JPH0554518B2 - - Google Patents

Info

Publication number
JPH0554518B2
JPH0554518B2 JP72385A JP72385A JPH0554518B2 JP H0554518 B2 JPH0554518 B2 JP H0554518B2 JP 72385 A JP72385 A JP 72385A JP 72385 A JP72385 A JP 72385A JP H0554518 B2 JPH0554518 B2 JP H0554518B2
Authority
JP
Japan
Prior art keywords
heat storage
glycerin
storage material
viscosity
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP72385A
Other languages
Japanese (ja)
Other versions
JPS61166879A (en
Inventor
Naotatsu Yano
Shigeru Tsuboi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP72385A priority Critical patent/JPS61166879A/en
Publication of JPS61166879A publication Critical patent/JPS61166879A/en
Publication of JPH0554518B2 publication Critical patent/JPH0554518B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は無機質水和物を主成分とする蓄熱材組
成物に関し、特に増粘剤として微粉末シリカとグ
リセリンを併用することにより、蓄熱材の組成物
の分散安定性を向上させる技術に関するものであ
る。 [従来の技術] 従来無機質水和物を蓄熱材として用いる試みが
種々行なわれているが、中でも塩化カルシウム6
水塩は水和物特有の大きな凝固一融解潜熱を有し
ており、且つ常温付近に凝固点を有しているとこ
ろから、最近特に注目されるところとなり、その
実用化研究が活発に行なわれている。そして実際
施設園芸や栽培用の温室、住宅暖房或はケミカル
ヒートポンプ、更にはソーラ用蓄熱タンク、工業
用排熱回収設備等に幅広く実用化されはじめてい
る。 ところで塩化カルシウム6水塩は、その凝固点
以上から温度を下げていつた場合にいわゆる過冷
却現象を起こし、この為蓄熱材としての効果発現
域が不安定となり、常に一定温度での発熱を期待
できる訳ではない。そこでこの過冷却現象を防止
するため例えばSrCl2・6H2O,Sr(OH)2・8H2O
或はBa(OH)2・8H2O等の核生成促進剤を添加す
る方法がとられている。一方また塩化カルシウム
6水塩単独では、潜熱発生温度がその凝固点(及
び融点)である約30℃の1点に特定される為、利
用環境に応じた使用が困難である。この為一般
に、例えばFeCl3・6H2O,MgCl2・6H2O,
CoCl2・6H2O等の凝固点調節剤を配合すること
により潜熱発生温度を変更する方法がとられてい
る。しかしながら蓄熱材組成物中に核生成促進剤
や凝固点調節剤等を配合した場合、初めのうちは
その効果を発揮するものの、繰返し使用している
うちに蓄熱材封入容器中で核生成促進剤等が次第
に沈澱し、ついにはその効果を十分に発揮し得な
くなることがある。また塩化カルシウム6水塩自
身についても、液相固相の相変化を繰返すうちに
液相(比重1.5)と固相(比重1.68)の比重差に
よつて結晶が次第に底部に沈澱し、相分離を起こ
すことが知られている。こうした現象は塩化カル
シウム6水塩に限らず、蓄熱材として使用可能な
種々の無機質水和物(後述)についても同様であ
る。 この為核生成促進剤等の添加成分についてその
分散安定性を高め、また相分離を防止する目的
で、蓄熱材組成中に増粘剤を配合することが行な
われている。ここに増粘剤とは使用状態にある融
解液に適度の粘性を与えることにより上記目的を
達成しようとするものであり、例えばグリセリン
やエチレングリコール等のアルコール類、或はカ
ルボキシメチルセルロースやポリアクリル酸ナト
リウム等が使用されている。 [発明が解決しようとする問題] ところでグリセリンは、水と任意に混合でき、
適度な増粘効果を発揮するとともに安定性にも優
れるところから、増粘剤として利用価値が高い。
しかし該物質は凝固点降下作用をも有するため
に、増粘を目的として配合した場合であつても、
特に高粘度を得ようとする場合には比較的多量に
配合しなければならないため大幅な凝固点の変動
を覚悟しなければならない。一方従来から使用さ
れている例えばポリアクリル酸ナトリウムのよう
な高分子物質では、増粘効果は優れているものの
繰返し使用するうちに局部的に固まつて粘度低下
をきたし、ついには均一分散の役目を果し得なく
なるといつた問題がある。 核生成促進剤等の副成分の分散不良は、その配
合目的を実質的に失わしめ、相転移時の過冷却現
象を防止し得なくすると共に相分離を発生させ、
蓄熱材としての利用価値を低減させる。 本発明はこうした状況の下で、上記トラブルを
有効に防止し得る増粘剤を検索することにより繰
返し使用下での安定性に優れ、実用性能の高い蓄
熱材組成物を提供しようとするものである。 [問題点を解決する為の手段] 本発明は、無機質水和物を主成分とする蓄熱材
組成物中に超微粉末シリカとグリセリンを増粘剤
として配合してなるところに要旨を有するもので
ある。 [作用] 本発明における最大の特徴は、無機質水和物を
主成分とする蓄熱材組成物の増粘剤の一つとして
新たに超微粉末シリカを選択し、これをグリセリ
ンと併用することによつて増粘効果を一層高める
ところにあり、両物質を適当量配合することによ
り蓄熱材組成物の融解時の粘度を適度に調整する
ことができ、それにより蓄熱材組成物の分散安定
性を高めることができる。ここに微粉末シリカと
しては例えば西独デグザ社のアエロジル(商品
名)などの高純度微粉末シリカを用いることがで
きるが、該物質はその構造中に有するシラノール
基(三Si−OH)の働きによりチクソトロピー性
を発揮するものと考えられる。又該物質は極めて
微細な粒子(7〜40μm)であり、媒体中で高い
分散安定性を有する。即ち本剤を蓄熱材組成物中
に配合すると、該組成物中で微粒子状態のまま均
一に分散し、融解した時には粒子相互が架橋結合
