JP2022188452A - Heat storage material composition, and heat storage system for cooling and heating of building - Google Patents

Heat storage material composition, and heat storage system for cooling and heating of building Download PDF

Info

Publication number
JP2022188452A
JP2022188452A JP2021096489A JP2021096489A JP2022188452A JP 2022188452 A JP2022188452 A JP 2022188452A JP 2021096489 A JP2021096489 A JP 2021096489A JP 2021096489 A JP2021096489 A JP 2021096489A JP 2022188452 A JP2022188452 A JP 2022188452A
Authority
JP
Japan
Prior art keywords
heat storage
sodium
storage material
material composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021096489A
Other languages
Japanese (ja)
Inventor
重和 宮下
Shigekazu Miyashita
崇 桃井
Takashi Momoi
相培 李
Sang Bae Lee
多江子 柴山
Taeko Shibayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2021096489A priority Critical patent/JP2022188452A/en
Publication of JP2022188452A publication Critical patent/JP2022188452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Central Heating Systems (AREA)

Abstract

To provide a heat storage material composition that has a melting point of 20-22°C with a latent heat of fusion being great in a narrow temperature range and a heat storage system for cooling and heating of a building.SOLUTION: A heat storage material composition comprises a basis comprising sodium sulfate 10-hydrate, disodium hydrogenphosphate 12-hydrate, sodium carbonate 10-hydrate, and sodium metaborate 4-hydrate with a melting point of 20-22°C and a latent heat of fusion of 190 J/g or more. A heat storage system for cooling and heating of a building is provided with a heat storage material module including the heat storage material composition.SELECTED DRAWING: Figure 1

Description

本発明は、蓄熱材組成物、及び建築物の冷暖房用の蓄熱システムに関する。 TECHNICAL FIELD The present invention relates to a heat storage material composition and a heat storage system for cooling and heating buildings.

従来、液体から固体への相変化時や固体から液体への相変化時に発生又は吸収する潜熱を利用した潜熱蓄熱材組成物が知られている。潜熱蓄熱材組成物は、例えば、建造物の冷暖房の蓄熱システムに用いられる。 Conventionally, there has been known a latent heat storage material composition that utilizes latent heat generated or absorbed during a phase change from a liquid to a solid or from a solid to a liquid. The latent heat storage material composition is used, for example, in a heat storage system for cooling and heating buildings.

潜熱蓄熱材組成物には、一般的に、蓄熱量が大きいこと、融点が所定の温度領域内にあること、長期間安定であること、安価であること、毒性がないこと、腐触性がないこと等の特性が要求される。 The latent heat storage material composition generally has a large heat storage capacity, a melting point within a predetermined temperature range, long-term stability, low cost, no toxicity, and no corrosiveness. characteristics such as no

建造物の冷暖房用の蓄熱システム用の潜熱蓄熱材組成物には、単位重量当たりにどれだけ多くの熱を貯められるかを意味する融解潜熱の大きいことが求められる。融解潜熱が大きいと、少ない量の潜熱蓄熱材組成物で充分な蓄熱を達成することができるため好ましい。 A latent heat storage material composition for a heat storage system for cooling and heating a building is required to have a large latent heat of fusion, which means how much heat can be stored per unit weight. A large latent heat of fusion is preferable because sufficient heat storage can be achieved with a small amount of the latent heat storage material composition.

特許文献1には、硫酸ナトリウム及び/またはその共晶塩、水、並びに架橋重合体からなり、硫酸ナトリウム1モルに対して水13~27モルを含有する蓄熱材組成物が開示されている。 Patent Document 1 discloses a heat storage material composition comprising sodium sulfate and/or its eutectic salt, water, and a crosslinked polymer, and containing 13 to 27 mol of water per 1 mol of sodium sulfate.

特開平5-25467号公報JP-A-5-25467

しかしながら、硫酸ナトリウムの水和物のうち、例えば硫酸ナトリウム10水和物は、相変化温度が約32℃である。このように、特許文献1の蓄熱材組成物では、融点を20~22℃の範囲内に調整することが困難であるという問題があった。また、特許文献1の蓄熱材組成物には、蓄熱量が小さいという問題があった。さらに、特許文献1の蓄熱材組成物では、水を加えると、潜熱発生領域が増大するため、狭い温度領域内での融解潜熱が小さいという問題があった。 However, among sodium sulfate hydrates, for example, sodium sulfate decahydrate has a phase change temperature of about 32°C. As described above, the heat storage material composition of Patent Document 1 has a problem that it is difficult to adjust the melting point within the range of 20 to 22°C. Moreover, the heat storage material composition of Patent Document 1 has a problem that the heat storage amount is small. Furthermore, in the heat storage material composition of Patent Document 1, when water is added, the latent heat generation region increases, so there is a problem that the latent heat of fusion is small within a narrow temperature region.

本発明は、上記課題に鑑みてなされたものである。本発明は、融点が20~22℃の範囲内にあり、狭い温度領域内での融解潜熱が大きい蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することを目的とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a heat storage material composition having a melting point in the range of 20 to 22° C. and a large latent heat of fusion within a narrow temperature range, and a heat storage system for cooling and heating buildings.

本発明の態様に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及び、メタホウ酸ナトリウム4水和物からなる主剤を含み、融点が20~22℃の範囲内にあり、融解潜熱が190J/g以上である。 A heat storage material composition according to an aspect of the present invention includes a main agent comprising sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and sodium metaborate tetrahydrate. , a melting point in the range of 20 to 22° C., and a latent heat of fusion of 190 J/g or more.

本発明によれば、融点が20~22℃の範囲内にあり、狭い温度領域内での融解潜熱が大きい蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することができる。 According to the present invention, it is possible to provide a heat storage material composition having a melting point in the range of 20 to 22° C. and a large latent heat of fusion within a narrow temperature range, and a heat storage system for cooling and heating buildings.

主剤におけるメタホウ酸ナトリウム4水和物の含有量が略2.5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。Sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 in the triple composition when the content of sodium metaborate tetrahydrate in the main agent is about 2.5% by mass FIG. 3 is a ternary composition diagram of hydrate content. 図1に示す領域A1の拡大図である。2 is an enlarged view of a region A1 shown in FIG. 1; FIG. 主剤におけるメタホウ酸ナトリウム4水和物の含有量が略5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。Sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate decahydrate in the triple composition when the content of sodium metaborate tetrahydrate in the main agent is approximately 5% by mass It is a ternary system composition diagram of the content of the material. 図3に示す領域A2の拡大図である。4 is an enlarged view of a region A2 shown in FIG. 3; FIG.

以下、本実施形態に係る蓄熱材組成物、及び蓄熱システムについて詳細に説明する。 Hereinafter, the heat storage material composition and the heat storage system according to the present embodiment will be described in detail.

[蓄熱材組成物]
本実施形態に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及びメタホウ酸ナトリウム4水和物からなる主剤を含む。なお、主剤中、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物からなる混合物を、三種組成物ともいう。
[Heat storage material composition]
The heat storage material composition according to the present embodiment contains a main agent composed of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and sodium metaborate tetrahydrate. A mixture of sodium sulfate decahydrate, disodium hydrogenphosphate dodecahydrate, and sodium carbonate decahydrate in the main agent is also referred to as a three-component composition.

(主剤)
主剤は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及びメタホウ酸ナトリウム4水和物を所定量含む。
(Main agent)
The main agent contains predetermined amounts of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and sodium metaborate tetrahydrate.

<三種組成物中の組成>
蓄熱材組成物では、主剤中におけるメタホウ酸ナトリウム4水和物の含有量に応じて、X、Y、及びZが下記式(1-1)~(1-6)、又は(2-1)~(2-5)、を満たすことが好ましい。ここで、X、Y、及びZは、三種組成物100質量%中の、硫酸ナトリウム10水和物の含有量をX質量%、リン酸水素二ナトリウム12水和物の含有量をY質量%、及び炭酸ナトリウム10水和物の含有量をZ質量%と規定するときの値である。すなわち、X、Y、及びZは、主剤からメタホウ酸ナトリウム4水和物を除いた三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の各物質の含有量(質量%)を示す。
<Composition in three types of composition>
In the heat storage material composition, X, Y, and Z are represented by the following formulas (1-1) to (1-6), or (2-1), depending on the content of sodium metaborate tetrahydrate in the main agent. (2-5) is preferably satisfied. Here, X, Y, and Z are the content of sodium sulfate decahydrate in 100% by mass of the three-component composition, and the content of disodium hydrogen phosphate dodecahydrate in Y% by mass. , and the content of sodium carbonate decahydrate is defined as Z% by mass. That is, X, Y, and Z are sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate decahydrate in the three-component composition excluding sodium metaborate tetrahydrate from the main agent. The content (% by mass) of each substance in the hydrate is shown.

[メタホウ酸ナトリウム4水和物の含有量が2.0~3.0質量%の場合]
主剤中における前記メタホウ酸ナトリウム4水和物の含有量が2.0~3.0質量%、好ましくは2.3~2.7質量%の場合において、X、Y、及びZが下記式(1-1)~(1-6)を満たすことが好ましい。
[When the content of sodium metaborate tetrahydrate is 2.0 to 3.0% by mass]
When the content of the sodium metaborate tetrahydrate in the main agent is 2.0 to 3.0% by mass, preferably 2.3 to 2.7% by mass, X, Y, and Z are represented by the following formula ( 1-1) to (1-6) are preferably satisfied.

[数1]
X+Y+Z=100 (1-1)
[数2]
X+3.9Y-162.45≧0 (1-2)
[数3]
X+Y-58.05≧0 (1-3)
[数4]
X≧18.05 (1-4)
[数5]
X+3.105Y-156.64≦0 (1-5)
[数6]
X≦26.10 (1-6)
[Number 1]
X+Y+Z=100 (1-1)
[Number 2]
X+3.9Y-162.45≧0 (1-2)
[Number 3]
X+Y-58.05≧0 (1-3)
[Number 4]
X≧18.05 (1-4)
[Number 5]
X+3.105Y-156.64≦0 (1-5)
[Number 6]
X≤26.10 (1-6)

図1は、主剤におけるメタホウ酸ナトリウム4水和物の含有量が略5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図2は、図1に示す領域A1の拡大図である。図2に示す五角形及びその内部が示す領域R1は、上記式(1-1)~(1-6)を満たす範囲である。 FIG. 1 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and carbonate in the three-component composition when the content of sodium metaborate tetrahydrate in the main agent is about 5% by mass. FIG. 3 is a ternary composition diagram of the content of sodium decahydrate. FIG. 2 is an enlarged view of area A1 shown in FIG. A region R1 indicated by the pentagon and its interior shown in FIG. 2 is a range that satisfies the above formulas (1-1) to (1-6).

具体的には、五角形を構成する直線ABは、式(1-2)において等号の場合の直線を示す。五角形を構成する直線BCは、式(1-3)において等号の場合の直線を示す。五角形を構成する直線CDは、式(1-4)において等号の場合の直線を示す。五角形を構成する直線EFは、式(1-5)において等号の場合の直線を示す。五角形を構成する直線FAは、式(1-6)において等号の場合の直線を示す。 Specifically, the straight line AB forming the pentagon represents the straight line in the case of the equality sign in Equation (1-2). A straight line BC forming the pentagon indicates a straight line in the case of equality in the equation (1-3). A straight line CD forming the pentagon indicates a straight line in the case of the equal sign in Equation (1-4). A straight line EF forming a pentagon indicates a straight line in the case of the equal sign in Equation (1-5). A straight line FA forming the pentagon indicates a straight line in the case of equality in the equation (1-6).

メタホウ酸ナトリウム4水和物の含有量が2.0~3.0質量%の場合に、上記X、Y、及びZが式(1-1)~(1-6)を満たすと、蓄熱材組成物の融点が20~22℃の範囲内にあり、融解潜熱が190J/g以上になりやすい。 When the content of sodium metaborate tetrahydrate is 2.0 to 3.0% by mass, and the above X, Y, and Z satisfy the formulas (1-1) to (1-6), the heat storage material The melting point of the composition is in the range of 20 to 22° C., and the latent heat of fusion tends to be 190 J/g or more.

[メタホウ酸ナトリウム4水和物の含有量が4.5~5.5質量%の場合]
主剤中における前記メタホウ酸ナトリウム4水和物の含有量が4.5~5.5質量%、好ましくは4.8~5.2質量%の場合において、X、Y、及びZが下記式(2-1)~(2-5)を満たすことが好ましい。
[When the content of sodium metaborate tetrahydrate is 4.5 to 5.5% by mass]
When the content of the sodium metaborate tetrahydrate in the main agent is 4.5 to 5.5% by mass, preferably 4.8 to 5.2% by mass, X, Y, and Z are represented by the following formula ( 2-1) to (2-5) are preferably satisfied.

[数7]
X+Y+Z=100 (2-1)
[数8]
X-2.12Y+52.02≦0 (2-2)
[数9]
X+0.27Y-31.48≧0 (2-3)
[数10]
X-1.52Y+40.11≧0 (2-4)
[数11]
X≦26.1 (2-5)
[Number 7]
X+Y+Z=100 (2-1)
[Number 8]
X-2.12Y+52.02≦0 (2-2)
[Number 9]
X+0.27Y-31.48≧0 (2-3)
[Number 10]
X-1.52Y+40.11≧0 (2-4)
[Number 11]
X≤26.1 (2-5)

図3は、主剤におけるメタホウ酸ナトリウム4水和物の含有量が略5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図4は、図3に示す領域A2の拡大図である。図4に示す四角形及びその内部が示す領域R2は、上記式(2-1)~(2-5)を満たす範囲である。 FIG. 3 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and carbonate in the three-component composition when the content of sodium metaborate tetrahydrate in the main agent is approximately 5% by mass. FIG. 3 is a ternary composition diagram of the content of sodium decahydrate. FIG. 4 is an enlarged view of area A2 shown in FIG. The quadrangle shown in FIG. 4 and the region R2 indicated by the interior thereof are ranges that satisfy the above formulas (2-1) to (2-5).

具体的には、四角形を構成する直線ABは、式(2-2)において等号の場合の直線を示す。四角形を構成する直線CDは、式(2-3)において等号の場合の直線を示す。四角形を構成する直線DEは、式(2-4)において等号の場合の直線を示す。四角形を構成する直線FAは、式(2-5)において等号の場合の直線を示す。 Specifically, the straight line AB forming the quadrangle indicates the straight line in the case of the equal sign in Equation (2-2). A straight line CD forming a quadrangle indicates a straight line in the case of the equal sign in Equation (2-3). A straight line DE forming a quadrangle indicates a straight line in the case of the equal sign in Equation (2-4). A straight line FA forming a quadrangle indicates a straight line in the case of equality in the equation (2-5).

メタホウ酸ナトリウム4水和物の含有量が4.5~5.5質量%の場合に、上記X、Y、及びZが式(2-1)~(2-5)を満たすと、蓄熱材組成物の融点が20~22℃の範囲内にあり、融解潜熱が190J/g以上になりやすい。 When the content of sodium metaborate tetrahydrate is 4.5 to 5.5% by mass, and the above X, Y, and Z satisfy the formulas (2-1) to (2-5), the heat storage material The melting point of the composition is in the range of 20 to 22° C., and the latent heat of fusion tends to be 190 J/g or more.

(融点降下剤)
本実施形態に係る蓄熱材組成物は、特定の融点降下剤をさらに含むと、主剤の融点が降下するため好ましい。融点降下剤としては、例えば、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤が用いられる。
(Melting point depressant)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific melting point depressant, because the melting point of the main agent is lowered. The melting point depressant includes, for example, at least one melting point selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. Depressants are used.

(過冷却抑制剤)
本実施形態に係る蓄熱材組成物は、特定の過冷却抑制剤をさらに含むと、主剤の過冷却が抑制されるため好ましい。過冷却抑制剤としては、例えば、ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム粉末、二酸化チタン、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤が用いられる。
(supercooling inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific supercooling inhibitor, since supercooling of the main agent is suppressed. Examples of supercooling inhibitors include borax Na 2 B 4 O 5 (OH) 4.8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum powder, titanium dioxide, At least one supercooling inhibitor selected from the group consisting of propylene glycol, ethylene glycol, glycerin, ethylenediaminetetraacetic acid, sodium alkylsulfate, sodium alkylphosphate, potassium alkylsulfate, and potassium alkylphosphate is used.

(相分離抑制剤)
本実施形態に係る蓄熱材組成物は、特定の相分離抑制剤をさらに含むと、主剤の相分離が抑制されるため好ましい。相分離抑制剤としては、例えば、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及び上記物質の複合物質からなる群より選択される少なくとも1種の相分離抑制剤が用いられる。
(Phase separation inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific phase separation inhibitor, since phase separation of the main agent is suppressed. Phase separation inhibitors include, for example, sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, sodium acrylic acid/maleic acid copolymer, and acrylic acid/sulfonic acid monomers. Sodium polymer, acrylamide/dimethylaminoethyl methacrylate dimethylsulfate copolymer, acrylamide/sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, super absorbent polymer (SAP), carboxymethyl cellulose (CMC), derivatives of CMC, At least one selected from the group consisting of carrageenan, carrageenan derivatives, xanthan gum, xanthan gum derivatives, pectin, pectin derivatives, starch, starch derivatives, konjac, agar, layered silicates, and composites of the above substances A phase separation inhibitor is used.

(特性)
本実施形態に係る蓄熱材組成物は、融点が20~22℃の範囲内にあり、建造物の冷暖房の一般的な設定温度よりやや低めの温度領域で融解・凝固が生じる。また、本実施形態に係る蓄熱材組成物は、融解潜熱が190J/g以上であり、狭い温度領域内での融解潜熱が大きい。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。
(Characteristic)
The heat storage material composition according to the present embodiment has a melting point in the range of 20 to 22° C., and melts and solidifies in a temperature range slightly lower than the general set temperature for air conditioning of buildings. Further, the heat storage material composition according to the present embodiment has a latent heat of fusion of 190 J/g or more, and has a large latent heat of fusion within a narrow temperature range. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for cooling and heating buildings.

本実施形態に係る蓄熱材組成物は、融解潜熱が190J/g以上、好ましくは200J/g以上、より好ましくは210J/g以上、さらに好ましくは220J/g以上、特に好ましくは230J/g以上である。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The heat storage material composition according to the present embodiment has a latent heat of fusion of 190 J/g or more, preferably 200 J/g or more, more preferably 210 J/g or more, still more preferably 220 J/g or more, and particularly preferably 230 J/g or more. be. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for cooling and heating buildings.

(発明の効果)
本実施形態に係る蓄熱材組成物によれば、融点が20~22℃の範囲内にあり、融解潜熱が190J/g以上である蓄熱材組成物が得られる。
(The invention's effect)
According to the heat storage material composition according to the present embodiment, a heat storage material composition having a melting point in the range of 20 to 22° C. and a latent heat of fusion of 190 J/g or more can be obtained.

[建築物の冷暖房用の蓄熱システム]
本実施形態に係る建築物の冷暖房用の蓄熱システムは、上記本実施形態に係る蓄熱材組成物を用いた蓄熱材モジュールを具備する。
[Heat storage system for heating and cooling of buildings]
A heat storage system for cooling and heating a building according to the present embodiment includes a heat storage material module using the heat storage material composition according to the present embodiment.

(蓄熱材モジュール)
蓄熱材モジュールとしては、例えば、前記蓄熱材組成物を十分な密封性を有する容器に充填させた蓄熱材パックからなり、この蓄熱材パックを単数ないしは複数積層させるとともに、適切な流路を設け、モジュール化したものが用いられる。蓄熱材パックに用いる容器としては、例えば、アルミシートに樹脂製シートを積層して形成されたアルミパックシートを熱溶着することで形成されたアルミパック等が挙げられる。蓄熱材モジュールは、建造物中の空間を区切る床面、壁面、天井面の少なくとも一部に設置される。
(Heat storage material module)
The heat storage material module is, for example, composed of a heat storage material pack in which the heat storage material composition is filled in a container having a sufficient sealability, and a single or a plurality of the heat storage material packs are stacked, and an appropriate flow path is provided, Modularized ones are used. Examples of the container used for the heat storage material pack include an aluminum pack formed by heat-sealing an aluminum pack sheet formed by laminating a resin sheet on an aluminum sheet. The heat storage material module is installed on at least a part of the floor surface, wall surface, and ceiling surface that separate the spaces in the building.

このように設置された蓄熱材モジュールは、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)される。例えば、昼間においては、蓄熱材モジュール中の蓄熱材組成物は、建造物中の空間から得た熱によって融解し、その分のエンタルピーを蓄熱材組成物の内部に保留する。その後、夜間に外気温度が下がってくると、融解していた蓄熱材組成物は凝固し、建造物中の空間へ熱を放出する。このように、蓄熱材モジュールを建物内に設置すると、蓄熱材組成物の融解・凝固の作用により、冷暖房のためのエネルギー負荷を低減することができる。 The heat storage material modules installed in this manner store heat (cold storage) by heat exchange between the module surface and the atmosphere passing through the module surface, solar heat from sunlight, an air conditioning system using nighttime power, and the like. For example, during the daytime, the heat storage material composition in the heat storage material module is melted by the heat obtained from the space in the building, and the corresponding enthalpy is retained inside the heat storage material composition. After that, when the outside air temperature drops at night, the melted heat storage material composition solidifies and releases heat to the space in the building. When the heat storage material module is installed in the building in this way, the energy load for air conditioning can be reduced due to the action of melting and solidification of the heat storage material composition.

(発明の効果)
本実施形態に係る蓄熱システムによれば、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)されるため、冷暖房のためのエネルギー負荷を低減することができる。
(The invention's effect)
According to the heat storage system according to the present embodiment, heat is stored (cold storage) by heat exchange between the module surface and the atmosphere through which the module surface is ventilated, solar heat due to solar radiation, an air conditioning system using nighttime power, and the like. can reduce the energy load for

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

[実施例1](メタホウ酸ナトリウム4水和物の含有量が略2.5質量%の場合)
(蓄熱材組成物の作製)
はじめに、NaSO・10HO(キシダ化学株式会社製、特級)と、NaHPO・12HO(キシダ化学株式会社製、特級)と、NaCO・10HO(キシダ化学株式会社製、特級)とを用意した。また、NaBO・4HO(キシダ化学株式会社製)も用意した。
次に、20mlのガラス製サンプル瓶に、NaSO・10HOと、NaHPO・12HOと、NaCO・10HOと、NaBO・4HOと、純水とを、合計約5gになるように所定量混合した。
なお、NaSO・10HO、NaHPO・12HO、NaCO・10HO、NaBO・4HO及び純水の量は、得られる蓄熱材組成物の組成が表1に示す組成になるような量で配合した。蓄熱材組成物は、主剤中のNaBO・4HOの含有量が略2.5質量%になるように調製した。
また、三種組成物100質量%中のNaSO・10HOの含有量X質量%、NaHPO・12HOの含有量Y質量%、及びNaCO・10HOの含有量Z質量%は、表1に示すとおりであった。
得られた混合物を50℃以上で湯煎したところ、蓄熱材組成物が得られた(試料No.A1)。
[Example 1] (When the content of sodium metaborate tetrahydrate is approximately 2.5% by mass)
(Production of heat storage material composition)
First, Na 2 SO 4.10H 2 O (manufactured by Kishida Chemical Co., Ltd., special grade), Na 2 HPO 4.12H 2 O (manufactured by Kishida Chemical Co., Ltd., special grade), and Na 2 CO 3.10H 2 O (Kishida Chemical Co., Ltd., special grade) Special grade manufactured by Kagaku Co., Ltd.) was prepared. NaBO 2 .4H 2 O (manufactured by Kishida Chemical Co., Ltd.) was also prepared.
Na2SO4.10H2O , Na2HPO4.12H2O , Na2CO3.10H2O , NaBO2.4H2O and pure _ _ A predetermined amount of water was mixed so as to make a total of about 5 g.
The amounts of Na 2 SO 4.10H 2 O, Na 2 HPO 4.12H 2 O, Na 2 CO 3.10H 2 O, NaBO 2.4H 2 O and pure water depend on the composition of the obtained heat storage material composition. was blended in an amount such that the composition shown in Table 1 was obtained. The heat storage material composition was prepared so that the content of NaBO 2 ·4H 2 O in the main agent was approximately 2.5% by mass.
In addition, the content of Na 2 SO 4.10H 2 O in 100% by mass of the three-component composition is X% by mass, the content of Na 2 HPO 4.12H 2 O is Y mass%, and the content of Na 2 CO 3.10H 2 O is The content Z mass % was as shown in Table 1.
When the obtained mixture was boiled in hot water at 50° C. or higher, a heat storage material composition was obtained (Sample No. A1).

Figure 2022188452000002
Figure 2022188452000002

(融点及び融解潜熱の測定)
蓄熱材組成物から約20mg試料を採取し、DSC(示差走査熱量計)を行い、蓄熱材組成物の融解下限温度及び融解上限温度を測定した。得られた融解下限温度を融点とした。
また、示差走査熱量計(DSC)にて測定されるヒートフローを時間で積分した場合のピーク面積から融解潜熱を算出した。
融点及び融解潜熱の結果を表1に示す。
(Measurement of melting point and latent heat of fusion)
About 20 mg of a sample was taken from the heat storage material composition, DSC (differential scanning calorimeter) was performed, and the lower limit melting temperature and the upper limit melting temperature of the heat storage material composition were measured. The lower melting limit temperature obtained was taken as the melting point.
Also, the latent heat of fusion was calculated from the peak area when the heat flow measured by a differential scanning calorimeter (DSC) was integrated over time.
The melting point and latent heat of fusion results are shown in Table 1.

[実施例2~11、比較例1~5](メタホウ酸ナトリウム4水和物の含有量が略2.5質量%の場合)
得られる蓄熱材組成物が表1に示す組成になるように、各成分の配合量を変えた以外は実施例1と同様にして蓄熱材組成物を得た(試料No.A2~A11(実施例2~11)、A30~A34(比較例1~5))。蓄熱材組成物は、主剤中のNaBO・4HOの含有量が略2.5質量%になるように調製した。
[Examples 2 to 11, Comparative Examples 1 to 5] (When the content of sodium metaborate tetrahydrate is approximately 2.5% by mass)
Heat storage material compositions were obtained in the same manner as in Example 1 except that the blending amounts of each component were changed so that the obtained heat storage material composition had the composition shown in Table 1 (Sample Nos. A2 to A11 (implementation Examples 2-11), A30-A34 (Comparative Examples 1-5)). The heat storage material composition was prepared so that the content of NaBO 2 ·4H 2 O in the main agent was approximately 2.5% by mass.

(融点及び融解潜熱の測定)
試料No.A2~A11、A30~A34につき、実施例1と同様にして、融点及び融解潜熱を測定した。なお、試料No.A30~A34は、試料調製時に顕著な沈殿が生じて試料中の化学組成を特定することができなかったため、融点及び融解潜熱の測定ができなかった。
結果を表1に示す。
(Measurement of melting point and latent heat of fusion)
Sample no. Melting points and latent heats of fusion of A2 to A11 and A30 to A34 were measured in the same manner as in Example 1. In addition, sample no. For A30 to A34, the melting points and latent heats of fusion could not be measured because significant precipitation occurred during sample preparation and the chemical compositions in the samples could not be specified.
Table 1 shows the results.

(三元系組成図)
図1は、主剤におけるメタホウ酸ナトリウム4水和物の含有量が略2.5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図2は、図1に示す領域A1の拡大図である。実施例1の試料No.A1を含めた試料No.A1~A11、A30~A34の蓄熱材組成物の主剤を構成する三種組成物の組成を図1及び図2にプロットした。
図1及び図2中、試料No.A1~A11の蓄熱材組成物のプロットを記号○で示す。また、試料No.A30~A34の蓄熱材組成物のプロットを記号×で示す。
図2において、五角形及びその内部が示す領域R1は、上記式(1-1)~(1-6)を満たす領域である。記号○で示した試料No.A1~A11は、領域R1内に存在する。
(Ternary composition diagram)
FIG. 1 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and a ternary composition diagram of the content of sodium carbonate decahydrate. FIG. 2 is an enlarged view of area A1 shown in FIG. Sample no. Sample No. including A1. The compositions of the three compositions that constitute the main ingredients of the heat storage material compositions A1 to A11 and A30 to A34 are plotted in FIGS. 1 and 2. FIG.
In FIGS. 1 and 2, sample No. Plots of the heat storage material compositions of A1 to A11 are indicated by the symbol ◯. Moreover, sample no. Plots of the heat storage material compositions of A30 to A34 are indicated by symbols x.
In FIG. 2, a region R1 indicated by a pentagon and its interior is a region that satisfies the above formulas (1-1) to (1-6). Sample No. indicated by the symbol ○. A1 to A11 exist within region R1.

表1、図1及び図2より、図2の領域R1内にある試料No.A1~A11は、融点及び融解潜熱が良好であることが分かった。具体的には、試料No.A1~A11の蓄熱材組成物は、融点が20~22℃の範囲内にあり、融解潜熱が190J/g以上になっていることが分かった。 From Table 1, FIGS. 1 and 2, the sample No. within the region R1 in FIG. A1 to A11 were found to have good melting points and latent heats of fusion. Specifically, sample no. It was found that the heat storage material compositions A1 to A11 had a melting point within the range of 20 to 22° C. and a latent heat of fusion of 190 J/g or more.

一方、表1、図1及び図2より、図2の領域R1外にある試料No.A30~A34は、融点及び融解潜熱の少なくとも一方が良好でないことが分かった。 On the other hand, according to Table 1, FIGS. 1 and 2, sample No. outside region R1 in FIG. It was found that at least one of melting point and latent heat of fusion was not good for A30 to A34.

[実施例12~21、比較例6~9](メタホウ酸ナトリウム4水和物の含有量が略5質量%の場合)
得られる蓄熱材組成物が表2に示す組成になるように、各成分の配合量を変えた以外は実施例1と同様にして蓄熱材組成物を得た(試料No.A12~A21(実施例6~12)、No.A22~A25(比較例6~9))。蓄熱材組成物は、主剤中のNaBO・4HOの含有量が略5質量%になるように調製した。
[Examples 12 to 21, Comparative Examples 6 to 9] (When the content of sodium metaborate tetrahydrate is approximately 5% by mass)
Heat storage material compositions were obtained in the same manner as in Example 1, except that the blending amounts of each component were changed so that the obtained heat storage material composition had the composition shown in Table 2 (Sample Nos. A12 to A21 (implementation Examples 6 to 12), No. A22 to A25 (Comparative Examples 6 to 9)). The heat storage material composition was prepared so that the content of NaBO 2 ·4H 2 O in the main agent was approximately 5% by mass.

Figure 2022188452000003
Figure 2022188452000003

(融点及び融解潜熱の測定)
試料No.A12~A25につき、実施例1と同様にして、融点及び融解潜熱を測定した。結果を表2に示す。
(Measurement of melting point and latent heat of fusion)
Sample no. Melting points and latent heats of fusion of A12 to A25 were measured in the same manner as in Example 1. Table 2 shows the results.

(三元系組成図)
図3は、主剤におけるメタホウ酸ナトリウム4水和物の含有量が略5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図4は、図3に示す領域A2の拡大図である。試料No.A12~A21の蓄熱材組成物の主剤を構成する三種組成物の組成を図3及び図4にプロットした。
図3及び図4中、試料No.A12~A21の蓄熱材組成物のプロットを記号○で示す。また、試料No.A22~A25の蓄熱材組成物のプロットを記号×で示す。
図4において、四角形及びその内部の領域R2は、上記式(2-1)~(2-5)を満たす領域である。記号○で示した試料No.A12~A21は、領域R2内に存在する。
(Ternary composition diagram)
FIG. 3 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and carbonate in the three-component composition when the content of sodium metaborate tetrahydrate in the main agent is approximately 5% by mass. FIG. 3 is a ternary composition diagram of the content of sodium decahydrate. FIG. 4 is an enlarged view of area A2 shown in FIG. Sample no. The compositions of the three types of compositions constituting the main ingredients of the heat storage material compositions A12 to A21 are plotted in FIGS. 3 and 4. FIG.
3 and 4, sample No. The plots of the heat storage material compositions of A12 to A21 are indicated by symbols ◯. Moreover, sample no. Plots of the heat storage material compositions of A22 to A25 are indicated by symbols x.
In FIG. 4, the rectangle and the region R2 inside it are regions that satisfy the above formulas (2-1) to (2-5). Sample No. indicated by the symbol ○. A12 to A21 are present in region R2.

表2、図3及び図4より、図4の領域R2内にある試料No.A12~A21は、融点及び融解潜熱が良好であることが分かった。具体的には、試料No.A12~A21の蓄熱材組成物は、融点が20~22℃の範囲内にあり、融解潜熱が190J/g以上になっていることが分かった。 From Table 2, FIGS. 3 and 4, it can be seen that sample Nos. within region R2 in FIG. A12 to A21 were found to have good melting points and latent heats of fusion. Specifically, sample no. It was found that the heat storage material compositions A12 to A21 had a melting point in the range of 20 to 22° C. and a latent heat of fusion of 190 J/g or more.

一方、表2、図3及び図4より、図4の領域R2外にある試料A22~A25は、融点及び融解潜熱の少なくとも一方が良好でないことが分かった。 On the other hand, from Table 2, FIG. 3 and FIG. 4, it was found that at least one of the melting point and the latent heat of fusion of the samples A22 to A25 outside the region R2 in FIG.

[比較例10~13](メタホウ酸ナトリウム4水和物の含有量が略10質量%の場合)
得られる蓄熱材組成物が表2に示す組成になるように、各成分の配合量を変えた以外は実施例1と同様にして蓄熱材組成物を得た(試料No.A26~A29(比較例10~13))。蓄熱材組成物は、主剤中のNaBO・4HOの含有量が略10質量%になるように調製した。
[Comparative Examples 10 to 13] (When the content of sodium metaborate tetrahydrate is approximately 10% by mass)
Heat storage material compositions were obtained in the same manner as in Example 1 except that the blending amounts of each component were changed so that the obtained heat storage material composition had the composition shown in Table 2 (Sample Nos. A26 to A29 (comparative Examples 10-13)). The heat storage material composition was prepared so that the content of NaBO 2 .4H 2 O in the main agent was approximately 10% by mass.

(融点及び融解潜熱の測定)
試料No.A26~A29につき、実施例1と同様にして、融点及び融解潜熱を測定した。結果を表2に示す。
(Measurement of melting point and latent heat of fusion)
Sample no. Melting points and latent heats of fusion of A26 to A29 were measured in the same manner as in Example 1. Table 2 shows the results.

表2より、試料A26~A29は、融点及び融解潜熱の少なくとも一方が良好でないことが分かった。 From Table 2, it was found that samples A26 to A29 were not good in at least one of melting point and latent heat of fusion.

以上、本発明を実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 Although the present invention has been described above using examples, the present invention is not limited to these examples, and various modifications are possible within the scope of the present invention.

Claims (7)

硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及び、メタホウ酸ナトリウム4水和物からなる主剤を含み、
融点が20~22℃の範囲内にあり、
融解潜熱が190J/g以上である蓄熱材組成物。
Contains a main agent consisting of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and sodium metaborate tetrahydrate,
a melting point in the range of 20 to 22°C,
A heat storage material composition having a latent heat of fusion of 190 J/g or more.
前記主剤中における前記メタホウ酸ナトリウム4水和物の含有量が2.0~3.0質量%の場合において、
前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(1-1)~(1-6)を満たす請求項1に記載の蓄熱材組成物。
[数1]
X+Y+Z=100 (1-1)
[数2]
X+3.9Y-162.45≧0 (1-2)
[数3]
X+Y-58.05≧0 (1-3)
[数4]
X≧18.05 (1-4)
[数5]
X+3.105Y-156.64≦0 (1-5)
[数6]
X≦26.10 (1-6)
When the content of the sodium metaborate tetrahydrate in the main agent is 2.0 to 3.0% by mass,
X the content of the sodium sulfate decahydrate in 100% by mass of the three-component composition consisting of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate % by mass, the content of disodium hydrogen phosphate dodecahydrate as Y mass %, and the content of sodium carbonate decahydrate as Z mass %, where X, Y, and Z are represented by the following formula: The heat storage material composition according to claim 1, which satisfies (1-1) to (1-6).
[Number 1]
X+Y+Z=100 (1-1)
[Number 2]
X+3.9Y-162.45≧0 (1-2)
[Number 3]
X+Y-58.05≧0 (1-3)
[Number 4]
X≧18.05 (1-4)
[Number 5]
X+3.105Y-156.64≦0 (1-5)
[Number 6]
X≤26.10 (1-6)
前記主剤中における前記メタホウ酸ナトリウム4水和物の含有量が4.5~5.5質量%の場合において、
前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(2-1)~(2-5)を満たす請求項1に記載の蓄熱材組成物。
[数7]
X+Y+Z=100 (2-1)
[数8]
X-2.12Y+52.02≦0 (2-2)
[数9]
X+0.27Y-31.48≧0 (2-3)
[数10]
X-1.52Y+40.11≧0 (2-4)
[数11]
X≦26.1 (2-5)
When the content of the sodium metaborate tetrahydrate in the main agent is 4.5 to 5.5% by mass,
X the content of the sodium sulfate decahydrate in 100% by mass of the three-component composition consisting of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate % by mass, the content of disodium hydrogen phosphate dodecahydrate as Y mass %, and the content of sodium carbonate decahydrate as Z mass %, where X, Y, and Z are represented by the following formula: The heat storage material composition according to claim 1, which satisfies (2-1) to (2-5).
[Number 7]
X+Y+Z=100 (2-1)
[Number 8]
X-2.12Y+52.02≦0 (2-2)
[Number 9]
X+0.27Y-31.48≧0 (2-3)
[Number 10]
X-1.52Y+40.11≧0 (2-4)
[Number 11]
X≤26.1 (2-5)
塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含む請求項1~3のいずれか1項に記載の蓄熱材組成物。 1. Further comprising at least one melting point depressant selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. 4. The heat storage material composition according to any one of items 1 to 3. ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム粉末、二酸化チタン、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含む請求項1~4のいずれか1項に記載の蓄熱材組成物。 Borax Na 2 B 4 O 5 (OH) 4.8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum powder, titanium dioxide, propylene glycol, ethylene glycol, glycerin, ethylenediamine 5. The method according to any one of claims 1 to 4, further comprising at least one supercooling inhibitor selected from the group consisting of tetraacetic acid, sodium alkylsulfate, sodium alkylphosphate, potassium alkylsulfate, and potassium alkylphosphate. The heat storage material composition described. ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の相分離抑制剤をさらに含む請求項1~5のいずれか1項に記載の蓄熱材組成物。 Sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, sodium acrylic/maleic acid copolymer, sodium acrylic acid/sulfonic acid monomer copolymer, acrylamide/dimethylaminoethyl methacrylate dimethyl sulfate copolymer, acrylamide/sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, super absorbent polymer (SAP), carboxymethyl cellulose (CMC), CMC derivatives, carrageenan, carrageenan derivatives, xanthan gum, xanthan gum at least one phase separation inhibitor selected from the group consisting of derivatives of, pectin, pectin derivatives, starch, starch derivatives, konjac, agar, layered silicates, and composites of these substances. The heat storage material composition according to any one of Items 1 to 5. 請求項1~6のいずれか1項に記載の蓄熱材組成物を用いた蓄熱材モジュールを具備する建築物の冷暖房用の蓄熱システム。 A heat storage system for cooling and heating a building, comprising a heat storage material module using the heat storage material composition according to any one of claims 1 to 6.
JP2021096489A 2021-06-09 2021-06-09 Heat storage material composition, and heat storage system for cooling and heating of building Pending JP2022188452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021096489A JP2022188452A (en) 2021-06-09 2021-06-09 Heat storage material composition, and heat storage system for cooling and heating of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021096489A JP2022188452A (en) 2021-06-09 2021-06-09 Heat storage material composition, and heat storage system for cooling and heating of building

Publications (1)

Publication Number Publication Date
JP2022188452A true JP2022188452A (en) 2022-12-21

Family

ID=84532247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021096489A Pending JP2022188452A (en) 2021-06-09 2021-06-09 Heat storage material composition, and heat storage system for cooling and heating of building

Country Status (1)

Country Link
JP (1) JP2022188452A (en)

Similar Documents

Publication Publication Date Title
US20220089929A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
Sun et al. A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications
JP2581708B2 (en) Thermal energy storage composition
US20220282146A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
WO2019172260A1 (en) Heat storage material composition and heat storage system for building air conditioning
WO2020031618A1 (en) Heat storage material composition and heat storage system for air conditioning for building
WO2012130285A1 (en) Thermal energy storage medium with carbonate salts and use of the thermal energy storage medium
JP7405684B2 (en) Heat storage material composition and heat storage system for heating and cooling buildings
US4272391A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPS6317313B2 (en)
JP2022188452A (en) Heat storage material composition, and heat storage system for cooling and heating of building
WO2020246387A1 (en) Heat storage material composition and heat storage system for air conditioning of building
WO2002081589A2 (en) Phase change composition containing a nucleating agent
US4338208A (en) Hydrated MgCl2 reversible phase change compositions
WO2023073957A1 (en) Heat storage material composition, and heat storage system for air conditioning of buildings
JP2020196818A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2022185304A (en) Heat storage material, and solar heat utilizing heat storage system
JP2020196816A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196819A (en) Heat storage material composition and heat storage system for air conditioning of architecture
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JP2021147509A (en) Heat storage material composition and heat storage system for air-conditioner of building
EP0054758A1 (en) Hydrated MgCl2 or Mg(NO3)2/MgCl2 reversible phase change compositions
CA1127383A (en) Aqueous heat-storage compositions having prolonged heat-storage efficiencies and method of preparing same
Lane et al. Hydrated Mg (NO 3) 2 reversible phase change compositions
JPH0482037B2 (en)