することによって決定した。1単位の吸光度は、1012VP/mLの濃度に相当する。IFU/mLとVP/mLとの比は、ウイルスの生存度を示し、理想/典型比は1:30~1:100であった。
組換えAd5からのゲノムDNA精製
組換えアデノウイルスからのDNAの単離を実施して、アデノウイルスゲノムへの組換え遺伝子の正確な挿入を確認した。DNAをGenElute(商標)Mammalian Genomic DNA Miniprep Kit(G1N70、Sigma-Aldrich)で、改変プロトコルを用いて抽出した。この目的のため、100μLの精製されたウイルス試料を100μLの再懸濁溶液と混合した。プロテイナーゼKおよび溶解溶液Cを添加した後、70℃で10分間インキュベートした。96%エタノールを添加した後、溶液を、調製された上に負荷した。その後のステップは、元のプロトコルに従ったが、2回の洗浄ステップおよびその後のカラムの乾燥があった。ウイルスDNAを溶離溶液中に溶離した。ウイルスの質的確保のため、DNAを配列決定のために送付して(GENEWIZ UK Ltd.)、相同組換えの領域における突然変異を除外した。加えて、ウイルスDNAを制限酵素で切断して、ゲル電気泳動法によって正確なバンドの大きさを確認した。
VLPの生成および精製
ウイルス様粒子(VLP)の生成および精製を主として、VLPをコードするワクチンの機能性を検査するために行った。1×10個の細胞密度で175cm培養フラスコ内へ播種し、2時間インキュベートして付着させておいたベロ細胞において、VLP生成を検査した。その後、細胞に50MOIのAd5(5×10個のIFU/フラスコ)を5時間感染させた。培地を除去した後、細胞をPBSで2回洗浄し、無血清培地中で48時間インキュベートした。上清(SN)を282gで10分間遠心分離し、0.45μMの膜で濾過して、細胞混入物を除去した。開口32mL肉厚チューブ(#355631、Beckman Coulter)を用いたBeckman Coulter Ti 70ロータにおいて82.700gで20%スクロースクッションを経てペレットにすることによって、VLPを精製した。SNを除去し、ペレットを100μLのPBS(160×元の濃度)中で再懸濁した。
HERV-K-Gag-p2A-Env野生型(WT)/ISD突然変異体についてコードするAdvワクチンを、VLPを生成することができる機能的蛋白質へと翻訳し、細胞溶解物を感染細胞から生成し、VLPを細胞培養上清(SN)から精製した。
ベロ細胞株、A549細胞株、およびHEK293細胞株を使用して、VLPを生成および精製した。10×10個のベロ細胞、10×10個のA549細胞または10×10個のHEK293細胞を1日後にT175(175cm)フラスコにおいてまたはT25(25cm)フラスコにおいて播種し、HEK細胞の場合、対応する培地を含有していた。2時間後、関心対象の本発明者らの配列(表2bを参照されたい)についてコードする異なるウイルスベクターを、所与の感染についてのビリオン/細胞の数を示す50または20(HEK293)の感染多重度(MOI)を用いて細胞に感染させた。5時間後、pH7.4で8g/L NaCl、0.2g/L KCl、1.15g/L NaHPO・2HO、0.2g/L KHPOを含有するリン酸緩衝塩類溶液(PBS)で細胞を2回洗浄した。次に、培地を対応する細胞培地と交換したが、FBS非含有とした。細胞を最適な維持条件内で48時間、またはHEK293細胞を用いるときは16時間インキュベートした。
その後、細胞培養物からVLPを取得するために、2つの異なる手順に従った。その一方で、細胞により分泌されるVLPを生成および分析するために、SNを維持した。その一方で、細胞を溶解して、細胞内へと含有されたVLPを分析した。
第1の手順について、細胞を12000rpmで10分間4℃で遠心分離し、上清を0.45μm膜(Sartorius,16555)で濾過して、細胞不純物を除去した。13.5mLのSNを、開口32mL肉厚超遠心分離チューブ(Beckman Coulter、355631)の中のPBS中に溶解した20%(w/v)スクロース3mLに滴下して添加した。チューブを等容積について秤量し、Ti70ロータ(Beckman Coulter、337922)内へ入れ、これを82.700g、4℃、2.5時間に設定した超遠心分離へと導入した。終了すると、SNを注意深く除去し、残余のペレットを100μL PBS中で再懸濁し、-20℃で保存した。
第2の手順は、冷PBS洗浄の第1のステップからなった。次に、10mLの冷PBSをこのフラスコに添加し、細胞を機械的に掻把した。4mLを15mLコニカルチューブへと移し、4℃、12000rpmで5分間遠心分離した。SNを廃棄し、7μL/mLプロテアーゼ阻害薬カクテル(Sigma-Aldrich、P8340)を有する1300μLのNP40細胞溶解緩衝液(Invitrogen、FNN0021)を含有する混合物を各チューブに添加した。次に、チューブを氷上で30分間放置しておいたが、Shaker Vortex 3(IKA)を用いて10分間ごとにボルテックスした。最終的に、チューブを4℃、13.000rpmで10分間遠心分離して、細胞デブリを除去し、SNを新たなチューブへ移し、-20℃で保存した。
Figure 0007277466000051
MVA生成および滴定
MVAの生成、精製および滴定のための手順は、Staib et al.2004によって説明される指針を用いて実施した。この実験を実施するのに使用されるHERV-K GagまたはEnv蛋白質シード溶解物を発現する出発MVAは、Barbara Schnierle博士教授(Langen,Germany)によって提供された。175cmフラスコを用いて大規模にMVAを生じる前に、ウイルスの量をこれもまた175cmフラスコを用いて小規模で増量し、いずれの場合もCEF細胞で播種した。
この場合、MVA滴定をBHK-21細胞において実施した。1:1000希釈した一次ポリクローナルウサギ抗ワクシニアウイルス(BioRad、9503-2057)および1:500希釈した二次HRP結合ポリクローナルヤギ抗ウサギIg抗体(Dako、P0448)を用いて、感染細胞を検出した。力価(IFU/mL)を決定するために、染色した病巣の数をおよそ20~100ウイルス病巣/ウェルの希釈試料に関して計数し、精確性を最大限にした。
動物実験
6~8週齢の雌C57BL/6マウス、Balb/Cマウス、およびCD1マウスをTaconic(C57BL/6)またはEnvigo(Balb/CおよびCD1)から取得した。マウスを1週間順化させておいた後、実験を開始した。実験はすべて、国の動物実験検査官(デンマーク語で動物実験検査官(Dyreforsogstilsynet))によって承認された国の指針および実験プロトコルにより実施した。
血清試料の分離
血清試料を取得するために、全血量のおよそ10%をマウスから顔面静脈をGoldenrod lancetを用いて穿刺することによって採取した。
あるいはマウスの最終出血(完全出血)のために、動物に10gマウスあたり100μLの用量の、PBS中の1mg/mLキシラジンおよび10mg/mLケタミンを腹腔内(i.p.)注射して麻酔した。顔面静脈を穿刺することによって血液の最大量を採取し、マウスをその後頸椎脱離によって安楽死させた。
HERV-K実験において、全血心穿刺のために、マウスにイソフルラン全身麻酔をかけた。直後に、イソフルランを継続して供給する顔用マスクを着けてマウスを上向きにし、心穿刺を1mL注射器へ接続したG27針を用いて実施した。およそ800~1000μLを収集し、マウスをその後、頸椎脱離によって安楽死させた。
あるいはマウスにイソフルラン全身麻酔をかけた。このマウスを次に、不随意反射について検査し、何も示さないことを確認した後でのみ、最大血液量を片目から、具体的には眼窩洞を経て収集した。次に、マウスを優しく頸椎脱離することによって即時に安楽死させた。
血液試料を4℃で一晩保存して、凝固させておき、血球を血清から、800gで10分間の2回の遠心分離によって除去した。次に、血清を-20℃で保存した。
注射:静脈内、皮下、筋肉内、腹腔内
異なる注射手順を実施した。静脈内(i.v.)注射については、マウスを加温チャンバ内で加温し、表在性静脈血流を増大させた。最大200μLを尾静脈内へ注射した。HERV-K関連実験において、10個のRLZ Gag細胞およびEnv細胞(B.Schnierle由来)を含有する100μLの容積をマウスへ静脈内注射して、肺への転移を誘発させた。
足裏(f.p.)への皮下(s.c.)注射をイソフルラン麻酔下で、30μLを足裏の皮膚の下に注射することによって実施した。HERV-K実験については、この種類の注射を使用して、10個のRLZ Gag細胞およびEnv細胞(B.Schnierle由来)を注射し(100μLで)、マウスにおける皮下腫瘍を成長させ、HERV-K Envを発現するマウス腫瘍モデルを確立した。
筋肉内(i.m.)注射については、最大60μL量を大腿筋へと注射した。
HERV-K実験の脈絡において、関心対象のワクチンを用いてマウスを免疫化(初回免疫)および追加免疫するために、この種類の注射を主として使用した(以下の表2cを参照されたい)。マウス1匹あたり50μLを、アデノウイルスまたはMVAの予防接種/追加免疫それぞれのために使用した。注射を大腿筋で、鎮痛および筋弛緩の両方を付与するイソフルラン麻酔下で実施した。
Figure 0007277466000052
500μLまでを腹腔内へ投与することによって、腹腔内(i.p.)注射を実施した。
予防接種
5回の異なる予防接種試行をマウスにおいて実施した。
予防接種タイムラインI。Balb/Cマウスを2回のDNA予防接種からなる初回免疫-追加免疫投与計画において予防接種した後、1回のAd5予防接種を行い、またはDNAもしくはAd5のいずれか単独を行った。対照として、マウスにPBSを注射した。Ad5の予防接種の4週間後、血液試料を回収し、脾臓を数匹のマウスから分離した。その後、マウスにCT26腫瘍細胞を右腹側部に皮下負荷し、腫瘍成長を測定した。
予防接種タイムラインII。Balb/CマウスにCT26腫瘍細胞を皮下負荷した。マウスに負荷2日後(d.2 p.c.)または負荷5日後のいずれかで(あらかじめDNAで初回免疫)、Ad5-MelARVを予防接種した。加えて、1つの群にはd.2 p.c.で予防接種し、その後、腫瘍が触知可能になる(d.8 p.c.)とすぐに、抗PD1抗体の4回注射を行った。対照群として、マウスにPBSまたは抗PD1のみを注射した。
予防接種タイムラインIII。C57BL/6マウスに初回免疫-追加免疫投与計画で2回のDNA-MelARV注射により予防接種した後にAd5予防接種を行った。血液試料を最後の予防接種の3週間後に採取し、マウスに2×105のB16F10-GP細胞を静脈内負荷した。肺における転移数を負荷の2週間後に決定した。
予防接種タイムラインIV。CD1マウスにまずMelARVgag_p2A_env(DNA-MelARV)またはISD突然変異版MelARVgag_p2A_env_ISD(DNA-MelARV-ISD)についてコードするDNAプラスミドを予防接種した。DNA初回免疫に続いて、Ad5-MelARVまたはAd5-MelARV-ISDのいずれかを用いたアデノウイルス予防接種を行った。血液試料を予防接種の4週間後に行い、血清抗体について分析した。
予防接種タイムラインV:C57BL/6マウスにアデノウイルスAd5-MelARV_pIX-p15EまたはAd5-MelARVのいずれかを2回予防接種した。Ad5-GFPを対照として使用した。その後、血液試料を採取し、マウスに2×105個のB16F10-GP細胞を静脈内負荷した。肺を負荷2週間後に分離し、転移について分析した。
DNA予防接種のために、50μLトリス/PBS(142mM)中の50μgDNAを筋肉内注射した。アデノウイルスを30μL PBS中の2×10IFUで足裏へと注射した。pIX改変型ウイルスを含む実験(ワクチンタイムラインIVおよびV)において、60μLPBS中の1010個のウイルス粒子を筋肉内注射した。pIXウイルスがより低濃度であることにより、足裏への少量の注射は可能ではなかった。
別の実験には、腫瘍負荷マウスにおける抗PD1抗体(RMP1-14、#BE0146、BioXCell)の投与が含まれた(「0 腫瘍負荷」を参照されたい)。抗PD1を200μLPBS中の200μg抗体とともに腹腔内注射で投与した。処置を、皮下成長している腫瘍が触知可能になった腫瘍負荷8日後に開始した。マウスに4回、4日間ごとに注射した(腫瘍負荷の8、12、16および20日後)(Kim,K.,et al.,Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells.Proc Natl Acad Sci U S A,2014.111(32):p.11774~9およびShindo,Y.,et al.,Combination immunotherapy with 4-1BB activation and PD-1 blockade enhances antitumor efficacy in a mouse model of subcutaneous tumor.Anticancer Res,2015.35(1):p.129~36。
HERV-K実験において、Advおよび/またはMVA追加免疫を、AdvまたはDNAワクチンを用いた初回免疫(0日後)のおよそ4週間後または8週間後に実施した。血液試料を初回免疫予防接種の前および後(14日後)の両方で採取した。また、マウスからMVA/Adv/DNA追加免疫の14日後および28日後に採血した。予防接種したマウスの液性応答(HERV-K Envに対する抗体の産生)を分析するために、血液試料を使用した。その上、マウスをMVA追加免疫10日後に安楽死させ、細胞免疫応答(CD8+ T HERV-K Env特異的T細胞の生成)を検査した。
新規の予防接種戦略の治療効果を検査するために、単回用量のワクチンのみを腫瘍負荷10日後に付与した。
腫瘍負荷