を形成して網状に連結し合い、その結果として増
粘効果を発現するものと考えられる。 ところで超微粉末シリカは従来塗料の増粘や壁
面の厚塗りに対する塗料のたれ下がり防止剤等と
して用いられており、その増粘効果はよく知られ
ている。しかしながら蓄熱材組成物用の増粘剤と
して用いられた例はない。 しかるに本発明者らが確認したところによる
と、超微粉末シリカは融解状態の蓄熱材組成物中
で優れた増粘効果を発揮し、しかも化学的、物理
的に極めて安定であつて、蓄熱材組成物の種類や
熱等の外部環境の変化によつても殆ど影響を受け
ない。即ち無機質水和物を主成分とする蓄熱材
(必要に応じて凝固点調節剤や核生成促進剤を配
合したもの)に超微粉末シリカを増粘剤としてグ
リセリンと共に添加すれば比較的少量で必要かつ
十分な粘度が得られ、しかも蓄熱材組成物中の超
微粉末シリカは蓄熱一放熱を繰返した場合でも凝
集や固結等の劣化を生ずることがなく、またグリ
セリンそのものの添加量は少なくてすむため凝固
点を変動させることも少ない。従つて超微粉末シ
リカをグリセリンと共に増粘剤として配合した蓄
熱材組成物は、優れた繰返し安定性を示し、分散
不良や相分離現象を生じることがなく、長時間に
亘つて高ベルの分散安定性を維持できる。 以下上述のことがらを実験結果に基づき説明す
る。 [実施例] 第1図は、第1表に示す蓄熱材基本組成に超微
粉末シリカ及びグリセリンを添加した場合の増粘
効果を夫々示したものである。
[Industrial Application Field] The present invention relates to a heat storage material composition containing an inorganic hydrate as a main component, and in particular, the dispersion stability of the heat storage material composition is improved by using finely powdered silica and glycerin together as thickeners. It is related to technology that improves. [Prior art] Various attempts have been made to use inorganic hydrates as heat storage materials, among which calcium chloride 6
Salt hydrate has a large latent heat of solidification and fusion unique to hydrates, and has a freezing point near room temperature, so it has recently attracted particular attention, and research on its practical application has been actively conducted. There is. In fact, it has begun to be widely put to practical use in greenhouses for greenhouse horticulture and cultivation, residential heating or chemical heat pumps, solar heat storage tanks, industrial waste heat recovery equipment, etc. By the way, when the temperature of calcium chloride hexahydrate is lowered from above its freezing point, it causes a so-called supercooling phenomenon, which makes its effective range as a heat storage material unstable, which is why it can always be expected to generate heat at a constant temperature. isn't it. Therefore, in order to prevent this supercooling phenomenon, for example, SrCl 2・6H 2 O, Sr(OH) 2・8H 2 O
Alternatively, a method of adding a nucleation accelerator such as Ba(OH) 2.8H 2 O is used. On the other hand, when using calcium chloride hexahydrate alone, the temperature at which latent heat is generated is specified at one point, which is the freezing point (and melting point) of about 30° C., so it is difficult to use it depending on the usage environment. For this reason, in general, for example, FeCl 3.6H 2 O, MgCl 2.6H 2 O,
A method has been used to change the latent heat generation temperature by adding a freezing point regulator such as CoCl 2 .6H 2 O. However, when a nucleation accelerator, freezing point regulator, etc. are blended into a heat storage material composition, although the effect is initially exhibited, as the nucleation accelerator or freezing point regulator is added to the heat storage material composition, the nucleation accelerator or the like may be added to the heat storage material enclosing container after repeated use. may gradually precipitate and eventually become unable to exert its full effect. Regarding calcium chloride hexahydrate itself, as the liquid phase and solid phase change repeatedly, crystals gradually settle to the bottom due to the difference in specific gravity between the liquid phase (specific gravity 1.5) and solid phase (specific gravity 1.68), resulting in phase separation. is known to cause This phenomenon is not limited to calcium chloride hexahydrate, but also applies to various inorganic hydrates (described later) that can be used as heat storage materials. For this reason, in order to improve the dispersion stability of additive components such as nucleation accelerators and to prevent phase separation, thickeners are incorporated into the heat storage material composition. Here, thickeners are intended to achieve the above purpose by imparting appropriate viscosity to the melted liquid in use, and include alcohols such as glycerin and ethylene glycol, or carboxymethyl cellulose and polyacrylic acid. Sodium etc. are used. [Problem to be solved by the invention] By the way, glycerin can be mixed with water at will.
It has a high utility value as a thickener because it exhibits a moderate thickening effect and is also excellent in stability.
However, since this substance also has a freezing point lowering effect, even when it is blended for the purpose of thickening,
Particularly when trying to obtain a high viscosity, a relatively large amount must be blended, so one must be prepared for large fluctuations in the freezing point. On the other hand, conventionally used polymeric substances such as sodium polyacrylate have an excellent thickening effect, but as they are repeatedly used, they locally solidify and cause a decrease in viscosity. There is a problem that has become impossible. Poor dispersion of subcomponents such as nucleation accelerators substantially defeats the purpose of their blending, makes it impossible to prevent supercooling during phase transition, and causes phase separation.
Reduces its utility value as a heat storage material. Under these circumstances, the present invention aims to provide a heat storage material composition with excellent stability under repeated use and high practical performance by searching for a thickener that can effectively prevent the above-mentioned troubles. be. [Means for Solving the Problems] The gist of the present invention is that ultrafine powdered silica and glycerin are blended as thickeners into a heat storage material composition containing an inorganic hydrate as a main component. It is. [Function] The greatest feature of the present invention is that ultrafine powdered silica is newly selected as one of the thickeners for the heat storage material composition containing inorganic hydrate as the main component, and this is used in combination with glycerin. Therefore, the thickening effect is further enhanced, and by blending appropriate amounts of both substances, the viscosity of the heat storage material composition when melted can be appropriately adjusted, thereby improving the dispersion stability of the heat storage material composition. can be increased. As the fine powder silica, for example, high-purity fine powder silica such as Aerosil (trade name) manufactured by Degusa AG, West Germany, can be used. It is thought to exhibit thixotropic properties. Moreover, the substance has extremely fine particles (7 to 40 μm) and has high dispersion stability in the medium. That is, when this agent is blended into a heat storage material composition, it is uniformly dispersed in the composition in the form of fine particles, and when melted, the particles form crosslinks and connect with each other in a network, resulting in increased viscosity. It is thought that the effect is expressed. Incidentally, ultrafine powdered silica has been conventionally used to thicken paints and as an agent to prevent paint from sagging when thickly painted on walls, and its thickening effect is well known. However, there is no example of it being used as a thickener for a heat storage material composition. However, the present inventors have confirmed that ultrafine powder silica exhibits an excellent thickening effect in the heat storage material composition in a molten state, and is chemically and physically extremely stable. It is hardly affected by changes in the external environment such as the type of composition or heat. In other words, if ultrafine powdered silica is added as a thickener together with glycerin to a heat storage material whose main component is an inorganic hydrate (combined with a freezing point regulator or nucleation accelerator if necessary), a relatively small amount is required. Furthermore, the ultrafine powdered silica in the heat storage material composition does not cause deterioration such as agglomeration or caking even when heat storage and heat release are repeated, and the amount of glycerin itself added is small. Because of this, there is little chance of fluctuations in the freezing point. Therefore, a heat storage material composition containing ultrafine powdered silica and glycerin as a thickener exhibits excellent repeatability, does not cause poor dispersion or phase separation, and maintains high-level dispersion for a long period of time. Stability can be maintained. The above-mentioned matters will be explained below based on experimental results. [Example] FIG. 1 shows the thickening effect when ultrafine powder silica and glycerin are added to the basic composition of the heat storage material shown in Table 1, respectively.

【表】 即ち図中の実線は増粘剤として超微粉末シリカ
を単独で添加した場合、破線はグリセリンを単独
で添加した場合を示す。第1図から明らかな様に
超微粉末シリカは、特に3.5%以上においてグリ
セリンに比較し、より少ない添加濃度で高い粘度
が得られており、優れた増粘効果があることが分
る。しかし超微粉末シリカは、添加量が3.5%を
超えると急激な粘度上昇を示し、これは添加量の
わずかな変化により粘度が大幅に変動することを
意味するものであり、粘度調整上好ましくない。
特に蓄熱材組成物の製造に際し所望の粘度設定が
行い難い。 第2図に、基本組成として第1表の蓄熱材組成
物を用い、これに超微粉末シリカのみを添加した
場合(実線)、超微粉末シリカと1%のグリセリ
ンを併用した場合(1点鎖線)、超微粉末シリカ
と3%のグリセリンを併用した場合(2点鎖線)、
及び超微粉末シリカと5%のグリセリンを併用し
た場合(破線)、を夫々示す。先に増粘剤として
超微粉末シリカを単独で使用した場合は3.5%付
近から粘度が急激に上昇し、この領域において粘
度の微調整を行うことは実際上困難であることを
述べたが、第2図から、超微粉末シリカにグリセ
リンを併用することにより微粉末シリカ一粘度曲
線のカーブが緩やかになり、且つ3.5%以下の部
分でも適度な粘度上昇カーブが得られることが分
る。即ち超微粉末シリカの3.5%添加量付近を境
として、グリセリンと超微粉末シリカはそれぞれ
補完し合つて全体として緩やかで適度な粘度上昇
を示すようになる。これら2種の増粘剤を併用し
た場合の粘度曲線のパターンは、個々の添加量や
両者の配合比率によつて、複合的に影響を受ける
が、蓄熱材組成物の粘度調整上、好ましくはグリ
セリンを1〜5%の範囲、超微粉末シリカを1.5
〜6%の範囲で添加することが推奨される。以上
両増粘剤の配合比率と添加量を適宜調整すること
により、蓄熱材組成物において広範囲に渡つて所
望の粘度を安定して得ることができる。 次に第3図は塩化カルシウム6水塩を主材と
し、これに凝固点調節剤(塩化亜鉛)及び核生成
促進剤(塩化バリウム2水塩及び硫化バリウム)
を配合した蓄熱材(組成を第2表に示す)を対象
とし、増粘剤として 超微粉末シリカとグリセリンを各々3%づつ
併用した場合(実線) グリセリンを5%添加した場合(1点鎖線) 及びいずれも添加しない場合(破線) について繰返し安定性を対比して示したものであ
る。
[Table] That is, the solid line in the figure shows the case where ultrafine powdered silica was added alone as a thickener, and the broken line shows the case where glycerin was added alone. As is clear from FIG. 1, ultrafine powder silica has a higher viscosity than glycerin at a lower concentration, especially at 3.5% or more, indicating that it has an excellent thickening effect. However, ultrafine powdered silica exhibits a rapid increase in viscosity when the amount added exceeds 3.5%, which means that the viscosity fluctuates significantly due to a slight change in the amount added, which is not desirable in terms of viscosity adjustment. .
In particular, it is difficult to set a desired viscosity when producing a heat storage material composition. Figure 2 shows a case where the heat storage material composition shown in Table 1 is used as the basic composition, and only ultrafine powder silica is added (solid line), and a case where ultrafine powder silica and 1% glycerin are used together (1 point). When ultrafine powdered silica and 3% glycerin are used together (dashed line),
and the case where ultrafine powdered silica and 5% glycerin are used together (broken line) are shown, respectively. I mentioned earlier that when ultrafine powdered silica is used alone as a thickener, the viscosity rises rapidly from around 3.5%, and it is practically difficult to fine-tune the viscosity in this range. From FIG. 2, it can be seen that by using glycerin in combination with ultrafine powder silica, the fine powder silica-viscosity curve becomes gentler, and a moderate viscosity increase curve can be obtained even in the portion below 3.5%. That is, when the amount of ultrafine powder silica added is around 3.5%, glycerin and ultrafine powder silica each complement each other, and the viscosity as a whole shows a gradual and appropriate increase. The pattern of the viscosity curve when these two types of thickeners are used together is affected in a complex manner by the amount of each added and the blending ratio of both, but it is preferable to adjust the viscosity of the heat storage material composition. Glycerin in the range of 1-5%, ultrafine powdered silica in the range of 1.5%
It is recommended to add in the range of ~6%. By appropriately adjusting the blending ratio and addition amount of both thickeners, it is possible to stably obtain a desired viscosity over a wide range in the heat storage material composition. Next, in Figure 3, the main material is calcium chloride hexahydrate, and in addition a freezing point regulator (zinc chloride) and a nucleation promoter (barium chloride dihydrate and barium sulfide).
When using a heat storage material (composition shown in Table 2) containing 3% each of ultrafine powdered silica and glycerin as thickeners (solid line) When adding 5% glycerin (dotted chain line) ) and when neither is added (broken line).

【表】 第3図から明らかな様に、超微粉末シリカを3
%づつ添加したものは300回の繰返し使用におい
ても過冷却度約0.8℃の低い値を維持しており、
その後の上昇率も僅かであつて、700回繰返し使
用した場合でも凝固点降下は2℃以下に抑えられ
ている。これに対し増粘剤無添加のものでは繰返
し使用の当初から過冷却度が急激な上昇傾向を示
し、200回程で4.8℃にも達している。またグリセ
リンのみを5%添加した従来品(1点鎖線)は、
200回程までは2℃以内の過冷却度を維持してお
り、超微粉末シリカとグリセリン併用の場合
()と同様の性能を示すが、250回以降は次第に
相分離が進み過冷却度が増加する。即ち増粘剤と
してグリセリンのみを使用した場合には繰返し使
用における長期的安定性に欠けることが分る。 次に増粘剤として超微粉末シリカとグリセリン
を含む蓄熱材組成物の代表的な配合組成及びその
特性を示す。 [1] 塩化カルシウム6水塩 95% 塩化ストロンチウム6水塩 1% 超微粉末シリカ 3.5% グリセリン 1% 融点29.6℃、粘度7000CP [2] 塩化カルシウム6水塩 92% 塩化ストロンチウム6水塩 1% グリセリン 3% 超微粉末シリカ 4% 融点25℃、粘度9200CP [3] 塩化カルシウム6水塩 80% 臭化ナトリウム 15% グリセリン 3% 超微粉末シリカ 2% 融点19℃、粘度4800CP [4] 硫酸ナトリウム10水塩 87% 食 塩 8% 四ホウ酸ナトリウム 1% 超微粉末シリカ 3% グリセリン 2% 融点20℃、粘度6100CP [5] 塩化カルシウム6水塩 83.19% 臭化アンモニウム 10% 硫化バリウム 0.01% 塩化バリウム2水塩 0.8% 超微粉末シリカ 3% グリセリン 3% 融点18℃、粘度5200CP 以上、本明細書では蓄熱材の主材を塩化カルシ
ウム6水塩とした場合について述べて来たが、本
発明は蓄熱材として実用可能なあらゆる無機質水
和物に適用し得るものであり、以上の説明によつ
て本発明の範囲が制限されるものではない。尚塩
化カルシウム6水塩以外の無機質水和物を例示す
れば以下の如くである。
[Table] As is clear from Figure 3, ultrafine powdered silica is
The supercooling degree maintained at a low value of approximately 0.8℃ even after repeated use 300 times.
The rate of increase thereafter is also small, and even after repeated use 700 times, the freezing point drop is kept below 2°C. On the other hand, in the case of the product without thickener added, the degree of supercooling showed a rapid increase from the beginning of repeated use, reaching 4.8°C after about 200 uses. In addition, the conventional product (dotted chain line) with only 5% glycerin added,
The degree of supercooling is maintained within 2℃ until about 200 times, showing the same performance as when using ultrafine powder silica and glycerin (), but after 250 times, phase separation gradually progresses and the degree of supercooling increases. do. That is, it can be seen that when only glycerin is used as a thickener, long-term stability in repeated use is lacking. Next, a typical formulation of a heat storage material composition containing ultrafine powdered silica and glycerin as thickeners and its characteristics will be shown. [1] Calcium chloride hexahydrate 95% Strontium chloride hexahydrate 1% Ultrafine powder silica 3.5% Glycerin 1% Melting point 29.6℃, viscosity 7000CP [2] Calcium chloride hexahydrate 92% Strontium chloride hexahydrate 1% Glycerin 3% Ultrafine powder silica 4% Melting point 25℃, viscosity 9200CP [3] Calcium chloride hexahydrate 80% Sodium bromide 15% Glycerin 3% Ultrafine powder silica 2% Melting point 19℃, viscosity 4800CP [4] Sodium sulfate 10 Aquatic salt 87% Common salt 8% Sodium tetraborate 1% Ultrafine powder silica 3% Glycerin 2% Melting point 20℃, viscosity 6100CP [5] Calcium chloride hexahydrate 83.19% Ammonium bromide 10% Barium sulfide 0.01% Barium chloride Dihydrate 0.8% Ultrafine powdered silica 3% Glycerin 3% Melting point: 18°C, viscosity: 5200CP or more In this specification, the case where the main material of the heat storage material is calcium chloride hexahydrate has been described, but the present invention The present invention can be applied to any inorganic hydrate that can be used as a heat storage material, and the scope of the present invention is not limited by the above explanation. Examples of inorganic hydrates other than calcium chloride hexahydrate are as follows.

【表】 [発明の効果] 本発明は以上の様に構成されており、超微粉末
シリカをグリセリンとともに増粘剤として使用す
ることにより、融解時における粘度を比較的広い
範囲に渡り任意に認定でき、しかも繰返し安定性
に優れた蓄熱材組成物を提供し得ることになつ
た。
[Table] [Effects of the Invention] The present invention is constructed as described above, and by using ultrafine powdered silica together with glycerin as a thickener, the viscosity at the time of melting can be arbitrarily determined over a relatively wide range. It has now become possible to provide a heat storage material composition that can be used in various ways and has excellent repeat stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は増粘剤の添加量と粘度との
関係、第3図は融解一凝固の繰返し回数と過冷却
度との関係をそれぞれ示す実験結果のグラフであ
る。
FIGS. 1 and 2 are graphs of experimental results showing the relationship between the amount of thickener added and viscosity, and FIG. 3 is a graph of experimental results showing the relationship between the number of melting-solidification cycles and the degree of supercooling.

Claims (1)

【特許請求の範囲】[Claims] 1 無機質水和物を主成分とする蓄熱材組成物中
に微粉末シリカとグリセリンを増粘剤として配合
してなることを特徴とする蓄熱材組成物。
1. A heat storage material composition comprising finely powdered silica and glycerin as thickeners in a heat storage material composition containing an inorganic hydrate as a main component.
JP72385A 1985-01-07 1985-01-07 Heat storage material composition Granted JPS61166879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP72385A JPS61166879A (en) 1985-01-07 1985-01-07 Heat storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP72385A JPS61166879A (en) 1985-01-07 1985-01-07 Heat storage material composition

Publications (2)

Publication Number Publication Date
JPS61166879A JPS61166879A (en) 1986-07-28
JPH0554518B2 true JPH0554518B2 (en) 1993-08-12

Family

ID=11481662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP72385A Granted JPS61166879A (en) 1985-01-07 1985-01-07 Heat storage material composition

Country Status (1)

Country Link
JP (1) JPS61166879A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106520A (en) * 1985-11-22 1992-04-21 The University Of Dayton Dry powder mixes comprising phase change materials
RU2042695C1 (en) * 1990-06-15 1995-08-27 Институт катализа СО РАН Heat accumulating material and a method of its production
JP6371744B2 (en) * 2015-09-09 2018-08-08 東邦瓦斯株式会社 Latent heat storage material composition and latent heat storage tank
JP7266282B2 (en) * 2018-02-07 2023-04-28 株式会社ヤノ技研 Heat storage material composition

Also Published As

Publication number Publication date
JPS61166879A (en) 1986-07-28

Similar Documents

Publication Publication Date Title
EP0240583B1 (en) Heat storage composition
CA1173642A (en) Reversible phase change compositions of calcium chloride hexahydrate with potassium chloride
JPH0292986A (en) Heat accumulating composition
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
KR850001786B1 (en) Reversible liquid/solid phase change compositions
WO1991000324A1 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications
JPH0554518B2 (en)
US4283298A (en) Hydrated Mg(NO3)2 /NH4 NO3 reversible phase change compositions
JP2013116947A (en) Powder mixture for coolant, and coolant
JPS6189284A (en) Heat storage material composition
JP2006131856A (en) Latent heat cold storage material composition
JPS6185486A (en) Heat-accumulating material composition
JPH0524954B2 (en)
JPS61185584A (en) Heat storage material composition
JPS6221038B2 (en)
JPS6410032B2 (en)
JPH0261995B2 (en)
JPH0237957B2 (en)
JPS60149684A (en) Composition for heat energy storage material
JP2002030280A (en) Method for producing granule of agent for preventing supercooling of salt hydrate
JPH03128987A (en) Latent heat storage material
JPS5821942B2 (en) Heat storage agent composition
JPS645637B2 (en)
JPS59170182A (en) Heat accumulative agent composition
JP2001064635A (en) Latent heat storage material composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees