WO2020031618A1 - Heat storage material composition and heat storage system for air conditioning for building - Google Patents

Heat storage material composition and heat storage system for air conditioning for building Download PDF

Info

Publication number
WO2020031618A1
WO2020031618A1 PCT/JP2019/027736 JP2019027736W WO2020031618A1 WO 2020031618 A1 WO2020031618 A1 WO 2020031618A1 JP 2019027736 W JP2019027736 W JP 2019027736W WO 2020031618 A1 WO2020031618 A1 WO 2020031618A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage material
material composition
mass
sodium
Prior art date
Application number
PCT/JP2019/027736
Other languages
French (fr)
Japanese (ja)
Inventor
崇 桃井
努 篭橋
重和 宮下
相培 李
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Publication of WO2020031618A1 publication Critical patent/WO2020031618A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • F28F23/02Arrangements for obtaining or maintaining same in a liquid state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

This heat storage material composition contains a main agent including sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate, has a lower-limit melting point of 20°C or higher and a higher-limit melting point of 30°C or lower, and has a latent heat of fusion of 140 J/g or more. This heat storage material composition preferably contains, in 100% of the main agent, 17.9-32.5 mass% of sodium sulfate decahydrate, 32.5-55.0 mass% of disodium hydrogen phosphate dodecahydrate, and 15-40.5 mass% of trisodium phosphate dodecahydrate.

Description

蓄熱材組成物及び建築物の冷暖房用の蓄熱システムThermal storage material composition and thermal storage system for cooling and heating buildings
 本発明は、蓄熱材組成物及び建築物の冷暖房用の蓄熱システムに関し、詳しくは、建造物の冷暖房の蓄熱システムに好適な蓄熱材組成物及びこれを含む建築物の冷暖房用の蓄熱システムに関する。 The present invention relates to a heat storage material composition and a heat storage system for cooling and heating a building, and more particularly, to a heat storage material composition suitable for a heat storage system for cooling and heating a building, and a heat storage system for cooling and heating a building including the same.
 従来、液体から固体への相変化時や固体から液体への相変化時に発生又は吸収かする潜熱を利用した潜熱蓄熱材組成物が知られている。潜熱蓄熱材組成物は、例えば、建造物の冷暖房の蓄熱システムに用いられる。 Conventionally, a latent heat storage material composition utilizing latent heat generated or absorbed at the time of a phase change from a liquid to a solid or at the time of a phase change from a solid to a liquid has been known. The latent heat storage material composition is used, for example, in a heat storage system for cooling and heating a building.
 潜熱蓄熱材組成物には、一般的に、蓄熱量が大きいこと、所定の温度レベルで作動すること、長期間安定であること、安価であること、毒性がないこと、腐触性がないこと等の特性が要求される。 The latent heat storage material composition generally has a large amount of heat storage, operates at a predetermined temperature level, is stable for a long period of time, is inexpensive, has no toxicity, and has no non-corrosiveness. And other characteristics are required.
 上記潜熱蓄熱材組成物が建造物の冷暖房の蓄熱システムに用いられる場合、潜熱蓄熱材組成物は、建造物の冷暖房の一般的な使用温度域である20℃以上かつ30℃以下で融解・凝固が生じることが好ましい。具体的には、潜熱蓄熱材組成物は、融解下限温度Tsが20℃以上かつ融解上限温度Tfが30℃以下であることが好ましい。ここで、融解下限温度Tsとは、潜熱蓄熱材組成物が融解潜熱を発現する下限温度を意味し、融解上限温度Tfとは、潜熱蓄熱材組成物が融解潜熱を発現する上限温度を意味する。 When the latent heat storage material composition is used in a heat storage system for cooling and heating a building, the latent heat storage material composition melts and solidifies at a temperature of 20 ° C. or more and 30 ° C. or less, which is a general use temperature range for cooling and heating of a building. Preferably occurs. Specifically, the latent heat storage material composition preferably has a lower melting limit Ts of 20 ° C. or higher and an upper melting limit Tf of 30 ° C. or lower. Here, the melting lower limit temperature Ts means a lower limit temperature at which the latent heat storage material composition develops latent heat of fusion, and the melting upper limit temperature Tf means an upper limit temperature at which the latent heat storage material composition develops latent heat of fusion. .
 図面を参照して融解下限温度Ts及び融解上限温度Tfについて説明する。図1は、潜熱蓄熱材組成物の融解潜熱を発現する温度と蓄熱量との関係の一例を示すグラフである。図1中、Aは建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物Mの示す曲線、Bは建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物Mの示す曲線である。また、図1中、Dは曲線Aの融解下限温度Ts、Eは曲線Aの融解上限温度Tf、Cは融解上限温度Tfと融解下限温度Tsとの差分である潜熱発生温度幅、をそれぞれ示す。なお、図1に示す、融解下限温度Ts20℃及び融解上限温度Tf29.5℃は一例であり、本実施形態において融解下限温度Ts及び融解上限温度Tfはこれらの数値に限定されない。 The melting lower limit temperature Ts and the melting upper limit temperature Tf will be described with reference to the drawings. FIG. 1 is a graph showing an example of the relationship between the temperature at which the latent heat storage material composition develops latent heat of fusion and the amount of heat storage. In Figure 1, A is the curve showing the preferred latent heat storage material composition M A heat storage system for heating and cooling of buildings, B denotes a latent heat storage material composition M B is not suitable for heat storage system for heating and cooling of buildings It is a curve. Also, in FIG. 1, D indicates the lower melting temperature Ts of the curve A, E indicates the upper melting temperature Tf of the curve A, and C indicates the latent heat generation temperature width which is the difference between the upper melting temperature Tf and the lower melting temperature Ts, respectively. . Note that the melting lower limit temperature Ts of 20 ° C. and the melting upper limit temperature Tf of 29.5 ° C. shown in FIG. 1 are examples, and in the present embodiment, the melting lower limit temperature Ts and the melting upper limit temperature Tf are not limited to these numerical values.
 曲線Aは、潜熱発生温度幅Cが、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物に好適な20℃以上30℃以下(29.5℃以下)にある。すなわち、曲線Aの潜熱蓄熱材組成物Mは、融解下限温度Tsが20℃以上かつ融解上限温度Tfが30℃以下になっている。この融解下限温度Tsが20℃以上かつ融解上限温度Tfが30℃以下の潜熱蓄熱材組成物Mによれば、建造物の冷暖房の一般的な使用温度範囲において潜熱蓄熱材組成物の効率的な蓄熱、放熱が可能である。このため、潜熱蓄熱材組成物Mは、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 In the curve A, the latent heat generation temperature width C is in a range of 20 ° C. or more and 30 ° C. or less (29.5 ° C. or less) suitable for a latent heat storage material composition of a heat storage system for cooling and heating a building. In other words, the latent heat storage material composition M A of the curve A, the melting lower limit temperature Ts is 20 ° C. or higher and the melting maximum temperature Tf is set to 30 ° C. or less. According to the melting lower limit temperature Ts is 20 ° C. or higher and the melting maximum temperature Tf is the latent heat storage material composition of 30 ° C. or less M A, efficient latent heat storage material composition in the general temperature range of heating and cooling of buildings Heat storage and heat dissipation are possible. Therefore, M A is the latent heat storage material composition is suitable as a latent heat storage material composition of the heat storage system for heating and cooling of buildings.
 一方、曲線Bは、潜熱発生温度幅Cが、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物に好適な20℃以上30℃以下(29.5℃以下)を逸脱している。すなわち、曲線Bの潜熱蓄熱材組成物Mは、融解下限温度Tsが20℃未満になっている。また、図1の横軸と曲線Bとの2個の交点のうち高温側の交点、すなわち、潜熱蓄熱材組成物Mの温度融解上限温度Tfは、図1には数値を明記していないが、30℃を超えるようになっている。このような潜熱蓄熱材組成物Mは、蓄熱材組成物が本来有する蓄熱量の全てを建造物の冷暖房に用いることができないため、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好ましくない。 On the other hand, in the curve B, the latent heat generation temperature width C deviates from 20 ° C. to 30 ° C. (29.5 ° C. or less) suitable for a latent heat storage material composition of a heat storage system for cooling and heating a building. In other words, the latent heat storage material composition M B of the curve B is the melting lower limit temperature Ts is set to less than 20 ° C.. Further, the high-temperature side of the intersection of the two intersections of the horizontal axis and the curve B in FIG. 1, i.e., the temperature melting maximum temperature Tf of the latent heat storage material composition M B does not specify numerical values in FIG. 1 , But more than 30 ° C. Such latent heat storage material composition M B, it is not possible to use all of the heat storage amount with the heat storage material composition originally heating and cooling of buildings, as latent heat storage material composition of the heat storage system for heating and cooling of buildings Not preferred.
 これに対し、従来の潜熱蓄熱材組成物として、例えば、特許文献1に、硫酸ナトリウム及び/又はその共晶塩と、水と、相分離抑制剤と、からなり、水を所定量含有する蓄熱材組成物が開示されている。特許文献1に記載される蓄熱材組成物によれば、これに含まれる硫酸ナトリウム10水和物が凝固、融解を繰り返しても蓄熱量の低下が抑制される。 On the other hand, as a conventional latent heat storage material composition, for example, Patent Literature 1 discloses a heat storage comprising sodium sulfate and / or a eutectic salt thereof, water, and a phase separation inhibitor, and containing a predetermined amount of water. A material composition is disclosed. According to the heat storage material composition described in Patent Document 1, even if sodium sulfate decahydrate contained therein is repeatedly coagulated and melted, a decrease in heat storage amount is suppressed.
 また、従来の潜熱蓄熱材組成物として、非特許文献1には、硫酸ナトリウム10水和物とリン酸水素二ナトリウム12水和物との共晶型水和塩が開示されている。非特許文献1に記載される共晶型の蓄熱材組成物では、水等の融点調整剤を用いずに蓄熱材組成物の融点の低下を図っている。また、この共晶型の蓄熱材組成物によれば、凝固、融解を繰り返しても蓄熱量の低下が抑制される。 Non-Patent Document 1 discloses a eutectic hydrate of sodium sulfate decahydrate and disodium hydrogen phosphate decahydrate as a conventional latent heat storage material composition. In the eutectic heat storage material composition described in Non-Patent Document 1, the melting point of the heat storage material composition is reduced without using a melting point modifier such as water. Further, according to the eutectic type heat storage material composition, even if solidification and melting are repeated, a decrease in heat storage amount is suppressed.
特開平5-25467号公報JP-A-5-25467
 しかしながら、特許文献1の蓄熱材組成物には、蓄熱量が小さいという問題があった。また、特許文献1の蓄熱材組成物に含まれ、蓄熱材作用に関与する硫酸ナトリウム10水和物は、相変化温度が約32℃であり、融解上限温度Tfが30℃を超える。さらに、非特許文献1に記載される共晶型の蓄熱材組成物は、相変化温度が約29~32℃であり、融解上限温度Tfが実質的に30℃を超える。 However, the heat storage material composition of Patent Document 1 has a problem that the heat storage amount is small. Further, sodium sulfate decahydrate, which is included in the heat storage material composition of Patent Document 1 and participates in the action of the heat storage material, has a phase change temperature of about 32 ° C. and a maximum melting temperature Tf of more than 30 ° C. Furthermore, the eutectic type heat storage material composition described in Non-Patent Document 1 has a phase change temperature of about 29 to 32 ° C., and a melting upper limit temperature Tf substantially exceeding 30 ° C.
 上記特許文献1及び非特許文献1の蓄熱材組成物は、融解上限温度が実質的に30℃を超える。このため、特許文献1及び非特許文献1の蓄熱材組成物は、建造物の冷暖房の一般的な使用温度範囲である20℃以上かつ30℃以下における蓄熱量が小さくなる。したがって、特許文献1及び非特許文献1の蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適でないという問題があった。 熱 The heat storage material compositions of Patent Document 1 and Non-Patent Document 1 have a melting upper limit temperature substantially exceeding 30 ° C. For this reason, the heat storage material compositions of Patent Literature 1 and Non-Patent Literature 1 have a small amount of heat storage at 20 ° C. or more and 30 ° C. or less, which is a general use temperature range for cooling and heating a building. Therefore, the heat storage material compositions of Patent Document 1 and Non-Patent Document 1 have a problem that they are not suitable as a latent heat storage material composition of a heat storage system for cooling and heating a building.
