CN112103353B - 一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器 - Google Patents

一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器 Download PDF

Info

Publication number
CN112103353B
CN112103353B CN202010851284.0A CN202010851284A CN112103353B CN 112103353 B CN112103353 B CN 112103353B CN 202010851284 A CN202010851284 A CN 202010851284A CN 112103353 B CN112103353 B CN 112103353B
Authority
CN
China
Prior art keywords
mnpse
field effect
effect transistor
film
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010851284.0A
Other languages
English (en)
Other versions
CN112103353A (zh
Inventor
邢杰
韩旭
徐光远
荣东珂
郝会颖
刘昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN202010851284.0A priority Critical patent/CN112103353B/zh
Publication of CN112103353A publication Critical patent/CN112103353A/zh
Application granted granted Critical
Publication of CN112103353B publication Critical patent/CN112103353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于二维半导体材料MnPSe3场效应晶体管结构的光电探测器,其基本元素包括:Si/SiO2衬底、MnPSe3沟道、源(s)/漏(d)电极和栅(g)电极。其特征在于:以层状MnPSe3材料作为主要光敏层的场效应晶体管光电探测器。将机械剥离的少层MnPSe3转移到Si/SiO2衬底上,应用微纳加工技术和镀膜技术制备晶体管的源、漏和栅电极。测量晶体管光、暗态下的输出(Ids‑Vds)和转移特性曲线(Ids‑Vgs),获得暗电流、光/暗电流比和光电灵敏度。在此基础上,提出多种晶体管衍生结构,包括金属颗粒修饰,量子点敏化,异质结结构和悬空结构,以及以离子液体、去离子水、聚甲基丙烯酸甲酯、氮化硼、高介电材料或铁电材料作为介电层的MnPSe3场效应晶体管。通过结构设计可以进一步改善MnPSe3场效应晶体管对光的吸收能力以及对光生载流子的分离能力,降低噪声和功耗,提高器件的光电灵敏度,增强光电响应的可调控性。

