JP7266282B2 - Heat storage material composition - Google Patents

Heat storage material composition Download PDF

Info

Publication number
JP7266282B2
JP7266282B2 JP2019019226A JP2019019226A JP7266282B2 JP 7266282 B2 JP7266282 B2 JP 7266282B2 JP 2019019226 A JP2019019226 A JP 2019019226A JP 2019019226 A JP2019019226 A JP 2019019226A JP 7266282 B2 JP7266282 B2 JP 7266282B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
material composition
heat
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019226A
Other languages
Japanese (ja)
Other versions
JP2019137854A (en
Inventor
直達 矢野
Original Assignee
株式会社ヤノ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヤノ技研 filed Critical 株式会社ヤノ技研
Publication of JP2019137854A publication Critical patent/JP2019137854A/en
Application granted granted Critical
Publication of JP7266282B2 publication Critical patent/JP7266282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

本発明は、蓄熱材組成物に関する。 The present invention relates to a heat storage material composition.

従来より、所定の温度範囲における固体と液体との間の相変化(固液相変化)を利用して蓄熱(熱吸収)及び放熱(熱放出)を行う蓄熱材(潜熱蓄熱材、顕熱蓄熱材、蓄熱資材等)が知られている。蓄熱材は、例えば、多くの冷熱や温熱を必要とする建物(住宅やオフィスビル等)の冷暖房設備や工場の排熱回収設備等の様々な分野に幅広く利用されている。 Conventionally, heat storage materials (latent heat storage materials, sensible heat storage materials) that store heat (heat absorption) and release heat (heat release) by utilizing the phase change between solid and liquid (solid-liquid phase change) in a predetermined temperature range materials, heat storage materials, etc.) are known. Heat storage materials are widely used in various fields, for example, air-conditioning equipment for buildings (houses, office buildings, etc.) that require a large amount of cold heat and heat, and exhaust heat recovery equipment for factories.

蓄熱材に関する技術として、例えば、特開平11-323319号公報(特許文献1)には、酢酸ナトリウム3水塩に、相分離防止材として親水性フュームドシリカ、親水性フュームドアルミナ及びカルシウム塩を配合した潜熱蓄熱材組成物が開示されている。これにより、長期に亘って融解-凝固のヒートサイクルを繰り返しても相分離が起こらないとしている。 As a technique related to the heat storage material, for example, Japanese Patent Application Laid-Open No. 11-323319 (Patent Document 1) discloses that sodium acetate trihydrate is added with hydrophilic fumed silica, hydrophilic fumed alumina and calcium salt as phase separation inhibitors. A compounded latent heat storage material composition is disclosed. As a result, even if the heat cycle of melting and solidification is repeated over a long period of time, phase separation does not occur.

又、特開2000-63810号公報(特許文献2)には、一般式CaCl・nHO(ここでnは4.5~6.5)の組成を有する塩化カルシウム水和物100重量部に対し、多価アルコール10~35重量部と、アルカリ金属、アルカリ土類金属のハロゲン化物(但し、塩化ストロンチウムと塩化バリウムを除く)の一種又は複数の1~30重量部と、塩化ストロンチウム及び/または塩化バリウム0.1~20重量部とを混合し、更に必要に応じてアタパルジャイト、ワラストナイト、セピオライトなどの繊維状鉱物の一種又は複数の0.1~20重量部を混合してなる潜熱蓄熱材組成物が開示されている。これにより、凝固点が比較的低温領域(5~25℃)にあり、空調用冷暖房システムの蓄熱材として使用できるとしている。 Further, Japanese Patent Application Laid-Open No. 2000-63810 (Patent Document 2) describes 100 parts by weight of calcium chloride hydrate having a composition of the general formula CaCl 2 ·nH 2 O (where n is 4.5 to 6.5). 10 to 35 parts by weight of a polyhydric alcohol, 1 to 30 parts by weight of one or more halides of alkali metals and alkaline earth metals (excluding strontium chloride and barium chloride), strontium chloride and/or Alternatively, the latent heat obtained by mixing 0.1 to 20 parts by weight of barium chloride and, if necessary, 0.1 to 20 parts by weight of one or more fibrous minerals such as attapulgite, wollastonite, and sepiolite. A thermal storage material composition is disclosed. As a result, the freezing point is in the relatively low temperature range (5 to 25°C), and it is said that it can be used as a heat storage material for air conditioning cooling and heating systems.

又、特開2015-218212号公報(特許文献3)には、潜熱蓄熱物質(イ)を主成分とし、融点調整剤(ロ)、微細結晶生成作用および過冷却防止作用および増粘作用を有する相分離防止剤(ハ)および/または微細結晶生成作用を有する融点調整剤(ロ’)、過冷却防止剤(ニ)を必須成分として所定量配合した潜熱蓄熱材組成物であって、潜熱蓄熱物質と融点調整剤、相分離防止剤、過冷却防止剤を所定量配合して溶融混合冷却して得られる潜熱蓄熱材組成物が開示されている。これにより、常温-常圧下で柔軟性ないし流動性を有する微細な粒子の集合体を主成分として構成し、相分離せず、過冷却現象が発生せず、優れた蓄熱~放熱を安定して繰り返すことができ、流動可能な熱搬送媒体としても利用できるとしている。 In addition, in JP-A-2015-218212 (Patent Document 3), a latent heat storage material (a) is the main component, and a melting point adjuster (b) has a fine crystal formation action, a supercooling prevention action, and a thickening action. A latent heat storage material composition containing a predetermined amount of a phase separation inhibitor (c) and/or a melting point adjuster (b') having a fine crystal forming action and a supercooling inhibitor (d) as essential components, the latent heat storage material composition comprising: A latent heat storage material composition obtained by blending a substance with a melting point adjuster, a phase separation inhibitor, and a supercooling inhibitor in predetermined amounts and melt-mixing and cooling the mixture is disclosed. As a result, it is composed mainly of aggregates of fine particles that are flexible or fluid under normal temperature and pressure, does not undergo phase separation, does not cause supercooling, and provides excellent heat storage and heat dissipation stably. It is said that it can be used as a heat transfer medium that can be repeated and flowable.

又、特開2016-108535号公報(特許文献4)には、糖アルコールと、過冷却安定化剤と、を含有し、過冷却安定化剤は、(i)20℃の水100mLに対する溶解度が9g以上であり、かつ、1価のアニオンである塩、(ii)塩をモノマーとするポリマー、又は(iii)20℃の水100mLに対する溶解度が9g以上であるアルコールをモノマーとする、7000~400万の分子量を有するポリマーである、蓄熱材組成物が開示されている。これにより、室温又は室温に近い温度で過冷却状態を安定的に保つことができるとしている。 Further, Japanese Patent Application Laid-Open No. 2016-108535 (Patent Document 4) contains a sugar alcohol and a supercooling stabilizer, and the supercooling stabilizer (i) has a solubility in 100 mL of water at 20 ° C. 9 g or more and a salt that is a monovalent anion, (ii) a polymer containing a salt as a monomer, or (iii) an alcohol having a solubility of 9 g or more in 100 mL of water at 20°C as a monomer, 7000 to 400 A heat storage material composition is disclosed that is a polymer having a molecular weight of 10,000. As a result, the supercooled state can be stably maintained at room temperature or a temperature close to room temperature.

本出願人は、例えば、再表2007/099798号公報(特許文献5)で、主成分として塩化カルシウムを含有する蓄熱材組成物であって、核形成材として塩化ストロンチウムと塩化バリウムとを含有し、且つ増粘材としてセルロース系材料を含有する蓄熱材組成物を開示している。これにより、常温を超えるような高温状態に何度も晒されるような条件下においても、劣化し難く、高い耐久性と耐熱性を有するとしている。 For example, the present applicant discloses a heat storage material composition containing calcium chloride as a main component and containing strontium chloride and barium chloride as nucleating materials in Retable 2007/099798 (Patent Document 5). and a heat storage material composition containing a cellulosic material as a thickener. As a result, even under conditions where it is repeatedly exposed to high temperatures exceeding room temperature, it is difficult to deteriorate and has high durability and heat resistance.

特開平11-323319号公報JP-A-11-323319 特開2000-63810号公報JP-A-2000-63810 特開2015-218212号公報JP 2015-218212 A 特開2016-108535号公報JP 2016-108535 A 再表2007/099798号公報Retable 2007/099798

上述した固液相変化を利用した蓄熱材組成物では、通常、熱伝導率が全体として低いため、周囲環境からの蓄熱や周囲環境への放熱が迅速に行われ難く、蓄熱・放熱に時間が掛かるという課題がある。そのため、蓄熱材組成物の熱伝導率の低さを補うために、例えば、表面積が広い容器に蓄熱材組成物を収容して、周囲環境に対して蓄熱材組成物の表面積を広げる対策が行われるが、この場合、容器の形状が限定されるという課題がある。 In the heat storage material composition using the solid-liquid phase change described above, the thermal conductivity is generally low as a whole, so it is difficult to quickly store heat from the surrounding environment and release heat to the surrounding environment, and it takes time to store and release heat. There is a problem of hanging. Therefore, in order to compensate for the low thermal conductivity of the heat storage material composition, for example, measures are taken to increase the surface area of the heat storage material composition with respect to the surrounding environment by housing the heat storage material composition in a container with a large surface area. However, in this case, there is a problem that the shape of the container is limited.

一方、熱伝導率を高める方法として、熱伝導率が高い粒子を添加する方法が考えられるが、単純に粒子を蓄熱材組成物中に添加しても、粒子が蓄熱材組成物と分離して沈殿するという課題がある。 On the other hand, as a method for increasing the thermal conductivity, a method of adding particles having a high thermal conductivity is conceivable. There is a problem of precipitation.

これらの課題に対して、上述した特許文献1-5に記載の技術では解決することは出来ない。 These problems cannot be solved by the techniques described in Patent Documents 1 to 5 mentioned above.

そこで、本発明は、前記課題を解決するためになされたものであり、迅速な蓄熱・放熱を可能とするとともに、安定的に繰り返し使用を可能とする蓄熱材組成物を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a heat storage material composition that enables rapid heat storage and heat release, and that can be stably and repeatedly used. do.

本発明に係る蓄熱材組成物は、所定の温度範囲において固体と液体との間で相変化を行う固液相変化材と、水と、塩化ストロンチウムを主成分とする核形成材と、黒鉛粉末とを含有する。前記黒鉛粉末の濃度が、全蓄熱材組成物に対して1.0重量%~10.0重量%である。又、本発明に係る蓄熱材組成物は、所定の温度範囲において固体と液体との間で相変化を行う固液相変化材と、水と、塩化ストロンチウムを主成分とする核形成材と、黒鉛粉末と、親水性の増粘剤と、を含有する。又、前記増粘剤の濃度が、全蓄熱材組成物に対して0.1重量%~5.0重量%である。 The heat storage material composition according to the present invention includes a solid-liquid phase change material that undergoes a phase change between a solid and a liquid within a predetermined temperature range, water, a nucleating material containing strontium chloride as a main component, and graphite powder. and The concentration of the graphite powder is 1.0% by weight to 10.0% by weight with respect to the total heat storage material composition. Further, the heat storage material composition according to the present invention includes a solid-liquid phase change material that undergoes a phase change between a solid and a liquid within a predetermined temperature range, water, and a nucleating material containing strontium chloride as a main component, It contains graphite powder and a hydrophilic thickener. Further, the concentration of the thickening agent is 0.1% by weight to 5.0% by weight with respect to the total heat storage material composition.

本発明によれば、迅速な固液の相変化を実現するとともに、繰り返し使用を可能となる。 According to the present invention, rapid solid-liquid phase change is realized, and repeated use becomes possible.

実施例1-4と、比較例1の蓄熱材組成物の成分表である。1 is a component table of heat storage material compositions of Examples 1-4 and Comparative Example 1. FIG. 5回目のヒートサイクルにおける実施例1-4と、比較例1の蓄熱材組成物の温度変化のグラフである。5 is a graph of temperature changes of the heat storage material compositions of Examples 1-4 and Comparative Example 1 in the fifth heat cycle. 実施例5-8と、比較例1の蓄熱材組成物の成分表である。5 is a component table of heat storage material compositions of Examples 5 to 8 and Comparative Example 1. FIG. 5回目のヒートサイクルにおける実施例5-8と、比較例1の蓄熱材組成物の温度変化のグラフである。5 is a graph of temperature changes of the heat storage material compositions of Examples 5 to 8 and Comparative Example 1 in the fifth heat cycle. 26回目のヒートサイクルにおける実施例5-8と、比較例1の蓄熱材組成物の温度変化のグラフである。5 is a graph of temperature changes of the heat storage material compositions of Examples 5 to 8 and Comparative Example 1 in the 26th heat cycle. 実施例9-12と、比較例1の蓄熱材組成物の成分表である。2 is a component table of heat storage material compositions of Examples 9 to 12 and Comparative Example 1. FIG. 5回目のヒートサイクルにおける実施例9-12と、比較例1の蓄熱材組成物の温度変化のグラフである。10 is a graph of temperature changes of the heat storage material compositions of Examples 9 to 12 and Comparative Example 1 in the fifth heat cycle. 10回目のヒートサイクルにおける実施例9-12と、比較例1の蓄熱材組成物の温度変化のグラフである。10 is a graph of temperature changes of the heat storage material compositions of Examples 9 to 12 and Comparative Example 1 in the 10th heat cycle. 実施例13-14と、比較例1の蓄熱材組成物の成分表である。1 is a component table of heat storage material compositions of Examples 13 and 14 and Comparative Example 1. FIG. 15回目のヒートサイクルにおける実施例13-14と、比較例1の蓄熱材組成物の温度変化のグラフである。10 is a graph of temperature changes of the heat storage material compositions of Examples 13 and 14 and Comparative Example 1 in the fifteenth heat cycle. 実施例13におけるヒートサイクル前の初期と55回目のヒートサイクル後と120回目のヒートサイクル後の試験管写真と、実施例14におけるヒートサイクル前の初期と30回目のヒートサイクル後と80回目のヒートサイクル後の試験管写真とである。Photographs of the test tube at the initial stage before the heat cycle, after the 55th heat cycle, and after the 120th heat cycle in Example 13, and at the initial stage before the heat cycle, after the 30th heat cycle, and after the 80th heat cycle in Example 14. It is a test tube photograph after the cycle. 比較例1-5の蓄熱材組成物の成分表である。4 is a component table of a heat storage material composition of Comparative Examples 1-5. 1回目のヒートサイクルにおける比較例1-5の蓄熱材組成物の温度変化のグラフである。5 is a graph of temperature change of the heat storage material composition of Comparative Example 1-5 in the first heat cycle. 5回目のヒートサイクルにおける比較例1-5の蓄熱材組成物の温度変化のグラフである。10 is a graph of temperature change of the heat storage material composition of Comparative Example 1-5 in the fifth heat cycle.

以下に、添付図面を参照して、本発明の実施形態について説明し、本発明の理解に供する。尚、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiment is an example that embodies the present invention, and is not intended to limit the technical scope of the present invention.

所定の温度範囲において固体と液体との間で相変化を行う固液相変化材と、水と、塩化ストロンチウムを主成分とする核形成材と、を含有する通常の蓄熱材組成物では、熱伝導率が低いため、蓄熱や放熱の速度が低かった。又、熱伝導率が高い粒子を添加しても、蓄熱材組成物(水溶液)の比重が粒子の比重と異なるため、添加後の粒子が直ぐに沈殿し、蓄熱材組成物の熱伝導率の改善に繋がらなかった。 In a typical heat storage material composition containing a solid-liquid phase change material that undergoes a phase change between a solid and a liquid within a predetermined temperature range, water, and a nucleating material containing strontium chloride as a main component, heat Due to its low conductivity, the rate of heat storage and heat release was low. In addition, even if particles with high thermal conductivity are added, since the specific gravity of the heat storage material composition (aqueous solution) differs from the specific gravity of the particles, the particles immediately precipitate after addition, improving the thermal conductivity of the heat storage material composition. did not connect to

本発明者は、長年、上述の蓄熱材組成物について研究しており、蓄熱材組成物(水溶液)の比重が約1.5であること、金属を凌駕する熱伝導率を有する素材として黒鉛が存在すること{黒鉛の熱伝導率は約2000W/(m・K)、銅の熱伝導率は約400W/(m/K)}、黒鉛粉末の比重が約2.0であることに着目し、後述する実施例に基づいて、本発明を完成させたのである。 The inventor of the present invention has been researching the above-mentioned heat storage material composition for many years, and has found that the specific gravity of the heat storage material composition (aqueous solution) is about 1.5, and that graphite is a material having a thermal conductivity surpassing that of metals. [The thermal conductivity of graphite is about 2000 W / (m K), the thermal conductivity of copper is about 400 W / (m / K)], and the specific gravity of graphite powder is about 2.0. The present invention was completed based on the examples described later.

即ち、本発明に係る蓄熱材組成物は、所定の温度範囲において固体と液体との間で相変化を行う固液相変化材と、水と、塩化ストロンチウムを主成分とする核形成材と、黒鉛粉末とを含有する。これにより、迅速な蓄熱・放熱を可能とするとともに、安定的に繰り返し使用を可能となる。 That is, the heat storage material composition according to the present invention includes a solid-liquid phase change material that undergoes a phase change between a solid and a liquid within a predetermined temperature range, water, and a nucleating material containing strontium chloride as a main component, graphite powder. As a result, it is possible to quickly store and release heat, and to use it stably and repeatedly.

つまり、黒鉛粉末の比重が蓄熱材組成物の比重に近いため、蓄熱材組成物に黒鉛粉末を添加すると、黒鉛粉末が蓄熱材組成物中に均一に分散し、蓄熱材組成物全体の熱伝導率を高める。上述のように、黒鉛粉末の熱伝導率は、金属の熱伝導率を凌駕する程、高いため、蓄熱材組成物の蓄熱・放熱の速度を速める。 That is, since the specific gravity of the graphite powder is close to the specific gravity of the heat storage material composition, when the graphite powder is added to the heat storage material composition, the graphite powder is uniformly dispersed in the heat storage material composition, and the entire heat storage material composition is heat conductive. increase rate. As described above, the thermal conductivity of graphite powder is so high that it surpasses that of metals, so that the thermal storage material composition accelerates the rate of heat storage and heat release.

尚、他の熱伝導性粉末、例えば、四酸化三鉄(Fe)等では、熱伝導性粉末の比重が蓄熱材組成物の比重とかけ離れるため、蓄熱材組成物の蓄熱・放熱の速度を向上させる効果は無い。 In the case of other thermally conductive powders such as triiron tetroxide (Fe 3 O 4 ), the specific gravity of the thermally conductive powder is far from the specific gravity of the heat storage material composition. There is no effect to improve the speed of

又、高温(約60℃)から低温(約0℃)へ下げた後に再度高温へ上げるヒートサイクルにおいて、蓄熱材組成物の融解と凝固を繰り返しても、黒鉛粉末が固液相変化材への熱伝導の媒体となり、蓄熱材組成物の蓄熱・放熱が安定して行われ、過冷却現象を抑える。そのため、長期間の繰り返し使用も可能となる。 In addition, in a heat cycle in which a high temperature (about 60°C) is lowered to a low temperature (about 0°C) and then raised to a high temperature again, even if the heat storage material composition is repeatedly melted and solidified, the graphite powder transforms into a solid-liquid phase change material. It acts as a medium for heat conduction, stably stores and releases heat from the heat storage material composition, and suppresses supercooling. Therefore, long-term repeated use is also possible.

ここで、固液相変化材の種類に特に限定は無いが、例えば、塩化カルシウム、酢酸ナトリウム、リン酸水素ナトリウム等を挙げることが出来る。塩化カルシウムとは、周囲の環境の温度が変化することで、蓄熱材組成物中において、塩化カルシウム6水和物結晶(固体)と塩化カルシウム水液体(液体)との間を相変化する成分である。蓄熱材組成物の塩化カルシウムは、無水物(CaCl)やその水和物{CaCl・nHO(n=1~6)}を採用することが出来る。特に、塩化カルシウム二水和物は比較的入手し易く、好ましい。尚、蓄熱材組成物に添加される水の量は、塩化カルシウム6水和物の生成に必要な量であり、他の成分の添加による水の量の変化等により若干変動するが、1モルのCaClに対して6モル程度である。又、水の量は、塩化カルシウムとして水和物を用いた場合には、その水和物中の結晶水も含めて6モル程度である。 Here, the type of solid-liquid phase change material is not particularly limited, but examples thereof include calcium chloride, sodium acetate, and sodium hydrogen phosphate. Calcium chloride is a component that undergoes a phase change between calcium chloride hexahydrate crystals (solid) and calcium chloride water liquid (liquid) in the heat storage material composition as the temperature of the surrounding environment changes. be. Anhydride (CaCl 2 ) or its hydrate {CaCl 2 ·nH 2 O (n=1 to 6)} can be used as the calcium chloride of the heat storage material composition. In particular, calcium chloride dihydrate is relatively readily available and preferred. The amount of water added to the heat storage material composition is the amount necessary for producing calcium chloride hexahydrate, and may vary slightly due to changes in the amount of water caused by the addition of other components. is about 6 mol for CaCl2 . Also, when a hydrate is used as calcium chloride, the amount of water is about 6 mol including the water of crystallization in the hydrate.

尚、他の固液相変化材についても、相変化の温度範囲が異なるものの、所定の温度範囲において、塩化カルシウムと同様の相変化を行い、蓄熱及び放熱を生じさせる。これらの種類の固液相変化材は適宜組み合わせても良い。 Other solid-liquid phase change materials also undergo a phase change similar to that of calcium chloride within a predetermined temperature range, and cause heat storage and heat dissipation, although the phase change temperature range is different. These types of solid-liquid phase change materials may be combined as appropriate.

又、核形成材は、上述のように塩化ストロンチウムを主成分とする。ここで、核形成材には、塩化ストロンチウムの他の成分を含有しても良く、例えば、塩化バリウム、硫化バリウムを含有しても構わない。特に、塩化ストロンチウム、塩化バリウム、硫化バリウムを含有する場合、例えば、それぞれの無水物(SrCl・BaCl・BaS)を用いても良いし、これらの化合物の水和物を用いても良い。又、その他の核形成材として、リン酸水素二ナトリウム12水和物(NaHPO・12HO)やフライアッシュを含有しても構わない。 Further, the nucleating material is mainly composed of strontium chloride as described above. Here, the nucleating material may contain components other than strontium chloride, such as barium chloride and barium sulfide. In particular, when strontium chloride, barium chloride, and barium sulfide are contained, for example, their anhydrides (SrCl 2 ·BaCl 2 ·BaS) may be used, or hydrates of these compounds may be used. Further, disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 .12H 2 O) and fly ash may be contained as other nucleating materials.

ここで、黒鉛粉末における黒鉛の種類に特に限定は無いが、例えば、鱗状黒鉛、土状黒鉛、人造黒鉛、コークス、膨張黒鉛、球状黒鉛、特殊処理黒鉛、球状黒鉛、炭素繊維(カーボンファイバー)、カーボンナノチューブ等を挙げることが出来る。又、黒鉛粉末は、固液相変化材を含む水溶液中での分散性を向上させるために、親水性表面処理を施されると、好ましい。これらの種類の黒鉛粉末は適宜組み合わせても良い。 Here, the type of graphite in the graphite powder is not particularly limited. A carbon nanotube etc. can be mentioned. Further, the graphite powder is preferably subjected to a hydrophilic surface treatment in order to improve its dispersibility in an aqueous solution containing a solid-liquid phase change material. These types of graphite powder may be combined as appropriate.

又、黒鉛粉末の平均粒子径に特に限定は無いが、例えば、平均粒子径が5μm~20μmであると好ましく、平均粒子径が5μm~15μmであると更に好ましい。 The average particle size of the graphite powder is not particularly limited, but for example, the average particle size is preferably 5 μm to 20 μm, more preferably 5 μm to 15 μm.

又、黒鉛粉末の濃度が高い程、蓄熱材組成物中の黒鉛粉末が相互に接触して、黒鉛粉末のネットワークを形成し、蓄熱材組成物全体の熱伝導率を高めるため、好ましいが、黒鉛粉末の濃度が高すぎると、固液相変化材の融解と凝固に支障をきたす。そのため、例えば、黒鉛粉末の濃度は、全蓄熱材組成物に対して1重量%~10重量%であると好ましい。 Also, the higher the concentration of the graphite powder, the more the graphite powder in the heat storage material composition comes into contact with each other to form a graphite powder network, which increases the thermal conductivity of the entire heat storage material composition. If the powder concentration is too high, it interferes with the melting and solidification of the solid-liquid phase change material. Therefore, for example, the concentration of graphite powder is preferably 1% by weight to 10% by weight with respect to the total heat storage material composition.

更に、本発明に係る蓄熱材組成物は、所定の温度範囲において固体と液体との間で相変化を行う固液相変化材と、水と、塩化ストロンチウムを主成分とする核形成材と、黒鉛粉末と、親水性の増粘剤とを含有する。このように、親水性増粘剤を添加することで、蓄熱材組成物中の水と親和し、蓄熱材組成物全体の粘度を増加させ、蓄熱材組成物の比重と黒鉛粉末の比重に微少な差異があるとしても、蓄熱材組成物中の黒鉛粉末の偏析を抑え、黒鉛粉末を全体に分散させた状態で固定することが可能となる。そのため、蓄熱材組成物全体の熱伝導率を高い状態に保つことが可能となり、固液相変化材の固液相変化を迅速化し、固液相変化材の融解及び凝固の速度を速める。 Further, the heat storage material composition according to the present invention includes a solid-liquid phase change material that undergoes a phase change between a solid and a liquid within a predetermined temperature range, water, and a nucleating material containing strontium chloride as a main component, It contains graphite powder and a hydrophilic thickener. Thus, by adding a hydrophilic thickener, it becomes compatible with water in the heat storage material composition, increases the viscosity of the entire heat storage material composition, and increases the specific gravity of the heat storage material composition and the specific gravity of the graphite powder. Even if there is a large difference, segregation of the graphite powder in the heat storage material composition can be suppressed, and the graphite powder can be fixed in a state of being dispersed throughout. Therefore, the thermal conductivity of the entire heat storage material composition can be kept high, the solid-liquid phase change of the solid-liquid phase change material is accelerated, and the melting and solidification speeds of the solid-liquid phase change material are accelerated.

ここで、増粘剤は、親水性であれば、増粘剤の種類に特に限定は無いが、例えば、PEG/PPG等の水溶性コポリマー、カルボキシメチルセルロース、ヒプロメロース(メチルヒドロキシエチルセルロース)等のヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、セルロース誘導体、セルロースナノファイバー、カルボキシビニルポリマー、アクリル酸・メタクリル酸アルキル共重合体、ポリアクリル酸塩等の架橋型アクリル酸系水溶性ポリマー、キサンタンガム、デュータンガム、多糖体、ポリアクリル酸ナトリウム、微粉末シリカ、シリカフラワー、珪藻土微粉末、グリセリン、寒天等を挙げることが出来る。これらの種類の増粘剤は適宜組み合わせても良い。 Here, the type of thickening agent is not particularly limited as long as it is hydrophilic. , hydroxypropyl methylcellulose, cellulose derivatives, cellulose nanofibers, carboxyvinyl polymer, acrylic acid/methacrylate alkyl copolymer, cross-linked acrylic acid-based water-soluble polymers such as polyacrylates, xanthan gum, dutan gum, polysaccharides, polyacryl sodium phosphate, finely powdered silica, silica flour, finely powdered diatomaceous earth, glycerin, agar, and the like. These types of thickeners may be combined as appropriate.

又、増粘剤は、蓄熱材組成物中の水と親和してネットワークを形成し、粘度を増加させるため、増粘剤の濃度は低くても効果を有するが、増粘剤の濃度が高すぎると、固液相変化材の融解と凝固に支障をきたす。そのため、例えば、増粘剤の濃度は、全蓄熱材組成物に対して0.1重量%~3.0重量%であると好ましく、0.1重量%~2.0重量%であると更に好ましい。 In addition, since the thickener has an affinity with water in the heat storage material composition to form a network and increase the viscosity, the effect is obtained even at a low concentration of the thickener. If it is too large, it will hinder the melting and solidification of the solid-liquid phase change material. Therefore, for example, the concentration of the thickening agent is preferably 0.1% by weight to 3.0% by weight, more preferably 0.1% by weight to 2.0% by weight, with respect to the total heat storage material composition. preferable.

又、蓄熱材組成物には、必要に応じて、融点調整材が適宜添加される。ここで、融点調整材とは、固液相変化材の凝固点(融点)を降下させ、潜熱発生温度を変化させる降下剤を意味し、例えば、臭化アンモニウム(NHBr)、塩化アンモニウム(NHCl)等を挙げることが出来る。具体的には、塩化カルシウム6水和物の潜熱発生温度は、その凝固点の約30℃であるが、蓄熱材の使用目的等に応じて、例えば、その凝固点を、20℃前後等、約30℃より低い温度に低下させたい場合がある。そのような場合、蓄熱材組成物に融点調整材を添加することで、蓄熱材組成物の固液相変化材の凝固点を意図的に低下させて、蓄熱材の使用目的に適合させることが出来る。融点調整材の濃度に特に限定は無く、例えば、全蓄熱材組成物に対して1.0重量%~20.0重量%に設定される。 Further, a melting point adjusting material is appropriately added to the heat storage material composition, if necessary. Here, the melting point adjuster means a depressant that lowers the freezing point (melting point) of the solid-liquid phase change material and changes the latent heat generation temperature. 4 Cl) and the like. Specifically, the latent heat generation temperature of calcium chloride hexahydrate is about 30°C of its freezing point. You may want to lower the temperature to below °C. In such a case, by adding a melting point adjusting material to the heat storage material composition, the freezing point of the solid-liquid phase change material of the heat storage material composition can be intentionally lowered to match the purpose of use of the heat storage material. . There is no particular limitation on the concentration of the melting point adjusting material, and for example, it is set to 1.0% by weight to 20.0% by weight with respect to the total heat storage material composition.

又、蓄熱材組成物の使用方法に特に限定は無いが、例えば、蓄熱材組成物を容器に充填・密封した物を蓄熱資材として使用する方法を挙げることが出来る。蓄熱材組成物の熱伝導率が高いため、容器の形状に特に限定は無く、例えば、板状、円柱状等、用途に合わせて適宜設計変更可能である。 The method of using the heat storage material composition is not particularly limited, but for example, a method of filling and sealing the heat storage material composition in a container and using it as the heat storage material can be mentioned. Since the thermal conductivity of the heat storage material composition is high, there is no particular limitation on the shape of the container, and for example, the shape of the container may be plate-shaped, cylindrical, or the like, and the design can be changed as appropriate according to the application.

又、蓄熱材組成物の用途に特に限定は無く、例えば、冷暖房設備、工場の排熱回収設備、ビニールハウス等の農業関連設備、端末装置、携帯端末装置等の電子機器等の蓄熱資材として用いることが出来る。蓄熱資材の利用方法としては、昼間の周囲環境から蓄熱し、夜間の周囲環境へ放熱することで、熱エネルギーの有効利用を図ることが出来る。 In addition, there is no particular limitation on the use of the heat storage material composition, for example, it is used as a heat storage material for cooling and heating equipment, exhaust heat recovery equipment in factories, agricultural equipment such as vinyl greenhouses, electronic equipment such as terminal devices and mobile terminal devices. can do As a method of using the heat storage material, it is possible to effectively utilize thermal energy by storing heat from the surrounding environment during the daytime and dissipating the heat to the surrounding environment at nighttime.

以下に、本発明における実施例、比較例等を具体的に説明するが、本発明の適用が本実施例などに限定されるものではない。 EXAMPLES Examples and comparative examples of the present invention will be specifically described below, but the application of the present invention is not limited to these examples.

<実施例1>
固液相変化材(塩化カルシウム二水和物)(CaCl・2HO)を50.7重量%、融点調整剤(臭化アンモニウム)(NHBr)を10.0重量%、水を24.0重量%、主に塩化ストロンチウム(SrCl)を含有する核形成材を14.2重量%、黒鉛粉末(平均粒子径10.3μm、鱗状黒鉛A)を1.0重量%にして調整した蓄熱材組成物を実施例1の蓄熱材組成物とした。融点調整剤の添加により、蓄熱材組成物の凝固点(融点)を18℃に設定した。
<Example 1>
50.7% by weight of solid-liquid phase change material (calcium chloride dihydrate) (CaCl 2 2H 2 O), 10.0% by weight of melting point modifier (ammonium bromide) (NH 4 Br), water Adjusted to 24.0% by weight, 14.2% by weight of nucleating material mainly containing strontium chloride (SrCl 2 ), and 1.0% by weight of graphite powder (average particle size 10.3 μm, flake graphite A) The resulting heat storage material composition was used as the heat storage material composition of Example 1. The freezing point (melting point) of the heat storage material composition was set to 18° C. by adding the melting point adjuster.

<実施例2>
実施例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末の濃度を3.0重量%に変更する以外は、実施例1と同様にして調整した蓄熱材組成物を実施例2の蓄熱材組成物とした。
<Example 2>
In the heat storage material composition of Example 1, the concentration of the melting point adjuster was fixed, the proportions of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the graphite powder was 3.0% by weight. A heat storage material composition of Example 2 was prepared in the same manner as in Example 1 except that the heat storage material composition was changed to .

<実施例3>
実施例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末の濃度を5.0重量%に変更する以外は、実施例1と同様にして調整した蓄熱材組成物を実施例3の蓄熱材組成物とした。
<Example 3>
In the heat storage material composition of Example 1, the concentration of the melting point adjuster was fixed, the proportions of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the graphite powder was 5.0% by weight. A heat storage material composition of Example 3 was prepared in the same manner as in Example 1 except that the heat storage material composition was changed to .

<実施例4>
実施例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末の濃度を10.0重量%に変更する以外は、実施例1と同様にして調整した蓄熱材組成物を実施例4の蓄熱材組成物とした。
<Example 4>
In the heat storage material composition of Example 1, the concentration of the melting point adjuster was fixed, the proportions of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the graphite powder was 10.0% by weight. A heat storage material composition of Example 4 was prepared in the same manner as in Example 1 except that the heat storage material composition was changed to .

<比較例1>
実施例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末を添加しないこと以外は、実施例1と同様にして調整した蓄熱材組成物を比較例1の蓄熱材組成物とした。尚、図1には、実施例1-4と、比較例1の蓄熱材組成物の成分表を示す。
<Comparative Example 1>
In the heat storage material composition of Example 1, the concentration of the melting point adjuster was fixed, the ratio of the solid-liquid phase change material, water, and nucleation material was the same, and graphite powder was not added. A heat storage material composition prepared in the same manner as in Example 1 was used as a heat storage material composition of Comparative Example 1. 1 shows a component table of the heat storage material compositions of Examples 1 to 4 and Comparative Example 1. As shown in FIG.

<評価方法>
実施例1-4と、比較例1の蓄熱材組成物について、各蓄熱材組成物の周囲温度を所定の時間で約60℃から約0℃まで下げた(冷却)後に、再び約0℃から60℃まで上げる(加熱)操作のヒートサイクルを所定回数繰り返すことで、各蓄熱材組成物の温度変化を測定した。
<Evaluation method>
For the heat storage material compositions of Examples 1-4 and Comparative Example 1, after the ambient temperature of each heat storage material composition was lowered from about 60°C to about 0°C for a predetermined time (cooling), it was again cooled from about 0°C. The temperature change of each heat storage material composition was measured by repeating a predetermined number of heat cycles in which the temperature was raised to 60°C (heating).

<評価結果>
図2には、5回目のヒートサイクルにおける実施例1-4と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図2に示すように、ヒートサイクルの冷却時において、実施例1-4の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、単位時間当たりの冷却温度が大きく、冷却速度が速くなっていることが理解される。更に、黒鉛粉末の濃度が高くなる程、冷却速度を示すグラフの傾きが急になっていることが理解される。
<Evaluation results>
FIG. 2 shows a graph of temperature changes of the heat storage material compositions of Examples 1-4 and Comparative Example 1 in the fifth heat cycle. As shown in FIG. 2, in the cooling of the heat cycle, the heat storage material composition of Example 1-4 has a higher cooling temperature per unit time than the heat storage material composition of Comparative Example 1, and the cooling rate is is faster. Furthermore, it is understood that the higher the concentration of the graphite powder, the steeper the slope of the graph showing the cooling rate.

又、比較例1の蓄熱材組成物では、周囲温度の冷却において、過冷却現象が現れているのに対し、実施例1-4の蓄熱材組成物では、過冷却現象が抑えられていることが理解される。又、黒鉛粉末の濃度が高くなる程、過冷却現象を示すピークがなだらかになっていることが理解される。 Also, in the heat storage material composition of Comparative Example 1, the supercooling phenomenon appears in cooling to the ambient temperature, whereas in the heat storage material composition of Examples 1-4, the supercooling phenomenon is suppressed. is understood. It is also understood that the higher the graphite powder concentration, the smoother the peak indicating the supercooling phenomenon.

一方、ヒートサイクルの加熱時において、実施例1-4の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、単位時間当たりの加熱温度が大きく、加熱速度が速くなり、グラフの立ち上がりが早くなっていることが理解される。更に、黒鉛粉末の濃度が高くなる程、グラフの立ち上がりが早くなっていることが理解される。 On the other hand, at the time of heating in the heat cycle, the heat storage material composition of Example 1-4 had a higher heating temperature per unit time and a faster heating rate than the heat storage material composition of Comparative Example 1, and the graph It is understood that the rise of the Furthermore, it is understood that the higher the concentration of the graphite powder, the earlier the graph rises.

<実施例5>
固液相変化材(塩化カルシウム二水和物)(CaCl・2HO)を49.9重量%、融点調整剤(臭化アンモニウム)(NHBr)を10.0重量%、水を23.6重量%、主に塩化ストロンチウム(SrCl)を含有する核形成材を14.0重量%、黒鉛粉末(平均粒子径10.3μm、鱗状黒鉛A)を1.0重量%、親水性増粘剤(PEG/PPGの水溶性コポリマー、ポリマーA)を1.5重量%にして調整した蓄熱材組成物を実施例1の蓄熱材組成物とした。融点調整剤の添加により、蓄熱材組成物の凝固点(融点)を18℃に設定した。
<Example 5>
49.9% by weight of solid-liquid phase change material (calcium chloride dihydrate) (CaCl 2 2H 2 O), 10.0% by weight of melting point modifier (ammonium bromide) (NH 4 Br), water 23.6% by weight, 14.0% by weight of a nucleating agent containing mainly strontium chloride (SrCl 2 ), 1.0% by weight of graphite powder (average particle size 10.3 μm, flake graphite A), hydrophilic A heat storage material composition of Example 1 was prepared by adding 1.5% by weight of a thickener (a water-soluble copolymer of PEG/PPG, polymer A). The freezing point (melting point) of the heat storage material composition was set to 18° C. by adding the melting point adjuster.

<実施例6>
実施例5の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末の濃度を3.0重量%に変更する以外は、実施例5と同様にして調整した蓄熱材組成物を実施例6の蓄熱材組成物とした。
<Example 6>
In the heat storage material composition of Example 5, the concentration of the melting point adjuster was fixed, the proportions of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the graphite powder was 3.0% by weight. A heat storage material composition of Example 6 was prepared in the same manner as in Example 5 except that the heat storage material composition was changed to .

<実施例7>
実施例5の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末の濃度を5.0重量%に変更する以外は、実施例5と同様にして調整した蓄熱材組成物を実施例7の蓄熱材組成物とした。
<Example 7>
In the heat storage material composition of Example 5, the concentration of the melting point adjuster was fixed, the proportions of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the graphite powder was 5.0% by weight. A heat storage material composition of Example 7 was prepared in the same manner as in Example 5 except that the heat storage material composition was changed to .

<実施例8>
実施例5の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末の濃度を10.0重量%に変更する以外は、実施例5と同様にして調整した蓄熱材組成物を実施例8の蓄熱材組成物とした。尚、図3には、実施例5-8と、比較例1の蓄熱材組成物の成分表を示す。
<Example 8>
In the heat storage material composition of Example 5, the concentration of the melting point adjuster was fixed, the proportions of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the graphite powder was 10.0% by weight. A heat storage material composition of Example 8 was prepared in the same manner as in Example 5 except that the heat storage material composition was changed to . 3 shows a component table of the heat storage material compositions of Examples 5 to 8 and Comparative Example 1. As shown in FIG.

<評価方法>
実施例5-8と、比較例1の蓄熱材組成物について、上述と同様に、ヒートサイクルを所定回数繰り返すことで、各蓄熱材組成物の温度変化を測定した。
<Evaluation method>
For the heat storage material compositions of Examples 5 to 8 and Comparative Example 1, the temperature change of each heat storage material composition was measured by repeating the heat cycle a predetermined number of times in the same manner as described above.

<評価結果>
図4には、5回目のヒートサイクルにおける実施例5-8と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図4に示すように、ヒートサイクルの冷却時において、実施例5-8の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、冷却速度が速いことと、過冷却現象が抑えられていることが確認出来た。又、ヒートサイクルの加熱時において、実施例5-8の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、加熱速度が速いことと、グラフの立ち上がりが早いことが確認出来た。特に、親水性増粘剤の添加により、親水性増粘剤を添加していない場合と比較して、冷却速度の向上と過冷却現象の抑制と加熱速度の向上が見られた。
<Evaluation results>
FIG. 4 shows a graph of temperature changes of the heat storage material compositions of Examples 5 to 8 and Comparative Example 1 in the fifth heat cycle. As shown in FIG. 4, in the cooling of the heat cycle, the heat storage material composition of Examples 5-8 has a faster cooling rate than the heat storage material composition of Comparative Example 1, and the supercooling phenomenon does not occur. It was confirmed that it was suppressed. In addition, it was confirmed that the heat storage material composition of Examples 5-8 had a faster heating rate than the heat storage material composition of Comparative Example 1, and that the graph rose quickly during heating in the heat cycle. rice field. In particular, the addition of the hydrophilic thickener improved the cooling rate, suppressed the supercooling phenomenon, and improved the heating rate compared to the case where the hydrophilic thickener was not added.

図5には、26回目のヒートサイクルにおける実施例5-8と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図5に示すように、実施例5-8の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、冷却速度及び加熱速度が速くなっていることが理解される。26回目のヒートサイクルでは、実施例5-8の蓄熱材組成物の過冷却現象が見られるものの、26回目のヒートサイクルでも、5回目のヒートサイクルとほぼ同じ傾向であることが理解される。これにより、蓄熱材組成物に黒鉛粉末を添加することで、迅速な蓄熱・放熱を可能とするとともに、安定的に繰り返し使用を可能となることが分かった。 FIG. 5 shows a graph of temperature changes of the heat storage material compositions of Examples 5 to 8 and Comparative Example 1 in the 26th heat cycle. As shown in FIG. 5, it is understood that the heat storage material compositions of Examples 5-8 have higher cooling rates and heating rates than the heat storage material composition of Comparative Example 1. In the 26th heat cycle, although the supercooling phenomenon of the heat storage material composition of Examples 5-8 is observed, it is understood that the 26th heat cycle has almost the same tendency as the 5th heat cycle. As a result, it was found that the addition of graphite powder to the heat storage material composition enabled rapid heat storage and heat release, and also enabled stable repeated use.

<実施例9>
固液相変化材(塩化カルシウム二水和物)を43.9重量%、融点調整剤(臭化アンモニウム)を10.0重量%、水を20.8重量%、主に塩化ストロンチウム(SrCl)を含有する核形成材を12.3重量%、黒鉛粉末(平均粒子径11.0μm、鱗状黒鉛B)を10.0重量%、親水性増粘剤(PEG/PPGの水溶性コポリマー、ポリマーA)を1.5重量%にして調整した蓄熱材組成物を実施例9の蓄熱材組成物とした。
<Example 9>
43.9% by weight of solid-liquid phase change material (calcium chloride dihydrate), 10.0% by weight of melting point modifier (ammonium bromide), 20.8% by weight of water, mainly strontium chloride ( SrCl2 ), 12.3% by weight of a nucleating material containing ), 10.0% by weight of graphite powder (average particle size 11.0 μm, flake graphite B), a hydrophilic thickener (PEG / PPG water-soluble copolymer, polymer The heat storage material composition of Example 9 was prepared by adjusting A) to 1.5% by weight.

<実施例10>
実施例9の蓄熱材組成物において、黒鉛粉末を黒鉛粉末(平均粒子径10.3μm、鱗状黒鉛A)に変更し、増粘剤を他の増粘剤(ヒプロメロース、ポリマーB)に変更する以外は、実施例9と同様にして調整した蓄熱材組成物を実施例10の蓄熱材組成物とした。
<Example 10>
In the heat storage material composition of Example 9, the graphite powder was changed to graphite powder (average particle size 10.3 μm, flake graphite A), and the thickener was changed to another thickener (hypromellose, polymer B). used the heat storage material composition prepared in the same manner as in Example 9 as the heat storage material composition of Example 10.

<実施例11>
実施例9の蓄熱材組成物において、黒鉛粉末を黒鉛粉末(平均粒子径11.2μm、人造黒鉛A)に変更する以外は、実施例9と同様にして調整した蓄熱材組成物を実施例10の蓄熱材組成物とした。
<Example 11>
A heat storage material composition prepared in the same manner as in Example 9 except that graphite powder (average particle size: 11.2 μm, artificial graphite A) was used in the heat storage material composition of Example 9 was prepared. of the heat storage material composition.

<実施例12>
実施例9の蓄熱材組成物において、黒鉛粉末を黒鉛粉末(平均粒子径10.3μm、鱗状黒鉛A)に変更する以外は、実施例9と同様にして調整した蓄熱材組成物を実施例12の蓄熱材組成物とした。尚、図6には、実施例9-12と、比較例1の蓄熱材組成物の成分表を示す。
<Example 12>
A heat storage material composition of Example 12 was prepared in the same manner as in Example 9, except that the graphite powder in the heat storage material composition of Example 9 was changed to graphite powder (average particle size: 10.3 μm, flake graphite A). of the heat storage material composition. 6 shows a component table of the heat storage material compositions of Examples 9 to 12 and Comparative Example 1. As shown in FIG.

<評価方法>
実施例9-12と、比較例1の蓄熱材組成物について、上述と同様に、ヒートサイクルを所定回数繰り返すことで、各蓄熱材組成物の温度変化を測定した。
<Evaluation method>
For the heat storage material compositions of Examples 9 to 12 and Comparative Example 1, the temperature change of each heat storage material composition was measured by repeating the heat cycle a predetermined number of times in the same manner as described above.

<評価結果>
図7には、5回目のヒートサイクルにおける実施例9-12と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図7に示すように、ヒートサイクルの冷却時において、実施例9-12の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、冷却速度が速いことと、過冷却現象が抑えられていることが再現出来た。更に、黒鉛粉末の種類が変更され、増粘剤の種類が変更されても、同様の作用効果があった。
<Evaluation results>
FIG. 7 shows a graph of temperature changes of the heat storage material compositions of Examples 9 to 12 and Comparative Example 1 in the fifth heat cycle. As shown in FIG. 7, in the cooling of the heat cycle, the heat storage material compositions of Examples 9 to 12 have a faster cooling rate than the heat storage material composition of Comparative Example 1, and the supercooling phenomenon does not occur. I was able to reproduce what was suppressed. Furthermore, even when the type of graphite powder was changed and the type of thickening agent was changed, the same effects were obtained.

一方、ヒートサイクルの加熱時において、実施例9-12の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、加熱速度が速いことと、グラフの立ち上がりが早くなることが再現出来た。 On the other hand, at the time of heating in the heat cycle, the heat storage material compositions of Examples 9 to 12 showed a faster heating rate and a faster rise in the graph compared to the heat storage material composition of Comparative Example 1. done.

図7には、10回目のヒートサイクルにおける実施例9-12と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図7に示すように、実施例9-12の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、冷却速度及び加熱速度が速くなることが再現出来た。又、10回目のヒートサイクルでも、5回目のヒートサイクルとほぼ同じ傾向であることが確認出来た。 FIG. 7 shows a graph of temperature changes of the heat storage material compositions of Examples 9 to 12 and Comparative Example 1 in the tenth heat cycle. As shown in FIG. 7, in the heat storage material compositions of Examples 9 to 12, compared with the heat storage material composition of Comparative Example 1, the cooling rate and the heating rate were increased. Also, it was confirmed that the 10th heat cycle exhibited substantially the same tendency as the 5th heat cycle.

<実施例13>
固液相変化材(塩化カルシウム二水和物)を47.9重量%、融点調整剤(臭化アンモニウム)を10重量%、水を22.7重量%、主に塩化ストロンチウム(SrCl)を含有する核形成材を13.4重量%、黒鉛粉末(平均粒子径10.3μm、鱗状黒鉛A)を5.0重量%、親水性増粘剤(キサンタンガム、ポリマーC)を1.0重量%にして調整した蓄熱材組成物を実施例13の蓄熱材組成物とした。
<Example 13>
47.9% by weight of a solid-liquid phase change material (calcium chloride dihydrate), 10% by weight of a melting point regulator (ammonium bromide), 22.7% by weight of water, and mainly strontium chloride (SrCl 2 ). Contains 13.4% by weight of nucleating material, 5.0% by weight of graphite powder (average particle size 10.3 μm, flake graphite A), and 1.0% by weight of hydrophilic thickener (xanthan gum, polymer C) A heat storage material composition of Example 13 was obtained by adjusting the heat storage material composition in the above manner.

<実施例14>
実施例13の蓄熱材組成物において、増粘剤を他の増粘剤(ヒドロキシエチルセルロース、ポリマーD)に変更する以外は、実施例13と同様にして調整した蓄熱材組成物を実施例14の蓄熱材組成物とした。尚、図9には、実施例13-14と、比較例1の蓄熱材組成物の成分表を示す。
<Example 14>
In the heat storage material composition of Example 13, the heat storage material composition of Example 14 was prepared in the same manner as in Example 13 except that the thickener was changed to another thickener (hydroxyethyl cellulose, polymer D). A heat storage material composition was obtained. 9 shows a component table of the heat storage material compositions of Examples 13 and 14 and Comparative Example 1. As shown in FIG.

<評価方法>
実施例13-14と、比較例1の蓄熱材組成物について、上述と同様に、ヒートサイクルを所定回数繰り返すことで、各蓄熱材組成物の温度変化を測定した。尚、約60℃から約0℃までの冷却時間は1時間とし、約0℃で11時間放置後に、再度、約0℃から約60℃までの加熱時間は1時間とし、約60℃で11時間放置後に冷却するヒートサイクルを繰り返した。
<Evaluation method>
For the heat storage material compositions of Examples 13 and 14 and Comparative Example 1, the temperature change of each heat storage material composition was measured by repeating the heat cycle a predetermined number of times in the same manner as described above. The cooling time from about 60° C. to about 0° C. is 1 hour, and after standing at about 0° C. for 11 hours, the heating time from about 0° C. to about 60° C. is again 1 hour, and the temperature is about 60° C. for 11 hours. A heat cycle of cooling after standing for a period of time was repeated.

<評価結果>
図10には、15回目のヒートサイクルにおける実施例13-14と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図10に示すように、ヒートサイクルの冷却時において、実施例13-14の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、冷却速度が速いことと、過冷却現象が抑えられていることが再現出来た。更に、黒鉛粉末の種類が変更され、増粘剤の種類が変更されても、同様の作用効果があった。
<Evaluation results>
FIG. 10 shows a graph of temperature changes of the heat storage material compositions of Examples 13 to 14 and Comparative Example 1 in the fifteenth heat cycle. As shown in FIG. 10, in the cooling of the heat cycle, the heat storage material composition of Examples 13 and 14 has a faster cooling rate than the heat storage material composition of Comparative Example 1, and the supercooling phenomenon does not occur. I was able to reproduce what was suppressed. Furthermore, even when the type of graphite powder was changed and the type of thickening agent was changed, the same effects were obtained.

一方、ヒートサイクルの加熱時において、実施例13-14の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、加熱速度が速いことと、グラフの立ち上がりが早くなることが再現出来た。 On the other hand, at the time of heating in the heat cycle, the heat storage material compositions of Examples 13 and 14 showed a faster heating rate and a faster rise in the graph compared to the heat storage material composition of Comparative Example 1. done.

<評価方法>
実施例13-14の蓄熱材組成物について、試験管に入れて、ヒートサイクルを繰り返し、黒鉛粉末の沈降の度合いを試験管の透け具合で確認した。
<Evaluation method>
The heat storage material compositions of Examples 13 and 14 were placed in a test tube, heat cycles were repeated, and the degree of sedimentation of the graphite powder was confirmed by the transparency of the test tube.

<評価結果>
図11には、実施例13におけるヒートサイクル前の初期と55回目のヒートサイクル後と120回目のヒートサイクル後の試験管写真と、実施例14におけるヒートサイクル前の初期と30回目のヒートサイクル後と80回目のヒートサイクル後の試験管写真とを示す。図11に示すように、実施例13-14の蓄熱材組成物では、ヒートサイクルを数十回以上繰り返したとしても、黒鉛粉末が沈降せずに、試験管の背面から照らした光が黒鉛粉末により遮られていることが理解される。これにより、親水性増粘剤の添加により、黒鉛粉末の沈降が著しく抑制され、その結果、冷却速度の向上と過冷却現象の抑制と加熱速度の向上とに繋がると推測される。
<Evaluation results>
FIG. 11 shows photographs of the test tube at the initial stage before the heat cycle, after the 55th heat cycle, and after the 120th heat cycle in Example 13, and at the beginning before the heat cycle and after the 30th heat cycle in Example 14. and a test tube photograph after the 80th heat cycle. As shown in FIG. 11, in the heat storage material composition of Examples 13 and 14, even if the heat cycle was repeated several tens of times or more, the graphite powder did not settle, and the light illuminated from the back side of the test tube did not cause the graphite powder to settle. It is understood that it is blocked by Presumably, the addition of the hydrophilic thickener remarkably suppresses the sedimentation of the graphite powder, which leads to an improvement in the cooling rate, suppression of the supercooling phenomenon, and an improvement in the heating rate.

<比較例2>
比較例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、黒鉛粉末の代わりに、熱伝導性粉末{四酸化三鉄(Fe)}を1.0重量%添加したこと以外は、比較例1と同様にして調整した蓄熱材組成物を比較例2の蓄熱材組成物とした。
<Comparative Example 2>
In the heat storage material composition of Comparative Example 1, the concentration of the melting point adjusting agent was fixed, the respective ratios of the solid-liquid phase change material, water, and nucleation material were the same, and instead of graphite powder, thermally conductive powder was used. A heat storage material composition of Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that 1.0% by weight of {triiron tetraoxide (Fe 3 O 4 )} was added.

<比較例3>
比較例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、熱伝導性粉末の濃度を5.0重量%に変更する以外は、比較例1と同様にして調整した蓄熱材組成物を比較例3の蓄熱材組成物とした。
<Comparative Example 3>
In the heat storage material composition of Comparative Example 1, the concentration of the melting point adjuster was fixed, the ratios of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the thermally conductive powder was 5.0. A heat storage material composition of Comparative Example 3 was prepared in the same manner as in Comparative Example 1 except that the weight percentage was changed.

<比較例4>
比較例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、熱伝導性粉末の濃度を10.0重量%に変更する以外は、比較例1と同様にして調整した蓄熱材組成物を比較例4の蓄熱材組成物とした。
<Comparative Example 4>
In the heat storage material composition of Comparative Example 1, the concentration of the melting point adjuster was fixed, the ratios of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the thermally conductive powder was 10.0. A heat storage material composition of Comparative Example 4 was prepared in the same manner as in Comparative Example 1 except that the weight percentage was changed.

<比較例5>
比較例1の蓄熱材組成物において、融点調整剤の濃度を固定し、固液相変化材と水と核形成材とのそれぞれの比率を同じにして、熱伝導性粉末の濃度を20.0重量%に変更する以外は、比較例1と同様にして調整した蓄熱材組成物を比較例5の蓄熱材組成物とした。尚、図12には、比較例1-5の蓄熱材組成物の成分表を示す。
<Comparative Example 5>
In the heat storage material composition of Comparative Example 1, the concentration of the melting point adjuster was fixed, the ratios of the solid-liquid phase change material, water, and nucleation material were the same, and the concentration of the thermally conductive powder was 20.0. A heat storage material composition of Comparative Example 5 was prepared in the same manner as in Comparative Example 1 except that the weight percentage was changed. Incidentally, FIG. 12 shows a component table of the heat storage material composition of Comparative Examples 1-5.

<評価方法>
比較例1-5の蓄熱材組成物について、各蓄熱材組成物の周囲温度を所定の時間で約40℃から-4℃まで下げた(冷却)後に、再び-4℃から40℃まで上げる(加熱)操作のヒートサイクルを所定回数繰り返すことで、各蓄熱材組成物の温度変化を測定した。
<Evaluation method>
For the heat storage material compositions of Comparative Examples 1-5, the ambient temperature of each heat storage material composition was lowered (cooled) from about 40°C to -4°C for a predetermined time, and then raised again from -4°C to 40°C ( The temperature change of each heat storage material composition was measured by repeating the heat cycle of the heating) operation a predetermined number of times.

<評価結果>
図13には、1回目のヒートサイクルにおける比較例1-5の蓄熱材組成物の温度変化のグラフを示す。図13に示すように、ヒートサイクルの冷却時及び加熱時において、比較例1-5の蓄熱材組成物では、ほぼ同一の温度曲線を描いており、熱伝導性粉末の作用効果が全く無いことが理解される。
<Evaluation results>
FIG. 13 shows a graph of temperature change of the heat storage material composition of Comparative Example 1-5 in the first heat cycle. As shown in FIG. 13, the heat storage material composition of Comparative Example 1-5 shows almost the same temperature curve during cooling and heating of the heat cycle, indicating that the thermally conductive powder has no effect at all. is understood.

図14には、5回目のヒートサイクルにおける比較例1-5の蓄熱材組成物の温度変化のグラフを示す。図14に示すように、5回目のヒートサイクルでも、1回目のヒートサイクルとほぼ同じ温度曲線であり、熱伝導性粉末の作用効果が全く無いことが理解される。 FIG. 14 shows a graph of temperature change of the heat storage material composition of Comparative Example 1-5 in the fifth heat cycle. As shown in FIG. 14, even in the fifth heat cycle, the temperature curve is almost the same as in the first heat cycle, and it is understood that the thermally conductive powder has no action or effect.

これにより、蓄熱材組成物に黒鉛粉末と親水性増粘剤とを添加することで、迅速な蓄熱・放熱を可能とするとともに、安定的に繰り返し使用を可能となることが分かった。 As a result, it was found that by adding graphite powder and a hydrophilic thickener to the heat storage material composition, it is possible to quickly store and dissipate heat, and to use it stably and repeatedly.

本発明における実施例、比較例等では、蓄熱材組成物の凝固点(融点)が18℃となるように、融点調整剤として臭化アンモニウムを添加して、評価を行ったが、融点調整剤を添加しなくても、同様の作用効果を有する。本発明では、蓄熱材組成物の凝固点が18℃に限定する必要は無く、他の凝固点であっても、同様の作用効果を有する。 In the examples and comparative examples of the present invention, evaluation was performed by adding ammonium bromide as a melting point adjuster so that the freezing point (melting point) of the heat storage material composition was 18°C. Even if it does not add, it has the same effect. In the present invention, it is not necessary to limit the freezing point of the heat storage material composition to 18° C., and the same effect can be obtained even if the freezing point is another freezing point.

以上のように、本発明に係る蓄熱材組成物は、様々な分野における蓄熱資材に有用であり、迅速な蓄熱・放熱を可能とするとともに、安定的に繰り返し使用を可能な蓄熱材組成物として有効である。 As described above, the heat storage material composition according to the present invention is useful as a heat storage material in various fields, enables rapid heat storage and heat dissipation, and is a heat storage material composition that can be stably and repeatedly used. It is valid.

Claims (2)

所定の温度範囲において固体と液体との間で相変化を行う固液相変化材と、
水と、
塩化ストロンチウムを主成分とする核形成材と、
黒鉛粉末と
親水性の増粘剤と、
含有し、
前記黒鉛粉末の濃度が、全蓄熱材組成物に対して1.0重量%~10.0重量%であり、
前記黒鉛粉末の平均粒子径が、5μm~20μmであり、
前記増粘剤の濃度が、全蓄熱材組成物に対して0.1重量%~5.0重量%である、
蓄熱材組成物。
a solid-liquid phase change material that undergoes a phase change between a solid and a liquid within a predetermined temperature range;
water and,
a nucleating material containing strontium chloride as a main component;
graphite powder ;
a hydrophilic thickener;
contains _
The concentration of the graphite powder is 1.0% by weight to 10.0% by weight with respect to the total heat storage material composition,
The graphite powder has an average particle size of 5 μm to 20 μm,
The concentration of the thickening agent is 0.1% by weight to 5.0% by weight with respect to the total heat storage material composition.
A heat storage material composition.
前記増粘剤は、PEG/PPGの水溶性コポリマー、ヒプロメロース、キサンタンガム、ヒドロキシエチルセルロースのいずれかを含有する、
請求項1に記載の蓄熱材組成物。
The thickening agent contains either a PEG/PPG water-soluble copolymer, hypromellose, xanthan gum, or hydroxyethyl cellulose.
The heat storage material composition according to claim 1 .
JP2019019226A 2018-02-07 2019-02-06 Heat storage material composition Active JP7266282B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019719 2018-02-07
JP2018019719 2018-02-07

Publications (2)

Publication Number Publication Date
JP2019137854A JP2019137854A (en) 2019-08-22
JP7266282B2 true JP7266282B2 (en) 2023-04-28

Family

ID=67693257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019226A Active JP7266282B2 (en) 2018-02-07 2019-02-06 Heat storage material composition

Country Status (1)

Country Link
JP (1) JP7266282B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168604B2 (en) * 2020-03-16 2022-11-09 矢崎総業株式会社 Heat storage material composition
JP7419140B2 (en) * 2020-03-31 2024-01-22 株式会社カネカ Inorganic latent heat storage material composition
WO2022158484A1 (en) * 2021-01-25 2022-07-28 株式会社カネカ Inorganic latent heat storage material composition
CN114539983A (en) * 2022-02-28 2022-05-27 华南理工大学 Hydrated salt thermochemical heat storage composite material and preparation method and application thereof
US11970652B1 (en) 2023-02-16 2024-04-30 Microera Power Inc. Thermal energy storage with actively tunable phase change materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322409A (en) 2002-05-01 2003-11-14 National Institute Of Advanced Industrial & Technology Heat storage tank, heat utilizing device and heat utilizing method
CN102085468A (en) 2009-12-04 2011-06-08 中国科学院大连化学物理研究所 Pre-fluidizing agent for fluidized bed
WO2012108343A1 (en) 2011-02-10 2012-08-16 株式会社豊田中央研究所 Chemical heat accumulator and method for producing same
CN103337613A (en) 2013-07-04 2013-10-02 奇瑞汽车股份有限公司 Silicon-carbon composite material and preparation method thereof, and lithium ion battery
CN106978144A (en) 2017-03-20 2017-07-25 新奥泛能网络科技股份有限公司 A kind of composite phase-change material and preparation method thereof and a kind of construction material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774381A (en) * 1980-10-27 1982-05-10 Matsushita Electric Ind Co Ltd Heat-accumulating material
JPS61166879A (en) * 1985-01-07 1986-07-28 Kubota Ltd Heat storage material composition
JPS6462382A (en) * 1987-09-01 1989-03-08 Kubota Ltd Heat storage material composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322409A (en) 2002-05-01 2003-11-14 National Institute Of Advanced Industrial & Technology Heat storage tank, heat utilizing device and heat utilizing method
CN102085468A (en) 2009-12-04 2011-06-08 中国科学院大连化学物理研究所 Pre-fluidizing agent for fluidized bed
WO2012108343A1 (en) 2011-02-10 2012-08-16 株式会社豊田中央研究所 Chemical heat accumulator and method for producing same
CN103337613A (en) 2013-07-04 2013-10-02 奇瑞汽车股份有限公司 Silicon-carbon composite material and preparation method thereof, and lithium ion battery
CN106978144A (en) 2017-03-20 2017-07-25 新奥泛能网络科技股份有限公司 A kind of composite phase-change material and preparation method thereof and a kind of construction material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Xiang Li et.al,Applied Thermal Engineering,英国,Elsevier ,2016年03月23日,102,38-44

Also Published As

Publication number Publication date
JP2019137854A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP7266282B2 (en) Heat storage material composition
Kumar et al. Review of stability and thermal conductivity enhancements for salt hydrates
Wang et al. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage
Wong-Pinto et al. Progress on use of nanoparticles in salt hydrates as phase change materials
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
Li et al. Preparation and thermal energy storage studies of CH3COONa· 3H2O–KCl composites salt system with enhanced phase change performance
US11306237B2 (en) Latent-heat storage material composition and latent-heat storage tank
JP2015218212A (en) New latent heat storage material composition
Sun et al. A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications
EP4023732A1 (en) Improved phase change compositions
JP7014752B2 (en) Heat storage material composition and heat storage system for heating and cooling of buildings
JP2022052747A (en) Heat storage material composition
JP4830639B2 (en) Latent heat storage material
JP2018030924A (en) Heat storage material composition and heating pack containing the same
JP2020026465A (en) Heat storage material composition, and heat storage system for air conditioning of architectural structure
JP2006131856A (en) Latent heat cold storage material composition
JP5660949B2 (en) Thermal storage material composition
JP5028808B2 (en) Heat storage device using fluid heat storage material, heat pump system and solar system using the same
WO2021182388A1 (en) Heat-storage material composition
JP2020196819A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JPH11349936A (en) Heat regenerating material
JP2022052748A (en) Heat storage material composition
JP7137654B1 (en) Latent heat storage material composition
JPH11323320A (en) Latent heat storage agent composition
JPH0554518B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7266282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150