 さらに、特許文献1の蓄熱材組成物には、含んでいる水により潜熱蓄熱材組成物の相変化の生じる温度幅が大きくなるため、潜熱発生温度幅が大きいという問題もあった。 (4) Further, the heat storage material composition of Patent Document 1 has a problem that the temperature range in which the phase change of the latent heat storage material composition occurs due to the contained water is large, so that the latent heat generation temperature range is large.
 本発明は、上記課題に鑑みてなされたものである。本発明は、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上である蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することを目的とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a heat storage material composition having a minimum melting temperature of 20 ° C. or more and a maximum melting temperature of 30 ° C. or less and a latent heat of fusion of 140 J / g or more, and a heat storage system for cooling and heating buildings. And
 本発明の第1の態様に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物からなる主剤を含み、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上である。 The heat storage material composition according to the first aspect of the present invention includes a main agent consisting of sodium sulfate decahydrate, disodium hydrogenphosphate decahydrate, and trisodium phosphate decahydrate, and has a lower melting limit temperature. Is 20 ° C. or higher, the melting upper limit temperature is 30 ° C. or lower, and the latent heat of fusion is 140 J / g or more.
 本発明の第2の態様に係る蓄熱材組成物は、第1の態様に係る蓄熱材組成物において、前記主剤100質量%中に、前記硫酸ナトリウム10水和物が17.9~32.5質量%、前記リン酸水素二ナトリウム12水和物が32.5~55.0質量%、及び前記リン酸三ナトリウム12水和物が15~40.5質量%含まれる。 The heat storage material composition according to the second aspect of the present invention is the heat storage material composition according to the first aspect, wherein the sodium sulfate decahydrate is present in an amount of 17.9 to 32.5 per 100% by mass of the main agent. % By mass, 32.5 to 55.0% by mass of the disodium hydrogenphosphate dodecahydrate, and 15 to 40.5% by mass of the trisodium phosphate dodecahydrate.
 本発明の第3の態様に係る蓄熱材組成物は、第1又は第2の態様に係る蓄熱材組成物において、前記主剤中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記リン酸三ナトリウム12水和物の含有量をZ質量%と規定したとき、X、Y、及びZが下記式(1)~(4)を満たす。
[数1]
   X+Y+Z=100           (1)
[数2]
   X-32.5≦0            (2)
[数3]
   32.5≦Y≦55.0         (3)
[数4]
   X+0.431Y-41.017≧0   (4)
The heat storage material composition according to the third aspect of the present invention is the heat storage material composition according to the first or second aspect, wherein the content of the sodium sulfate decahydrate in the main agent is X mass%, When the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass% and the content of the trisodium phosphate dodecahydrate is defined as Z mass%, X, Y and Z are represented by the following formula ( Satisfies 1) to (4).
[Equation 1]
X + Y + Z = 100 (1)
[Equation 2]
X-32.5 ≦ 0 (2)
[Equation 3]
32.5 ≦ Y ≦ 55.0 (3)
[Equation 4]
X + 0.431Y-41.017 ≧ 0 (4)
 本発明の第4の態様に係る蓄熱材組成物は、第1~第3のいずれかの態様に係る蓄熱材組成物において、余剰水をさらに含み、前記余剰水は、前記主剤100質量部に対して9質量部以下含まれる。 The heat storage material composition according to the fourth aspect of the present invention is the heat storage material composition according to any one of the first to third aspects, further including surplus water, wherein the surplus water is contained in 100 parts by mass of the main agent. 9 parts by mass or less.
 本発明の第5の態様に係る蓄熱材組成物は、第1~第4のいずれかの態様に係る蓄熱材組成物において、有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体と、多官能性単量体と、を重合させて得られる第1の相分離抑制剤をさらに含む。 The heat storage material composition according to a fifth aspect of the present invention is the heat storage material composition according to any one of the first to fourth aspects, wherein the heat storage material composition comprises an organic unsaturated carboxylic acid, an organic unsaturated sulfonic acid, and an organic unsaturated phosphoric acid. At least one monomer selected from the group consisting of an organic unsaturated amide, an organic unsaturated alcohol, an organic unsaturated carboxylate, an organic unsaturated sulfonate, and an organic unsaturated phosphate; And a first phase separation inhibitor obtained by polymerizing the reactive monomer.
 本発明の第6の態様に係る蓄熱材組成物は、第1~第5のいずれかの態様に係る蓄熱材組成物において、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含む。 The heat storage material composition according to the sixth aspect of the present invention is the heat storage material composition according to any one of the first to fifth aspects, wherein the heat storage material composition comprises sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, and odor. It further includes at least one melting point depressant selected from the group consisting of ammonium fluoride, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea.
 本発明の第7の態様に係る蓄熱材組成物は、第1~第6のいずれかの態様に係る蓄熱材組成物において、ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含む。 Heat storage material composition according to the seventh aspect of the present invention is the heat storage material composition according to any of embodiments of the first to sixth, borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, Calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, hectorite, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediaminetetraacetic acid, sodium alkyl sulfate, alkyl It further includes at least one supercooling inhibitor selected from the group consisting of sodium phosphate, potassium alkyl sulfate, and potassium alkyl phosphate.
 本発明の第8の態様に係る蓄熱材組成物は、第1~第7のいずれかの態様に係る蓄熱材組成物において、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の第2の相分離抑制剤をさらに含む。 The heat storage material composition according to the eighth aspect of the present invention is the heat storage material composition according to any one of the first to seventh aspects, wherein the heat storage material composition comprises sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, Carboxylate polyether polymer, sodium acrylic acid / maleic acid copolymer, sodium acrylic acid / sulfonic acid monomer copolymer, acrylamide / dimethylaminoethyl methacrylate dimethyl sulfate copolymer, acrylamide / sodium acrylate copolymer , Polyethylene glycol, polypropylene glycol, superabsorbent resin (SAP), carboxymethylcellulose (CMC), CMC derivative, carrageenan, carrageenan derivative, xanthan gum, xanthan gum derivative, pectin, pectin derivative, starch, starch It further comprises at least one second phase separation inhibitor selected from the group consisting of derivatives, konjac, agar, layered silicates, and composites of these substances.
 本発明の第9の態様に係る建築物の冷暖房用の蓄熱システムは、第1~第8のいずれかの態様に係る蓄熱材組成物を用いた蓄熱材モジュールを具備する。 熱 A heat storage system for cooling and heating a building according to a ninth aspect of the present invention includes a heat storage material module using the heat storage material composition according to any one of the first to eighth aspects.
潜熱蓄熱材組成物の融解潜熱を発現する温度と蓄熱量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature which expresses the latent heat of fusion of a latent heat storage material composition, and heat storage. 示差走査熱量測定(DSC)を用いて、潜熱蓄熱材組成物が融解潜熱を発現する融解下限温度Tsと融解上限温度Tfとを測定した結果を模式的に示したグラフである。It is the graph which showed typically the result of having measured the minimum melting temperature Ts and the maximum melting temperature Tf which a latent heat storage material composition expresses latent heat of fusion using differential scanning calorimetry (DSC). 主剤における、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の含有量の好適な範囲を示す三元系状態図である。It is a ternary phase diagram which shows the suitable range of content of sodium sulfate decahydrate, disodium hydrogenphosphate decahydrate, and trisodium phosphate decahydrate in a main agent.
 以下、図面を用いて本発明の実施形態に係る蓄熱材組成物、及び蓄熱システムについて詳細に説明する。 Hereinafter, the heat storage material composition and the heat storage system according to the embodiment of the present invention will be described in detail with reference to the drawings.
[蓄熱材組成物]
 本実施形態に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物からなる主剤を含む。
[Heat storage material composition]
The heat storage material composition according to the present embodiment includes a main agent composed of sodium sulfate decahydrate, disodium hydrogen phosphate decahydrate, and trisodium phosphate decahydrate.
 (主剤)
  <主剤中の硫酸ナトリウム10水和物>
 主剤は、硫酸ナトリウム10水和物(NaSO・10HO)、リン酸水素二ナトリウム12水和物(NaHPO・12HO)、及びリン酸三ナトリウム12水和物(NaPO・12HO)からなる。
(Main agent)
<Sodium sulfate decahydrate in main agent>
The main ingredients are sodium sulfate decahydrate (Na 2 SO 4 .10H 2 O), disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 .12H 2 O), and trisodium phosphate decahydrate ( Na 3 PO 4 .12H 2 O).
 主剤は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物を所定量含む。主剤中の各物質の配合量は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の混合物である主剤の質量に対して規定される。 The main agent contains a predetermined amount of sodium sulfate decahydrate, disodium hydrogenphosphate dodecahydrate, and trisodium phosphate decahydrate. The amount of each substance in the main agent is defined based on the mass of the main agent, which is a mixture of sodium sulfate decahydrate, disodium hydrogen phosphate decahydrate, and trisodium phosphate decahydrate.
 なお、本実施形態に係る蓄熱材組成物は、主剤のみからなることができるが、必要により、余剰水をさらに含んでいてもよい。この主剤に加えて余剰水を含む蓄熱材組成物については後述する。 Note that the heat storage material composition according to the present embodiment can be composed of only the main agent, but may further include surplus water as necessary. The heat storage material composition containing surplus water in addition to the main agent will be described later.
 本実施形態に係る蓄熱材組成物では、主剤100質量%中に、硫酸ナトリウム10水和物が、通常17.9~32.5質量%含まれる。硫酸ナトリウム10水和物の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。 熱 In the heat storage material composition according to the present embodiment, sodium sulfate decahydrate is usually contained in an amount of 17.9 to 32.5% by mass in 100% by mass of the main agent. When the content of sodium sulfate decahydrate is within the above range, the heat storage material composition has a minimum melting temperature of 20 ° C. or higher and a maximum melting temperature of 30 ° C. or lower, and has a latent heat of fusion of 140 J / g or more.
 本実施形態に係る蓄熱材組成物では、主剤100質量%中に、硫酸ナトリウム10水和物が、好ましくは30~32.5質量%含まれると、蓄熱材組成物の蓄熱量(融解潜熱量)がより大きくなる。
また、本実施形態に係る蓄熱材組成物では、主剤100質量%中に、硫酸ナトリウム10水和物が、好ましくは25~32.5質量%含まれると、蓄熱材組成物の融解上限温度がより低くなる。
In the heat storage material composition according to the present embodiment, when sodium sulfate decahydrate is preferably contained in an amount of 30 to 32.5% by mass in 100% by mass of the base material, the heat storage amount (latent heat of fusion) of the heat storage material composition ) Is larger.
Further, in the heat storage material composition according to the present embodiment, when sodium sulfate decahydrate is preferably contained in an amount of 25 to 32.5% by mass in 100% by mass of the main agent, the melting upper limit temperature of the heat storage material composition is increased. Lower.
  <主剤中のリン酸水素二ナトリウム12水和物>
 本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸水素二ナトリウム12水和物が、通常32.5~55.0質量%含まれる。リン酸水素二ナトリウム12水和物の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。
<Disodium hydrogen phosphate dodecahydrate in the main agent>
In the heat storage material composition according to the present embodiment, 32.5 to 55.0% by mass of disodium hydrogen phosphate dodecahydrate is usually contained in 100% by mass of the main agent. When the content of disodium hydrogen phosphate dodecahydrate is within the above range, the heat storage material composition has a minimum melting temperature of 20 ° C or higher and a maximum melting temperature of 30 ° C or lower, and has a latent heat of fusion of 140 J / g or higher. become.
 本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸水素二ナトリウム12水和物が、好ましくは40~55.0質量%含まれると、蓄熱材組成物の蓄熱量(融解潜熱量)がより大きくなる。また、本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸水素二ナトリウム12水和物が、好ましくは32.5~45質量%含まれると、蓄熱材組成物の融解上限温度がより低くなる。 In the heat storage material composition according to the present embodiment, when disodium hydrogenphosphate dodecahydrate is preferably contained in an amount of 40 to 55.0% by mass in 100% by mass of the base material, the heat storage amount of the heat storage material composition ( (Latent heat of fusion). In addition, in the heat storage material composition according to the present embodiment, when 32.5 to 45% by mass of disodium hydrogen phosphate dodecahydrate is preferably contained in 100% by mass of the base material, the melting of the heat storage material composition The maximum temperature becomes lower.
  <主剤中のリン酸三ナトリウム12水和物>
 本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸三ナトリウム12水和物が、通常15~40.5質量%含まれる。リン酸三ナトリウム12水和物の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。
<Trisodium phosphate dodecahydrate in the main ingredient>
In the heat storage material composition according to this embodiment, trisodium phosphate dodecahydrate is usually contained in an amount of 15 to 40.5% by mass in 100% by mass of the main agent. When the content of trisodium phosphate dodecahydrate is within the above range, the lower limit temperature of melting of the heat storage material composition is 20 ° C. or more and the upper limit temperature of melting is 30 ° C. or less, and the latent heat of fusion becomes 140 J / g or more. Become.
 本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸三ナトリウム12水和物が、好ましくは17.5~30質量%含まれると、蓄熱材組成物の蓄熱量(融解潜熱量)がより大きくなる。また、本実施形態に係る蓄熱材組成物では、主剤100質量%中に、リン酸三ナトリウム12水和物が、好ましくは25~40.5質量%含まれると、蓄熱材組成物の融解上限温度がより低くなる。 In the heat storage material composition according to the present embodiment, when 100% by mass of the main ingredient contains preferably 17.5 to 30% by mass of trisodium phosphate dodecahydrate, the heat storage amount of the heat storage material composition (melting) (Latent heat). In addition, in the heat storage material composition according to the present embodiment, when the sodium dodecaphosphate 12 hydrate is preferably contained in an amount of 25 to 40.5% by mass in 100% by mass of the base material, the upper limit of melting of the heat storage material composition. The temperature will be lower.
 本実施形態に係る蓄熱材組成物は、好ましくは、主剤100質量%中に、硫酸ナトリウム10水和物が17.9~32.5質量%、リン酸水素二ナトリウム12水和物が32.5~55.0質量%及びリン酸三ナトリウム12水和物が15~40.5質量%含まれる。硫酸ナトリウム10水和物等の各物質の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。 In the heat storage material composition according to the present embodiment, preferably, 17.9 to 32.5% by mass of sodium sulfate decahydrate and 32.3% by mass of disodium hydrogen phosphate dodecahydrate are contained in 100% by mass of the main agent. It contains 5 to 55.0% by mass and 15 to 40.5% by mass of trisodium phosphate dodecahydrate. When the content of each substance such as sodium sulfate decahydrate is within the above range, the heat storage material composition has a minimum melting temperature of 20 ° C or higher and a maximum melting temperature of 30 ° C or lower, and has a latent heat of fusion of 140 J / g. That is all.
  <主剤中の組成>
 蓄熱材組成物では、主剤中のX、Y、及びZが下記式(1)~(4)を満たすことが好ましい。ここで、X、Y、及びZは、主剤中の硫酸ナトリウム10水和物の含有量をX質量%、リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記リン酸三ナトリウム12水和物の含有量をZ質量%と規定したものである。
<Composition in main agent>
In the heat storage material composition, it is preferable that X, Y, and Z in the main agent satisfy the following formulas (1) to (4). Here, X, Y, and Z represent the content of sodium sulfate decahydrate in the main ingredient as X mass%, the content of disodium hydrogenphosphate dodecahydrate in the main agent as Y mass%, and the triphosphate content. The content of sodium dodecahydrate is defined as Z mass%.
[数5]
   X+Y+Z=100           (1)
[数6]
   X-32.5≦0            (2)
[数7]
   32.5≦Y≦55.0         (3)
[数8]
   X+0.431Y-41.017≧0   (4)
[Equation 5]
X + Y + Z = 100 (1)
[Equation 6]
X-32.5 ≦ 0 (2)
[Equation 7]
32.5 ≦ Y ≦ 55.0 (3)
[Equation 8]
X + 0.431Y-41.017 ≧ 0 (4)
 図3は、主剤における、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の含有量の好適な範囲を示す三元系状態図である。図3に示す台形R及びその内部は、上記式(1)~(4)を満たす範囲である。 FIG. 3 is a ternary phase diagram showing a preferable range of the content of sodium sulfate decahydrate, disodium hydrogenphosphate decahydrate, and trisodium phosphate decahydrate in the main ingredient. The trapezoid R shown in FIG. 3 and the inside thereof are in a range satisfying the above equations (1) to (4).
 本実施形態に係る蓄熱材組成物において、上記X、Y、及びZが下記式(1)~(4)を満たすと、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。 In the heat storage material composition according to the present embodiment, when the above X, Y, and Z satisfy the following formulas (1) to (4), the heat storage material composition has a minimum melting temperature of 20 ° C. or higher and a maximum melting temperature of 30 ° C. ° C or lower, and the latent heat of fusion becomes 140 J / g or more.
 (余剰水)
 本実施形態に係る蓄熱材組成物は、必要により余剰水をさらに含んでいてもよい。本明細書では、主剤と余剰水とからなる混合物を主剤混合物と定義する。本実施形態に係る蓄熱材組成物において、余剰水は、主剤100質量部に対して、通常9質量部以下、好ましくは3質量部以下含まれる。
本実施形態に係る蓄熱材組成物における余剰水の含有量が上記範囲内にあると、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になる。本実施形態に係る蓄熱材組成物における余剰水の含有量が9質量部を超えると、蓄熱材組成物の蓄熱量が小さくなるおそれがある。なお、本実施形態に係る蓄熱材組成物は、余剰水の含有量が0の場合に、主剤に加えてNaSO等の無水塩を含む場合がある。
(Excess water)
The heat storage material composition according to the present embodiment may further include surplus water as needed. In the present specification, a mixture composed of a main agent and excess water is defined as a main agent mixture. In the heat storage material composition according to the present embodiment, the surplus water is usually contained in an amount of 9 parts by mass or less, preferably 3 parts by mass or less based on 100 parts by mass of the main agent.
When the content of surplus water in the heat storage material composition according to the present embodiment is within the above range, the lower limit temperature of melting of the heat storage material composition is 20 ° C. or higher and the upper limit temperature of melting is 30 ° C. or lower, and the latent heat of fusion is 140 J / G or more. When the content of surplus water in the heat storage material composition according to the present embodiment exceeds 9 parts by mass, the heat storage amount of the heat storage material composition may be small. In addition, when the content of surplus water is 0, the heat storage material composition according to this embodiment may include an anhydrous salt such as Na 2 SO 4 in addition to the main agent.
 (第1の相分離抑制剤)
 本実施形態に係る蓄熱材組成物は、特定の第1の相分離抑制剤をさらに含むと、主剤が保湿下で保存されるため好ましい。特定の第1の相分離抑制剤は、特定の単量体と、多官能性単量体と、を重合させて得られる。
(First phase separation inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further include a specific first phase separation inhibitor because the main agent is stored under moisture retention. The specific first phase separation inhibitor is obtained by polymerizing a specific monomer and a polyfunctional monomer.
  <単量体>
 特定の単量体としては、有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体が用いられる。
<Monomer>
Specific monomers include organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphoric acids, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylate salts, organic unsaturated sulfonic acid salts, And at least one monomer selected from the group consisting of organic unsaturated phosphates.
 有機不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸及びイタコン酸からなる群より選択される1種以上の不飽和カルボン酸が用いられ、好ましくはアクリル酸が用いられる。 As the organic unsaturated carboxylic acid, for example, one or more unsaturated carboxylic acids selected from the group consisting of acrylic acid, methacrylic acid and itaconic acid are used, and acrylic acid is preferably used.
 有機不飽和スルホン酸としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸、p-スチレンスルホン酸、スルホエチルメタクリレート、アリルスルホン酸及びメタアリルスルホン酸からなる群より選択される1種以上の有機不飽和スルホン酸が用いられる。 Examples of the organic unsaturated sulfonic acid include one or more selected from the group consisting of 2-acrylamido-2-methylpropanesulfonic acid, p-styrenesulfonic acid, sulfoethylmethacrylate, allylsulfonic acid and methallylsulfonic acid. Organic unsaturated sulfonic acids are used.
 有機不飽和カルボン酸塩としては、例えば上記不飽和カルボン酸のアルカリ金属塩やアンモニウム塩が用いられる。上記不飽和カルボン酸のアルカリ金属塩としては、例えば、上記不飽和カルボン酸のナトリウム塩が用いられる。上記不飽和カルボン酸のナトリウム塩としては、好ましくは、アクリル酸ナトリウム、メタクリル酸ナトリウムが用いられる。 As the organic unsaturated carboxylate, for example, an alkali metal salt or an ammonium salt of the above unsaturated carboxylic acid is used. As the alkali metal salt of the unsaturated carboxylic acid, for example, a sodium salt of the unsaturated carboxylic acid is used. As the sodium salt of the unsaturated carboxylic acid, sodium acrylate and sodium methacrylate are preferably used.