Description

一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器
技术领域
本发明涉及二维材料光电探测技术领域,特别是涉及一种基于二维(2D)磷硒化锰(MnPSe3)材料的场效应晶体管结构的光电探测器,具有光电灵敏度高、光暗电流比大,物理化学性质稳定、成本低廉,抗干扰能力强等特点。
背景技术
随着半导体工业的快速发展,芯片上集成的电子元件数目从最初的几个发展到现在的几十亿个。摩尔预言了半导体集成密度的发展速度,即当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。这一摩尔定律揭示了信息技术进步的速度,一直延续至今。芯片的面积不变,而承载的元器件个数不断迅猛增加,这必然要求单个电子元件的尺寸要不断缩小。但是随着晶体管尺寸进入10nm的工艺节点,在保持器件性能的前提下,器件的加工难度和制备成本显著提高,摩尔定律面临着瓶颈。由于传统半导体器件尺寸被极度地缩小,短沟道效应对器件的影响十分显著。为了保持栅压对沟道的控制能力,沟道必须减薄。一个潜在的解决办法就是寻找具有平整无悬挂键表面的超薄半导体材料。以石墨烯为代表的二维半导体材料为半导体芯片的研发注入了新的活力,单层MoS2为代表的层状过渡金属硫属化合物和黑磷等二维半导体材料具有天然的可调带隙,原子层厚度,表面光滑、平整,无悬挂键,可微机械剥离,载流子迁移率高,物理化学性质稳定,为制备优异的高集成度的芯片提供了发展空间和机遇。
MPX3是一种典型的三元层状半导体化合物,其中X为S或Se,M为二价过渡金属(如文献1:CARNABUCI A,GRASSO V,SILIPIGNI L,et al.2001.In-layer conductivity andphotoconductivity in MnPSe3,CdPSe3,and CdPS3.Journal of Applied Physics,90:4526-4531;文献2:SHIFA T A,WANG F,CHENG Z,et al.2018.High Crystal Quality 2DManganese Phosphorus Trichalcogenide Nanosheets and their PhotocatalyticActivity.Advanced Functional Materials,28,1800548)。由于MPX3这一家族带隙分布在1.3-3.5eV之间,因此可用于宽光谱应用。理论计算表明MPX3的剥离能比石墨还要小(MnPS3:0.12J/m2,MnPSe3:0.23J/m2,graphite0.37J/m2),这说明其更易于机械剥离,获得更薄的原子层厚度的单晶薄膜,而且MPX3物理化学性质稳定,无毒无害,对环境无污染,因而在微纳器件领域有很好的应用前景。MPX3材料的初步研究显示其在光电领域的巨大潜力。何军课题组报道了第一个NiPS3紫外探测器,其光电灵敏度和比探测率分别为126mA/W和1.22×1012Jones(如文献3:CHU J,WANG F,YIN L,et al.2017.High-Performance UltravioletPhotodetector Based on a Few-Layered 2D NiPS3Nanosheet.Advanced FunctionalMaterials,27,1701342)。FePS3光电探测器显示了栅电压可调的正、负光电导效应,其在245nm处光电灵敏度达到171.6mA/W(如文献4:GAO Y,LEI S,KANG T,et al.2018.Bias-switchable negative and positive photoconductivity in 2D FePS3 ultravioletphotodetectors.Nanotechnology,29,244001)。尽管NiPS3和FePS3都表现出了非常有应用潜力的光电灵敏度,但是它们的光电流非常低,只有1pA左右,这样低的暗电流极易被环境噪声覆盖,因此对测量设备和环境都要求很高。
作为MPX3家族的一个重要成员,磷硒化锰(MnPSe3)是一个具有直接带隙的半导体,带隙为2.3eV,对可见光有强烈吸收。而且它的电子、空穴的迁移率高达625.9cm2/Vs和34.7cm2/Vs,因此MnPSe3在光电探测、光催化等领域具有非常好的应用前景,但是目前还没有关于MnPSe3作为光敏层的光电探测器方面的相关报道。
发明内容
本发明的目的在于研发一种基于原子层厚度的MnPSe3场效应光电晶体管,利用MnPSe3自身的电子结构特征和优化的器件结构来获得高灵敏度的光电探测器。该器件初步测试结果显示MnPSe3在375nm处光电灵敏度可以达到392.78mA/W,光暗电流比可以达到三个数量级。特别是,在器件集成了贵金属颗粒的情况下,光电流可以提升50倍,这些品质远远高于同类型的NiPS3和FePS3
附图说明
图1为薄层MnPSe3(a)光学显微镜图像,(b)原子力显微镜图像和(c-p)MnPSe3光电探测器结构示意图。
其中,图1(c)为MnPSe3场效应晶体管结构的光电探测器,MnPSe3作为沟道层,重掺的Si为底栅电极,SiO2为介电层。
图1(d)是在图1(c)结构的基础上在MnPSe3沟道的上表面修饰金属纳米颗粒。
图1(e)是在图1(c)结构的基础上在MnPSe3沟道的下表面修饰金属纳米颗粒。
图1(f)是在图1(c)结构的基础上在MnPSe3沟道的上表面修饰量子点。
图1(g)是由少层MnPSe3与其他薄膜材料形成异质结并构成场效应晶体管结构的光电探测器。
图1(h)为MnPSe3两端分别接触其它薄膜材料形成中间悬空结构的场效应晶体管光电探测器。
图1(i)为少层MnPSe3薄膜直接转移到蒸镀好的源漏电极上,形成一种悬空结构光电探测器。
图1(j)为使用离子液体调控的MnPSe3场效应晶体管光电探测器。
图1(k)为以聚甲基丙烯酸甲酯(PMMA)作为介电层,顶部用蒸镀技术制备顶栅电极的光电探测器。
图1(l)为使用去离子水调控的MnPSe3场效应晶体管光电探测器。
图1(m)为在图1(c)结构的基础上,以铁电薄膜P(VDF-TrFE)作为顶栅介电层的MnPSe3光电探测器。
图1(n)为以铁电薄膜P(VDF-TrFE)作为底栅介电层的MnPSe3光电探测器。
图1(o)为在图1(c)结构的基础上溅射/转移薄层介电层后制备的顶栅调控的MnPSe3光电探测器。
图1(p)为以溅射/脉冲激光沉积/转移无机铁电薄膜作为顶栅的MnPSe3光电探测器。
图2为图1(c)结构的MnPSe3光电探测器在不同源漏电压下光电灵敏度随光强变化的关系曲线。
图3为图1(c)所示的MnPSe3光电探测器和图1(e)所示结构的Au NPs-MnPSe3光电探测器在黑暗和光照下(375nm,637mW/cm2)的转移曲线。
图4为图1(c)结构的MnPSe3(厚度:32nm)光电探测器在不同光强辐照下的输出曲线。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1:
参考图1(c),使用机械剥离的方法在Si/SiO2衬底上制备少层MnPSe3薄膜,在显微镜下选取适宜面积的样品,通过原子力显微镜测试样品厚度。经过微纳加工技术在材料周围布置好电极图案,后用真空镀膜设备在样品上制备金属电极,以重掺Si作为栅电极。即完成图1(c)所示的MnPSe3光电探测器。
优选地,MnPSe3薄膜厚度在1nm-100nm之间;
优选地,MnPSe3机械剥离的方法包括3M胶带、PDMS胶带、液相超声剥离技术;
优选地,电极为Cr/Au(2-5nm/10-50nm)或者Ti/Au(2-5nm/10-50nm);
优选地,电极制备设备包括真空镀膜技术、原子层沉积技术、磁控溅射技术;
优选地,SiO2层厚度为100nm-300nm;
优选地,Si层为重掺的p型或重掺n型Si。
实施例2:
参考图1(d),在图1(c)所示的MnPSe3光电探测器的基础上(具体步骤见实施例1),利用匀胶机旋涂金属纳米颗粒的溶胶溶液。以金纳米颗粒为例,首先氧化还原法制备金溶胶,制备过程为:将100mL HAuCl4·3H2O溶液(0.01%)放入烧杯中用磁子搅拌并加热至沸点,然后快速加入柠檬酸三钠(2.5mL 1%),溶液颜色在1min内变成酒红色,而后持续加热10min,关闭热源,持续搅拌15min并最终冷却至室温,此时金纳米颗粒的尺寸普遍在20nm。金纳米颗粒的尺寸可以通过改变滴加柠檬酸钠的浓度和用量来调节,金纳米颗粒在MnPSe3薄膜上的分布密度可以通过转速和浓度来调节。
优选地,金属纳米颗粒包括金纳米颗粒,银纳米颗粒,铜纳米颗粒,铝纳米颗粒。
优选地,颗粒尺寸包括1nm-100nm。
优选地,匀胶机的转速包括1000-5000rad/s。
实施例3:
参考图1(e),基片表面先制备一层均匀分布的金属纳米颗粒,这里金属纳米颗粒既可以通过旋涂金属溶胶来实现(方法见实施例2),也可以通过金属薄膜退火得到。退火制备均匀分布金属纳米颗粒的方法:首先在基片表面溅射一层金属膜,后将其放入管式炉中真空或氩气环境保护下退火,即可得到分散均匀的金属纳米颗粒。通过控制金属膜厚度、退火温度和退火时间,得到不同颗粒大小和分布密度的金属纳米颗粒阵列。然后将MnPSe3薄片转移到金属纳米阵列上,再通过微纳加工技术和真空镀膜技术制备电极。
优选地,金属纳米颗粒包括金纳米颗粒,银纳米颗粒,铜纳米颗粒,铝纳米颗粒。
优选地,MnPSe3薄膜厚度控制在1nm-10nm。
优选地,退火温度根据金属种类进行不同调整,对于金薄膜,退火温度为300-600℃,退火时间为0.1-2小时。
实施例4:
参考图1(f),在MnPSe3薄膜上利用匀胶机旋涂量子点胶体溶液。
优选地,量子点包括CdS,CdSe,CdTe,PbS,PbSe,PbTe。
实施例5:
参考图1(g),首先通过机械剥离的方法制备MnPSe3薄膜并转移到Si/SiO2衬底上,然后将剥离的石墨烯/过渡金属硫属化合物(TMD)通过光学显微镜和位移台微控手臂转移到MnPSe3薄膜上,两个样品有一部分空间交叠。再根据异质结结构的形状和尺寸定义制备源漏电极。
优选地,MnPSe3薄膜和TMD薄膜厚度控制在1nm-50nm之间。
优选地,TMD材料包括MoS2,WSe2,WS2,MoSe2,MoTe2,WTe2,ReS2
实施例6:
参考图1(h),首先将两片剥离好的石墨烯/过渡金属硫属化合物(TMD)转移到Si/SiO2衬底上,后将剥离的MnPSe3薄膜通过光学显微镜和位移台微控手臂转移到两片石墨烯/TMD薄膜之间,使得MnPSe3薄膜两端分别和两片石墨烯/TMD样品有一部分空间交叠。然后再根据样品的形状和尺寸制备源漏电极。
优选地,MnPSe3薄膜和TMD薄膜厚度控制在1nm-50nm之间。
优选地,TMD包括MoS2,WSe2,WS2,MoSe2,MoTe2,WTe2,ReS2
实施例7:
参考图1(i),首先制备好源漏电极,然后再将机械剥离的MnPSe3薄膜转移到源漏电极之上,由于电极具有一定的厚度,因此薄膜和基片之间存在空隙,此时薄膜大部分处于悬空状态。
优选地,为了形成较好的悬空结构,源漏电极的间距控制在10μm之内。
实施例8:
参考图1(j),在MnPSe3沟道上滴一滴离子液体,为了更好地实现探针控制,可以在面内除了源漏之外,增加第三个电极,此电极用作顶栅。离子液体滴在三个电极中间,覆盖三个电极即可。
优选地,离子液体包括DEME-TFSI。
优选地,除了电极和沟道之外,其余地方旋涂光刻胶,比如PMMA,用于防止漏电。
优选地,为了防止漏电,离子液体的用量能覆盖电极和沟道即可。
实施例9:
参考图1(k),在MnPSe3沟道上旋涂一层PMMA作为介电层,然后通过微纳加工技术制备顶栅电极图案,利用真空镀膜技术蒸镀金属电极。
优选地,PMMA厚度控制在0.5-3μm。
实施例10:
参考图1(l),在MnPSe3沟道上滴一滴去离子水,用作顶栅。然后将探针插入水中,即可实现顶栅对沟道的调制。
优选地,为了防止水解反应,顶栅的电压扫描范围应控制在电化学窗口之内。
优选地,为了防止漏电,除了电极和沟道外,其余地方旋涂光刻胶进行保护。
实施例11:
参考图1(m),在MnPSe3沟道上面旋涂一层铁电薄膜共聚物P(VDF-TrFE)作为介电层,然后在120-150℃之间退火数小时进行晶化。通过微纳加工技术定义顶栅电极图案,利用真空镀膜技术蒸镀金属电极。
优选地,P(VDF-TrFE)的原料,偏氟乙烯(VDF)和三氟乙烯(TrFE)摩尔配比包括60:40,70:30,75:25,80:20,薄膜厚度控制在100-500nm。
优选地,在P(VDF-TrFE)上沉积的顶栅电极厚度控制在30nm以下,保证较好的透光性。
实施例12:
参考图1(n),在Si/SiO2衬底上旋涂一层铁电薄膜P(VDF-TrFE),然后在120-150℃之间退火数小时进行晶化。然后将剥离好的MnPSe3薄片转移到P(VDF-TrFE)薄膜上,后通过微纳加工技术和真空镀膜技术制备源漏电极。
优选地,P(VDF-TrFE)原料VDF和TrFE摩尔配比包括60:40,70:30,75:25,80:20,薄膜厚度控制在100-500nm。
实施例13:
参考图1(o),在MnPSe3沟道上溅射/转移一层介电层,在介电层的表面制备顶栅电极。
优选地,介电层包括BN,Al2O3,HfO2
优选地,顶栅电极厚度控制在30nm以下,保证较好的透光性。
实施例14:
参考图1(p),首先在基片上预先制备一层无机铁电薄膜,再在无机铁电薄膜上转移MnPSe3薄片,再通过微纳加工技术和真空镀膜技术制备源漏电极。
优选地,基片包括Si/SiO2,SrNbTiO3,SrTiO3,LaAlO3,Al2O3,ITO。
优选地,铁电薄膜包括PbZrTiO3,BaTiO3,BiFeO3,Hf1-xZrxO2,CuInP2S6,In2Se3
优选地,铁电薄膜的厚度控制在10nm-500nm之间。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种基于层状MnPSe3场效应晶体管结构的光电探测器,包括:Si/SiO2衬底、MnPSe3薄膜、源漏电极和栅电极,其特征在于:提出一种MnPSe3场效应晶体管结构的光电探测器,包括MnPSe3表面被光敏剂敏化,或金属纳米颗粒修饰MnPSe3表面,或MnPSe3和其它半导体材料叠放在一起,构成异质结结构,或MnPSe3薄膜不直接接触衬底,和衬底之间形成悬空结构,或以离子液体、聚甲基丙烯酸甲酯、去离子水、铁电材料或高介电材料作为栅介电层。
2.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,其特征在于:Si/SiO2衬底是重掺n或重掺p型Si。
3.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,其特征在于:MnPSe3薄膜厚度控制在1 nm-100 nm之间。
4.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,其特征在于:源漏极电极是Au、Cr或Ti金属电极。
5.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,MnPSe3表面被敏化的特征在于:将光敏剂溶液在MnPSe3表面进行旋涂,光敏剂包括PbS、PbSe、PbTe、CdS、CdSe、CdTe量子点。
6.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,金属颗粒修饰特征在于:通过镀膜技术蒸发并退火的方式或者溶液旋涂的方法制备纳米金属颗粒的修饰层,金属材料包括Au、Ag、Al或Cu,金属颗粒位于MnPSe3薄膜的上表面,或位于MnPSe3薄膜的下表面。
7.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,MnPSe3和其它半导体材料叠放在一起,构成异质结结构,其特征在于:通过转移和光刻的方法在MnPSe3沟道的表面叠放另一层薄膜材料,构成异质结结构,源和漏电极分别位于异质结的一端。
8.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,MnPSe3薄膜不直接接触衬底,和衬底之间形成悬空结构,其特征在于:MnPSe3薄膜不直接放在衬底上,而是薄膜两侧分别搭在已有的源、漏电极上,或者分别搭在另外两个薄膜材料上,造成MnPSe3薄膜中间大部分是悬空的。
9. 根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,其特征在于:以离子液体、聚甲基丙烯酸甲酯(PMMA)、去离子水、氮化硼(BN)、铁电材料或高介电材料作为栅介电层,其中离子液体包括双(三氟甲基磺酰基)二酰亚胺二乙基甲基(2-甲氧基乙基)铵(DEME-TFSI),铁电材料包括聚偏二氟乙烯-三氟乙烯共聚物P(VDF-TrFE)、PbZrTiO3、BaTiO3、BiFeO3、CuInP2S6、Hf1-xZrxO2或 In2Se3, 高介电材料包括HfO2或Al2O3
10.根据权利要求1所述的层状MnPSe3场效应晶体管结构的光电探测器,其特征在于:在源漏电极间加一个驱动电压Vds,在栅源之间加一个控制电压Vgs,测量晶体管光、暗态下的输出(Ids-Vds)和转移曲线(Ids-Vgs),获得暗电流、光/暗电流比和光电灵敏度。
CN202010851284.0A 2020-08-21 2020-08-21 一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器 Active CN112103353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010851284.0A CN112103353B (zh) 2020-08-21 2020-08-21 一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010851284.0A CN112103353B (zh) 2020-08-21 2020-08-21 一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器

Publications (2)

Publication Number Publication Date
CN112103353A CN112103353A (zh) 2020-12-18
CN112103353B true CN112103353B (zh) 2023-07-18

Family

ID=73754074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010851284.0A Active CN112103353B (zh) 2020-08-21 2020-08-21 一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器

Country Status (1)

Country Link
CN (1) CN112103353B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709280B (zh) * 2022-03-28 2024-05-24 国家纳米科学中心 一种光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342345A (zh) * 2017-06-27 2017-11-10 重庆大学 一种基于铁电栅介质和薄层二硫化钼沟道的光电晶体管
WO2019043127A1 (en) * 2017-09-01 2019-03-07 Inprother Aps VACCINE FOR USE IN PROPHYLAXIS AND / OR TREATMENT OF DISEASE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227208B (zh) * 2013-04-10 2016-12-28 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、阵列基板和显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342345A (zh) * 2017-06-27 2017-11-10 重庆大学 一种基于铁电栅介质和薄层二硫化钼沟道的光电晶体管
WO2019043127A1 (en) * 2017-09-01 2019-03-07 Inprother Aps VACCINE FOR USE IN PROPHYLAXIS AND / OR TREATMENT OF DISEASE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Electrical Control of Magnetic Behavior and Valley Polarization of Monolayer Antiferromagnetic MPSe3 on an insulating ferroelectric substrate from first principles";Qi Pei et al.;《Phys. Rev. Applied》;20190107;全文 *

Also Published As

Publication number Publication date
CN112103353A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Hong et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry
Jin et al. High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films
Ghosh et al. Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral pn homojunction
Lee et al. High-responsivity multilayer MoSe2 phototransistors with fast response time
de Melo et al. Semi-transparent p-Cu2O/n-ZnO nanoscale-film heterojunctions for photodetection and photovoltaic applications
An et al. Self-powered ZnS nanotubes/Ag nanowires MSM UV photodetector with high on/off ratio and fast response speed
Zheng et al. General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach
Wang et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors
Kumar et al. Preparation of nanocrystalline Sb doped PbS thin films and their structural, optical, and electrical characterization
Xu et al. SnS2/Si vertical heterostructure for high-performance photodetection with large photocurrent and fast speed
Yang et al. Developing seedless growth of ZnO micro/nanowire arrays towards ZnO/FeS2/CuI PIN photodiode application
Pradel et al. Optoelectronic properties of solution grown ZnO np or pn core–shell nanowire arrays
Lee et al. Metal-semiconductor-metal near-ultraviolet (~ 380 nm) photodetectors by selective area growth of ZnO nanorods and SiO 2 passivation
Yang et al. Selective p-doping of 2D WSe2 via UV/ozone treatments and its application in field-effect transistors
Naqi et al. Nanonet: Low-temperature-processed tellurium nanowire network for scalable p-type field-effect transistors and a highly sensitive phototransistor array
CN108400198A (zh) 面内非对称局域场调控的低维纳米光电探测器及制备方法
Ramakrishnan et al. Review on metal sulfide-based nanostructures for photodetectors: from ultraviolet to infrared regions
Özdal et al. Fabrication and characterization of ZnO/Cu2O heterostructures for solar cells applications
Song et al. Fabrication of PZT/CuO composite films and their photovoltaic properties
CN112103353B (zh) 一种基于磷硒化锰(MnPSe3)场效应晶体管结构的光电探测器
CN113193071B (zh) 一种栅压可调的氧化锌紫外光电探测器及其制备方法
Wang et al. New Approach to Low-Power-Consumption, High-Performance Photodetectors Enabled by Nanowire Source-Gated Transistors
Thakar et al. Multi-bit analog transmission enabled by electrostatically reconfigurable ambipolar and anti-ambipolar transport
Xu et al. High-performance broadband phototransistor based on TeO x/IGTO heterojunctions
Li et al. Poly (vinyl alcohol)-Assisted Exfoliation of van der Waals Materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant