JP6814771B2 - Heat storage material composition and heat storage system for heating and cooling of buildings - Google Patents

Heat storage material composition and heat storage system for heating and cooling of buildings Download PDF

Info

Publication number
JP6814771B2
JP6814771B2 JP2018151029A JP2018151029A JP6814771B2 JP 6814771 B2 JP6814771 B2 JP 6814771B2 JP 2018151029 A JP2018151029 A JP 2018151029A JP 2018151029 A JP2018151029 A JP 2018151029A JP 6814771 B2 JP6814771 B2 JP 6814771B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
material composition
melting
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151029A
Other languages
Japanese (ja)
Other versions
JP2020026465A (en
Inventor
崇 桃井
崇 桃井
努 篭橋
努 篭橋
重和 宮下
重和 宮下
相培 李
相培 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2018151029A priority Critical patent/JP6814771B2/en
Priority to PCT/JP2019/027736 priority patent/WO2020031618A1/en
Publication of JP2020026465A publication Critical patent/JP2020026465A/en
Application granted granted Critical
Publication of JP6814771B2 publication Critical patent/JP6814771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • F28F23/02Arrangements for obtaining or maintaining same in a liquid state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、蓄熱材組成物及び建築物の冷暖房用の蓄熱システムに関し、詳しくは、建造物の冷暖房の蓄熱システムに好適な蓄熱材組成物及びこれを含む建築物の冷暖房用の蓄熱システムに関する。 The present invention relates to a heat storage material composition and a heat storage system for heating and cooling of a building, and more particularly to a heat storage material composition suitable for a heat storage system for heating and cooling of a building and a heat storage system for heating and cooling of a building containing the same.

従来、液体から固体への相変化時や固体から液体への相変化時に発生又は吸収する潜熱を利用した潜熱蓄熱材組成物が知られている。潜熱蓄熱材組成物は、例えば、建造物の冷暖房の蓄熱システムに用いられる。 Conventionally, a latent heat storage material composition utilizing latent heat generated or absorbed at the time of a phase change from a liquid to a solid or a phase change from a solid to a liquid is known. The latent heat storage material composition is used, for example, in a heat storage system for heating and cooling a building.

潜熱蓄熱材組成物には、一般的に、蓄熱量が大きいこと、所定の温度レベルで作動すること、長期間安定であること、安価であること、毒性がないこと、腐触性がないこと等の特性が要求される。 Latent heat storage material compositions generally have a large amount of heat storage, operate at a predetermined temperature level, are stable for a long period of time, are inexpensive, are non-toxic, and are not perishable. Etc. are required.

上記潜熱蓄熱材組成物が建造物の冷暖房の蓄熱システムに用いられる場合、潜熱蓄熱材組成物は、建造物の冷暖房の一般的な使用温度域である20℃以上かつ30℃以下で融解・凝固が生じることが好ましい。具体的には、潜熱蓄熱材組成物は、融解下限温度Tsが20℃以上かつ融解上限温度Tfが30℃以下であることが好ましい。ここで、融解下限温度Tsとは、潜熱蓄熱材組成物が融解潜熱を発現する下限温度を意味し、融解上限温度Tfとは、潜熱蓄熱材組成物が融解潜熱を発現する上限温度を意味する。 When the latent heat storage material composition is used in a heat storage system for heating and cooling of a building, the latent heat storage material composition melts and solidifies at 20 ° C. or higher and 30 ° C. or lower, which is a general operating temperature range for heating and cooling of a building. Is preferably generated. Specifically, the latent heat storage material composition preferably has a melting lower limit temperature Ts of 20 ° C. or higher and a melting upper limit temperature Tf of 30 ° C. or lower. Here, the lower limit temperature Ts for melting means the lower limit temperature at which the latent heat storage material composition develops latent heat for melting, and the upper limit temperature for melting Tf means the upper limit temperature at which the latent heat storage material composition develops latent heat for melting. ..

図面を参照して融解下限温度Ts及び融解上限温度Tfについて説明する。図1は、潜熱蓄熱材組成物の融解潜熱を発現する温度と蓄熱量との関係の一例を示すグラフである。図1中、Aは建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物Mの示す曲線、Bは建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物Mの示す曲線である。また、図1中、Dは曲線Aの融解下限温度Ts、Eは曲線Aの融解上限温度Tf、Cは融解上限温度Tfと融解下限温度Tsとの差分である潜熱発生温度幅、をそれぞれ示す。なお、図1に示す、融解下限温度Ts20℃及び融解上限温度Tf29.5℃は一例であり、本実施形態において融解下限温度Ts及び融解上限温度Tfはこれらの数値に限定されない。 The lower limit melting temperature Ts and the upper limit melting temperature Tf will be described with reference to the drawings. FIG. 1 is a graph showing an example of the relationship between the temperature at which the latent heat of melting of the latent heat storage material composition is developed and the amount of heat storage. In Figure 1, A is the curve showing the preferred latent heat storage material composition M A heat storage system for heating and cooling of buildings, B denotes a latent heat storage material composition M B is not suitable for heat storage system for heating and cooling of buildings It is a curve. Further, in FIG. 1, D indicates the melting lower limit temperature Ts of the curve A, E indicates the melting upper limit temperature Tf of the curve A, and C indicates the latent heat generation temperature range which is the difference between the melting upper limit temperature Tf and the melting lower limit temperature Ts. .. The lower limit melting temperature Ts 20 ° C. and the upper limit melting temperature Tf 29.5 ° C. shown in FIG. 1 are examples, and the lower limit melting temperature Ts and the upper limit melting temperature Tf are not limited to these values in the present embodiment.

曲線Aは、潜熱発生温度幅Cが、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物に好適な20℃以上30℃以下(29.5℃以下)にある。すなわち、曲線Aの潜熱蓄熱材組成物Mは、融解下限温度Tsが20℃以上かつ融解上限温度Tfが30℃以下になっている。この融解下限温度Tsが20℃以上かつ融解上限温度Tfが30℃以下の潜熱蓄熱材組成物Mによれば、建造物の冷暖房の一般的な使用温度範囲において潜熱蓄熱材組成物の効率的な蓄熱、放熱が可能である。このため、潜熱蓄熱材組成物Mは、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The curve A has a latent heat generation temperature width C of 20 ° C. or higher and 30 ° C. or lower (29.5 ° C. or lower) suitable for a latent heat storage material composition of a heat storage system for heating and cooling of a building. In other words, the latent heat storage material composition M A of the curve A, the melting lower limit temperature Ts is 20 ° C. or higher and the melting maximum temperature Tf is set to 30 ° C. or less. According to the melting lower limit temperature Ts is 20 ° C. or higher and the melting maximum temperature Tf is the latent heat storage material composition of 30 ° C. or less M A, efficient latent heat storage material composition in the general temperature range of heating and cooling of buildings Can store and dissipate heat. Therefore, M A is the latent heat storage material composition is suitable as a latent heat storage material composition of the heat storage system for heating and cooling of buildings.

一方、曲線Bは、潜熱発生温度幅Cが、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物に好適な20℃以上30℃以下(29.5℃以下)を逸脱している。すなわち、曲線Bの潜熱蓄熱材組成物Mは、融解下限温度Tsが20℃未満になっている。また、図1の横軸と曲線Bとの2個の交点のうち高温側の交点、すなわち、潜熱蓄熱材組成物Mの温度融解上限温度Tfは、図1には数値を明記していないが、30℃を超えるようになっている。このような潜熱蓄熱材組成物Mは、蓄熱材組成物が本来有する蓄熱量の全てを建造物の冷暖房に用いることができないため、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好ましくない。 On the other hand, in the curve B, the latent heat generation temperature width C deviates from 20 ° C. or higher and 30 ° C. or lower (29.5 ° C. or lower) suitable for the latent heat storage material composition of the heat storage system for heating and cooling of the building. In other words, the latent heat storage material composition M B of the curve B is the melting lower limit temperature Ts is set to less than 20 ° C.. Further, the high-temperature side of the intersection of the two intersections of the horizontal axis and the curve B in FIG. 1, i.e., the temperature melting maximum temperature Tf of the latent heat storage material composition M B does not specify numerical values in FIG. 1 However, the temperature exceeds 30 ° C. Such latent heat storage material composition M B, it is not possible to use all of the heat storage amount with the heat storage material composition originally heating and cooling of buildings, as latent heat storage material composition of the heat storage system for heating and cooling of buildings Not preferable.

これに対し、従来の潜熱蓄熱材組成物として、例えば、特許文献1に、硫酸ナトリウム及び/又はその共晶塩と、水と、相分離抑制剤と、からなり、水を所定量含有する蓄熱材組成物が開示されている。特許文献1に記載される蓄熱材組成物によれば、これに含まれる硫酸ナトリウム10水和物が凝固、融解を繰り返しても蓄熱量の低下が抑制される。 On the other hand, as a conventional latent heat storage material composition, for example, in Patent Document 1, heat storage containing sodium sulfate and / or a eutectic salt thereof, water, and a phase separation inhibitor, and containing a predetermined amount of water. The material composition is disclosed. According to the heat storage material composition described in Patent Document 1, the decrease in the amount of heat storage is suppressed even if the sodium sulfate decahydrate contained therein is repeatedly solidified and thawed.

また、従来の潜熱蓄熱材組成物として、非特許文献1には、硫酸ナトリウム10水和物とリン酸水素二ナトリウム12水和物との共晶型水和塩が開示されている。非特許文献1に記載される共晶型の蓄熱材組成物では、水等の融点調整剤を用いずに蓄熱材組成物の融点の低下を図っている。また、この共晶型の蓄熱材組成物によれば、凝固、融解を繰り返しても蓄熱量の低下が抑制される。 Further, as a conventional latent heat storage material composition, Non-Patent Document 1 discloses a eutectic hydrated salt of sodium sulfate decahydrate and disodium hydrogen phosphate dodecahydrate. In the eutectic type heat storage material composition described in Non-Patent Document 1, the melting point of the heat storage material composition is lowered without using a melting point adjusting agent such as water. Further, according to this eutectic type heat storage material composition, a decrease in the amount of heat storage is suppressed even if solidification and melting are repeated.

特開平5−25467号公報Japanese Unexamined Patent Publication No. 5-25467

ユシ・リュー外、「相変化物質としての2元共晶水和塩の改善のためのナノαAl2O3の使用」、ソーラー・エナジー・マテリアルズ&ソーラー・セルズ、オランダ、エルゼビア、2017年、第160巻、p.18−25Outside Yushi Liu, "Use of Nano αAl2O3 for Improvement of Binary Eutectic Hydrate as Phase Change Material", Solar Energy Materials & Solar Cells, Netherlands, Elsevier, 2017, Vol. 160 , P. 18-25

しかしながら、特許文献1の蓄熱材組成物には、蓄熱量が小さいという問題があった。また、特許文献1の蓄熱材組成物に含まれ、蓄熱材作用に関与する硫酸ナトリウム10水和物は、相変化温度が約32℃であり、融解上限温度Tfが30℃を超える。さらに、非特許文献1に記載される共晶型の蓄熱材組成物は、相変化温度が約29〜32℃であり、融解上限温度Tfが実質的に30℃を超える。 However, the heat storage material composition of Patent Document 1 has a problem that the amount of heat storage is small. Further, the sodium sulfate tetrahydrate contained in the heat storage material composition of Patent Document 1 and involved in the heat storage material action has a phase change temperature of about 32 ° C. and an upper melting limit temperature Tf of more than 30 ° C. Further, the eutectic heat storage material composition described in Non-Patent Document 1 has a phase change temperature of about 29 to 32 ° C. and a melting upper limit temperature Tf of substantially more than 30 ° C.

上記特許文献1及び非特許文献1の蓄熱材組成物は、融解上限温度が実質的に30℃を超える。このため、特許文献1及び非特許文献1の蓄熱材組成物は、建造物の冷暖房の一般的な使用温度範囲である20℃以上かつ30℃以下における蓄熱量が小さくなる。したがって、特許文献1及び非特許文献1の蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適でないという問題があった。 The heat storage material composition of Patent Document 1 and Non-Patent Document 1 has a melting upper limit temperature substantially exceeding 30 ° C. Therefore, the heat storage material compositions of Patent Document 1 and Non-Patent Document 1 have a small amount of heat storage at 20 ° C. or higher and 30 ° C. or lower, which is a general operating temperature range for heating and cooling of buildings. Therefore, the heat storage material compositions of Patent Document 1 and Non-Patent Document 1 have a problem that they are not suitable as latent heat storage material compositions for heat storage systems for heating and cooling of buildings.

さらに、特許文献1の蓄熱材組成物には、含んでいる水により潜熱蓄熱材組成物の相変化の生じる温度幅が大きくなるため、潜熱発生温度幅が大きいという問題もあった。 Further, the heat storage material composition of Patent Document 1 has a problem that the latent heat generation temperature range is large because the temperature range in which the phase change of the latent heat storage material composition occurs is large due to the water contained therein.

本発明は、上記課題に鑑みてなされたものである。本発明は、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上である蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することを目的とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a heat storage material composition having a melting lower limit temperature of 20 ° C. or higher, a melting upper limit temperature of 30 ° C. or lower, and a latent melting heat of 140 J / g or higher, and a heat storage system for heating and cooling of buildings. And.

本発明の第1の態様に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物からなる主剤を含み、
融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、
融解潜熱が140J/g以上である。
The heat storage material composition according to the first aspect of the present invention contains a main agent composed of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate.
The lower melting temperature is 20 ° C or higher and the upper melting temperature is 30 ° C or lower.
The latent heat of melting is 140 J / g or more.

本発明の第2の態様に係る蓄熱材組成物は、第1の態様に係る蓄熱材組成物において、前記主剤100質量%中に、前記硫酸ナトリウム10水和物が17.9〜32.5質量%、前記リン酸水素二ナトリウム12水和物が32.5〜55.0質量%、及び前記リン酸三ナトリウム12水和物が15〜40.5質量%含まれる。 The heat storage material composition according to the second aspect of the present invention is the heat storage material composition according to the first aspect, in which the sodium sulfate tetrahydrate is 17.9 to 32.5 in 100% by mass of the main agent. It contains 32.5 to 55.0% by mass of the disodium hydrogen phosphate dodecahydrate and 15 to 40.5% by mass of the trisodium hydrogen phosphate dodecahydrate.

本発明の第3の態様に係る蓄熱材組成物は、第1又は第2の態様に係る蓄熱材組成物において、前記主剤中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記リン酸三ナトリウム12水和物の含有量をZ質量%と規定したとき、X、Y、及びZが下記式(1)〜(4)を満たす。
[数1]
X+Y+Z=100 (1)
[数2]
X−32.5≦0 (2)
[数3]
32.5≦Y≦55.0 (3)
[数4]
X+0.431Y−41.017≧0 (4)
The heat storage material composition according to the third aspect of the present invention is the heat storage material composition according to the first or second aspect, wherein the content of the sodium sulfate decahydrate in the main agent is X% by mass. When the content of disodium hydrogen phosphate dodecahydrate is defined as Y mass% and the content of trisodium phosphate dodecahydrate is Z mass%, X, Y, and Z are the following formulas ( 1) to (4) are satisfied.
[Number 1]
X + Y + Z = 100 (1)
[Number 2]
X-32.5 ≤ 0 (2)
[Number 3]
32.5 ≤ Y ≤ 55.0 (3)
[Number 4]
X + 0.431Y-41.017 ≧ 0 (4)

本発明の第4の態様に係る蓄熱材組成物は、第1〜第3のいずれかの態様に係る蓄熱材組成物において、余剰水をさらに含み、前記余剰水は、前記主剤100質量部に対して9質量部以下含まれる。 The heat storage material composition according to the fourth aspect of the present invention further contains surplus water in the heat storage material composition according to any one of the first to third aspects, and the surplus water is contained in 100 parts by mass of the main agent. On the other hand, it contains 9 parts by mass or less.

本発明の第5の態様に係る蓄熱材組成物は、第1〜第4のいずれかの態様に係る蓄熱材組成物において、有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体と、多官能性単量体と、を重合させて得られる第1の相分離抑制剤をさらに含む。 The heat storage material composition according to the fifth aspect of the present invention is an organic unsaturated carboxylic acid, an organic unsaturated sulfonic acid, and an organic unsaturated phosphoric acid in the heat storage material composition according to any one of the first to fourth aspects. , Organic unsaturated amide, organic unsaturated alcohol, organic unsaturated carboxylate, organic unsaturated sulfonate, and at least one monomer selected from the group consisting of organic unsaturated phosphate, and polyfunctionality. It further contains a first phase separation inhibitor obtained by polymerizing the sex monomer.

本発明の第6の態様に係る蓄熱材組成物は、第1〜第5のいずれかの態様に係る蓄熱材組成物において、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含む。 The heat storage material composition according to the sixth aspect of the present invention is, in the heat storage material composition according to any one of the first to fifth aspects, sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, odor. It further comprises at least one melting point lowering agent selected from the group consisting of ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea.

本発明の第7の態様に係る蓄熱材組成物は、第1〜第6のいずれかの態様に係る蓄熱材組成物において、ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含む。 Heat storage material composition according to the seventh aspect of the present invention is the heat storage material composition according to the first to sixth any aspect of borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, Calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, hectrite, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkyl sulfate, alkyl It further comprises at least one overcooling inhibitor selected from the group consisting of sodium phosphate, potassium alkyl sulfate, and potassium alkyl phosphate.

本発明の第8の態様に係る蓄熱材組成物は、第1〜第7のいずれかの態様に係る蓄熱材組成物において、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の第2の相分離抑制剤をさらに含む。 The heat storage material composition according to the eighth aspect of the present invention is, in the heat storage material composition according to any one of the first to seventh aspects, sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, poly. Carboxylate polyether polymer, sodium acrylate / myrene copolymer, sodium acrylate / sulfonic acid monomer copolymer, acrylamide / dimethylaminoethyl methacrylate dimethylsulfate copolymer, acrylamide / sodium acrylate copolymer , Polyethylene Glycol, Polypropylene Glycol, Highly Absorbent Resin (SAP), Carboxymethyl Cellulose (CMC), CMC Derivatives, Carrageenan, Caraginan Derivatives, Xanthan Gum, Xantan Gum Derivatives, Pectin, Pectin Derivatives, Steel, Steel Derivatives It further comprises at least one second phase separation inhibitor selected from the group consisting of agar, layered silicates, and copolymers of these substances.

本発明の第9の態様に係る建築物の冷暖房用の蓄熱システムは、第1〜第8のいずれかの態様に係る蓄熱材組成物を用いた蓄熱材モジュールを具備する。 The heat storage system for heating and cooling a building according to a ninth aspect of the present invention includes a heat storage material module using the heat storage material composition according to any one of the first to eighth aspects.

本実施形態に係る蓄熱材組成物によれば、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上である蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することができる。 According to the heat storage material composition according to the present embodiment, the heat storage material composition having a melting lower limit temperature of 20 ° C. or higher, a melting upper limit temperature of 30 ° C. or lower, and a latent heat of melting of 140 J / g or more, and for heating and cooling of buildings. Heat storage system can be provided.

潜熱蓄熱材組成物の融解潜熱を発現する温度と蓄熱量との関係の一例を示すグフである。Gouf shows an example of the relationship between the temperature at which the latent heat of melting of a latent heat storage material composition is developed and the amount of heat storage. 示差走査熱量測定(DSC)を用いて、潜熱蓄熱材組成物が融解潜熱を発現する融解下限温度Tsと融解上限温度Tfとを測定した結果を模式的に示したグラフである。It is a graph which shows typically the result of having measured the melting lower limit temperature Ts and the melting upper limit temperature Tf in which the latent heat storage material composition expresses the latent heat of melting by using differential scanning calorimetry (DSC). 主剤における、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の含有量の好適な範囲を示す三元系状態図である。3 is a ternary phase diagram showing a suitable range of the contents of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate in the main agent.

以下、図面を用いて本発明の実施形態に係る蓄熱材組成物、及び蓄熱システムについて詳細に説明する。 Hereinafter, the heat storage material composition and the heat storage system according to the embodiment of the present invention will be described in detail with reference to the drawings.

[蓄熱材組成物]
本実施形態に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物からなる主剤を含む。
[Heat storage material composition]
The heat storage material composition according to the present embodiment contains a main agent composed of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate.

(主剤)
<主剤中の硫酸ナトリウム10水和物>
主剤は、硫酸ナトリウム10水和物(NaSO・10HO)、リン酸水素二ナトリウム12水和物(NaHPO・12HO)、及びリン酸三ナトリウム12水和物(NaPO・12HO)からなる。
(Main agent)
<Sodium sulfate decahydrate in the main agent>
Main agent, sodium sulfate decahydrate (Na 2 SO 4 · 10H 2 O), disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 · 12H 2 O), and trisodium phosphate 12-hydrate ( Na 3 PO 4 · 12H 2 O ) consists.

主剤は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物を所定量含む。主剤中の各物質の配合量は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の混合物である主剤の質量に対して規定される。 The main agent contains a predetermined amount of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate. The blending amount of each substance in the main agent is defined with respect to the mass of the main agent, which is a mixture of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate.

なお、本実施形態に係る蓄熱材組成物は、主剤のみからなることができるが、必要により、余剰水をさらに含んでいてもよい。この主剤に加えて余剰水を含む蓄熱材組成物については後述する。 The heat storage material composition according to the present embodiment may consist of only the main agent, but may further contain excess water if necessary. The heat storage material composition containing excess water in addition to this main agent will be described later.

本実施形態に係る蓄熱材組成物では、主剤100質量%中に、硫酸ナトリウム10水和物が、通常17.9〜32.5質量%含まれる。硫酸ナトリウム10水和物の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。 In the heat storage material composition according to the present embodiment, sodium sulfate decahydrate is usually contained in an amount of 17.9 to 32.5% by mass in 100% by mass of the main agent. When the content of sodium sulfate decahydrate is within the above range, the lower limit melting temperature of the heat storage material composition is 20 ° C. or higher, the upper limit melting temperature is 30 ° C. or lower, and the latent heat of melting is 140 J / g or higher.

本実施形態に係る蓄熱材組成物では、主剤100質量%中に、硫酸ナトリウム10水和物が、好ましくは30〜32.5質量%含まれると、蓄熱材組成物の蓄熱量(融解潜熱量)がより大きくなる。
また、本実施形態に係る蓄熱材組成物では、主剤100質量%中に、硫酸ナトリウム10水和物が、好ましくは25〜32.5質量%含まれると、蓄熱材組成物の融解上限温度がより低くなる。
In the heat storage material composition according to the present embodiment, when sodium sulfate decahydrate is preferably contained in an amount of 30 to 32.5% by mass in 100% by mass of the main agent, the amount of heat storage (latent heat of melting) of the heat storage material composition is contained. ) Becomes larger.
Further, in the heat storage material composition according to the present embodiment, when sodium sulfate decahydrate is preferably contained in 100% by mass of the main agent in an amount of 25 to 32.5% by mass, the upper limit melting temperature of the heat storage material composition is increased. It will be lower.

<主剤中のリン酸水素二ナトリウム12水和物>
本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸水素二ナトリウム12水和物が、通常32.5〜55.0質量%含まれる。リン酸水素二ナトリウム12水和物の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。
<Disodium hydrogen phosphate dodecahydrate in the main agent>
In the heat storage material composition according to the present embodiment, disodium hydrogen phosphate dodecahydrate is usually contained in an amount of 32.5 to 55.0% by mass in 100% by mass of the main agent. When the content of disodium hydrogen phosphate dodecahydrate is within the above range, the lower limit melting temperature of the heat storage material composition is 20 ° C. or higher, the upper limit melting temperature is 30 ° C. or lower, and the latent heat of melting is 140 J / g or higher. become.

本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸水素二ナトリウム12水和物が、好ましくは40〜55.0質量%含まれると、蓄熱材組成物の蓄熱量(融解潜熱量)がより大きくなる。また、本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸水素二ナトリウム12水和物が、好ましくは32.5〜45質量%含まれると、蓄熱材組成物の融解上限温度がより低くなる。 In the heat storage material composition according to the present embodiment, when disodium hydrogen phosphate dodecahydrate is preferably contained in 100% by mass of the main agent in an amount of 40 to 55.0% by mass, the heat storage amount of the heat storage material composition ( The amount of latent heat for melting) becomes larger. Further, in the heat storage material composition according to the present embodiment, when disodium hydrogen phosphate dodecahydrate is preferably contained in 100% by mass of the main agent in an amount of 32.5 to 45% by mass, the heat storage material composition is melted. The upper limit temperature becomes lower.

<主剤中のリン酸三ナトリウム12水和物>
本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸三ナトリウム12水和物が、通常15〜40.5質量%含まれる。リン酸三ナトリウム12水和物の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。
<Trisodium phosphate dodecahydrate in the main agent>
In the heat storage material composition according to the present embodiment, trisodium phosphate dodecahydrate is usually contained in an amount of 15 to 40.5% by mass in 100% by mass of the main agent. When the content of trisodium phosphate dodecahydrate is within the above range, the lower limit melting temperature of the heat storage material composition is 20 ° C. or higher, the upper limit melting temperature is 30 ° C. or lower, and the latent heat of melting is 140 J / g or higher. Become.

本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸三ナトリウム12水和物が、好ましくは17.5〜30質量%含まれると、蓄熱材組成物の蓄熱量(融解潜熱量)がより大きくなる。
また、本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸三ナトリウム12水和物が、好ましくは25〜40.5質量%含まれると、蓄熱材組成物の融解上限温度がより低くなる。
In the heat storage material composition according to the present embodiment, when trisodium phosphate dodecahydrate is preferably contained in 17.5 to 30% by mass in 100% by mass of the main agent, the heat storage amount (melting) of the heat storage material composition The amount of latent heat) becomes larger.
Further, in the heat storage material composition according to the present embodiment, when trisodium phosphate dodecahydrate is preferably contained in 100% by mass of the main agent in an amount of 25 to 40.5% by mass, the upper limit of melting of the heat storage material composition is obtained. The temperature will be lower.

本実施形態に係る蓄熱材組成物は、好ましくは、主剤100質量%中に、硫酸ナトリウム10水和物が17.9〜32.5質量%、リン酸水素二ナトリウム12水和物が32.5〜55.0質量%及びリン酸三ナトリウム12水和物が15〜40.5質量%含まれる。硫酸ナトリウム10水和物等の各物質の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。 The heat storage material composition according to the present embodiment preferably contains 17.9 to 32.5% by mass of sodium sulfate decahydrate and 32. Of disodium hydrogen phosphate dodecahydrate in 100% by mass of the main agent. It contains 5-55.0% by mass and 15-40.5% by mass of trisodium phosphate dodecahydrate. When the content of each substance such as sodium sulfate decahydrate is within the above range, the lower limit melting temperature of the heat storage material composition is 20 ° C. or higher, the upper limit melting temperature is 30 ° C. or lower, and the latent heat of melting is 140 J / g. That's all.

<主剤中の組成>
蓄熱材組成物では、主剤中のX、Y、及びZが下記式(1)〜(4)を満たすことが好ましい。ここで、X、Y、及びZは、主剤中の硫酸ナトリウム10水和物の含有量をX質量%、リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記リン酸三ナトリウム12水和物の含有量をZ質量%と規定したものである。
<Composition in the main agent>
In the heat storage material composition, it is preferable that X, Y, and Z in the main agent satisfy the following formulas (1) to (4). Here, for X, Y, and Z, the content of sodium sulfate decahydrate in the main agent is X mass%, the content of disodium hydrogen phosphate dodecahydrate is Y mass%, and the trisodium phosphate tri. The content of sodium 12 hydrate is defined as Z mass%.

[数5]
X+Y+Z=100 (1)
[数6]
X−32.5≦0 (2)
[数7]
32.5≦Y≦55.0 (3)
[数8]
X+0.431Y−41.017≧0 (4)
[Number 5]
X + Y + Z = 100 (1)
[Number 6]
X-32.5 ≤ 0 (2)
[Number 7]
32.5 ≤ Y ≤ 55.0 (3)
[Number 8]
X + 0.431Y-41.017 ≧ 0 (4)

図3は、主剤における、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の含有量の好適な範囲を示す三元系状態図である。図3に示す台形R及びその内部は、上記式(1)〜(4)を満たす範囲である。 FIG. 3 is a ternary state diagram showing a suitable range of the contents of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate in the main agent. The trapezoid R shown in FIG. 3 and the inside thereof are in a range satisfying the above equations (1) to (4).

本実施形態に係る蓄熱材組成物において、上記X、Y、及びZが下記式(1)〜(4)を満たすと、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。 In the heat storage material composition according to the present embodiment, when the above X, Y, and Z satisfy the following formulas (1) to (4), the lower limit melting temperature of the heat storage material composition is 20 ° C. or higher and the upper limit melting temperature is 30. It is below ° C. and the latent heat of melting is 140 J / g or more.

(余剰水)
本実施形態に係る蓄熱材組成物は、必要により余剰水をさらに含んでいてもよい。本明細書では、主剤と余剰水とからなる混合物を主剤混合物と定義する。本実施形態に係る蓄熱材組成物において、余剰水は、主剤100質量部に対して、通常9質量部以下、好ましくは3質量部以下含まれる。
本実施形態に係る蓄熱材組成物における余剰水の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。本実施形態に係る蓄熱材組成物における余剰水の含有量が9質量部を超えると、蓄熱材組成物の蓄熱量が小さくなるおそれがある。なお、本実施形態に係る蓄熱材組成物は、余剰水の含有量が0の場合に、主剤に加えてNaSO等の無水塩を含む場合がある。
(Surplus water)
The heat storage material composition according to the present embodiment may further contain excess water, if necessary. In the present specification, a mixture consisting of a main agent and excess water is defined as a main agent mixture. In the heat storage material composition according to the present embodiment, excess water is usually contained in an amount of 9 parts by mass or less, preferably 3 parts by mass or less, based on 100 parts by mass of the main agent.
When the content of excess water in the heat storage material composition according to the present embodiment is within the above range, the lower limit melting temperature of the heat storage material composition is 20 ° C. or higher, the upper limit melting temperature is 30 ° C. or lower, and the latent heat of melting is 140 J. It becomes / g or more. If the content of excess water in the heat storage material composition according to the present embodiment exceeds 9 parts by mass, the heat storage amount of the heat storage material composition may decrease. When the content of excess water is 0, the heat storage material composition according to the present embodiment may contain anhydrous salts such as Na 2 SO 4 in addition to the main agent.

(第1の相分離抑制剤)
本実施形態に係る蓄熱材組成物は、特定の第1の相分離抑制剤をさらに含むと、主剤が保湿下で保存されるため好ましい。特定の第1の相分離抑制剤は、特定の単量体と、多官能性単量体と、を重合させて得られる。
(First phase separation inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific first phase separation inhibitor because the main agent is stored under moisturizing conditions. The specific first phase separation inhibitor is obtained by polymerizing a specific monomer and a polyfunctional monomer.

<単量体>
特定の単量体としては、有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体が用いられる。
<Monomer>
Specific monomers include organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphates, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylic acids, and organic unsaturated sulfonic acids. And at least one monomer selected from the group consisting of organic unsaturated phosphates is used.

有機不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸及びイタコン酸からなる群より選択される1種以上の不飽和カルボン酸が用いられ、好ましくはアクリル酸が用いられる。 As the organic unsaturated carboxylic acid, for example, one or more unsaturated carboxylic acids selected from the group consisting of acrylic acid, methacrylic acid and itaconic acid are used, and acrylic acid is preferably used.

有機不飽和スルホン酸としては、例えば、2−アクリルアミド−2−メチルプロパンスルホン酸、p−スチレンスルホン酸、スルホエチルメタクリレート、アリルスルホン酸及びメタアリルスルホン酸からなる群より選択される1種以上の有機不飽和スルホン酸が用いられる。 The organic unsaturated sulfonic acid is, for example, one or more selected from the group consisting of 2-acrylamide-2-methylpropanesulfonic acid, p-styrenesulfonic acid, sulfoethylmethacrylate, allylsulfonic acid and metaallylsulfonic acid. Organic unsaturated sulfonic acid is used.

有機不飽和カルボン酸塩としては、例えば上記不飽和カルボン酸のアルカリ金属塩やアンモニウム塩が用いられる。上記不飽和カルボン酸のアルカリ金属塩としては、例えば、上記不飽和カルボン酸のナトリウム塩が用いられる。上記不飽和カルボン酸のナトリウム塩としては、好ましくは、アクリル酸ナトリウム、メタクリル酸ナトリウムが用いられる。 As the organic unsaturated carboxylic acid salt, for example, an alkali metal salt or an ammonium salt of the unsaturated carboxylic acid is used. As the alkali metal salt of the unsaturated carboxylic acid, for example, the sodium salt of the unsaturated carboxylic acid is used. As the sodium salt of the unsaturated carboxylic acid, sodium acrylate and sodium methacrylate are preferably used.

有機不飽和スルホン酸塩としては、例えば、上記有機不飽和スルホン酸のアルカリ金属塩やアンモニウム塩が用いられる。上記有機不飽和スルホン酸のアルカリ金属塩としては、例えば、上記有機不飽和スルホン酸のナトリウム塩が用いられる。 As the organic unsaturated sulfonic acid salt, for example, an alkali metal salt or an ammonium salt of the above organic unsaturated sulfonic acid is used. As the alkali metal salt of the organic unsaturated sulfonic acid, for example, the sodium salt of the organic unsaturated sulfonic acid is used.

上記特定の単量体は、そのまま重合すると特定の単量体が重合した重合体を形成する。 When the specific monomer is polymerized as it is, a polymer in which the specific monomer is polymerized is formed.

<多官能性単量体>
多官能性単量体は、特定の単量体が重合した重合体を架橋させるものである。多官能性単量体としては、例えば、N,N’−メチレンビスアクリルアミド、N,N’−メチレンビスメタクリルアミド、N,N’−ジメチレンビスアクリルアミド、N,N’−ジメチレンビスメタクリルアミドが用いられ、好ましくはN,N’−メチレンビスアクリルアミド又はN,N’−メチレンビスメタクリルアミドが用いられる。
<Polyfunctional monomer>
The polyfunctional monomer crosslinks a polymer obtained by polymerizing a specific monomer. Examples of the polyfunctional monomer include N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, N, N'-dimethylenebisacrylamide, and N, N'-dimethylenebismethacrylamide. Is used, preferably N, N'-methylenebisacrylamide or N, N'-methylenebismethacrylamide is used.

(融点降下剤)
本実施形態に係る蓄熱材組成物は、特定の融点降下剤をさらに含むと、主剤の融点が降下するため好ましい。融点降下剤としては、例えば、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤が用いられる。
(Melting point lowering agent)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific melting point lowering agent because the melting point of the main agent is lowered. As the melting point lowering agent, for example, at least one melting point selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. A lowering agent is used.

(過冷却抑制剤)
本実施形態に係る蓄熱材組成物は、特定の過冷却抑制剤をさらに含むと、主剤の過冷却が抑制されるため好ましい。過冷却抑制剤としては、例えば、ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤が用いられる。
(Supercooling inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific supercooling inhibitor because the supercooling of the main agent is suppressed. The supercooling inhibitor, for example, borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, Hecht At least one selected from the group consisting of light, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkyl sulfate, sodium alkyl phosphate, potassium alkyl sulfate, and potassium alkyl phosphate. An overcooling inhibitor is used.

(第2の相分離抑制剤)
本実施形態に係る蓄熱材組成物は、特定の第2の相分離抑制剤をさらに含むと、主剤の相分離が抑制されるため好ましい。第2の相分離抑制剤としては、例えば、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及び上記物質の複合物質からなる群より選択される少なくとも1種の第2の相分離抑制剤が用いられる。
(Second phase separation inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific second phase separation inhibitor because the phase separation of the main agent is suppressed. Examples of the second phase separation inhibitor include sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, sodium acrylate / myrene copolymer, and acrylate / sulfonic acid. Monopolymer Copolymer Sodium, acrylamide / dimethylaminoethylmethacrylate dimethylsulfate copolymer, acrylamide / sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, high water absorption resin (SAP), carboxymethyl cellulose (CMC), CMC At least selected from the group consisting of derivatives of carrageenan, derivatives of carrageenan, xanthan gum, derivatives of xanthan gum, pectin, derivatives of pectin, starch, derivatives of starch, konjak, agar, layered silicate, and composites of the above substances. One type of second phase separation inhibitor is used.

(特性)
本実施形態に係る蓄熱材組成物は、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適な温度範囲で融解潜熱を発現する。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。
(Characteristic)
The heat storage material composition according to the present embodiment has a melting lower limit temperature of 20 ° C. or higher and a melting upper limit temperature of 30 ° C. or lower, and melts in a temperature range suitable as a latent heat storage material composition of a heat storage system for heating and cooling of a building. It develops latent heat. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.

本実施形態に係る蓄熱材組成物は、融解上限温度が、30℃以下、好ましくは28℃以上30℃以下、より好ましくは28℃以上30℃未満、さらに好ましくは28℃以上29℃未満にある。本実施形態に係る蓄熱材組成物は、融解上限温度が上記数値範囲内にあるため、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適な温度範囲で融解潜熱を発現する。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The heat storage material composition according to the present embodiment has a melting upper limit temperature of 30 ° C. or lower, preferably 28 ° C. or higher and 30 ° C. or lower, more preferably 28 ° C. or higher and lower than 30 ° C., and further preferably 28 ° C. or higher and lower than 29 ° C. .. Since the heat storage material composition according to the present embodiment has a melting upper limit temperature within the above numerical range, it develops latent heat of melting in a temperature range suitable as a latent heat storage material composition of a heat storage system for heating and cooling of a building. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.

本実施形態に係る蓄熱材組成物は、融解上限温度と融解下限温度との差分である融解温度幅が、7.0℃以下、好ましくは5.0℃以下、より好ましくは4.6℃以下、好ましくは4.0℃以下である。本実施形態に係る蓄熱材組成物は、融解温度幅が上記数値範囲内にあり、溶解−凝固間の温度幅が小さいため、溶解と凝固との変化が速やかに行われる。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The heat storage material composition according to the present embodiment has a melting temperature range of 7.0 ° C. or lower, preferably 5.0 ° C. or lower, more preferably 4.6 ° C. or lower, which is the difference between the upper limit melting temperature and the lower limit melting temperature. It is preferably 4.0 ° C. or lower. In the heat storage material composition according to the present embodiment, the melting temperature range is within the above numerical range and the temperature range between melting and solidification is small, so that the change between melting and solidification is rapidly performed. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.

本実施形態に係る蓄熱材組成物は、融解潜熱が140J/g以上、好ましくは140〜210J/g、より好ましくは150〜210J/g、さらに好ましくは160〜210J/gである。また、本実施形態に係る蓄熱材組成物は、融解潜熱が特に好ましくは170〜210J/g、より特に好ましくは180〜210J/gである。本実施形態に係る蓄熱材組成物は、融解潜熱が上記数値範囲内にあるため、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として融解潜熱が十分に高い。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The heat storage material composition according to the present embodiment has a latent heat of melting of 140 J / g or more, preferably 140 to 210 J / g, more preferably 150 to 210 J / g, and further preferably 160 to 210 J / g. Further, in the heat storage material composition according to the present embodiment, the latent heat of melting is particularly preferably 170 to 210 J / g, and more particularly preferably 180 to 210 J / g. Since the latent heat of melting of the heat storage material composition according to the present embodiment is within the above numerical range, the latent heat of melting is sufficiently high as the latent heat storage material composition of the heat storage system for heating and cooling of buildings. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.

(発明の効果)
本実施形態に係る蓄熱材組成物によれば、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上である蓄熱材組成物が得られる。
(Effect of the invention)
According to the heat storage material composition according to the present embodiment, a heat storage material composition having a melting lower limit temperature of 20 ° C. or higher, a melting upper limit temperature of 30 ° C. or lower, and a latent heat of melting of 140 J / g or more can be obtained.

[建築物の冷暖房用の蓄熱システム]
本実施形態に係る建築物の冷暖房用の蓄熱システムは、上記本実施形態に係る蓄熱材組成物を用いた蓄熱材モジュールを具備する。
[Heat storage system for heating and cooling of buildings]
The heat storage system for heating and cooling a building according to the present embodiment includes a heat storage material module using the heat storage material composition according to the present embodiment.

(蓄熱材モジュール)
蓄熱材モジュールとしては、例えば、前記蓄熱材組成物を十分な密封性を有する容器に充填させた蓄熱材パックからなり、この蓄熱材パックを単数ないしは複数積層させるとともに、適切な流路を設け、モジュール化したものが用いられる。蓄熱材パックに用いる容器としては、例えば、アルミシートに樹脂製シートを積層して形成されたアルミパックシートを熱溶着することで形成されたアルミパック等が挙げられる。蓄熱材モジュールは、建造物中の空間を区切る床面、壁面、天井面の少なくとも一部に設置される。
(Heat storage material module)
The heat storage material module is composed of, for example, a heat storage material pack in which the heat storage material composition is filled in a container having sufficient sealing property, and one or more of the heat storage material packs are laminated and an appropriate flow path is provided. Modular ones are used. Examples of the container used for the heat storage material pack include an aluminum pack formed by heat-welding an aluminum pack sheet formed by laminating a resin sheet on an aluminum sheet. The heat storage module is installed on at least a part of the floor, wall surface, and ceiling surface that divides the space in the building.

このように設置された蓄熱材モジュールは、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)される。例えば、昼間においては、蓄熱材モジュール中の蓄熱材組成物は、建造物中の空間から得た熱によって融解し、その分のエンタルピーを蓄熱材組成物の内部に保留する。その後、夜間に外気温度が下がってくると、融解していた蓄熱材組成物は凝固し、建造物中の空間へ熱を放出する。このように、蓄熱材モジュールを建物内に設置すると、蓄熱材組成物の融解・凝固の作用により、冷暖房のためのエネルギー負荷を低減することができる。 The heat storage material module installed in this way is stored (cold) by heat exchange between the module surface and the atmosphere ventilated on the module surface, solar heat by solar radiation, an air conditioning system using nighttime power, and the like. For example, in the daytime, the heat storage material composition in the heat storage material module is melted by the heat obtained from the space in the building, and the enthalpy corresponding to the heat is retained inside the heat storage material composition. After that, when the outside air temperature drops at night, the melted heat storage material composition solidifies and releases heat to the space inside the building. When the heat storage material module is installed in the building in this way, the energy load for heating and cooling can be reduced by the action of melting and solidifying the heat storage material composition.

(発明の効果)
本実施形態に係る蓄熱材システムによれば、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)されるため、冷暖房のためのエネルギー負荷を低減することができる。
(Effect of the invention)
According to the heat storage material system according to the present embodiment, heat is stored (cooled) by heat exchange between the module surface and the atmosphere in which the module surface is ventilated, solar heat by solar radiation, an air conditioning system using nighttime power, and the like. The energy load for can be reduced.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

[実施例1]
(蓄熱材組成物の作製)
20mlのガラス製サンプル瓶に、NaSO無水塩(キシダ化学株式会社製、特級)と、NaHPO無水塩(キシダ化学株式会社製、特級)と、NaPO無水塩(キシダ化学株式会社製、特級)と、純水とを、合計約5gになるように所定量混合した。
なお、NaSO無水塩、NaHPO無水塩、NaPO無水塩及び純水の量は、得られる蓄熱材組成物の組成が表1に示す組成になるような量で配合した。
得られた混合物を50℃以上で湯煎したところ、蓄熱材組成物が得られた(試料No.A15)。この蓄熱材組成物は、極微量の余剰水を含む以外は、実質的に主剤のみからなるものであった。余剰水の含有量を表1に示す。
また、蓄熱材組成物の調製時の沈殿の生成の有無を調べた。蓄熱材組成物の調製時に沈殿が生成することは、凝固・融解を繰り返したときの蓄熱材組成物の特性安定性が低いことを示す指標である。試料No.A15の蓄熱材組成物では、沈殿は生成しなかった。結果を表1に示す。
[Example 1]
(Preparation of heat storage material composition)
Na 2 SO 4 anhydrous salt (Kishida Chemical Co., Ltd., special grade), Na 2 HPO 4 anhydrous salt (Kishida Chemical Co., Ltd., special grade), and Na 3 PO 4 anhydrous salt (Kishida) in a 20 ml glass sample bottle. Chemical Co., Ltd. (special grade) and pure water were mixed in a predetermined amount so as to have a total of about 5 g.
The amounts of Na 2 SO 4 anhydrous salt, Na 2 HPO 4 anhydrous salt, Na 3 PO 4 anhydrous salt, and pure water are blended in such an amount that the composition of the obtained heat storage material composition is as shown in Table 1. did.
When the obtained mixture was boiled in hot water at 50 ° C. or higher, a heat storage material composition was obtained (Sample No. A15). This heat storage material composition was substantially composed of only the main agent, except that it contained a very small amount of excess water. The content of excess water is shown in Table 1.
In addition, the presence or absence of precipitation during the preparation of the heat storage material composition was examined. The formation of a precipitate during the preparation of the heat storage material composition is an index indicating that the characteristic stability of the heat storage material composition is low when solidification and melting are repeated. Sample No. No precipitate was formed in the heat storage material composition of A15. The results are shown in Table 1.

Figure 0006814771
Figure 0006814771

(融解潜熱の融解下限温度Ts、融解上限温度Tf、及び融解潜熱の測定)
蓄熱材組成物から10mg試料を採取し、DSC(示差走査熱量測定)を行い、蓄熱材組成物の融解下限温度Ts及び融解上限温度Tfを測定した。融解下限温度Ts及び融解上限温度Tfの測定について、図2を参照して説明する。図2は、示差走査熱量測定(DSC)を用いて、潜熱蓄熱材組成物が融解潜熱を発現する融解下限温度Tsと融解上限温度Tfとを測定した結果を模式的に示したグラフである。
具体的には、融解下限温度Tsは、DSC曲線におけるベースの直線と、最初にヒートフローが低下したDSC曲線の変曲点における傾きを延長した直線と、の交点とした。また、融解上限温度Tfは、ヒートフローがベースに回復する直前のDSC曲線の変曲点における傾きを延長した直線と、DSC曲線におけるベースの直線と、の交点とした。
また、DSC曲線の吸熱ピークのピーク面積から融解潜熱を算出した。
これらの結果を表1に示す。
(Measurement of melting lower limit temperature Ts, melting upper limit temperature Tf, and melting latent heat)
A 10 mg sample was taken from the heat storage material composition, DSC (differential scanning calorimetry) was performed, and the lower limit melting temperature Ts and the upper limit melting temperature Tf of the heat storage material composition were measured. The measurement of the lower limit melting temperature Ts and the upper limit melting temperature Tf will be described with reference to FIG. FIG. 2 is a graph schematically showing the results of measuring the melting lower limit temperature Ts and the melting upper limit temperature Tf in which the latent heat storage material composition expresses the latent heat of melting by using differential scanning calorimetry (DSC).
Specifically, the lower limit melting temperature Ts was set as the intersection of the base straight line on the DSC curve and the straight line extending the slope at the inflection point of the DSC curve where the heat flow first decreased. Further, the upper limit melting temperature Tf was set as the intersection of the straight line extending the slope at the inflection point of the DSC curve immediately before the heat flow was restored to the base and the straight line of the base in the DSC curve.
In addition, the latent heat of melting was calculated from the peak area of the endothermic peak of the DSC curve.
These results are shown in Table 1.

[実施例2〜28、比較例1〜16]
得られる蓄熱材組成物が表1又は表2に示す組成になるように、NaSO無水塩、NaHPO無水塩、NaPO無水塩、及び純水の配合量を変えた以外は、実施例1と同様にして、蓄熱材組成物を得た(試料No.A1〜A14、A16〜A44)。
試料No.A1〜A14はそれぞれ比較例1〜14の蓄熱材組成物、試料No.A16〜A42はそれぞれ実施例2〜28の蓄熱材組成物、試料No.A43及びA44はそれぞれ比較例15及び16の蓄熱材組成物である。
[Examples 2-28, Comparative Examples 1-16]
The blending amounts of Na 2 SO 4 anhydrous salt, Na 2 HPO 4 anhydrous salt, Na 3 PO 4 anhydrous salt, and pure water were changed so that the obtained heat storage material composition had the composition shown in Table 1 or Table 2. A heat storage material composition was obtained in the same manner as in Example 1 except for the above (Sample Nos. A1 to A14, A16 to A44).
Sample No. A1 to A14 are the heat storage material compositions of Comparative Examples 1 to 14, and Sample Nos. A16 to A42 are the heat storage material compositions of Examples 2 to 28, and Sample Nos. A43 and A44 are the heat storage material compositions of Comparative Examples 15 and 16, respectively.

Figure 0006814771
Figure 0006814771

試料No.A1〜A14及びA16〜A44につき、実施例1と同様にして、余剰水の含有量と、蓄熱材組成物の沈殿の生成の有無を調べた。また、試料No.A1〜A14及びA16〜A44につき、実施例1と同様にして、融解潜熱の融解下限温度Ts、融解上限温度Tf、及び融解潜熱の測定を行った。結果を表1及び表2に示す。 Sample No. For A1 to A14 and A16 to A44, the content of excess water and the presence or absence of precipitation of the heat storage material composition were examined in the same manner as in Example 1. In addition, sample No. For A1 to A14 and A16 to A44, the melting lower limit temperature Ts, the melting upper limit temperature Tf, and the melting latent heat were measured in the same manner as in Example 1. The results are shown in Tables 1 and 2.

(三元系状態図)
図3は、主剤における、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の含有量の好適な範囲を示す三元系状態図である。試料No.A1〜A42の蓄熱材組成物の主剤の組成を図3にプロットした。
図3中、試料No.A15〜A42(実施例1〜28)の蓄熱材組成物のプロットを記号○で示す。
(Three-way phase diagram)
FIG. 3 is a ternary phase diagram showing a suitable range of the contents of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate in the main agent. Sample No. The composition of the main agent of the heat storage material composition of A1 to A42 is plotted in FIG.
In FIG. 3, the sample No. The plots of the heat storage material compositions of A15 to A42 (Examples 1 to 28) are indicated by symbols ◯.

図3において、台形の領域Rは、試料No.A15〜A42(実施例1〜28)の蓄熱材組成物の主剤が存在する領域である。領域Rは、硫酸ナトリウム10水和物の含有量をX質量%、リン酸水素二ナトリウム12水和物の含有量をY質量%、及びリン酸三ナトリウム12水和物の含有量をZ質量%と規定したとき、X、Y及びZが下記式(1)〜(4)を満たす領域である。 In FIG. 3, the trapezoidal region R is the sample No. This is the region where the main agent of the heat storage material composition of A15 to A42 (Examples 1 to 28) is present. In region R, the content of sodium sulfate decahydrate is X% by mass, the content of disodium hydrogen phosphate dodecahydrate is Y% by mass, and the content of trisodium phosphate dodecahydrate is Z mass. When defined as%, X, Y and Z are regions satisfying the following formulas (1) to (4).

[数9]
X+Y+Z=100 (1)
[数10]
X−32.5≦0 (2)
[数11]
32.5≦Y≦55.0 (3)
[数12]
X+0.431Y−41.017≧0 (4)
[Number 9]
X + Y + Z = 100 (1)
[Number 10]
X-32.5 ≤ 0 (2)
[Number 11]
32.5 ≤ Y ≤ 55.0 (3)
[Number 12]
X + 0.431Y-41.017 ≧ 0 (4)

表1より、図3の領域R内にある試料No.A15〜A42(実施例1〜28)の蓄熱材組成物は、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になっていることが分かった。 From Table 1, the sample No. in the region R of FIG. 3 is shown. In the heat storage material compositions of A15 to A42 (Examples 1 to 28), the lower limit melting temperature of the heat storage material composition is 20 ° C. or higher and the upper limit melting temperature is 30 ° C. or lower, and the latent heat of melting is 140 J / g or higher. It turned out that there was.

なお、表2より、図3中に記号×で表される蓄熱材組成物(試料No.A1〜A8)は、蓄熱材組成物の調製時に沈殿が生成しており、繰り返し特性安定性が低いことが分かった。 From Table 2, the heat storage material composition (Sample Nos. A1 to A8) represented by the symbol × in FIG. 3 has a low repeatability stability because a precipitate is formed during the preparation of the heat storage material composition. It turned out.

また、表2より、図3中に記号△で表される蓄熱材組成物(試料No.A8〜A14)は、蓄熱量(融解潜熱)が小さいことが分かった。 Further, from Table 2, it was found that the heat storage material compositions (Sample Nos. A8 to A14) represented by the symbol Δ in FIG. 3 had a small heat storage amount (latent heat of melting).

表1及び図3より、上記式(1)〜(4)を満たす領域R内にある実施例1〜28の蓄熱材組成物(試料No.A15〜A42)は、蓄熱材組成物として好ましいことが分かった。また、実施例1〜28の蓄熱材組成物(試料No.A15〜A42)は、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上であることが分かった。 From Table 1 and FIG. 3, the heat storage material compositions (Sample Nos. A15 to A42) of Examples 1 to 28 in the region R satisfying the above formulas (1) to (4) are preferable as the heat storage material composition. I found out. Further, in the heat storage material compositions of Examples 1 to 28 (Sample Nos. A15 to A42), the lower limit temperature for melting is 20 ° C. or higher, the upper limit temperature for melting is 30 ° C. or lower, and the latent heat of melting is 140 J / g or higher. I found out.

以上、本発明を実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 Although the present invention has been described above by way of examples, the present invention is not limited to these, and various modifications can be made within the scope of the gist of the present invention.

Claims (9)

硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物からなる主剤を含み、
融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、
融解潜熱が140J/g以上であることを特徴とする蓄熱材組成物。
Contains a main agent consisting of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate.
The lower melting temperature is 20 ° C or higher and the upper melting temperature is 30 ° C or lower.
A heat storage material composition having a latent heat of melting of 140 J / g or more.
前記主剤100質量%中に、
前記硫酸ナトリウム10水和物が17.9〜32.5質量%、
前記リン酸水素二ナトリウム12水和物が32.5〜55.0質量%、及び
前記リン酸三ナトリウム12水和物が15〜40.5質量%含まれることを特徴とする請求項1に記載の蓄熱材組成物。
In 100% by mass of the main agent,
The sodium sulfate tetrahydrate is 17.9 to 32.5% by mass,
The first aspect of claim 1 is characterized in that the disodium hydrogen phosphate dodecahydrate is contained in an amount of 32.5 to 55.0% by mass and the trisodium phosphate dodecahydrate is contained in an amount of 15 to 40.5% by mass. The heat storage material composition described.
前記主剤中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記リン酸三ナトリウム12水和物の含有量をZ質量%と規定したとき、X、Y、及びZが下記式(1)〜(4)を満たすことを特徴とする請求項1又は2に記載の蓄熱材組成物。
[数1]
X+Y+Z=100 (1)
[数2]
X−32.5≦0 (2)
[数3]
32.5≦Y≦55.0 (3)
[数4]
X+0.431Y−41.017≧0 (4)
The content of the sodium sulfate decahydrate in the main agent is X mass%, the content of the disodium hydrogen phosphate dodecahydrate is Y mass%, and the content of the trisodium phosphate dodecahydrate is contained. The heat storage material composition according to claim 1 or 2, wherein X, Y, and Z satisfy the following formulas (1) to (4) when the amount is defined as Z mass%.
[Number 1]
X + Y + Z = 100 (1)
[Number 2]
X-32.5 ≤ 0 (2)
[Number 3]
32.5 ≤ Y ≤ 55.0 (3)
[Number 4]
X + 0.431Y-41.017 ≧ 0 (4)
余剰水をさらに含み、
前記余剰水は、前記主剤100質量部に対して9質量部以下含まれることを特徴とする請求項1〜3のいずれか1項に記載の蓄熱材組成物。
Contains more excess water
The heat storage material composition according to any one of claims 1 to 3, wherein the excess water is contained in an amount of 9 parts by mass or less with respect to 100 parts by mass of the main agent.
有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体と、
多官能性単量体と、
を重合させて得られる第1の相分離抑制剤をさらに含むことを特徴とする請求項1〜4のいずれか1項に記載の蓄熱材組成物。
From organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphates, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, and organic unsaturated phosphates With at least one monomer selected from the group
With polyfunctional monomers
The heat storage material composition according to any one of claims 1 to 4, further comprising a first phase separation inhibitor obtained by polymerizing the above.
塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含むことを特徴とする請求項1〜5のいずれか1項に記載の蓄熱材組成物。 It is characterized by further containing at least one melting point lowering agent selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. The heat storage material composition according to any one of claims 1 to 5. ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含むことを特徴とする請求項1〜6のいずれか1項に記載の蓄熱材組成物。 Borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, hectorite, smectite clays, bentonite, laponite, Further comprising at least one supercooling inhibitor selected from the group consisting of propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkylsulfate, sodium alkylphosphate, potassium alkylphosphate, and potassium alkylphosphate. The heat storage material composition according to any one of claims 1 to 6, which is characterized. ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の第2の相分離抑制剤をさらに含むことを特徴とする請求項1〜7のいずれか1項に記載の蓄熱材組成物。 Sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, sodium acrylate / myrene copolymer, sodium acrylate / sulfonic acid monomer copolymer, acrylamide / dimethylaminoethyl Methacrate dimethyl sulfate copolymer, acrylamide / sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, high water absorption resin (SAP), carboxymethyl cellulose (CMC), CMC derivative, carrageenan, carrageenan derivative, xanthan gum, xanthan gum At least one second phase separation inhibitor selected from the group consisting of derivatives of pectin, derivatives of pectin, starch, derivatives of starch, konjak, agar, layered silicates, and composites of these substances. The heat storage material composition according to any one of claims 1 to 7, further comprising. 請求項1〜8のいずれか1項に記載の蓄熱材組成物を用いた蓄熱材モジュールを具備することを特徴とする建築物の冷暖房用の蓄熱システム。 A heat storage system for heating and cooling of a building, which comprises a heat storage material module using the heat storage material composition according to any one of claims 1 to 8.
JP2018151029A 2018-08-10 2018-08-10 Heat storage material composition and heat storage system for heating and cooling of buildings Active JP6814771B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018151029A JP6814771B2 (en) 2018-08-10 2018-08-10 Heat storage material composition and heat storage system for heating and cooling of buildings
PCT/JP2019/027736 WO2020031618A1 (en) 2018-08-10 2019-07-12 Heat storage material composition and heat storage system for air conditioning for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151029A JP6814771B2 (en) 2018-08-10 2018-08-10 Heat storage material composition and heat storage system for heating and cooling of buildings

Publications (2)

Publication Number Publication Date
JP2020026465A JP2020026465A (en) 2020-02-20
JP6814771B2 true JP6814771B2 (en) 2021-01-20

Family

ID=69415498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151029A Active JP6814771B2 (en) 2018-08-10 2018-08-10 Heat storage material composition and heat storage system for heating and cooling of buildings

Country Status (2)

Country Link
JP (1) JP6814771B2 (en)
WO (1) WO2020031618A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346701B2 (en) 2020-02-19 2023-09-19 本田技研工業株式会社 Information acquisition device, information acquisition method, and control program
CN112048287B (en) * 2020-09-17 2022-04-15 陕西合鼎森新智能科技有限公司 Environment-friendly refrigerant and cold compress bag and beverage can thereof
CN114574165A (en) * 2022-03-18 2022-06-03 长沙理工大学 Phase-change cold storage material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3101045A1 (en) * 1981-01-15 1982-08-05 Hoechst Ag, 6000 Frankfurt "LATENT HEAT STORAGE AND METHOD FOR THE PRODUCTION THEREOF"
JP3103927B2 (en) * 1991-01-31 2000-10-30 住化プラステック株式会社 Thermal storage material composition and method for producing the same
JP3479166B2 (en) * 1994-07-20 2003-12-15 住化プラステック株式会社 Method for preventing supercooling of latent heat storage material composition and latent heat storage device
CN102827588A (en) * 2012-09-19 2012-12-19 杨宁 Energy-saving temperature-control phase-change material
JP2015218212A (en) * 2014-05-15 2015-12-07 株式会社ネギシ New latent heat storage material composition
WO2017164304A1 (en) * 2016-03-23 2017-09-28 株式会社カネカ Heat storage material composition and use thereof

Also Published As

Publication number Publication date
JP2020026465A (en) 2020-02-20
WO2020031618A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6814771B2 (en) Heat storage material composition and heat storage system for heating and cooling of buildings
WO2019172260A1 (en) Heat storage material composition and heat storage system for building air conditioning
US20220089929A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
EP0754744B1 (en) Heat storage compositions
US20220282146A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
JP7405684B2 (en) Heat storage material composition and heat storage system for heating and cooling buildings
EP0478637A4 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications
WO2020246387A1 (en) Heat storage material composition and heat storage system for air conditioning of building
JP2020196816A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196818A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196819A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP3442155B2 (en) Heat storage material composition
US4338208A (en) Hydrated MgCl2 reversible phase change compositions
WO2023073957A1 (en) Heat storage material composition, and heat storage system for air conditioning of buildings
JP2022188452A (en) Heat storage material composition, and heat storage system for cooling and heating of building
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JP2022185304A (en) Heat storage material, and solar heat utilizing heat storage system
JP6682712B1 (en) Latent heat storage material composition
JP2021147509A (en) Heat storage material composition and heat storage system for air-conditioner of building
EP0054758A1 (en) Hydrated MgCl2 or Mg(NO3)2/MgCl2 reversible phase change compositions
KR930009901B1 (en) Storage heat material
JP3221950B2 (en) Heat storage material
JP2001152141A (en) Heat accumulator composition
AU640154B2 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6814771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250