B16F10-GP細胞の生体内での転移を評価するために、培養細胞をPBSで3回洗浄し、ベルセン中で37℃で15分間インキュベートすることによって脱離させた。細胞をその後282gで遠心分離し、PBSで洗浄して、PBS中の2×10^6個/mLの濃度まで希釈した。100μL PBS中の2×10^5個の細胞をマウスの尾静脈内へと静脈内注射し、その結果として、肺における腫瘍の転移が生じた。負荷したマウスを14日後に安楽死させた。肺を分離し、PBS中の2%パラホルムアルデヒド(PFA)の溶液中で一晩固定した後、PBS中で4℃で保存した。転移を解剖用顕微鏡下で肺表面上の黒色結節として計数した。試料を盲検化し、転移を少なくとも2名によって計数した。CT26腫瘍の原発成長を分析するために、CT26細胞をB16F10-GP細胞について説明したとおり調製し、PBS中の5×10^5個の細胞の右大腿部における皮下注射は結果として、注射部位における腫瘍の形成を生じた。腫瘍の大きさを長さおよび幅において週3回測定した。腫瘍量を長さ×幅×0,5236として決定した(Janik,P.,et al.,The Effect of Estrone-Progesterone Treatment on Cell Proliferation Kinetics of Hormone-dependent GR Mouse Mammary Tumors.Cancer Research,1975.35(12):p.3698~3704)。腫瘍がいかなる側部においても16mmを超過したか、壊死性創傷が生じたか、またはマウスの可動性が顕著に低減したとき、マウスを安楽死させた。腫瘍の測定の間、異なる予防接種群を盲検化して、偏向のある評価を防止した。
CT26負荷に加えて、Balb/Cマウスに100μL PBS中の2.5×10^4個の4T1-Luc細胞を胸部乳房脂肪部へと注射した。6週間後の腫瘍形成を可視化するために、マウスにルシフェリン(10gのマウスにつき1.5mg)を腹腔内注射し、注射12分後にIVIS Spectrum生体内撮像システムを用いて撮像した。IVIS撮像を、Andreea-Cornelia UdreaおよびMelanie Schwerdtfegerによって実施した。
生体内でのRLZ Gag細胞およびEnv細胞の腫瘍成長および転移を分析するために、細胞を60~80%培養密度まで培養した。いったん所望の培養密度に到達すると、RLZ細胞をPBSで3回洗浄した後、ベルセンを37℃で15分間添加して、細胞を脱離させた。その後、細胞を282gでスピンダウンし、PBSを用いて洗浄し、最終的にはPBS中へと107個/mLまで希釈した。どのマウスにも106個/100μLを肺への転移については静脈内注射し、皮下腫瘍については皮下注射した。肺への転移を評価するために、マウスを0、7および14日後、ならびにその後2日間ごとに秤量した。マウスが数日以内に約15~20%の体重を喪失した場合、安楽死させた。終了についてのエンドポイントは、腫瘍負荷40日後に設定した。皮下腫瘍に罹患しているマウスを静脈内負荷したマウスと同じ時点でチェックし、腫瘍が16mm径を超過したとき安楽死させた。
皮下腫瘍および肺の両方を分離し、pH=7.2の4%パラホルムアルデヒド(PFA)およびリン酸緩衝液0.01mol/L中へ浸漬し(Rigshospitalet,Copenhagen,Denmark)、4℃で保存した。試料を加工し、予防接種したマウス由来の高力価血清を用いたHERV-K Env特異的染色について組織を分析した。
ウェスタンブロット法
pIX-蛋白質の検出のために、細胞溶解物(約10μg)または精製されたウイルス(1010個のウイルス粒子)を、DDTを含有する6×SDS負荷緩衝液と混合し、95℃で5分間加熱した。MelARV蛋白質の発現を示すために、細胞溶解物(5μg)、細胞上清(15μg)および精製されたVLP(約2μg)を同様にDDT含有負荷緩衝液と混合したが、試料を加熱しなかった。この混合物をNuPAGE(商標)4~12%Bis-Tris Protein Gel(#NP0322、Thermo Fisher)に負荷し、150VでMOPS緩衝液中で1時間泳動した。ゲル中の蛋白質含有量を湿式転移系においてニトロセルロース膜へ30Vで1時間転写した。
その後、膜をトリス緩衝塩類溶液+トゥイーン20(TBS-T)中の5%脱脂乳で1時間ブロッキングした。その後、膜をTBS-Tで10分間、振盪器上で3回洗浄し、(TBS-T+3%脱脂乳中の)希釈した一次抗体(表3)とともに4℃で一晩インキュベートした。以下の3回の洗浄ステップ後に、TBS-T中のHRP結合二次抗体を添加し、膜をRTで1時間インキュベートした。結合していない二次抗体を洗い出し、LumiGLO Reserve Chemiluminescent Substrate(54-61-00または54-71-02)を用いて標的蛋白質をImageQuant LAS 4000において可視化した。
Figure 0007277466000053
Figure 0007277466000054
HERV-K関連実験において、蛋白質レベルでのVLP発現を、WB技術を経て分析した。試料の等しい負荷を保障するために、VLP(SN)および細胞溶解物の両方の蛋白質濃度を、Pierce(商標)ビシンコニン酸(BCA)Protein Assay Kit(Thermo Fisher Scientific,23225)を製造元の指針により使用して測定した。ジチオトレイトール(DTT)を含有する6×ドデシル硫酸ナトリウム(SDS)負荷緩衝液を、異なる試料へ添加し、これを95℃のブロックヒーターSBH130DC(Stuart)に5分間入れた。その後、5μgの蛋白質、および7μLのRunBlue(商標)Prestained Marker(Expedeon、NXA05160)をNuPAGE(商標)4~12%Bis-Tris Protein Gel(Thermo Fisher Scientific、NP0322)へと、NuPAGE(商標)MOPS SDS Running Buffer(Thermo Fisher Scientific、NP0001)と一緒に負荷した。試料を180Vで45分間のSDSポリアクリルアミドゲル電気泳動法(SDS-PAGE)によって分離した。
その後、試料を0.45μmニトロセルロースブロット法用膜(Bio-Rad、1620115)へ30Vで45分間転写した。このステップのために、20%エタノール含有転写緩衝液(3.75g/L Trizma(登録商標)塩基、18.1g/Lグリシン、pH8.5)を使用した。
非特異的結合を防止するために、膜を室温(RT)で1時間、トゥイーン含有トリス緩衝塩類溶液(TBS-T)(6.06g/L Trizma(登録商標)塩基、8.76g/L NaCl、0.25%(v/v)トゥイーン-20、pH7.6)中の5%(w/v)脱脂粉乳を用いてブロッキングした。その後、膜をTBS-Tで10分間洗浄し、対応する一次抗体(表3aを参照されたい)をTBS-T中の3%(w/v)脱脂粉乳中で用いて、振盪器CERTOMAT(登録商標)MO II(Sartorius)上で4℃で一晩(o/n)インキュベートした。
Figure 0007277466000055
その後、膜をTBS-Tで10分間、3回洗浄した。次に、これをTBS-T中に希釈した対応する二次抗体(表3bを参照されたい)とともにRTで1時間インキュベートした。
Figure 0007277466000056
次に、膜をTBS-Tで3回洗浄した(各回10分間)。ペルオキシダーゼ化学発光基質(KPL、54-16-00)をImageQuant Las 4000カメラ(GE Healthcare Life Sciences)における蛋白質の検出のために使用した。
酵素結合免疫吸着検定法(ELISA)
予防接種したマウスにおけるMelARV特異的抗体の検出のために、BSAに結合したMelARV Envサブユニットp15EのペプチドをSchafer-N(Copenhagen、Denmark)から購入した。
Figure 0007277466000057
MaxiSorp平底プレート(Thermo Fisher)を1ウェルにつき100μLのペプチド溶液(PBS中2μg/mL)で4℃で一晩コーティングし、その後、洗浄緩衝液(PBS+2.07%NaCl+0.1%トゥイーン-20)で2回洗浄した。ウェルを希釈緩衝液(PBS+2.07%NaCl+0.1%トゥイーン-20)で37℃で2時間ブロッキングし、洗浄緩衝液で1回洗浄し、希釈マウス血清(希釈緩衝液中で1:50)とともに37℃で3時間インキュベートした。2回洗浄した後、ペプチドにより結合された血清抗体をHRP結合ヤギ抗マウス免疫グロブリン抗体(Dako、P0447)とともに1:2000希釈で37℃で2時間インキュベートした。追加の2回の洗浄ステップの後、100μLのTMB PLUS2(Kem-En-Tec Diagnostics、4395A)を添加し、RTで8分間インキュベートした。反応を100μLの0.2M HSOで終止させ、450nmの光学密度を測定することによって定量した。
マウス血清におけるAd5特異的抗体の検出を、ELISAプレートを熱失活Ad5で5×10個のウイルス粒子/mLでコーティングすること(30分間、56℃)によって実施した。本アッセイを先に説明したとおり実施したが、RTで1時間のブロッキングおよび抗体結合についてはより短いインキュベーション時間とした。一次抗体は、1:200で出発する1:2の連続希釈において希釈されたマウス血清とした。
感染ベロ細胞の細胞溶解物、上清、および精製されたVLPにおけるMelARV蛋白質の検出を、ELISAプレートを個々の試料でコーティングすることによって達成した。細胞溶解物をPBS(100μL)中で1:2希釈し、上清を未希釈のまま適用し(100μL)、精製されたVLPは、PBS(50μL)中で1:25希釈した。検出は、抗p2A(1:500)、MM2-9B6(1:100)、4F5(1:100)、および19F8(1:100)を一次抗体として用いて、かつ表3において述べられた二次抗体を用いて上述のものと同じ手順を用いて達成された。
フローサイトメトリー
HERV-K関連実験において、FACSを用いて、予防接種したマウス由来の活性化型免疫細胞の細胞外マーカーおよび細胞内マーカーの両方、ならびに感染A549細胞の表面上でのHERV-K Env蛋白質の存在を検出した。細胞選別に使用される機械は、フローサイトメーターBD LSR II(BD Biosciences)とした。
次の緩衝液をFACSに使用した。
Figure 0007277466000058
血清抗体を用いた細胞外染色
非HERV-K実験において、癌細胞に対する血清抗体の結合を検出するために、フローサイトメトリーを実施した。B16F10-GP細胞またはCT26細胞を再懸濁し、丸底96ウェルプレート中に1ウェルあたり4×10個で播種した。プレートを784gで3分間(4℃)遠心分離して、ウェルの底部に細胞を固定した。プレートを上下逆転させて弾くことによって、培地を除去し、マウス血清を1:50の希釈で含有する50μLの蛍光標示式細胞分取(FACS)培地(PBS+1%BSA+0.1%NaN)中に細胞を再懸濁した。4℃で20分間のインキュベーション後、プレートを784gで3分間(4℃)遠心分離し、培地を除去した。細胞を200μLの洗浄培地(PBS+0.1%NaN)で2回洗浄し、1;100希釈したマウス免疫グロブリンG(IgG)に対する蛍光標識した二次抗体(ヤギ抗マウスIgG_APC、#405308、Biolegend)を含有する50μLのFACS培地中で再懸濁した。細胞を4℃で20分間インキュベートし、洗浄緩衝液で2回洗浄し、200μLのPFA溶液(PBS中1%)中で4℃で15分間固定した。細胞をFACS培地中で2回再懸濁し、BD LSR II Flow Cytometerにおいて蛍光について分析した。
感染ベロ細胞の表面上のMelARV Envの検出を、異なるエピトープに対するモノクローナル抗体を用いるのと同じプロトコルで実施した(表5)。二次抗体は、抗マウスIgG_APC(1:100)またはヤギ抗マウスIgM重鎖_RPE(1:100、A10689、Invitrogen)とした。
さらに、この技術を実施して、HERV-K野生型およびHERV-K ISD突然変異体導入遺伝子(Sirion)についてコードするAd19ベクターに基づいた新たなワクチン戦略を特徴づけ、かつ異なるアデノウイルスベクター(Ad19対Ad5)の使用を比較した。表面染色を用いて、フローサイトメトリーによる感染A549細胞の表面上のHERV-K Env蛋白質の存在を検出した。
3×10個のA549細胞を15mLのHamのF-12K培地中の75cm2フラスコ内へと播種し、37℃で2時間インキュベートした。各フラスコを50MOIの次のウイルス(1.5×108IFU/フラスコ)で感染させた。
Ad5-(TetO)-CMV-SIVgag_p2A_HERV-K108env_P2TS
Ad19a(II)-(TetO)-CMV-ISD突然変異体_MelARV-P2TS
Sirion製のAd19a(II)-(TetO)-CMV-coHERV-K-P2TS
Sirion製のAd19a(II)-(TetO)-CMV-ISD突然変異体_coHERV-K-P2TS
次に、該ウイルスを37℃で5時間インキュベートした後、培地をHamのF-12K FBS非含有培地と交換した。次に、細胞を37℃で48時間インキュベートした。
細胞をLAFベンチの内側で氷上で維持した。培地を吸引し、細胞を冷PBSで注意深く洗浄し、冷PBSで掻把した後、遠心分離(4℃、784g、3分)によって細胞を分離した。細胞をPBS中に再懸濁し、丸底96ウェルプレート(Thermo Fisher Scientific、163320)中へと分配した。プレートを遠心分離し(4℃、784g、3分)、プレートを弾くことによってSNを除去した。HERV-K Env蛋白質のp15E(TM)ドメインに対して指向する2μg/mLのマウスモノクローナル(IgG)一次抗体(Austral Biologicals,HERM-1811-5)を含有する50μLのFACS緩衝液中で細胞を4℃で20分間再懸濁した。その後、細胞をFACS洗浄緩衝液(150μLの第1の容積の後200μLを使用)で洗浄し、3回遠心分離した(4℃、784g、3分)。プレートを100μLのFACS緩衝液とともにインキュベートして、この中にはヤギ抗マウスIgG APC二次抗体(BioLegend,405308)の1:100希釈物があらかじめ添加されていた。プレートに4℃で20分間の遮光されたインキュベーションを行った。細胞を遠心分離し(4℃、784g、3分)、200μLのFACS洗浄緩衝液で3回洗浄した。その後、プレートを200μLの1%(w/v)パラホルムアルデヒド(PFA)(Rigshospitalet,Copenhagen,Denmark)中で4℃で15分間、遮光しながらインキュベートした。その後、プレートを遠心分離し(4℃、784g、3分)、100μLのFACS緩衝液中に再懸濁し、再度遠心分離した(4℃、784g、3分)。プレートを最終的に200μL中で再懸濁し、暗所で4℃で一晩保存した。翌日、細胞の蛍光を、フローサイトメーターBD LSR IIを用いて分析し、FlowJo 10(FlowJo LLC)を用いてデータを加工および解析した。
刺激された非細胞の細胞内染色(ICS)
マウスを予防接種の3~4週間後に安楽死させ、脾臓を分離した。摘出された脾臓をHANKS B.S.S.へ移し、滅菌ネットを経てマッシュ状にし、単一細胞の懸濁液を取得した。完全RPMI中での遠心分離および再懸濁の後、脾細胞の濃度を決定し、必要とされる濃度へ細胞を希釈した。
脾細胞を丸底96ウェルプレートへと2.5×10個の細胞/ウェルで入れた。細胞を784gで3分間遠心分離し、3μMのモネンシン(経路阻害薬)および1μg/mLのペプチド(AH1)を含有する完全RPMI(+50μMの2-メルカプトエタノール)中で再懸濁したのに対し、陰性対照はペプチドを受容していなかった。その後、細胞を37℃で5時間インキュベートした。細胞をFACS培地(PBS+1%BSA+0.1%NaN+3μMモネンシン)中で洗浄した後、細胞を、FACS培地中で1:100希釈した蛍光標識した表面抗体(抗CD4、抗CD8、抗CD44、抗B220)とともに4℃で20分間インキュベートした。細胞をPBS+3μMモネンシンで2回洗浄し、1%PFA中で4℃で15分間固定した。FACS培地中で洗浄した後、細胞をPBS中の0.5%サポニンでRTで10分間透過性にした。細胞内抗体(抗IFNγ、抗TNFα)をPBS+0.5%サポニン中の1:10希釈で添加し、4℃で20分間インキュベートした。細胞を2回洗浄し、最終的にはPBS+1%BSA+0.1%NaN中に再懸濁した。細胞の蛍光をBD LSR II Flow cytometerにおいて分析した。フローサイトメトリーデータの解析を添付の図5に示す。
Figure 0007277466000059
Figure 0007277466000060
Figure 0007277466000061
HERM-K関連実験において、脾細胞ICSを実施して、予防接種したマウス由来の特異的細胞応答を評価した。本実験を実施することができるよう、C57BL/6マウス系およびBALB/Cマウス系の両方の8~10アミノ酸からなった異なる強力な結合(SB)のHERV-Kペプチドをあらかじめ、HERV-K予防接種マウスのCD8+ T細胞を刺激する能力について検査した。HERV-K Env配列の192位におけるBALB/c 10マーペプチド(TYHMVSGMSL、配列番号47)のみが応答を付与した。それゆえ、P-HKEと命名されたこのペプチド、Env ISDにおいて突然変異を含有する改良されたAd19ワクチンと一緒に使用して、HERV-K EnvについてコードするAd5ベクターおよびAd19ベクターを用いて免疫化したBALB/cマウスの脾細胞を刺激した。
Figure 0007277466000062
Figure 0007277466000063
異なるベクターを含有する異なるワクチンの有効性および挿入物改善戦略を比較する目的で、Ad5およびAd19 HERV-K/ISD突然変異体予防接種(初回免疫)マウスを本実験に使用した。マウスをMVAベクターによる追加免疫の10日後に安楽死させ、脾臓を5mLのHankのBSS培地中に回収した。単一の細胞の懸濁液を取得する目的で、滅菌したネットであるCorning(登録商標)70μm細胞ストレイナ(Sigma-Aldrich、CLS431751)で脾臓をマッシュした。その後、細胞数を計数して、所望の量の細胞個数/ウェルを播種し、細胞個数/脾臓の総数を提供して、脾臓1個あたりのIFNγ CD8+ T細胞およびIFNγ CD4+ T細胞の絶対数を後で計算した。
およそ3×10個/ウェルの細胞を丸底96ウェルプレート内へ播種し、これを遠心分離し(4℃、784g、3分間)、RPMI培地中に懸濁した。これまでに記載のHERV-K Envの10マーの、P-HKEと名付けられたペプチドTYHMVSGMSL(配列番号47)をジメチルスルホキシド(DMSO)中に溶解して、濃度を400ng/μLにした。次に、これを再度PBS中に溶解して濃度を100ng/μLにし、最終的にはRPMIを先の希釈物に添加して、6.67ng/μLの濃度を取得した。P-HKEペプチドを添加する前に、サイトカインが細胞を出るのを防止するために、50μLの蛋白質輸送阻害薬モネンシン(3μM)をウェルへ添加した。加えて。30μL/ウェルの上述のP-HKEペプチドを、刺激したウェルに添加して、T細胞サイトカイン産生を誘導した。ウェルの残りは、いかなるペプチドも受容しなかったが、刺激した試料と同じ濃度のDMSOだけは受容し、陰性対照として使用した。細胞を37℃で5時間インキュベートした。
インキュベーション時間の後、細胞を遠心分離し(4℃、784g、3分)、モネンシン(3μM)を含有する100μLのFACS緩衝液で2回洗浄した。モネンシン(3μM)を含有するFACS緩衝液中に、表面抗体(PerCP/Cy5.5-CD8、FITC-CD4、Pacific Blue(商標)-B220、APC/Cy7-CD44)を1:100希釈した。脾細胞を50μLの先の溶液で再懸濁し、1:10希釈した抗体を含有する50μLのFACS/モネンシン(3μM)、すなわちPerCP/Cy5.5-CD8、FITC-CD4、Pacific Blue(商標)-CD8、APC/Cy7-CD8、APC-CD8、PE/Cy7-CD8を、補正をするために使用した。プレートを4℃、暗所で20分間インキュベートした。ウェルを3μMモネキシン含有の100μLのPBSで2回洗浄した。次に、100μLのPBS/モネキシン(3μM)を100μLのPFA(2%)と一緒に添加して、細胞を4℃の間に暗所で固定した。細胞を再度FACS/モネキシン(3μM)を用いて2回洗浄し、20℃(暗所)で10分間、OBS中の150μLの0.5%サポニンで再懸濁した。いったん細胞を透過性にすると、細胞内抗体(APC-IFNγ、PE/Cy7-TNFα)を0.5%サポニン/PBS中で1:100希釈し、50μLをウェルに添加し、プレートを4℃、暗所で10分間インキュベートした。細胞を1%BSAおよび0.1%NaNを含有するPBSで洗浄し、最終的には、同じ緩衝液200μL中で再懸濁した。プレートを4℃で一晩維持した。
加えて、A549トランスフェクト細胞の細胞内染色を実施して、細胞の内側のHERV-K Env蛋白質の存在を確証した。この場合、産生(そして細胞膜への分泌ではない)を評価した。後者のプロトコルに続いて、4℃で暗所でPBS中に希釈した150μLの0.5%(w/v)サポニン(Sigma-Aldrich、47036)とともに行う10分間のインキュベーションステップを付加した。この余分なステップは、細胞膜を透過性にするために必要とされる。抗体も0.5%サポニン中へと希釈した。
ゲート処理戦略
FlowJo10(FlowJo LLC)を使用して、細胞外染色およびIC FACS染色からのデータを解析した(図27を参照されたい)。まず、細胞を順方向スキャッタ(FSC)-HおよびFSC-Aにおいてプロットし。ゲート処理した。このゲートを使用して、側部スキャッタ(SSC)-AおよびFSC-Aのプロットにおけるリンパ球集団を分離した。後者の集団をCD8+ CD4-細胞について、その後CD8+ B220細胞をゲート処理して、CD8+ T細胞集団を取得し、CD4+ T-細胞およびB細胞(B220マーカー)の両方を解析から除去する(Coffman & Wei
ssman 1981)。次に、細胞をCD8+ CD44+ T細胞についてゲート処理し、活性化型CD8+ T細胞のみを取得した。これらを、IFNγ+ CD44+細胞についてさらにゲート処理したが、これらはいずれも、T細胞活性化に対する結果として発現したマーカーである。その上、IFNγは、活性化型CD8+ T細胞にとって、TNFαサイトカインと比較したとき、より高い感受性のマーカーであることは公知である(Badovinac & Harty 2000)、(Kristensen et al.2004)。加えて、CD8+ CD44+ T細胞をIFNγ+ TNFα+ 細胞についてゲート処理し、その理由は、多重のサイトカインを産生するCD4+ T細胞がより高いレベルの活性、活性化を有し、記憶細胞となることが公知であるからである(Kannanganat et al.2007)。
IFNγ+ CD44+ B220- CD8+ T細胞の絶対数を概算するために、リンパ球のうちのIFNγ+ CD44+ B220- CD8+ T細胞の%に脾臓あたりのリンパ球の数を乗じた。加えて、IFNγ+ CD8+の二重陽性(IFNγ+ TNFα+)細胞の%を、IFNγ+ TNFα+ 細胞をIFNγ+ TNFα+ およびIFNγ+ TNFα-細胞の合計で除することで計算した。
酵素結合ImmunoSpot(ELISPOT)
ELISPOTアッセイを実施して、抗原特異的T細胞を検出した。本実験において使用されるペプチドはAH1(SPSYVYHQF)としたが、これはMelARV Envサブユニットgp70内に位置するBalb/Cマウスにおける公知のH2-Ld制限T細胞エピトープである、(Huang,A.Y.,et al.,The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product.Proc Natl Acad Sci U S A,1996.93(18):p.9730~5)。
予防接種したマウスの脾細胞を、ICSについて説明したとおり調製した。
本アッセイを、マウスIFN-γ T細胞ELISPOTキット(CT317-PR5、U-CyTech)を用いて実施した。簡潔には、ポリビニリデンジフルオリド(PVDF)96ウェルプレートの膜(MSIP S4510、Millipore)を70%エタノールで活性化し、その後、抗マウスIFN-γ抗体で一晩コーティングした。コーティング抗体を除去し、膜をブロッキングした後、脾細胞を、1μg/mL AH1を含有する完全RPMI培地中で2×10^5個の細胞/ウェルで播種した。対照として、脾細胞を非刺激のままにしておくかまたは強力なT細胞活性化因子コンカナバリンA(ConA)(2μg/mL)で刺激した。通常の細胞培養条件下での48時間のインキュベーション後、細胞を取り出し、ウェルを洗浄し、その後、IFN-γを標的とするビオチン化検出抗体とともにインキュベートした。ストレプトアビジン-HRP複合体を添加し、IFN-γスポットをAEC基質溶液を用いて可視化した。スポットをCTL ImmunoSpot分析装置を用いて計数した。
陽性対照(対照血清LEV76)
陽性対照血清LEV76を、マウス血清試料のフローサイトメトリーおよびELISA分析のための標準物質として使用した。C57BL/6マウスがMelARV Envに対して予防接種され、B16F10-GP肺への転移からの防御を示した初期のパイロット試験からLEV76血清は生じている。したがって、この血清における抗体応答は、腫瘍負荷から防御することが潜在的にできるレベルと対応しており、それゆえ、うまくいく抗体応答のための参照値として機能した。加えて、LEV76対照血清を使用して、異なる実験間の比較が可能となった。
統計分析
統計分析はすべて、GraphPad Prismソフトウェア(第5.03版)を用いて実施した。群を対応のない両側Mann-Whitney検定を用いて比較した。有意性を星印によって示す。(P≦0.05)、**(P≦0.01)、***(P≦0.001)。予防接種したマウスの異なる群を比較するとき、結果を各群の平均として平均の標準誤差(SEM)とともに示す。
Kaplan-Meier概算式を使用して、マウス生存曲線を比較した。この検定は、所与の処置後の時間にわたって生存している対象の分率を測定する。有意な結果を星印()で示し、(P≦0.05)、**(P≦0.01)、***(P≦0.001)とした。
応答間の相関を評価するために、Spearman補正を使用した後、Holm-Sidak法によってp値を調整した。
実施例1
ワクチンによりコードされた免疫抑制性ドメイン(ISD)における突然変異
改善の第1の戦略として、2つの点突然変異をMelARV Envの配列中に導入して、免疫抑制性ドメイン(ISD)を不活性化した(図3)。これらの特異的な突然変異をマウス白血病ウイルスについてSchlecht-Louf et al.によって以前検査および分析した(Schlecht-Louf,G.,et al.,Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses.Proc Natl Acad Sci U S A,2010.107(8):p.3782~7)。MelARV Envのこの改変版についてコードするウイルスは、Ad5-MelARV-ISDと呼ばれる。
CD1マウスにおける抗体応答に及ぼすAd5-MelARV-ISDの効果
非近交系CD1マウスをDNA-MelARVまたはDNA-MelARV-ISDで初回免疫し、その後、予防接種タイムラインIVにより、AD5-MelARVまたはAd5-MelARV-ISDのいずれかで追加免疫した。アデノウイルス予防接種の4週間後、血液試料を回収し、ELISAによって分析した。
図7Aに示されるように、p15E特異的抗体は、Ad5-MelARV-ISD接種マウスにおいて増加した。特に、DNA-MelARV-ISDとAd5-MelARV-ISDとの組み合わせ(棒D)は、LEV76対照血清に匹敵する高い抗体応答を生じた。
加えて、Ad5-MelARV(棒Aおよび棒C)およびAd5-MelARV-ISD(棒Bおよび棒D)による予防接種は、GFP対照(棒E)と比較して腫瘍細胞特異的抗体のレベルを増大させた(図7B)。しかしながら、Ad5-MelARV-ISDは、Ad5-MelARVよりも有意に低いレベルの腫瘍結合抗体を誘導した(棒A対棒B、棒C対棒Dもだが有意ではなかった)。
p15E結合抗体およびB16F10-GP結合抗体の両レベルは、DNA-MelARV-ISDによる初回免疫が、DNA-MelARV初回免疫マウスと比較して抗体応答を概して上昇させることを示唆したが、これらの結果は有意ではなかった。
実施例2
C57BL/6マウスにおける抗体応答および転移に及ぼすAd5-MelARV-ISDの効果
予防接種タイムラインIIIによりC57BL/6マウスに予防接種および負荷した。マウスは、DNA-MelARVまたはDNA-MelARV-ISDのいずれかの後、個々のアデノウイルスを受けた。抗体応答の解析で、MelARV-ISDがB16F10-GP細胞特異的抗体のレベルをわずかに上昇させることが明らかとなった(図8A)。しかしながら、上昇は有意ではなく、PBSを接種したマウスの背景をわずかに上回った。図8Bに示すように、p15Eに特異的な抗体に及ぼす効果は観察されなかった。腫瘍細胞結合抗体に対応して、転移は、MelARV-ISD接種したマウスにおいてわずかに低減したが、有意差はなかった(図8C)。
実施例3
Balb/CマウスにおけるT細胞応答に及ぼすAd5-MelARV-ISDの効果
抗体応答に加えて、T細胞の初回免疫および活性化に及ぼすAd5-MelARV-ISDの効果を解析した。ELISPOT(図9)およびICS(図10)のいずれも、Ad5-MelARVと比較してAd5-MelARV-ISDを接種したマウスにおいてAH1特異的T細胞のレベルの上昇を示した。ICSによって観察されるように、二重陽性IFNγ TNFα CD8 T細胞は、未処置の形態と比較してAd5-MelARV-ISD接種したマウスにおいて有意に上昇していた。また、IFNγ細胞の積分幾何平均(IGM)は、未処置のAd5-MelARVに対して有意差を示す。IGMは、陽性細胞の数を平均蛍光強度と組み合わせ、したがって、活性化された免疫細胞の量も考慮している。TNFαのIGMはなおも有意ではなかった(データ非表示)。
実施例4
免疫抑制に及ぼすAd5-MelARV/Ad5-MelARV-ISDの効果
Ad5-MelARV-ISDの免疫応答の上昇に潜む機序を解析するために、ワクチンによる免疫抑制を分析した。Ad5-MelARVまたはAd5-MelARV-ISDを接種したマウスの、図7にあるのと同じマウス血清を、ELISAによるウイルスベクターに対する免疫応答について分析した。ISD不活性化MelARV Envワクチン(Ad5-MelARV-ISD)は、MelARV Envの未処置版(機能的ISDを有するAd5-MelARV)と比較してAd5結合抗体の力価の有意な上昇を示した。
実施例5
アデノウイルスベクターのカプシド蛋白質pIX上での抗原提示
防御抗体応答を上昇させる試みで、p15Eをすでに検査したアデノウイルスワクチン上のアデノウイルスカプシド蛋白質pIXへ連結させた。検査された異なるコンストラクトを図12に示す。未処置のp15E(膜貫通サブユニットおよび細胞質尾部を除外)をpIX(1)またはそれに代わるものとしてISD突然変異版(2)のいずれかに付加した。加えて、追加のシステインを提示した(3)かまたは提示しなかった(4)かのいずれかで、ISDに対して切断型のp15Eのバリアントを検査した。ウイルスベクターのコアは、提示されたp15Eと一致しており、すなわち、pIX-p15EについてはAd5-MelARV、pIX-p15E-ISDについてはpIX-p15E-切端-CありおよびpIX-p15E-切端-Cなし、ならびにAd5-MelARV-ISDであった。
カプシド蛋白質pIXに及ぼすp15Eを示すAd5ベクターの特徴づけ
新たなpIXプラスミドコンストラクト(pcDNA3-pIX-タグリンカー―xxx、xxx=p15E抗原)を、HEK293細胞をトランスフェクトすることによって組換えpIXの正確な発現について検査した。トランスフェクトした細胞の溶解物を図13Aの抗pIX抗体を用いたウェスタンブロット法によって分析した。4つのコンストラクトはすべて、切断型p15E版について期待されたより低いバンドで組換えpIXの発現を示した(ライン3および4)。pIXに連結したGFPは、約50kDaのより高いバンドを有する陽性対照として使用した。組換えpIXのウイルスベクター内への組込みを確証するために、精製されたウイルスを、図13Bの抗pIX抗体を用いたウェスタンブロット法によって分析した。未処置のpIXバンド(約10kDa)の隣で、コンストラクトはすべて、組換えpIXの発現を示した。未改変Ad5
Figure 0007277466000064
の陰性対照は、未処置のpIXバンドのみを呈した。バンド強度は、ImageJソフトウエア(第1.51n版)を用いて定量されたが、組換えpIXの百分率は、エラー!参考文献の元が見当たらないに示されている。
Figure 0007277466000065
実施例6
CD1マウスにおけるpIX改変したウイルスによって誘導される抗体応答の分析
CD1マウスに予防接種タイムラインIXにより、DNA初回免疫(DNA-MelARVまたはDNA-MelARV-ISD)に続いてアデノウイルス追加免疫(通常ウイルス対pIX改変型)を用いて予防接種した。血清をELISAによってp15E特異的抗体について分析した図14A。ELISAに使用したp15Eペプチド配列は、pIX改変の切断型板には含まれていなかったので、Ad5-MelARV_pIX-p15EおよびAd5-MelARV-ISD_pIX-p15E-ISDのみがこの設定において査定されることができた。ほとんどの場合、pIX上でのp15Eの提示は、p15E特異的抗体(A対B、C対D、E対F)のレベルを上昇させた。しかしながら、これらの比較において、唯一の有意差は、DNA-MelARV+Ad5-MelARV(A対B)について観察された。DNA-MelARV-ISD+Ad5-MelARV-ISD(G対H)の場合、pIX-p15E-ISDの提示は、非改変型ワクチンと比較して悪化した効果および有意に低下した抗体応答を有していた。加えて、B16F10-GP細胞に対する血清抗体の結合を分析した(図14B)。pIX上での未処置のp15Eの提示は、腫瘍細胞に対する抗体応答に影響しなかった。その一方で、Ad5-MelARV-ISD_pIX-p15E-ISDは、ISD突然変異型MelARV Envにより低減するB16F10-GP特異的抗体の欠失を収縮することができた(図7と比較されたい)。
実施例7
C57BL/6マウスにおける抗体応答および転移に及ぼすAd5-MelARV_pIX-p15Eの効果
pIX改変型ウイルスAd5-MelARV_pIX-p15EをC57BL/6マウスにおける抗体応答および転移からの防御についてのパイロット試験において検査した。マウスに予防接種タイムラインVにより、2回予防接種および負荷した。図15Aおよび15Bに示すように、ワクチンはB16F10-GP細胞(15A)にもp15E(図15B)にも抗体応答を有意に上昇させなった。また、転移数は、予防接種によって有意に低下しなかった(図15C)。しかしながら、腫瘍細胞特異的抗体と転移計数との間に相関は検出されなかった(図15D)が、p15E特異的抗体のレベルと転移数との間に有意な負の相関が観察された(図15E)。
実施例8
(より天然の立体配座において)量だけでなく質に関してもVLP上でのMelARV Envの提示を改善する試みにおいて、機能的ドメインを未処置の配列へ適用した。これらの改変を完全長のMelARV Envにだけでなく、p15E単独へも適用した(図16)。この改変には、Gaussiaルシフェラーゼ(LucSP)からのシグナルペプチド、インフルエンザA型ウイルス赤血球凝集素H3N2(HA-TMCT)由来の膜貫通ドメインおよび細胞質尾部、ならびに三量体化配列(GCN4)が含まれた(図16)。キメラEnv蛋白質またはp15E蛋白質をSIVのうちのGag蛋白質と共コードした。
キメラMelARV Envまたはp15Eをコードするワクチンの特徴づけ
改変型ワクチンをマウスで検査しなかったが、アデノウイルスからの発現を感染ベロ細胞においてフローサイトメトリーによって検査した(図17)。本実験は、蛋白質の発現を示すだけでなく、該蛋白質の標的エピトープに関する抗MelARV Envのいくつかも特徴とする。19F8(図17A)および4F5(図17B)の両方が、未処置のワクチン(Ad5-MelARVおよびAd5-MelARV-ISD)と比較してMelARV Envおよびp15Eの改変版に対する非常に高い結合を示した。Ad5-LucSP_GCN4_p15E_HA-TMCTに対する結合は、同様に観察されることができたので、本実験は、両抗体が、膜貫通サブユニットp15Eを結合することを示す。さらに、Ad5-MelARV-ISD感染細胞に対する19F8の結合は観察されなかったのに対し、明確なシグナルが4F5に対して検出され、ISDを19F8の標的エピトープとして確認した。MM2抗体はいずれもp15Eコンストラクトに対する結合を示さなかったが、3つの抗体がすべて、表面サブユニットgp70に対して指向することを実証した。MM2-9B6(図17C)およびMM2-3C6(図17D)は、Ad5-MelARV感染細胞およびAd5-LucSP_MelARV_HA-TMCT感染細胞に対する抗体の等しく強力な結合で、同様の特性を示した。その一方で、Ad5-MelARV-ISD感染細胞は、非常に低い抗体結合を示した。MM2-9A3(図17E)の特性は、同様であるが、例外は、Ad5-MelARV感染細胞がAd5-LucSP_MelARV_HA-TMCT感染細胞よりも抗体結合性が低かったことは例外である。
新たなコンストラクトが感染の際に標的蛋白質を産生および提示する能力についても新たなコンストラクトを検査した。感染ベロ細胞の溶解物および精製されたVLPをウェスタンブロットによって分析した(図18)。抗p2A抗体の結合(図18A)は、MelARV Gag(ライン1および2)およびSIV Gag(ライン3および4)発現を溶解物およびVLPの両方において示すバンドを示した。図18Bに示すように、p15E(4F5により結合)は、Ad5-MelARV感染細胞の溶解物(ライン1)においてのみ検出され、p15Eに対応する低いバンド約20kDaと、70kDのより高いバンドとを有しており、完全長のEnv(gp70+p15E)を示した。完全長Envはまた、Ad5-MelARV-ISD(ライン2)についても検出可能であるのに対し、単一のp15Eバンドは視認できなかった。Ad5-MelARVに誘導されたVLPにおいてのみ、p15Eおよび完全長のEnvが検出可能であった。他の弱いバンドは、異なるコンストラクトについて存在していたが、どの蛋白質に対してそれらが対応するかは明確ではない。
4F5と類似の結果は図18Cに示されており、その中で、gp70はMM2-9B6によって可視化された。Ad5-MelARVにより誘導されたVLP(ライン1)のみが、MM2-9B6で検出されるgp70を提示した。
細胞分解物に加えて、感染細胞の上清を分析して蛋白質が分泌されているかどうかを調べた(図18D,E)。上清中のp15E(4F5によって結合)(図18D)は、Ad5-MelARVについてのみ検出可能であり(ライン1)、上清中のVLPによるのかもしれなかった。MM2-9B6(図E)は、その一方で、Ad5-MelARV-ISD感染細胞(ライン2)が、異なる大きさの複合体として検出される多量のgp70を放出することを明らかにした(図18E)。対照的に、Ad5-MelARVは、少量のgp70の放出を誘導した(ライン1)。
新たな改変されたMelARV Env蛋白質(ライン3および4)のいずれもが、非変性条件下での細胞表面上での検出可能な発現にもかかわらず、溶解物、上清または精製されたVLPにおける蛋白質の発現を示さなかった。
ウェスタンブロット分析における新たなコンストラクトについてのバンドの非存在により、仮定は、合成された蛋白質がニトロセルロース膜へ結合することができないというものであった。それゆえ、ELISA分析をELISAプレートを用いて実施し、細胞溶解物、上清またはVLPでコーティングした(図19)。期待されるように、抗p2Aによって検出されるGag蛋白質は、試料全部において存在していた(図19A)。対照的に、MelARV Env gp70(MM2-9B6によって結合)は、AD5-MelARV感染細胞のVLPにおいてのみ検出された(ライン1)が、改変型MelARVウイルスに感染した細胞においては検出されなかった(図19B)。 同様の結果は、p15E発現について観察された(4F5および19F8によって結合)(図19C,D)。Ad5-MelARV(ライン1)は、膜貫通サブユニットの高発現を誘導し、これは、VLPへとうまく組み込まれた。その一方で、Ad5-MelARV-ISD(ライン2)については、ほとんどの蛋白質が試料のいずれにおいても検出されなかった。改変型ワクチン(ライン3および4)は、p15Eの発現およびVLP組込みをある程度まで誘導したが、未処置のMelARV Envワクチンよりも非常に低レベルであった(図19C、D)。
実施例9(比較)
次のコンストラクトを使用して、balb/cマウスを免疫化した;HIV B gag P2A ConB gp140 G/CD(野生型)、HIV B gag P2A ConB gp140 G/CD ISD#4(Y75G)、HIV B gag P2A ConB gp140 G/CD ISD#19(L70Q)、HIV B gag P2A ConB gp140 G/CD G19Rdb(G83K,S88F)。抗体応答をHIV ConB gp140野生型蛋白質に対する免疫化の4週間後(d.28-図20A)および7週間後(d.49-図20B)に分析した。IiGP-P2A-IFNalpha4およびHIV B gag P2A ConB gp140 G/CD(野生型)(420B)は、I型インターフェロン誘導性応答のための対照群として機能する。
次のコンストラクトを用いて、c57/bl6マウスまたはc57/bl6IFN-gノックアウトマウスを免疫化した。アデノウイルスは、HIV B クレイド gag p2Aに続いて、Bクレイドコンセンサス塩基配列(HIV B gag P2A ConB gp140 G/CD)のgp140配列(野生型)およびHIV B gag P2A ConB gp140 G/CD ISD#19(L70Q)をコードした。抗体応答をHIV ConB gp140 CF蛋白質に対する免疫化の4週間後に決定した(d.26-図20C)。
実施例10
次のコンストラクトを使用して、balb/cマウスを免疫化した。HIV B gag P2A ConB gp140 G/CD(野生型)、HIV B gag P2A ConB gp140 G/CD ISD#4(Y75G)、HIV B gag P2A ConB gp140 G/CD ISD#19(L70Q)、HIV B gag P2A ConB gp140 G/CD G19Rdb(G83K,S88F)。免疫化の4か月後(d.114)、マウスを、Gag遺伝子(MA(p17,マトリックス)(ペプチド1~31)、CA(p24、カプシド)(ペプチド32~89)、p2、NC(ヌクレオカプシド)、p1、およびp6を網羅する単一のプール(ペプチド90~124)、gp120(1)(ペプチド1~62)、gp120(2)(ペプチド63~124)、gp41(ペプチド125~211)を網羅するペプチドのプールに対するT細胞応答について分析した。
実施例11
BALB/cマウスにMVA発現gag、env、gag+env、VE-VLPまたはアデノウイルス発現gag-envもしくはgag+envISD突然変異体VE-VLP、およびこれらの組み合わせのいずれかを予防接種し、9アミノ酸長のペプチドを結合する推定MHCに向けて、ELISPOTまたは細胞内サイトカイン染色を用いて測定される。
特にアデノウイルスベクターにおけるgag+envまたはgag+envISD変異体VEVLPは、T細胞応答の誘導において既に説明されたMVAベクターを、より性能が優れているように強く期待されている。
実施例12:
BALB/cマウスに、VE-VLPとしてgag、env、gag+env、gag+envISD突然変異体を発現するMVA、またはgag-envもしくはgag+envISD突然変異体VEVLPを発現するアデノウイルスのいずれか、およびこれらの組み合わせを予防接種し、HERV-Kconの膜貫通ドメインp15Eの細胞外部分の配列に由来するペプチド応答を測定する。
gag-envまたはgag+envISD突然変異体VEVLPベクターは、T細胞応答の誘導においてすでに説明されたMVAベクターより性能が優れているように期待されている。
実施例13
動物に、HERVcon-gagおよびHERVcon-envをそれぞれ発現するRENCA腎癌細胞を皮下負荷する。その後、動物に、gag、env、gag+env、gag+envISD突然変異体をVE-VLPとして発現するMVA、またはgag-envもしくはgag+envISD突然変異体VEVLPを発現するアデノウイルスのいずれか、およびこれらの組み合わせを予防接種し、腫瘍の成長をモニターする。
腫瘍制御は、両細胞株において腫瘍の成長を独特に制御することができるVE-VLPワクチンおよびgag-envVEVLPワクチンを用いて改善されると期待される。
実施例14
動物にそれぞれHERVcon-gagおよびHERVcon-envを発現するRENCA腎癌細胞を静脈内負荷する。その後、動物に、gag、env、gag+env、gag+envISD突然変異体をVE-VLPとして発現するMVAまたはgag-envもしくはgag+envISD突然変異体VEVLPを発現するアデノウイルスのいずれか、およびこれらの組み合わせを予防接種し、腫瘍の成長を生体解剖によってモニターし、腫瘍負荷の30日後に転移を計数する。
腫瘍制御は、両細胞株の腫瘍成長を独特に制御することができるVE-VLPワクチンおよびgag-envVEVLPワクチンを用いて改善されることが期待される。
実施例15
先行実施例において説明された免疫療法戦略に関する翻訳の研究に関して、形質導入された細胞におけるVLP形成をもたらすよう企図された(Muster et al.2993)、コンセンサス塩基配列ヒト内在性レトロウイルスK型(HERV-K)エンベロープ(Env)蛋白質および群特異的抗原(Gag)蛋白質についてコードするアデノウイルスベクター(Ad5/Ad19a)(Dewannieux et al.2006)を用いて、ワクチンのヒト関連版を設計した。予防接種戦略を改善するために、HERV-K Env蛋白質のp15Eサブユニット中に含有されるISDは、単一の点突然変異によって不活性化される(図22を参照されたい)が、その選択は、Morozov et al.2012およびHERV-KとHIVとの間の保存に基づいていた(van der Kuyl 2012)(Dewannieux et al.2005)。
HERV-K Gag-p2A-EnvISD突然変異体は、アミノ酸配列(配列番号48)を有していた。
Figure 0007277466000066
Figure 0007277466000067
これらのワクチンを、BALB/cマウス、C57BL/6マウスおよびCD1マウスにおける免疫原性について検査し、BALB/cマウスにおいてHERV-K Env標的蛋白質を発現するマウス腎癌(RencaまたはRLZ)細胞を負荷して、マウス生存曲線によって測定されるようなこれらの効率を試験した。免疫応答を、細胞応答および液性応答を誘導する能力について査定し、INFγ+ CD8+ T細胞の存在(FACS分析による)、ならびにDNA/Adv-HERV-K野生型/ISDワクチンで免疫化しMVA Envで追加免疫したマウスにおけるHERV-K Env標的蛋白質に対する特異的抗体(ELISAによって検出)について検査した。
Ad19-HERV-K野生型ワクチンおよびISD突然変異を含有するその改善板を、Gag_p2A_Env HERV-K Advコード蛋白質によって形成されたVLPの発現を誘導する能力について検査および比較した。免疫応答を遮断する中和抗体(NAb)をもたらすヒトにおける既存の免疫は、Ad5ベクターを使用する欠点となる可能性がある。その上、Ad19ベクターは、異なる種類の細胞を形質導入する点でよりうまくいくことが公知である(Kiener et al.2018)。それゆえ、異なるアデノウイルスベクター(Ad19対Ad5)の利用も解析および比較される。
新規の戦略の機能性を分析する目的のために、ワクチンをHERV-K GagおよびEnv標的蛋白質の誘導について分析した。それゆえ、VLPの産生および分泌を、関心対象の異なる配列を含有する異なるウイルス系ワクチンでトランスフェクトしたベロ細胞株およびA549細胞株において検査した(図23を参照されたい)。上述のトランスフェクトされた細胞株由来の上清(SN)および細胞溶解物を、ウェスタンブロット(WB)によってHERV-K Gag蛋白質およびEnv蛋白質の存在について検査した。p15E(TM)およびgp70(SU)に対するモノクローナル抗体であるHERM-1811-5およびHERM-1821-5を特異的に使用して、HERV-K Envドメインを検出したのに対し、ポリクローナルウサギ抗p2A抗体を使用して、p2Aに連結されたGag蛋白質を検出した。HRP結合二次抗体を検出のために採用した。
WBの結果は、Ad19_HERV-K 野生型/ISD突然変異体でトランスフェクトしたベロ細胞およびA549細胞のSNおよび細胞溶解物の両方においてHERV-K Gag_p2A蛋白質、およびHERV-K Env蛋白質の存在を示した。Ad19_HERV-K ISD突然変異体によりトランスフェクトされた細胞に由来するGag蛋白質およびEnv蛋白質の両方のより高い発現(図23の行2および行8に示されている)は、Ad19_HERV-K_野生型ワクチンおよびAd5_HERV-K_Envワクチンと比較したとき、改変型プロトタイプワクチンの高い機能性およびより優れた能力を示唆している。その上、Ad19_HERV-Kをトランスフェクトされたベロ細胞のSNにおけるGag蛋白質およびEnv蛋白質の非存在は、対応する試料のVLP精製後に取得された低濃度の蛋白質により説明されることができた。
HERV-K Env標的蛋白質の発現をさらに確認するために、A549細胞にVLPによりコードされたアデノウイルスワクチンをトランスフェクトした(図24を参照されたい)。感染の48時間後、細胞を一次抗HERV-K Env抗体(HERM-1811)とともにインキュベートし、その後、先の固定および透過性処理ありでおよびなしでヤギ抗マウスIgG APC二次抗体で標識した。結合した抗体の細胞内および細胞外の蛍光、ならびにそれゆえ、感染細胞の内部および外部のHERV-K Envの発現をFACSにより分析した。本結果は、Ad5と比較してAd19ベクターを用いると、より良好なトランスフェクション効率を示唆しており、その理由は、両方が同じ標的蛋白質についてコードされているが、Ad19を用いるとより高いシグナルが検出されたからである。Ad19_HERVK野生型ワクチンおよびISD突然変異体ワクチンを比較すると、より大きな細胞表面シグナルおよび類似の細胞内シグナルが、Ad19_HERV-K_ISD突然変異体トランスフェクト細胞から検出され、このことは、突然変異した配列の改善された細胞表面選択を示す。
構造蛋白質Gagの生成およびそれに続くEnv HERV-Kの放出を視覚的に確認するために、A549細胞に50MOIのAd19_HERV-K_ISD突然変異体を感染させ、感染24時間後および48時間後に固定した。次に、発芽および分泌型VLPを電子顕微鏡によって検出し(図29を参照されたい)、ワクチンがHERV-K GagおよびEnv標的蛋白質を発現することが完全にできることを示し、分泌型VLP内へと組み込まれていた。
実施例16
Ad19_HERV-K野生型/ISD突然変異体ワクチンによって誘導されるT細胞応答を検査するために、BALB/cマウスにおけるP-HKE(配列TYHMVSGMSLを有するHERV-K Envの10マーのペプチド)に対するTリンパ球応答を分析した。P-HKEはMHCクラスI束縛エピトープであるので、CD8+ T細胞の活性化、したがって、BALB/cマウスにおけるペプチド刺激後のインターフェロンガンマ(IFNγ)および腫瘍壊死因子アルファ(TNFα)サイトカインの分泌を、FACSを用いてサイトカインの細胞内染色(ICS)によって測定した。
BALB/cマウスにHERV-K蛋白質についてコードする異なるベクター(Ad5/Ad19/MVA)からなる種々のワクチンを初回免疫した。それに続いて、該マウスの半分がMVA Env追加免疫を受け、初回免疫化投与計画によって誘起された細胞応答が増大することができたかどうかを検査した。MVA追加免疫の10日間後にマウスを安楽死させ、P-HKE刺激の際に、FACSによって脾細胞を分析した(図25を参照されたい)。Ad19_HERV-K_野生型/ISD突然変異体ワクチンを受ける群は、追加免疫(MVA-Env)および非追加免疫
Figure 0007277466000068
の両方の投与計画において、INFγを分泌するより多数の特異的CD8+ T細胞を示した。その上、アデノウイルス毒素産生ワクチンすべてによって誘起される細胞応答は、MVA追加免疫投与計画後に増大するように見える。この追加免疫は、採用されるワクチン間の差を強調するように見え、特にIFNγ/TNFα CD8+ T細胞の比を試験するときにそうであり、改善されたアデノウイルス毒素産生ワクチン(Ad19_HERV-K_ISD突然変異体)を受容したマウスの群において有意な優れた割合であった。このことは、関心対象の配列についてコードするAd19ベクターが、Ad5ベクターおよびMVAベクターと比較したとき、初回免疫-追加免疫投与計画における関連するCD8+ T細胞応答を誘導するのに最も適していることを示唆した。加えて、本結果は、MVAベクターが、HERV-K Env標的蛋白質に対する細胞毒性T細胞応答を増大させるために追加免疫投与計画において使用されることができることを示唆した。これらの結果はまとめて、HERV-K Env発現腫瘍細胞に対するIFNγ+CD8+ T細胞特異的応答を上昇させる特に効率的な予防接種計画が、好ましくはHERV-K_Gag_p2A_Env-ISD突然変異体蛋白質についてコードするAd19ベクターによる免疫化、および追加免疫投与計画に関しては、HERV-K_Env蛋白質についてコードするMVAベクターによる免疫化からなるであろうことを示した。
実施例17
ワクチンの有効性を検査および比較するために、マウスに負荷し、その後予防接種し、腫瘍の進行と相関のあるマウスの生存を格付けした(図26を参照されたい)。本実験のために、BALB/cマウスに、HERV-K Envを発現するRENCA細胞を静脈内負荷した。腫瘍負荷の10日後、マウスにMVA Env、Ad19_HERV-K野生型/ISD突然変異体、および対照としての無関係ワクチンを接種した。本実験は、(Kraus et al.,2013 PLoS One.Aug 30;8(8):e72756)に基づいており、注射40日後に転移性腫瘍量をスコア化するよう企図したが、動物は縦断的に秤量し、何らかの物理的、行動的、もしくは身体的変化が動物において観察された場合、または体重減少が10%を超えた場合、マウスを安楽死させた。マウスをいったん屠殺すると、肺を収穫し、4%PFA中で保存して、転移の存在についてさらに分析した。特筆すべきことに、体重減少により屠殺した動物はすべて、実質的な大きな腫瘍量を有していた。予期せぬことに、有意な死亡率を本実験の実施中に記録し、生存曲線を確立して、異なる群間で比較した。このことは、既に報告されたものと比較してRENCA-HERV-K腫瘍のより迅速な進行を示した。このむしろ厳密な腫瘍負荷モデルの下で、Ad19_HERV-K_ISD突然変異体ワクチンを受けているマウスは、対照と比較して平均余命の有意な延長を示した。3つの異なる統計学的検定(対数順位、Wilcoxon、およびTarone-Ware)は、有意なp値(0.037、0.046および0.040)を示した。このことは、Ad19_HERV-K_ISD突然変異体ワクチンが、抗体およびCD8+ T細胞応答の増大を示す上述の結果と一致して、BALB/cマウスにおける肺腫瘍の進行および転移を遅延させることを示唆した。他のワクチンはいずれも生存時間を延長しなかった。
実施例18
ヒトの系においても本知見をさらに確証するために、組織試料をヒト乳房腫瘍から取得した。4μmに薄片化し、非免疫化マウス(出血前血清)から取得した1:1000希釈した一次抗体で染色し、Ad5_HERV-K_Envで初回免疫したマウスは、Ad19_HERV-K_ISD(8週間後)およびMVA_Env(2か月後)の予防接種投与計画で追加免疫を受けた。図28に示されるように、予防接種したマウス由来のHERV-K抗体は、HERV-K標的蛋白質を発現する癌組織を染色することができる。
種々の態様および実施は、本明細書の種々の実施形態とともに説明されてきた。しかしながら、開示された実施形態に対する他の変法は、請求された対象を実行する上で、図面、本開示、および添付の特許請求の範囲の研究から、当業者によって理解されおよび成し遂げられることができる。特許請求の範囲において、「を含んでいる」という語は、他の要素またはステップを除外しておらず、不定冠詞「a」または「an」は、複数を除外していない。単一のプロセッサまたは他の単位は、特許請求の範囲において列挙されているいくつかの項目の機能を満たすことができる。ある特定の手段が相互に異なる独立した特許請求の範囲において列挙されているという単なる事実は、測定されるこれらの組み合わせが有利となるために使用されることができないことを示してはいない。コンピュータプログラムは、他のハードウェアと一緒にまたはその一部として光記憶媒体またはソリッドステートの媒体などの適切な媒体に保存/分配することができるが、インターネットまたは他の有線もしくは無線の通信システムを介するなどの他の形態でも分配されることができる。
特許請求の範囲において使用される参照符号は、範囲を限定するものとして解釈されてはならない。
配列は、WIPO規格ST.25により、明細書の主要本体においておよび別個の配列表において開示される。具体的な数値で指定された配列番号は、明細書の主要本体において、および別個の配列表において同じでなければならない。例として、配列番号1は、明細書の主要本体および別個の配列表の両方において同じ配列を規定しなければならない。明細書の主要本体における配列の定義と別個の配列表との間に矛盾がある場合(明細書の主要本体中の配列番号1が、別個の配列表において配列番号2に誤って対応している場合)、特に具体的な実施形態の適用における具体的な配列に対する参照は、適用の主要本体における配列に対する参照として理解されるものとし、別個の配列表に対する参照としてではない。言い換えれば、明細書の主要本体における配列の定義/指定が別個の配列表を、明細書、例、図面、および特許請求の範囲を含む適用の主要本体において開示される配列およびその指定に修正することによって解決されるものとする。
特許項目
1.ウイルス様粒子(VLP)をコードすることができるアデノウイルスベクターを含む、疾患の予防および/または治療における使用のためのワクチンであって、該VLPが、不活性型免疫抑制性ドメイン(ISD)を提示する、ワクチン。
2.癌の予防および/または治療のためである、項目1記載のワクチン。
3.該ISDは、該アミノ酸の少なくとも1つが欠失しているかまたは異なるアミノ酸と交換されたLANQINDLRQTVIW(配列番号1)、LASQINDLRQTVIW(配列番号2)、LQNRRGLDLLTAEKGGL(配列番号3)、LQNRRALDLLTAERGGT(配列番号4)、LQNRRGLDMLTAAQGGI(配列番号5)、またはYQNRLALDYLLAAEGGV(配列番号6)を有する、項目1または2記載のワクチン。
4.元とは異なるアミノ酸が、天然アミノ酸のうちで選択される、項目3記載のワクチン。
5.該ISDの上流または下流の10アミノ酸領域における該アミノ酸の少なくとも1つが、異なるアミノ酸と交換された、項目1から4までのいずれか1項記載のワクチン。
6.該VLPがさらに、内在性レトロウイルス(ERV)エンベロープ蛋白質またはその免疫原性部分を提示している、項目1から5までのいずれか1項記載のワクチン。
7.該ERVエンベロープ蛋白質が、ヒト内在性レトロウイルス(HERV)蛋白質またはその免疫原性部分である、項目1から6までのいずれか1項記載のワクチン。
8.該HERVが、HERV-K、HERV-H、HERV-W、HERV-FRD、およびHERV-Eからなる群のうちで選択される、項目1から7までのいずれか1項記載のワクチン。
9.該HERV-Kが、HERV-K108(=ERVK-6)、ERVK-19、HERV-K115(=ERVK-8)、ERVK-9、HERV-K113、ERVK-21、ERVK-25、HERV-K102(=ERVK-7)、HERV-K101(=ERVK-24)、およびHERV-K110(=ERVK-18)からなる群のうちで選択され、HERV-Hが、HERV-H19(=HERV-H_2q24.3)、およびHERV-H_2q24.1からなる群のうちで選択され、HERV-WがERVW-1(=シンシチン1)として選択され、かつHERV-FRDがERVFRD-1(=シンシチン2)として選択される、項目1から8までのいずれか1項記載のワクチン。
10.該アデノウイルスベクターが、哺乳動物アデノウイルス型、ヒトアデノウイルス型、チンパンジーアデノウイルス型、またはゴリラアデノウイルス型に由来する、項目1から9までのいずれか1項記載のワクチン。
11.該ヒトアデノウイルスベクターが、D群ベクター、ヒトアデノウイルス血清型Ad5、ヒトアデノウイルス血清型Ad19a、ヒトアデノウイルス血清型Ad26、またはチンパンジーアデノウイルス血清型に由来する、項目1から10までのいずれか1項記載のワクチン。
12.該アデノウイルスベクターが、アデノウイルス,血清型5(Ad5)である、項目1から11までのいずれか1項記載のワクチン。
13.該アデノウイルスベクターの蛋白質産物には、gag蛋白質、2Aペプチド、およびエンベロープ蛋白質(Env)が含まれる、項目1から12までのいずれか1項記載のワクチン。
14.該gag蛋白質が、外来性レトロウイルスgag蛋白質または内在性レトロウイルスgag蛋白質である、項目1から13までのいずれか1項記載のワクチン。
15.該Env蛋白質が、表面単位(gp70)、開裂部位、および膜貫通単位(p15E)を含む、項目1から14までのいずれか1項記載のワクチン。
16.膜貫通単位(p15E)が、融合ペプチド、免疫抑制性ドメイン(ISD)、膜貫通アンカー、および/または細胞質尾部を含む、項目1から15までのいずれか1項記載のワクチン。
17.p15Eまたはその免疫原性部分が、アデノウイルスカプシド蛋白質pIXに連結されている、項目1から16までのいずれか1項記載のワクチン。
18.該アデノウイルスベクターによってコードされた該シグナルペプチドが、Gaussiaルシフェラーゼ由来のシグナルペプチド(LucSP)と交換された、項目1から17までのいずれか1項記載のワクチン。
19.該アデノウイルスベクターによってコードされた該膜貫通アンカーおよび該細胞質尾部が、インフルエンザA型ウイルス赤血球凝集素H3N2由来の該膜貫通ドメインおよび細胞質尾部と交換された、項目1から18までのいずれか1項記載のワクチン。
20.該アデノウイルスベクターによってコードされた該膜貫通アンカーおよび該細胞質尾部が、インフルエンザA型ウイルス赤血球凝集素H3N2由来の該膜貫通ドメインおよび細胞質尾部(HA-TMCT)と交換された、項目1から19までのいずれか1項記載のワクチン。
21.三量体化配列が、該シグナルペプチドに隣接して提供される、項目1から20までのいずれか1項記載のワクチン。
22.該三量体化配列が、GCN4である、項目1から21までのいずれか1項記載のワクチン。
23.該VLPが、gag蛋白質を含む、項目1から22までのいずれか1項記載のワクチン。
24.該gag蛋白質が、外来性レトロウイルスgag蛋白質または内在性レトロウイルスgag蛋白質である、項目1~23のいずれか1項記載のワクチン。
25.該VLPが、該アデノウイルスベクターによって感染させられた患者の身体の細胞内で産生された、項目1から24までのいずれか1項記載のワクチン。
26.該VLPが、単離された哺乳動物細胞内で産生される、項目1から25までのいずれか1項記載のワクチン。
27.ウイルス様粒子(VLP)を形成することができる標的蛋白質をコードする核酸コンストラクトであって、該標的蛋白質が免疫抑制性ドメイン(ISD)を含み、該ISDが不活性である、核酸コンストラクト。
28.該ISDは、該アミノ酸の少なくとも1つが欠失しているかまたは異なるアミノ酸と交換されたLANQINDLRQTVIW(配列番号1)、LASQINDLRQTVIW(配列番号2)、LQNRRGLDLLTAEKGGL(配列番号3)、LQNRRALDLLTAERGGT(配列番号4)、LQNRRGLDMLTAAQGGI(配列番号5)、またはYQNRLALDYLLAAEGGV(配列番号6)を有する、項目27記載の核酸コンストラクト。
29.元とは異なるアミノ酸が、天然アミノ酸のうちで選択される、項目27または28記載の核酸コンストラクト。
30.該ISDの上流または下流の10アミノ酸領域における該アミノ酸の少なくとも1つが、異なるアミノ酸と交換された、項目27または28記載の核酸コンストラクト。
31.該VLPがさらに、内在性レトロウイルス(ERV)エンベロープ蛋白質またはその免疫原性部分を提示している、項目27から30までのいずれか1項記載の核酸コンストラクト。
32.該ERVエンベロープ蛋白質が、ヒト内在性レトロウイルス(HERV)蛋白質またはその免疫原性部分である、項目27から31までのいずれか1項記載の核酸コンストラクト。
33.該HERVが、HERV-K、HERV-H、HERV-W、HERV-FRD、およびHERV-Eからなる群のうちで選択される、項目27から32までのいずれか1項記載の核酸コンストラクト。
34.該HERV-Kが、HERV-K108(=ERVK-6)、ERVK-19、HERV-K115(=ERVK-8)、ERVK-9、HERV-K113、ERVK-21、ERVK-25、HERV-K102(=ERVK-7)、HERV-K101(=ERVK-24)、およびHERV-K110(=ERVK-18)からなる群のうちで選択され、HERV-Hが、HERV-H19(=HERV-H_2q24.3)、およびHERV-H_2q24.1からなる群のうちで選択され、HERV-WがERVW-1(=シンシチン1)として選択され、かつHERV-FRDがERVFRD-1(=シンシチン2)として選択される、項目27から33までのいずれか1項記載の核酸コンストラクト。
35.該アデノウイルスベクターが、哺乳動物アデノウイルス型、ヒトアデノウイルス型、チンパンジーアデノウイルス型、またはゴリラアデノウイルス型に由来する、項目27から34までのいずれか1項記載の核酸コンストラクト。
36.該ヒトアデノウイルスベクターが、D群ベクター、ヒトアデノウイルス血清型Ad5、ヒトアデノウイルス血清型Ad19a、ヒトアデノウイルス血清型Ad26、またはチンパンジーアデノウイルス血清型に由来する、項目27から35までのいずれか1項記載の核酸コンストラクト。
37.該アデノウイルスベクターが、アデノウイルス,血清型5(Ad5)である、項目27から36までのいずれか1項記載の核酸コンストラクト。
38.該アデノウイルスベクターの蛋白質産物には、gag蛋白質、2Aペプチド、およびエンベロープ蛋白質(Env)が含まれる、項目27から37までのいずれか1項記載の核酸コンストラクト。
39.該gag蛋白質が、外来性レトロウイルスgag蛋白質または内在性レトロウイルスgag蛋白質である、項目27から38までのいずれか1項記載の核酸コンストラクト。
40.該Env蛋白質が、表面単位(gp70)、開裂部位、および膜貫通単位(p15E)を含む、項目27から39までのいずれか1項記載の核酸コンストラクト。
41.該膜貫通単位(p15E)が、融合ペプチド、免疫抑制性ドメイン(ISD)、膜貫通アンカー、および/または細胞質尾部を含む、項目27から40までのいずれか1項記載の核酸コンストラクト。
42.p15Eまたはその免疫原性部分が、アデノウイルスカプシド蛋白質pIXに連結されている、項目27から41までのいずれか1項記載の核酸コンストラクト。
43.該アデノウイルスベクターによってコードされた該シグナルペプチドが、Gaussiaルシフェラーゼ由来のシグナルペプチド(LucSP)と交換された、項目27から42までのいずれか1項記載の核酸コンストラクト。
44.該アデノウイルスベクターによってコードされた該膜貫通アンカーおよび該細胞質尾部が、インフルエンザA型ウイルス赤血球凝集素H3N2由来の該膜貫通ドメインおよび細胞質尾部と交換された、項目27から43までのいずれか1項記載の核酸コンストラクト。
45.該アデノウイルスベクターによってコードされた該膜貫通アンカーおよび該細胞質尾部が、インフルエンザA型ウイルス赤血球凝集素H3N2由来の該膜貫通ドメインおよび細胞質尾部(HA-TMCT)と交換された、項目27から44までのいずれか1項記載の核酸コンストラクト。
46.三量体化配列が、該シグナルペプチドに隣接して提供される、項目27から45までのいずれか1項記載の核酸コンストラクト。
47.該三量体化配列が、GCN4である、項目27から46までのいずれか1項記載のワクチン。
48.項目27から47までのいずれか1項記載の核酸コンストラクトの発現産物を含む、蛋白質。
49.項目27から47までのいずれか1項記載の核酸コンストラクトを含む、ウイルス様粒子(VLP)。
50.癌の予防および/または治療における使用のための、項目1から27までのいずれか1項記載のワクチン。
51.請求項27から47までのいずれか1項記載の核酸コンストラクトを用いて該患者を初回免疫した少なくとも5日間後に、項目1から26までのいずれか1項記載のワクチンで追加免疫するステップを含む、癌の予防および/または治療における使用のための、項目1から27までのいずれか1項記載のワクチン。
52.アデノウイルスベクター由来の該VLPとは異なる、ウイルスによってコードされたVLPを用いて、項目1から26までのいずれか1項記載のワクチンに対する該患者の曝露の5日間以上後に該患者を後治療するステップを含む、癌の予防および/または治療における使用のための、項目1から26までのいずれか1項記載のワクチン。
53.アデノウイルスベクター由来の該VLPとは異なる該ウイルスによってコードされたVLPが、改変型Vaccina Ankara(MVA)に由来するVLPである、項目52に記載のワクチン。
54.ウイルス様粒子(VLP)をコードすることができるウイルスベクターを含み、該VLPが、不活性型免疫抑制性ドメイン(ISD)を提示する、疾患の予防および/または治療における使用のための、ワクチン。
55.該ウイルスベクターが、改変型Vaccina Ankara(MVA)、アデノ随伴ウイルス(AAV)、またはレンチウイルスに由来する、請求項54記載のワクチン。
56.項目1から26までのいずれか1項記載のワクチンの投与を含む、癌の予防および/または治療のための、方法。
57.項目27から47までのいずれか1項記載の核酸を用いて該患者を初回免疫した少なくとも5日間後に、項目1から26までのいずれか1項記載のワクチンで追加免疫するステップを含む、癌の予防および/または治療のための、方法。
58.アデノウイルスベクター由来の該VLPとは異なる、ウイルスによってコードされたVLPを用いて、項目1から20までのいずれか1項記載のワクチンに対する該患者の曝露の5日以上後に該患者を後治療するステップを含む、癌の予防および/または治療のための、方法。
59.アデノウイルスベクター由来の該VLPとは異なる、該ウイルスによってコードされたVLPが、改変型Vaccina Ankara(MVA)に由来するVLPである、項目58記載の方法。

Claims (14)

  1. ヒト内在性レトロウイルス(HERV)エンベロープ蛋白質をコードする、疾患の予防および/または治療における使用のための核酸分子であって、前記蛋白質の免疫抑制性ドメイン(ISD)が、前記ISDを不活性にする突然変異を含有し、かつ、不活性型の前記ISDが、NSQSSIDQKLANAINDLRQT(配列番号50)またはLQNRRGLDLLFLKRGGL(配列番号8)を含む、核酸分子。
  2. アデノウイルスベクターである、請求項1記載の使用のための、請求項1記載の核酸分子を含む、ベクター。
  3. 前記ベクターが、ウイルス様粒子(VLP)をコードし、前記VLPが、不活性型免疫抑制性ドメイン(ISD)を有するヒト内在性レトロウイルス(HERV)エンベロープ蛋白質を提示する、請求項2記載の使用のための、請求項2記載のベクター。
  4. 疾患の予防および/または治療における使用のための、請求項3記載のベクターの発現産物を含む、蛋白質。
  5. 疾患の予防および/または治療における使用のための、請求項1から3までのいずれか1項記載の核酸分子またはベクター、もしくは請求項4記載の蛋白質を含む、ワクチン。
  6. 癌の予防および/または治療における使用のための、請求項1から5までのいずれか1項記載の核酸分子、ベクター、蛋白質またはワクチン。
  7. 前記エンベロープ蛋白質が、配列番号41のアミノ酸配列を有する、請求項6記載の使用のための、請求項1から6までのいずれか1項記載の核酸分子、ベクター、蛋白質またはワクチン。
  8. 前記ISDの上流または下流の10アミノ酸領域における前記アミノ酸の少なくとも1つが、異なるアミノ酸と交換された、請求項7記載の使用のための、請求項1から7までのいずれか1項記載の核酸分子、ベクター、蛋白質またはワクチン。
  9. 前記ヒト内在性レトロウイルス(HERV)が、HERV-K、HERV-H、HERV-W、HERV-FRD、およびHERV-Eからなる群のうちで選択され、かつ前記HERV-Kが、HERV-K108(=ERVK-6)、ERVK-19、HERV-K115(=ERVK-8)、ERVK-9、HERV-K113、ERVK-21、ERVK-25、HERV-K102(=ERVK-7)、HERV-K101(=ERVK-24)、およびHERV-K110(=ERVK-18)からなる群のうちで選択され、HERV-Hが、HERV-H19(=HERV-H_2q24.3)、およびHERV-H_2q24.1からなる群のうちで選択され、HERV-WがERVW-1(=シンシチン1)として選択され、かつHERV-FRDがERVFRD-1(=シンシチン2)として選択される、請求項8に記載の使用のための、請求項1から8までのいずれか1項記載の核酸分子、ベクター、蛋白質またはワクチン。
  10. 突然変異を含有するISDを含む前記エンベロープ蛋白質が、配列番号41のアミノ酸配列を有する、請求項1から9までのいずれか1項に記載の核酸分子、ベクター、蛋白質またはワクチン。
  11. 前記アデノウイルスベクターの蛋白質産物には、gag蛋白質、2Aペプチド、およびエンベロープ蛋白質(Env)が含まれ、前記Env蛋白質が、表面単位(gp70)、開裂部位、および膜貫通単位(p15E)を含み、前記膜貫通単位(p15E)が、融合ペプチド、免疫抑制性ドメイン(ISD)、膜貫通アンカー、および細胞質尾部を含み、かつp15Eもしくはその免疫原性部分が、アデノウイルスカプシド蛋白質pIXに連結され、かつ/または前記アデノウイルスベクターによってコードされたシグナルペプチドが、Gaussiaルシフェラーゼ由来のシグナルペプチド(LucSP)と交換され、かつ/または前記アデノウイルスベクターによってコードされた前記膜貫通アンカーおよび前記細胞質尾部が、インフルエンザA型ウイルス赤血球凝集素H3N2由来の前記膜貫通ドメインおよび細胞質尾部(HA-TMCT)と交換される、請求項1から3または5から10までのいずれか1項記載の使用のための、請求項2または3記載のベクター、もしくは請求項5記載のワクチン。
  12. 前記アデノウイルスベクターを用いて前記患者を初回免疫した少なくとも5日間後に、請求項5から10までのいずれか1項記載のワクチンで追加免疫するステップを含む、癌の予防および/または治療における使用のための、請求項5から11までのいずれか1項記載のワクチン。
  13. アデノウイルスベクター由来の前記VLPとは異なる、ウイルスによってコードされたVLPが、改変型Vaccina Ankara(MVA)に由来するVLPである、アデノウイルスベクター由来の前記VLPとは異なる、ウイルスによってコードされたVLPを用いて、前記ワクチンに対する前記患者の曝露の5日間以上後に前記患者を後治療するステップを含む、癌の予防および/または治療における使用のための、請求項5から1までのいずれか1項記載のワクチン。
  14. 前記ヒト内在性レトロウイルス(HERV)が、HERV-Kである、請求項1記載の核酸分子
JP2020533356A 2017-09-01 2018-08-30 疾患の予防および/または治療における使用のためのワクチン Active JP7277466B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023076962A JP2023100875A (ja) 2017-09-01 2023-05-08 疾患の予防および/または治療における使用のためのワクチン

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201770659 2017-09-01
DKPA201770659 2017-09-01
PCT/EP2018/073404 WO2019043127A1 (en) 2017-09-01 2018-08-30 VACCINE FOR USE IN PROPHYLAXIS AND / OR TREATMENT OF DISEASE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023076962A Division JP2023100875A (ja) 2017-09-01 2023-05-08 疾患の予防および/または治療における使用のためのワクチン

Publications (2)

Publication Number Publication Date
JP2020531053A JP2020531053A (ja) 2020-11-05
JP7277466B2 true JP7277466B2 (ja) 2023-05-19

Family

ID=65526240

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020533356A Active JP7277466B2 (ja) 2017-09-01 2018-08-30 疾患の予防および/または治療における使用のためのワクチン
JP2023076962A Revoked JP2023100875A (ja) 2017-09-01 2023-05-08 疾患の予防および/または治療における使用のためのワクチン

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023076962A Revoked JP2023100875A (ja) 2017-09-01 2023-05-08 疾患の予防および/または治療における使用のためのワクチン

Country Status (10)

Country Link
US (5) US11351247B2 (ja)
EP (2) EP3676285A1 (ja)
JP (2) JP7277466B2 (ja)
KR (1) KR20210050558A (ja)
CN (2) CN111630060B (ja)
AU (1) AU2018322831B2 (ja)
BR (1) BR112021003644A2 (ja)
CA (1) CA3074088A1 (ja)
EA (1) EA202090548A1 (ja)
WO (2) WO2019043127A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043127A1 (en) 2017-09-01 2019-03-07 Inprother Aps VACCINE FOR USE IN PROPHYLAXIS AND / OR TREATMENT OF DISEASE
CN113164623A (zh) 2018-09-18 2021-07-23 维恩维纽克公司 基于arc的衣壳及其用途
CA3143327A1 (en) * 2019-06-13 2020-12-17 J. Keith Joung Engineered human-endogenous virus-like particles and methods of use thereof for delivery to cells
CN112103353B (zh) * 2020-08-21 2023-07-18 中国地质大学(北京) 一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器
WO2023039243A2 (en) * 2021-09-13 2023-03-16 Achelois Biopharma, Inc. Hepatitis b virus antivirus (hbv-antivirus) compositions and methods of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508154A (ja) 2001-08-15 2005-03-31 ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア 外套細胞リンパ腫の外套組織球から単離されたレトロウイルス
JP2008506357A (ja) 2004-03-30 2008-03-06 アンスティテュ・グスターブ・ルシ ウイルスタンパク質の免疫抑制作用のモデュレーションに関与するポリペプチド配列
JP2009544614A (ja) 2006-07-21 2009-12-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ヒト内在性レトロウイルスポリペプチド組成物およびその使用法
JP2013510091A (ja) 2009-11-03 2013-03-21 リゴサイト ファーマシューティカルズ インコーポレイテッド キメラRSV−Fポリペプチド、およびレンチウイルスGagまたはアルファレトロウイルスGagに基づくVLP

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2780069B1 (fr) * 1998-06-23 2002-06-28 Inst Nat Sante Rech Med Famille de sequences nucleiques et de sequences proteiques deduites presentant des motifs retroviraux endogenes humains et leurs applications
CA2373352A1 (en) * 1999-07-02 2001-01-11 Onyx Pharmaceuticals, Inc. Adenoviral vectors for treating disease
US20070185025A1 (en) * 2005-09-11 2007-08-09 The Trustees Of Columbia University In The City Of New York Filoviral immunosuppressive peptides and uses thereof
WO2007107156A2 (en) 2006-03-17 2007-09-27 Aarhus Universitet Chimeric viral envelopes
US20110305749A1 (en) 2008-08-28 2011-12-15 Mogens Ryttergaard Duch HIV-1 Envelope Polypeptides for HIV Vaccine
WO2011092199A1 (en) * 2010-01-26 2011-08-04 Institut Gustave Roussy Mutated xmrv env proteins in the immunosuppressive domain
US20140335117A1 (en) 2011-10-07 2014-11-13 Skau Aps Identification and Attenuation of the Immunosuppressive Domains in Fusion Proteins of Enveloped RNA Viruses
WO2013059426A1 (en) * 2011-10-21 2013-04-25 The Regents Of The University Of California Human endogenous retrovirus peptides, antibodies to the peptides, and methods of use thereof
ES2748864T3 (es) * 2011-12-07 2020-03-18 Viroxis S A S Proteínas ENV lentivíricas mutadas y su uso como fármacos
US9624510B2 (en) * 2013-03-01 2017-04-18 The Wistar Institute Adenoviral vectors comprising partial deletions of E3
WO2014195510A1 (en) 2013-06-07 2014-12-11 Viroxis S.A.S. Mutated non-primate lentiviral env proteins and their use as drugs
CN108368155A (zh) * 2015-10-01 2018-08-03 爱姆维恩公司 人源性免疫抑制蛋白和肽作为药物的应用
WO2018234576A1 (en) * 2017-06-22 2018-12-27 Institut Gustave Roussy HUMAN ENDOGENOUS RETROVIRAL PROTEIN
WO2019043127A1 (en) * 2017-09-01 2019-03-07 Inprother Aps VACCINE FOR USE IN PROPHYLAXIS AND / OR TREATMENT OF DISEASE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508154A (ja) 2001-08-15 2005-03-31 ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア 外套細胞リンパ腫の外套組織球から単離されたレトロウイルス
JP2008506357A (ja) 2004-03-30 2008-03-06 アンスティテュ・グスターブ・ルシ ウイルスタンパク質の免疫抑制作用のモデュレーションに関与するポリペプチド配列
JP2009544614A (ja) 2006-07-21 2009-12-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ヒト内在性レトロウイルスポリペプチド組成物およびその使用法
JP2013510091A (ja) 2009-11-03 2013-03-21 リゴサイト ファーマシューティカルズ インコーポレイテッド キメラRSV−Fポリペプチド、およびレンチウイルスGagまたはアルファレトロウイルスGagに基づくVLP

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PNAS, 2010 Feb 23, vol. 107, no. 8, pp. 3782-3787

Also Published As

Publication number Publication date
BR112021003644A2 (pt) 2021-05-18
JP2023100875A (ja) 2023-07-19
CN111630060B (zh) 2024-01-23
AU2018322831B2 (en) 2023-04-27
CA3074088A1 (en) 2019-03-07
EP3844178A1 (en) 2021-07-07
WO2020043908A1 (en) 2020-03-05
EP3676285A1 (en) 2020-07-08
US20200330586A1 (en) 2020-10-22
US11351247B2 (en) 2022-06-07
KR20210050558A (ko) 2021-05-07
US20230181716A1 (en) 2023-06-15
US20220387580A1 (en) 2022-12-08
WO2019043127A9 (en) 2020-06-18
WO2019043127A1 (en) 2019-03-07
CN111630060A (zh) 2020-09-04
CN113056477A (zh) 2021-06-29
AU2018322831A1 (en) 2020-03-12
US11883487B2 (en) 2024-01-30
US20220347291A1 (en) 2022-11-03
EA202090548A1 (ru) 2020-06-23
AU2018322831A9 (en) 2020-07-23
US20240148860A1 (en) 2024-05-09
JP2020531053A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
JP7277466B2 (ja) 疾患の予防および/または治療における使用のためのワクチン
US20230086859A1 (en) Hpv vaccines
JP6959289B2 (ja) ヒト免疫不全ウイルス抗原、ベクター、組成物、およびその使用方法
ES2871907T3 (es) Portadores de vacuna de adenovirus de chimpancé
EA027236B1 (ru) Иммуногенные композиции и способы применения таких композиций для индукции гуморального и клеточного иммунного ответа
WO2012053646A1 (ja) ワクシニアウイルスベクターおよびセンダイウイルスベクターからなるプライム/ブーストワクチン用ウイルスベクター
CN114340661A (zh) Hiv抗原和mhc复合物
Neukirch et al. Adenovirus based virus-like-vaccines targeting endogenous retroviruses can eliminate growing colorectal cancers in mice
Jindra et al. Attenuated recombinant influenza A virus expressing HPV16 E6 and E7 as a novel therapeutic vaccine approach
JP2022544704A (ja) ヒトサイトメガロウイルスのul18によるt細胞応答の調節
Larke et al. Induction of human immunodeficiency virus type 1-specific T cells by a bluetongue virus tubule-vectored vaccine prime-recombinant modified virus Ankara boost regimen
US20230059344A1 (en) Medical Uses of 4-1BBL Adjuvanted Recombinant Modified Vaccinia Virus Ankara (MVA)
JP2024505274A (ja) ワクチン接種中のt細胞プライミングの強化において使用されるウイルスコンストラクト
Paterson Rational approaches to immune regulation
CN117940156A (zh) 治疗性乳头瘤病毒疫苗
US20110177115A1 (en) Vaccination regimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7277466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150