 有機不飽和スルホン酸塩としては、例えば、上記有機不飽和スルホン酸のアルカリ金属塩やアンモニウム塩が用いられる。上記有機不飽和スルホン酸のアルカリ金属塩としては、例えば、上記有機不飽和スルホン酸のナトリウム塩が用いられる。 と し て As the organic unsaturated sulfonic acid salt, for example, an alkali metal salt or an ammonium salt of the above organic unsaturated sulfonic acid is used. As the alkali metal salt of the organic unsaturated sulfonic acid, for example, the sodium salt of the organic unsaturated sulfonic acid is used.
 上記特定の単量体は、そのまま重合すると特定の単量体が重合した重合体を形成する。 (4) When the specific monomer is polymerized as it is, a polymer in which the specific monomer is polymerized is formed.
  <多官能性単量体>
 多官能性単量体は、特定の単量体が重合した重合体を架橋させるものである。多官能性単量体としては、例えば、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N,N’-ジメチレンビスアクリルアミド、N,N’-ジメチレンビスメタクリルアミドが用いられ、好ましくはN,N’-メチレンビスアクリルアミド又はN,N’-メチレンビスメタクリルアミドが用いられる。
<Polyfunctional monomer>
The polyfunctional monomer crosslinks a polymer obtained by polymerizing a specific monomer. Examples of the polyfunctional monomer include N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, N, N'-dimethylenebisacrylamide, N, N'-dimethylenebismethacrylamide And N, N'-methylenebisacrylamide or N, N'-methylenebismethacrylamide is preferably used.
 (融点降下剤)
 本実施形態に係る蓄熱材組成物は、特定の融点降下剤をさらに含むと、主剤の融点が降下するため好ましい。融点降下剤としては、例えば、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤が用いられる。
(Melting point depressant)
It is preferable that the heat storage material composition according to the present embodiment further include a specific melting point depressant because the melting point of the base material is lowered. Examples of the melting point depressant include at least one melting point selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. A depressant is used.
 (過冷却抑制剤)
 本実施形態に係る蓄熱材組成物は、特定の過冷却抑制剤をさらに含むと、主剤の過冷却が抑制されるため好ましい。過冷却抑制剤としては、例えば、ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤が用いられる。
(Supercooling inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further include a specific supercooling inhibitor because the supercooling of the main agent is suppressed. The supercooling inhibitor, for example, borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, Hecht Wright, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediaminetetraacetic acid, sodium alkyl sulfate, sodium alkyl phosphate, potassium alkyl sulfate, and at least one selected from the group consisting of potassium alkyl phosphate A supercooling inhibitor is used.
 (第2の相分離抑制剤)
 本実施形態に係る蓄熱材組成物は、特定の第2の相分離抑制剤をさらに含むと、主剤の相分離が抑制されるため好ましい。第2の相分離抑制剤としては、例えば、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及び上記物質の複合物質からなる群より選択される少なくとも1種の第2の相分離抑制剤が用いられる。
(Second phase separation inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further include a specific second phase separation inhibitor, because phase separation of the main agent is suppressed. Examples of the second phase separation inhibitor include sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, acrylic acid / maleic acid copolymer sodium, acrylic acid / sulfonic acid -Based monomer copolymer sodium, acrylamide / dimethylaminoethyl methacrylate dimethyl sulfate copolymer, acrylamide / sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, superabsorbent resin (SAP), carboxymethylcellulose (CMC), CMC , Carrageenan, carrageenan derivatives, xanthan gum, xanthan gum derivatives, pectin, pectin derivatives, starch, starch derivatives, konjac, agar, layered silicates, and composites of the above substances At least one second phase separation inhibitor selected from the group consisting of quality is used.
 (特性)
 本実施形態に係る蓄熱材組成物は、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適な温度範囲で融解潜熱を発現する。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。
(Characteristic)
The heat storage material composition according to this embodiment has a melting lower limit temperature of 20 ° C. or higher and a melting upper limit temperature of 30 ° C. or lower, and melts in a temperature range suitable as a latent heat storage material composition for a heat storage system for cooling and heating a building. Develop latent heat. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for cooling and heating a building.
 本実施形態に係る蓄熱材組成物は、融解上限温度が、30℃以下、好ましくは28℃以上30℃以下、より好ましくは28℃以上30℃未満、さらに好ましくは28℃以上29℃未満にある。本実施形態に係る蓄熱材組成物は、融解上限温度が上記数値範囲内にあるため、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適な温度範囲で融解潜熱を発現する。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The heat storage material composition according to the present embodiment has a maximum melting temperature of 30 ° C or lower, preferably 28 ° C or higher and 30 ° C or lower, more preferably 28 ° C or higher and lower than 30 ° C, and still more preferably 28 ° C or higher and lower than 29 ° C. . Since the heat storage material composition according to the present embodiment has a maximum melting temperature within the above numerical range, the heat storage material composition develops latent heat of fusion in a temperature range suitable as a latent heat storage material composition for a heat storage system for cooling and heating a building. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for cooling and heating a building.
 本実施形態に係る蓄熱材組成物は、融解上限温度と融解下限温度との差分である融解温度幅が、7.0℃以下、好ましくは5.0℃以下、より好ましくは4.6℃以下、好ましくは4.0℃以下である。本実施形態に係る蓄熱材組成物は、融解温度幅が上記数値範囲内にあり、溶解-凝固間の温度幅が小さいため、溶解と凝固との変化が速やかに行われる。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The heat storage material composition according to the present embodiment has a melting temperature range of 7.0 ° C. or less, preferably 5.0 ° C. or less, more preferably 4.6 ° C. or less, which is a difference between the upper melting limit temperature and the lower melting limit temperature. , Preferably 4.0 ° C or lower. The heat storage material composition according to the present embodiment has a melting temperature range within the above numerical range and a small temperature range between melting and solidification, so that the change between melting and solidifying is performed quickly. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for cooling and heating a building.
 本実施形態に係る蓄熱材組成物は、融解潜熱が140J/g以上、好ましくは140~210J/g、より好ましくは150~210J/g、さらに好ましくは160~210J/gである。また、本実施形態に係る蓄熱材組成物は、融解潜熱が特に好ましくは170~210J/g、より特に好ましくは180~210J/gである。本実施形態に係る蓄熱材組成物は、融解潜熱が上記数値範囲内にあるため、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として融解潜熱が十分に高い。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 熱 The heat storage material composition according to this embodiment has a latent heat of fusion of 140 J / g or more, preferably 140 to 210 J / g, more preferably 150 to 210 J / g, and still more preferably 160 to 210 J / g. Further, the heat storage material composition according to the present embodiment has a latent heat of fusion of preferably 170 to 210 J / g, and more preferably 180 to 210 J / g. The latent heat of fusion of the heat storage material composition according to the present embodiment is sufficiently high as a latent heat storage material composition of a heat storage system for cooling and heating a building because the latent heat of fusion is within the above numerical range. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for cooling and heating a building.
 (発明の効果)
 本実施形態に係る蓄熱材組成物によれば、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上である蓄熱材組成物が得られる。
(The invention's effect)
According to the heat storage material composition according to the present embodiment, a heat storage material composition having a minimum melting temperature of 20 ° C. or higher and a maximum melting temperature of 30 ° C. or lower and a latent heat of fusion of 140 J / g or more can be obtained.
[建築物の冷暖房用の蓄熱システム]
 本実施形態に係る建築物の冷暖房用の蓄熱システムは、上記本実施形態に係る蓄熱材組成物を用いた蓄熱材モジュールを具備する。
[Heat storage system for building cooling and heating]
The heat storage system for cooling and heating a building according to the present embodiment includes a heat storage material module using the heat storage material composition according to the present embodiment.
 (蓄熱材モジュール)
 蓄熱材モジュールとしては、例えば、前記蓄熱材組成物を十分な密封性を有する容器に充填させた蓄熱材パックからなり、この蓄熱材パックを単数ないしは複数積層させるとともに、適切な流路を設け、モジュール化したものが用いられる。蓄熱材パックに用いる容器としては、例えば、アルミシートに樹脂製シートを積層して形成されたアルミパックシートを熱溶着することで形成されたアルミパック等が挙げられる。蓄熱材モジュールは、建造物中の空間を区切る床面、壁面、天井面の少なくとも一部に設置される。
(Heat storage material module)
As the heat storage material module, for example, a heat storage material pack formed by filling the heat storage material composition into a container having a sufficient hermeticity, and a single or a plurality of the heat storage material packs are stacked, and an appropriate flow path is provided. Modularized ones are used. Examples of the container used for the heat storage material pack include an aluminum pack formed by heat-welding an aluminum pack sheet formed by laminating a resin sheet on an aluminum sheet. The heat storage material module is installed on at least a part of a floor surface, a wall surface, and a ceiling surface that divide a space in a building.
 このように設置された蓄熱材モジュールは、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)される。例えば、昼間においては、蓄熱材モジュール中の蓄熱材組成物は、建造物中の空間から得た熱によって融解し、その分のエンタルピーを蓄熱材組成物の内部に保留する。その後、夜間に外気温度が下がってくると、融解していた蓄熱材組成物は凝固し、建造物中の空間へ熱を放出する。このように、蓄熱材モジュールを建物内に設置すると、蓄熱材組成物の融解・凝固の作用により、冷暖房のためのエネルギー負荷を低減することができる。 (4) The heat storage material module installed in this manner is stored (cooled) by heat exchange between the module surface and the atmosphere ventilating the module surface, solar heat by solar radiation, an air-conditioning system using night power, and the like. For example, in the daytime, the heat storage material composition in the heat storage material module is melted by the heat obtained from the space in the building, and the enthalpy of that heat is retained inside the heat storage material composition. Thereafter, when the outside air temperature falls at night, the heat storage material composition that has melted solidifies and releases heat to the space in the building. Thus, when the heat storage material module is installed in a building, the energy load for cooling and heating can be reduced by the action of melting and solidifying the heat storage material composition.
 (発明の効果)
 本実施形態に係る蓄熱材システムによれば、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)されるため、冷暖房のためのエネルギー負荷を低減することができる。
(The invention's effect)
According to the heat storage material system according to the present embodiment, heat is stored (cooled) by the heat exchange between the surface of the module and the atmosphere ventilating the surface of the module, the solar radiation by solar radiation, the air conditioning system using nighttime electric power, and the like. Energy load can be reduced.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[実施例1]
 (蓄熱材組成物の作製)
 20mlのガラス製サンプル瓶に、NaSO無水塩(キシダ化学株式会社製、特級)と、NaHPO無水塩(キシダ化学株式会社製、特級)と、NaPO無水塩(キシダ化学株式会社製、特級)と、純水とを、合計約5gになるように所定量混合した。
 なお、NaSO無水塩、NaHPO無水塩、NaPO無水塩及び純水の量は、得られる蓄熱材組成物の組成が表1に示す組成になるような量で配合した。
 得られた混合物を50℃以上で湯煎したところ、蓄熱材組成物が得られた(試料No.A15)。この蓄熱材組成物は、極微量の余剰水を含む以外は、実質的に主剤のみからなるものであった。余剰水の含有量を表1に示す。
 また、蓄熱材組成物の調製時の沈殿の生成の有無を調べた。蓄熱材組成物の調製時に沈殿が生成することは、凝固・融解を繰り返したときの蓄熱材組成物の特性安定性が低いことを示す指標である。試料No.A15の蓄熱材組成物では、沈殿は生成しなかった。結果を表1に示す。
[Example 1]
(Preparation of heat storage material composition)
In a 20 ml glass sample bottle, anhydrous Na 2 SO 4 (special grade, manufactured by Kishida Chemical Co., Ltd.), anhydrous Na 2 HPO 4 (special grade, manufactured by Kishida Chemical Co., Ltd.), and anhydrous Na 3 PO 4 salt (special grade) A predetermined amount was mixed with pure water (Chemical Co., Ltd.) and pure water to a total amount of about 5 g.
The amounts of anhydrous Na 2 SO 4, anhydrous Na 2 HPO 4, anhydrous Na 3 PO 4, and pure water were mixed in amounts such that the composition of the heat storage material composition obtained was as shown in Table 1. did.
When the obtained mixture was decocted at 50 ° C. or higher, a heat storage material composition was obtained (Sample No. A15). This heat storage material composition was substantially composed of only the main agent except that it contained a trace amount of surplus water. Table 1 shows the surplus water content.
In addition, the presence or absence of formation of a precipitate during the preparation of the heat storage material composition was examined. The formation of a precipitate during the preparation of the heat storage material composition is an index indicating that the characteristic stability of the heat storage material composition when solidification and melting are repeated is low. Sample No. In the heat storage material composition of A15, no precipitate was formed. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (融解潜熱の融解下限温度Ts、融解上限温度Tf、及び融解潜熱の測定)
 蓄熱材組成物から10mg試料を採取し、DSC(示差走査熱量測定)を行い、蓄熱材組成物の融解下限温度Ts及び融解上限温度Tfを測定した。融解下限温度Ts及び融解上限温度Tfの測定について、図2を参照して説明する。図2は、示差走査熱量測定(DSC)を用いて、潜熱蓄熱材組成物が融解潜熱を発現する融解下限温度Tsと融解上限温度Tfとを測定した結果を模式的に示したグラフである。
 具体的には、融解下限温度Tsは、DSC曲線におけるベースの直線と、最初にヒートフローが低下したDSC曲線の変曲点における傾きを延長した直線と、の交点とした。また、融解上限温度Tfは、ヒートフローがベースに回復する直前のDSC曲線の変曲点における傾きを延長した直線と、DSC曲線におけるベースの直線と、の交点とした。
 また、DSC曲線の吸熱ピークのピーク面積から融解潜熱を算出した。
 これらの結果を表1に示す。
(Measurement of lower limit temperature of melting Ts, upper limit temperature of melting Tf, and latent heat of fusion)
A 10 mg sample was collected from the heat storage material composition and subjected to DSC (differential scanning calorimetry) to measure the melting lower limit temperature Ts and the melting upper limit temperature Tf of the heat storage material composition. The measurement of the lower melting temperature Ts and the upper melting temperature Tf will be described with reference to FIG. FIG. 2 is a graph schematically showing the results of measuring the lower melting temperature Ts and the upper melting temperature Tf at which the latent heat storage material composition develops latent heat of fusion using differential scanning calorimetry (DSC).
Specifically, the melting minimum temperature Ts was defined as the intersection of the base straight line in the DSC curve and the straight line extending the slope at the inflection point of the DSC curve in which the heat flow first decreased. The melting upper limit temperature Tf was defined as the intersection of a straight line obtained by extending the slope at the inflection point of the DSC curve immediately before the heat flow was restored to the base, and the base straight line in the DSC curve.
The latent heat of fusion was calculated from the peak area of the endothermic peak in the DSC curve.
Table 1 shows the results.
[実施例2~28、比較例1~16]
 得られる蓄熱材組成物が表1又は表2に示す組成になるように、NaSO無水塩、NaHPO無水塩、NaPO無水塩、及び純水の配合量を変えた以外は、実施例1と同様にして、蓄熱材組成物を得た(試料No.A1~A14、A16~A44)。
 試料No.A1~A14はそれぞれ比較例1~14の蓄熱材組成物、試料No.A16~A42はそれぞれ実施例2~28の蓄熱材組成物、試料No.A43及びA44はそれぞれ比較例15及び16の蓄熱材組成物である。
[Examples 2 to 28, Comparative Examples 1 to 16]
The amounts of Na 2 SO 4 anhydrous salt, Na 2 HPO 4 anhydrous salt, Na 3 PO 4 anhydrous salt, and the amount of pure water were changed so that the obtained heat storage material composition had the composition shown in Table 1 or Table 2. Except for the above, heat storage material compositions were obtained in the same manner as in Example 1 (Sample Nos. A1 to A14, A16 to A44).
Sample No. A1 to A14 are the heat storage material compositions of Comparative Examples 1 to 14, respectively. A16 to A42 are the heat storage material compositions of Examples 2 to 28, respectively, and Sample Nos. A43 and A44 are the heat storage material compositions of Comparative Examples 15 and 16, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試料No.A1~A14及びA16~A44につき、実施例1と同様にして、余剰水の含有量と、蓄熱材組成物の沈殿の生成の有無を調べた。また、試料No.A1~A14及びA16~A44につき、実施例1と同様にして、融解潜熱の融解下限温度Ts、融解上限温度Tf、及び融解潜熱の測定を行った。結果を表1及び表2に示す。 Sample No. For A1 to A14 and A16 to A44, in the same manner as in Example 1, the content of excess water and the presence / absence of precipitation of the heat storage material composition were examined. In addition, the sample No. With respect to A1 to A14 and A16 to A44, the lower limit temperature of melting Ts, the upper limit temperature of melting Tf, and the latent heat of fusion were measured in the same manner as in Example 1. The results are shown in Tables 1 and 2.
 (三元系状態図)
  図3は、主剤における、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物の含有量の好適な範囲を示す三元系状態図である。試料No.A1~A42の蓄熱材組成物の主剤の組成を図3にプロットした。
 図3中、試料No.A15~A42(実施例1~28)の蓄熱材組成物のプロットを記号○で示す。
(Ternary phase diagram)
FIG. 3 is a ternary phase diagram showing a preferable range of the content of sodium sulfate decahydrate, disodium hydrogenphosphate decahydrate, and trisodium phosphate decahydrate in the base material. Sample No. The compositions of the main components of the heat storage material compositions of A1 to A42 are plotted in FIG.
In FIG. The plots of the heat storage material compositions of A15 to A42 (Examples 1 to 28) are indicated by the symbol ○.
 図3において、台形の領域Rは、試料No.A15~A42(実施例1~28)の蓄熱材組成物の主剤が存在する領域である。領域Rは、硫酸ナトリウム10水和物の含有量をX質量%、リン酸水素二ナトリウム12水和物の含有量をY質量%、及びリン酸三ナトリウム12水和物の含有量をZ質量%と規定したとき、X、Y及びZが下記式(1)~(4)を満たす領域である。 に お い て In FIG. This is a region where the main components of the heat storage material compositions of A15 to A42 (Examples 1 to 28) are present. In the region R, the content of sodium sulfate decahydrate is X mass%, the content of disodium hydrogen phosphate dodecahydrate is Y mass%, and the content of trisodium phosphate decahydrate is Z mass. %, It is a region where X, Y and Z satisfy the following formulas (1) to (4).
[数9]
   X+Y+Z=100           (1)
[数10]
   X-32.5≦0            (2)
[数11]
   32.5≦Y≦55.0         (3)
[数12]
   X+0.431Y-41.017≧0   (4)
[Equation 9]
X + Y + Z = 100 (1)
[Equation 10]
X-32.5 ≦ 0 (2)
[Equation 11]
32.5 ≦ Y ≦ 55.0 (3)
[Equation 12]
X + 0.431Y-41.017 ≧ 0 (4)
 表1より、図3の領域R内にある試料No.A15~A42(実施例1~28)の蓄熱材組成物は、蓄熱材組成物の融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上になっていることが分かった。 よ り From Table 1, the sample No. in the region R of FIG. In the heat storage material compositions of A15 to A42 (Examples 1 to 28), the lower limit temperature of the heat storage material composition was 20 ° C. or higher and the upper limit temperature of the melting was 30 ° C. or lower, and the latent heat of fusion became 140 J / g or more. I knew it was there.
 なお、表2より、図3中に記号×で表される蓄熱材組成物(試料No.A1~A8)は、蓄熱材組成物の調製時に沈殿が生成しており、繰り返し特性安定性が低いことが分かった。 From Table 2, in the heat storage material compositions (sample Nos. A1 to A8) represented by the symbol x in FIG. 3, precipitates were formed during the preparation of the heat storage material compositions, and the stability of the repetitive characteristics was low. I understood that.
 また、表2より、図3中に記号△で表される蓄熱材組成物(試料No.A8~A14)は、蓄熱量(融解潜熱)が小さいことが分かった。 From Table 2, it was found that the heat storage material compositions (sample Nos. A8 to A14) represented by the symbol △ in Fig. 3 had a small amount of heat storage (latent heat of fusion).
 表1及び図3より、上記式(1)~(4)を満たす領域R内にある実施例1~28の蓄熱材組成物(試料No.A15~A42)は、蓄熱材組成物として好ましいことが分かった。また、実施例1~28の蓄熱材組成物(試料No.A15~A42)は、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上であることが分かった。 From Table 1 and FIG. 3, the heat storage material compositions of Examples 1 to 28 (Sample Nos. A15 to A42) in the region R satisfying the above formulas (1) to (4) are preferable as the heat storage material compositions. I understood. The heat storage material compositions of Examples 1 to 28 (Sample Nos. A15 to A42) have a minimum melting temperature of 20 ° C. or higher and a maximum melting temperature of 30 ° C. or lower, and have a latent heat of fusion of 140 J / g or higher. I understood.
 特願2018-151029号(出願日:2018年8月10日)の全内容は、ここに援用される。 全 The entire contents of Japanese Patent Application No. 2018-151029 (filing date: August 10, 2018) are incorporated herein by reference.
 以上、本発明を実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 Although the present invention has been described with reference to the embodiments, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the present invention.
 本実施形態に係る蓄熱材組成物によれば、融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、融解潜熱が140J/g以上である蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することができる。
 
According to the heat storage material composition according to the present embodiment, the heat storage material composition has a minimum melting temperature of 20 ° C. or higher and a maximum melting temperature of 30 ° C. or lower, and has a latent heat of fusion of 140 J / g or higher, and for cooling and heating buildings. Heat storage system can be provided.

Claims (9)

  1.  硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及びリン酸三ナトリウム12水和物からなる主剤を含み、
     融解下限温度が20℃以上かつ融解上限温度が30℃以下にあり、
     融解潜熱が140J/g以上であることを特徴とする蓄熱材組成物。
    Including a main ingredient consisting of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and trisodium phosphate dodecahydrate,
    The lower limit melting temperature is 20 ° C or higher and the upper limit melting temperature is 30 ° C or lower,
    A heat storage material composition having a latent heat of fusion of 140 J / g or more.
  2.  前記主剤100質量%中に、
     前記硫酸ナトリウム10水和物が17.9~32.5質量%、
     前記リン酸水素二ナトリウム12水和物が32.5~55.0質量%、及び
     前記リン酸三ナトリウム12水和物が15~40.5質量%含まれることを特徴とする請求項1に記載の蓄熱材組成物。
    In 100% by mass of the main agent,
    17.9-32.5% by mass of the sodium sulfate decahydrate,
    The method according to claim 1, wherein the disodium hydrogenphosphate dodecahydrate contains 32.5 to 55.0% by mass, and the trisodium phosphate dodecahydrate contains 15 to 40.5% by mass. The heat storage material composition as described in the above.
  3.  前記主剤中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記リン酸三ナトリウム12水和物の含有量をZ質量%と規定したとき、X、Y、及びZが下記式(1)~(4)を満たすことを特徴とする請求項1又は2に記載の蓄熱材組成物。
    [数1]
       X+Y+Z=100           (1)
    [数2]
       X-32.5≦0            (2)
    [数3]
       32.5≦Y≦55.0         (3)
    [数4]
       X+0.431Y-41.017≧0   (4)
    In the main agent, the content of the sodium sulfate decahydrate is X% by mass, the content of the disodium hydrogenphosphate dodecahydrate is Y% by mass, and the content of the trisodium phosphate dodecahydrate is included. 3. The heat storage material composition according to claim 1, wherein X, Y, and Z satisfy the following formulas (1) to (4) when the amount is defined as Z mass%.
    [Equation 1]
    X + Y + Z = 100 (1)
    [Equation 2]
    X-32.5 ≦ 0 (2)
    [Equation 3]
    32.5 ≦ Y ≦ 55.0 (3)
    [Equation 4]
    X + 0.431Y-41.017 ≧ 0 (4)
  4.  余剰水をさらに含み、
     前記余剰水は、前記主剤100質量部に対して9質量部以下含まれることを特徴とする請求項1~3のいずれか1項に記載の蓄熱材組成物。
    Further containing excess water,
    The heat storage material composition according to any one of claims 1 to 3, wherein the excess water is contained in an amount of 9 parts by mass or less based on 100 parts by mass of the main agent.
  5.  有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体と、
     多官能性単量体と、
     を重合させて得られる第1の相分離抑制剤をさらに含むことを特徴とする請求項1~4のいずれか1項に記載の蓄熱材組成物。
    From organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphoric acids, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylate salts, organic unsaturated sulfonic acid salts, and organic unsaturated phosphate salts At least one monomer selected from the group consisting of:
    A multifunctional monomer,
    The heat storage material composition according to any one of claims 1 to 4, further comprising a first phase separation inhibitor obtained by polymerizing the composition.
  6.  塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含むことを特徴とする請求項1~5のいずれか1項に記載の蓄熱材組成物。 It further comprises at least one melting point depressant selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. The heat storage material composition according to any one of claims 1 to 5, wherein
  7.  ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含むことを特徴とする請求項1~6のいずれか1項に記載の蓄熱材組成物。 Borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, hectorite, smectite clays, bentonite, laponite, Propylene glycol, ethylene glycol, glycerin, ethylenediaminetetraacetic acid, sodium alkyl sulfate, sodium alkyl phosphate, potassium alkyl sulfate, and at least one supercooling inhibitor selected from the group consisting of potassium alkyl phosphate. The heat storage material composition according to any one of claims 1 to 6, characterized in that:
  8.  ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の第2の相分離抑制剤をさらに含むことを特徴とする請求項1~7のいずれか1項に記載の蓄熱材組成物。 Sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, sodium copolymer of acrylic acid / malenic acid, sodium copolymer of acrylic acid / sulfonic acid monomer, acrylamide / dimethylaminoethyl Methacrylate dimethyl sulfate copolymer, acrylamide / sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, super absorbent resin (SAP), carboxymethyl cellulose (CMC), derivative of CMC, carrageenan, carrageenan derivative, xanthan gum, xanthan gum , Pectin, derivatives of pectin, starch, derivatives of starch, konjac, agar, layered silicates, and composites of these substances. The heat storage material composition according to any one of claims 1 to 7, further comprising at least one second phase separation inhibitor.
  9.  請求項1~8のいずれか1項に記載の蓄熱材組成物を用いた蓄熱材モジュールを具備することを特徴とする建築物の冷暖房用の蓄熱システム。
     
    A heat storage system for cooling and heating a building, comprising a heat storage material module using the heat storage material composition according to any one of claims 1 to 8.
PCT/JP2019/027736 2018-08-10 2019-07-12 Heat storage material composition and heat storage system for air conditioning for building WO2020031618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151029A JP6814771B2 (en) 2018-08-10 2018-08-10 Heat storage material composition and heat storage system for heating and cooling of buildings
JP2018-151029 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031618A1 true WO2020031618A1 (en) 2020-02-13

Family

ID=69415498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027736 WO2020031618A1 (en) 2018-08-10 2019-07-12 Heat storage material composition and heat storage system for air conditioning for building

Country Status (2)

Country Link
JP (1) JP6814771B2 (en)
WO (1) WO2020031618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574165A (en) * 2022-03-18 2022-06-03 长沙理工大学 Phase-change cold storage material and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102453A4 (en) 2020-02-19 2023-08-02 Honda Motor Co., Ltd. Information acquisition device, information acquisition method, and control program
CN112048287B (en) * 2020-09-17 2022-04-15 陕西合鼎森新智能科技有限公司 Environment-friendly refrigerant and cold compress bag and beverage can thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137379A (en) * 1981-01-15 1982-08-24 Hoechst Ag Latent heat storing device and manufacture
JPH0525467A (en) * 1991-01-31 1993-02-02 Sumitomo Chem Co Ltd Heat storage material composition and its production
JPH0885785A (en) * 1994-07-20 1996-04-02 Sumitomo Chem Co Ltd Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
CN102827588A (en) * 2012-09-19 2012-12-19 杨宁 Energy-saving temperature-control phase-change material
JP2015218212A (en) * 2014-05-15 2015-12-07 株式会社ネギシ New latent heat storage material composition
WO2017164304A1 (en) * 2016-03-23 2017-09-28 株式会社カネカ Heat storage material composition and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137379A (en) * 1981-01-15 1982-08-24 Hoechst Ag Latent heat storing device and manufacture
JPH0525467A (en) * 1991-01-31 1993-02-02 Sumitomo Chem Co Ltd Heat storage material composition and its production
JPH0885785A (en) * 1994-07-20 1996-04-02 Sumitomo Chem Co Ltd Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
CN102827588A (en) * 2012-09-19 2012-12-19 杨宁 Energy-saving temperature-control phase-change material
JP2015218212A (en) * 2014-05-15 2015-12-07 株式会社ネギシ New latent heat storage material composition
WO2017164304A1 (en) * 2016-03-23 2017-09-28 株式会社カネカ Heat storage material composition and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574165A (en) * 2022-03-18 2022-06-03 长沙理工大学 Phase-change cold storage material and preparation method thereof

Also Published As

Publication number Publication date
JP2020026465A (en) 2020-02-20
JP6814771B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2020031618A1 (en) Heat storage material composition and heat storage system for air conditioning for building
WO2019172260A1 (en) Heat storage material composition and heat storage system for building air conditioning
CN113939573B (en) Heat storage material composition and heat storage system for heating and cooling building
EP3575375B1 (en) Latent-heat storage material composition and latent-heat storage tank
US20220282146A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
JP2019151762A5 (en)
JP7405684B2 (en) Heat storage material composition and heat storage system for heating and cooling buildings
WO2020246387A1 (en) Heat storage material composition and heat storage system for air conditioning of building
JP2020196818A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196816A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196819A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP3471469B2 (en) Latent heat storage material composition
JP3442155B2 (en) Heat storage material composition
US4338208A (en) Hydrated MgCl2 reversible phase change compositions
WO2021187220A1 (en) Heat-storage material composition
JP2022188452A (en) Heat storage material composition, and heat storage system for cooling and heating of building
WO2021182388A1 (en) Heat-storage material composition
JP2022185304A (en) Heat storage material, and solar heat utilizing heat storage system
WO2023073957A1 (en) Heat storage material composition, and heat storage system for air conditioning of buildings
JP6682712B1 (en) Latent heat storage material composition
EP0054758A1 (en) Hydrated MgCl2 or Mg(NO3)2/MgCl2 reversible phase change compositions
JP2021147509A (en) Heat storage material composition and heat storage system for air-conditioner of building
JP3221950B2 (en) Heat storage material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847373

Country of ref document: EP

Kind code of ref document: A1