JP2001064635A - Latent heat storage material composition - Google Patents

Latent heat storage material composition

Info

Publication number
JP2001064635A
JP2001064635A JP27982899A JP27982899A JP2001064635A JP 2001064635 A JP2001064635 A JP 2001064635A JP 27982899 A JP27982899 A JP 27982899A JP 27982899 A JP27982899 A JP 27982899A JP 2001064635 A JP2001064635 A JP 2001064635A
Authority
JP
Japan
Prior art keywords
chloride
latent heat
heat storage
storage material
manganese nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27982899A
Other languages
Japanese (ja)
Inventor
Katsunori Nagano
克則 長野
Hiroyoshi Horikawa
弘善 堀川
Keiichi Katsuyo
敬一 勝世
Kohei Iwata
耕平 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27982899A priority Critical patent/JP2001064635A/en
Publication of JP2001064635A publication Critical patent/JP2001064635A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a latent heat storage material enabling its melting temperature to simply and conveniently be controlled by using a specific manganese nitrate hydrate. SOLUTION: This latent heat storage material composition comprises a manganese nitrate hydrate having a composition represented by the general formula Mn(NO3)2.nH2O ((n) is 3 to 7) as a principal ingredient and the melting temperature of the latent heat storage material composition is preferably controlled by adding 0.1-30 pts.wt. of a metal chloride (e.g. lithium chloride).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は潜熱蓄熱材に関する
ものである。更に詳しくは、住宅やビル、温室等の空調
用冷暖房用システムに適した、0〜35℃におけるエネ
ルギー効率に優れた潜熱蓄熱材組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latent heat storage material. More specifically, the present invention relates to a latent heat storage material composition excellent in energy efficiency at 0 to 35 ° C., which is suitable for a system for cooling and heating air conditioning of houses, buildings, greenhouses and the like.

【0002】[0002]

【従来の技術】昇温、降温することで、融解と凝固が生
じ、一定の温度で大量の潜熱を吸熱及び放熱する物質
は、温度変化を伴わずにこの潜熱を蓄積することができ
る。これは更に必要な時に熱を放出または吸収させて有
効に利用することができるので、潜熱蓄熱材として、太
陽熱利用、排熱利用或は深夜電力利用による冷暖房に有
用な潜熱蓄熱材として古くから研究、利用されている。
こうした材料として、ポリエチレングリコール、高密度
ポリエチレン、ワックスなどの有機物や塩化カルシウム
6水塩、硫酸ナトリウム10水塩などの無機物が提案さ
れている。
2. Description of the Related Art By raising and lowering the temperature, melting and solidification occur, and a substance that absorbs and releases a large amount of latent heat at a constant temperature can accumulate this latent heat without a temperature change. Since this can be used more effectively by releasing or absorbing heat when needed, it has been studied for a long time as a latent heat storage material that is useful for cooling and heating by using solar heat, waste heat or midnight power as a latent heat storage material. ,It's being used.
As such materials, organic substances such as polyethylene glycol, high-density polyethylene and wax, and inorganic substances such as calcium chloride hexahydrate and sodium sulfate decahydrate have been proposed.

【0003】[0003]

【発明が解決しようとする課題】無機水和塩は、その融
解潜熱が大きいこと、資源性に優れる等の長所がある
が、溶解する際に無機塩固体とその飽和水溶液との2相
に分離し、これを冷却しても水和塩が生成しなかったり
(相分離)、降温させて凝固点を過ぎても固化せず放熱
しない(過冷却)という現象が起こることもある。また
潜熱蓄熱材が使用されるためには、その融解温度が使用
温度域(有効蓄熱温度域)内に入るよう調節する必要が
あるといった短所もある。
The inorganic hydrate salt has advantages such as a large latent heat of fusion and excellent resource properties. However, when dissolved, it separates into two phases, a solid inorganic salt and a saturated aqueous solution thereof. However, a hydrated salt may not be formed even when the mixture is cooled (phase separation), or a phenomenon may occur in which the material is cooled and does not solidify and does not radiate heat even after the solidification point has passed (supercooling). Further, in order to use the latent heat storage material, there is a disadvantage that it is necessary to adjust the melting temperature to fall within a use temperature range (effective heat storage temperature range).

【0004】なかでも、融解温度をコントロールするこ
とは最も重要である。例えば塩化カルシウム6水和物は
凝固点29℃、潜熱41cal/gであるが、凝固温度
を制御する方法として特開平10−237433号公報
では、塩化カルシウム水和物100重量部に対し、多価
アルコール10〜35重量部と、塩化ストロンチウム及
び/または塩化バリウム0.1〜20重量部を混合する
方法が提案されている。
[0004] Among them, controlling the melting temperature is of the utmost importance. For example, calcium chloride hexahydrate has a freezing point of 29 ° C. and a latent heat of 41 cal / g. As a method for controlling the freezing temperature, Japanese Patent Application Laid-Open No. Hei 10-237433 discloses that a polyhydric alcohol is used for 100 parts by weight of calcium chloride hydrate. A method of mixing 10 to 35 parts by weight with 0.1 to 20 parts by weight of strontium chloride and / or barium chloride has been proposed.

【0005】また硫酸ナトリウム10水和塩は凝固点3
2.5℃、潜熱約60cal/gであるが、凝固温度を
制御する方法として特開平7−48564号公報では、
硫酸ナトリウム10水和塩70〜90重量%、塩化アン
モニウム3〜17重量%、塩化ナトリウム1〜13重量
%および硫酸アンモニウム1〜13重量%よりなる組成
物が提案されている。これらの方法は主剤となる無機塩
に数種類の添加剤を使用している。 一般的にこうした
添加剤の使用はコストの上昇などの弊害が指摘されてい
た。すなわち、本発明の目的は簡便に凝固温度が制御で
き、潜熱量の低下が少ない新規な潜熱蓄熱材料組成物を
提供することである。
Also, sodium sulfate decahydrate has a freezing point of 3
The temperature is 2.5 ° C. and the latent heat is about 60 cal / g.
Compositions comprising 70-90% by weight of sodium sulfate decahydrate, 3-17% by weight of ammonium chloride, 1-13% by weight of sodium chloride and 1-13% by weight of ammonium sulfate have been proposed. In these methods, several kinds of additives are used for an inorganic salt as a main component. Generally, it has been pointed out that the use of such additives has a disadvantage such as an increase in cost. That is, an object of the present invention is to provide a novel latent heat storage material composition in which the solidification temperature can be easily controlled and the amount of latent heat is small.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく種々検討した結果、硝酸マンガン水和物を主
成分とする潜熱蓄熱材量組成物を用いること及び、添加
剤を用いることで融解温度の制御が簡便にできることが
判明し、本発明を完成した。
Means for Solving the Problems As a result of various studies to solve the above problems, the present inventors have found that a latent heat storage material composition mainly composed of manganese nitrate hydrate is used, and that an additive is used. As a result, it has been found that the melting temperature can be easily controlled, and the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、一般
式Mn(NO・nHO(ここにnは3から7)
の組成を有する硝酸マンガン水和物を主成分とする潜熱
蓄熱材料組成物である。また、一般式Mn(NO
・nHO(ここにnは3から7)の組成を有する硝酸
マンガン水和物を主成分とする潜熱蓄熱材料において、
0.1〜30部の金属の塩化物を添加し融解温度を制御
せしめることを特徴とする潜熱蓄熱材料組成物である。
That is, the present invention provides a compound of the general formula Mn (NO 3 ) 2 .nH 2 O (where n is 3 to 7).
Is a latent heat storage material composition mainly composed of manganese nitrate hydrate having the following composition. In addition, the general formula Mn (NO 3 ) 2
A latent heat storage material mainly composed of manganese nitrate hydrate having a composition of nH 2 O (where n is 3 to 7);
A latent heat storage material composition characterized in that 0.1 to 30 parts of a metal chloride is added to control the melting temperature.

【0008】[0008]

【発明の実施の形態】本発明に用いられる硝酸マンガン
水和物は一般式として、Mn(NO・nH
(ここにnは3から7)と書かれる。硝酸マンガン6水
和物の場合、融解潜熱は約130J/gもあり、潜熱蓄
熱材料として用いるには充分である。従来潜熱蓄熱材料
として様々な無機物質が検討されてきたが、硝酸マンガ
ン水和物は検討されておらず、全く新規な応用例であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The manganese nitrate hydrate used in the present invention has a general formula of Mn (NO 3 ) 2 .nH 2 O
(Where n is 3 to 7). In the case of manganese nitrate hexahydrate, the latent heat of fusion is about 130 J / g, which is sufficient for use as a latent heat storage material. Conventionally, various inorganic substances have been studied as latent heat storage materials, but manganese nitrate hydrate has not been studied, which is a completely new application example.

【0009】硝酸マンガン水和物は6水塩及び4水塩が
知られているが、結晶水は連続的に変化する。そこで例
えば、市販の硝酸マンガン6水塩に水を添加したり、真
空乾燥など公知の手法を用いて脱水することで、本発明
に用いられる硝酸マンガン水和物は結晶水の量が調整さ
れる。この際、結晶水は3水塩から7水塩が好ましい。
この範囲を超えると凝固性が悪化するからである。こう
して調整された硝酸マンガン水和物は4水和物の場合凝
固温度が約32℃、6水和物の場合約25℃である。
As manganese nitrate hydrate, hexahydrate and tetrahydrate are known, but water of crystallization changes continuously. Therefore, for example, by adding water to a commercially available manganese nitrate hexahydrate, or by dehydrating using a known method such as vacuum drying, the amount of water of crystallization of the hydrated manganese nitrate used in the present invention is adjusted. . At this time, the crystallization water is preferably a trihydrate to a heptahydrate.
If it exceeds this range, the coagulability deteriorates. The manganese nitrate hydrate thus prepared has a solidification temperature of about 32 ° C. for tetrahydrate and about 25 ° C. for hexahydrate.

【0010】しかしながら、室内の空調管理用に用いる
場合25℃以下、冬季間の温室などの例では数℃から0
℃の融解温度が求められる場合がある。その際、本発明
では硝酸マンガン水和物を主成分とする潜熱蓄熱材料に
おいて、0.1重量部から30重量部の金属の塩化物を
添加することで融解温度を自在に制御することができ
る。
However, when used for indoor air-conditioning management, the temperature is 25 ° C. or less, and in the case of a greenhouse during winter, the temperature ranges from several ° C. to 0 ° C.
A melting temperature of ° C. may be required. At this time, in the present invention, the melting temperature can be freely controlled by adding 0.1 to 30 parts by weight of a metal chloride in the latent heat storage material mainly containing manganese nitrate hydrate. .

【0011】ここで使用できる塩化物として、塩化リチ
ウム、塩化ナトリウム、塩化ルビジウム、塩化セシウ
ム、塩化マグネシウム、塩化カルシウム、塩化カルシウ
ム4水和物、塩化カルシウム2水和物、塩化ストロンチ
ウム、塩化ストロンチウム6水和物、塩化バリウム、塩
化バリウム2水和物、塩化ランタン7水和物、塩化セリ
ウム7水和物、塩化サマリウム6水和物、4塩化チタ
ン、3塩化チタン、塩化ジルコニウム、塩化ニオブ、塩
化タンタル、塩化クロム6水和物、塩化モリブデン、塩
化タングステン、塩化マンガン4水和物、塩化鉄(I
I)無水、塩化鉄(III)無水、塩化鉄(II)4水
和物、塩化鉄(III)6水和物、無水塩化コバルト、
塩化コバルト6水和物、無水塩化ニッケル、塩化ニッケ
ル6水和物、塩化銅(I)、塩化銅(II)無水、塩化
銅(II)2水和物、塩化銀、塩化金酸3水和物、塩化
金(III)4水和物、塩化金酸4水和物、塩化亜鉛、
塩化カドミウム(無水)塩化カドミウム2.5水和物、
塩化水銀(I)、塩化水銀(II)、塩化アルミニウ
ム、塩化アルミニウム6水和物、塩化インジウム4水和
物、塩化タリウム、4塩化珪素、塩化ゲルマニウム、塩
化スズ(II)無水、塩化スズ(II)2水和物、塩化
スズ(IV)無水、塩化スズ(IV)5水和物、塩化
鉛、塩化アンチモン(III)、塩化アンチモン
(V)、塩化ビスマス、塩化テルル、塩化テルル(I
V)が例示される。
The chlorides usable herein include lithium chloride, sodium chloride, rubidium chloride, cesium chloride, magnesium chloride, calcium chloride, calcium chloride tetrahydrate, calcium chloride dihydrate, strontium chloride, and strontium chloride hexahydrate. Hydrate, barium chloride, barium chloride dihydrate, lanthanum chloride heptahydrate, cerium chloride heptahydrate, samarium chloride hexahydrate, titanium tetrachloride, titanium trichloride, zirconium chloride, niobium chloride, tantalum chloride , Chromium chloride hexahydrate, molybdenum chloride, tungsten chloride, manganese chloride tetrahydrate, iron chloride (I
I) anhydrous, iron (III) chloride anhydrous, iron (II) chloride tetrahydrate, iron (III) hexahydrate, anhydrous cobalt chloride,
Cobalt chloride hexahydrate, anhydrous nickel chloride, nickel chloride hexahydrate, copper (I) chloride, copper (II) chloride anhydrous, copper (II) chloride dihydrate, silver chloride, chloroauric acid trihydrate , Gold (III) chloride tetrahydrate, chloroauric acid tetrahydrate, zinc chloride,
Cadmium chloride (anhydrous) Cadmium chloride hemihydrate,
Mercury (I) chloride, mercury (II) chloride, aluminum chloride, aluminum chloride hexahydrate, indium chloride tetrahydrate, thallium chloride, silicon tetrachloride, germanium chloride, tin (II) chloride anhydrous, tin (II) chloride ) Dihydrate, tin (IV) chloride anhydrous, tin (IV) chloride pentahydrate, lead chloride, antimony (III) chloride, antimony (V) chloride, bismuth chloride, tellurium chloride, tellurium (I)
V) is exemplified.

【0012】なかでも、液状の硝酸マンガン水和物に対
する溶解性が良好で、価格が安価なアルカリ金属、及び
アルカリ土類金属の塩化物(例えば、塩化リチウム、塩
化ナトリウム、塩化ルビジウム、塩化セシウム、塩化マ
グネシウム、塩化カルシウム、塩化カルシウム4水和
物、塩化カルシウム2水和物、塩化ストロンチウム、塩
化ストロンチウム6水和物、塩化バリウム、塩化バリウ
ム2水和物)が賞用される。
Among them, alkali metal and alkaline earth metal chlorides (for example, lithium chloride, sodium chloride, rubidium chloride, cesium chloride, and the like) which have good solubility in liquid manganese nitrate hydrate and are inexpensive. Magnesium chloride, calcium chloride, calcium chloride tetrahydrate, calcium chloride dihydrate, strontium chloride, strontium chloride hexahydrate, barium chloride, barium chloride dihydrate) are awarded.

【0013】添加量と融解温度の関係を見ると、添加物
のモル数と融解温度の低下には正の相関関係がある。こ
れと以た現象に、水にグリコール類を添加した際、凝固
点が低下し不凍液などとして用いている、モル凝固点降
下があるが、硝酸マンガン水和物に若干の塩化物を添加
することで、融解温度が降下する現象はモル凝固点降下
とは言いにくい点がある。モル凝固点降下は希薄溶液で
生じる現象であり、溶質間には相互作用がないという仮
定が存在する。
Looking at the relationship between the amount of addition and the melting temperature, there is a positive correlation between the number of moles of the additive and the decrease in the melting temperature. The phenomenon involved is that when glycols are added to water, the freezing point is lowered and used as an antifreeze, etc., there is a molar freezing point drop, but by adding a small amount of chloride to manganese nitrate hydrate, There is a point that the phenomenon of lowering the melting temperature is hardly referred to as lowering of the molar freezing point. Molar freezing point depression is a phenomenon that occurs in dilute solutions, and there is an assumption that there is no interaction between solutes.

【0014】しかしながら、液状の硝酸マンガン水和物
は溶融塩ではなく、濃厚な水溶液であり、上記仮定に反
しているからである。この硝酸マンガン水和物に金属の
塩化物を添加し、融解温度が制御出来、潜熱蓄熱材料に
応用するという概念は新規かつ画期的である。本発明の
場合、添加物の量は0.1重量部から30重量部であ
る。これは0.1重量部以下だと融解温度の低下が1℃
未満となり実用性に欠け、30重量部をこえて使用する
と融解温度は低下するものの、添加量に対する温度低下
の割合が漸近し、また融解潜熱が小さくなり不利になる
ためである。
However, the liquid manganese nitrate hydrate is not a molten salt but a concentrated aqueous solution, which is contrary to the above assumption. The concept of adding a metal chloride to this manganese nitrate hydrate to control the melting temperature and applying it to a latent heat storage material is novel and revolutionary. In the case of the present invention, the amount of the additive is 0.1 to 30 parts by weight. If the content is less than 0.1 parts by weight, the melting temperature decreases by 1 ° C.
When the amount exceeds 30 parts by weight, the melting temperature decreases, but the ratio of the temperature decrease to the added amount becomes asymptotic, and the latent heat of fusion decreases, which is disadvantageous.

【0015】[0015]

【実施例】以下実施例を挙げて本発明を具体的に説明す
る。なお本発明はこれらの実施例に限定されるものでは
ない。
The present invention will be specifically described below with reference to examples. Note that the present invention is not limited to these examples.

【実施例1】市販の硝酸マンガン6水和物を約40℃に
加温し、完全に融解した。この液状の硝酸マンガン水和
物を攪拌し、その一部をとり、DSC用密封容器に封入
した。ここで、サンプルの融解から封入までは窒素気流
中で行い、空気中の水分がサンプルに吸収されないよう
に行った。この密封容器をDSC(セイコーインスツル
メンツ社製、DCS6100)にセットし、サンプルを
50℃まで昇温し、10分間保持した。その後、−20
℃まで液体窒素を用いて3℃/分にて降温し、−20℃
にて10分間保持した。その後サンプルを3℃/分にて
50℃まで昇温し、融解温度及び融解潜熱を測定した。
その結果、融解温度が25.0℃、融解潜熱が129.
8J/gであった。
Example 1 A commercially available manganese nitrate hexahydrate was heated to about 40 ° C. and completely melted. This liquid manganese nitrate hydrate was stirred, and a part thereof was taken and sealed in a sealed container for DSC. Here, the process from melting to encapsulation of the sample was performed in a nitrogen stream, so that moisture in the air was not absorbed by the sample. This sealed container was set in a DSC (DCS6100, manufactured by Seiko Instruments Inc.), the sample was heated to 50 ° C., and held for 10 minutes. Then -20
Temperature to 3 ° C / min using liquid nitrogen to -20 ° C
For 10 minutes. Thereafter, the sample was heated to 50 ° C. at 3 ° C./min, and the melting temperature and the latent heat of fusion were measured.
As a result, the melting temperature was 25.0 ° C. and the latent heat of fusion was 129.
It was 8 J / g.

【0016】[0016]

【実施例2】市販の硝酸マンガン6水和物を約40℃に
加温し、9.9gを精秤し50mlのサンプル瓶に分取
した。ここに第1表に掲げる金属の塩化物を0.1g正
確に添加した。このサンプル瓶をケロシンを用いた超音
波洗浄機にセットし、充分に混合した。その後この混合
物をDSC用密封容器に封入した。ここで、サンプルの
融解から封入までは窒素気流中で行い、空気中の水分が
サンプルに吸収されないように行った。以下実施例1と
同様の手順で、融解温度及び融解潜熱を測定した。
Example 2 A commercially available manganese nitrate hexahydrate was heated to about 40 ° C., 9.9 g was precisely weighed and dispensed into a 50 ml sample bottle. To this was precisely added 0.1 g of the metal chlorides listed in Table 1. This sample bottle was set in an ultrasonic cleaner using kerosene and mixed well. Thereafter, the mixture was sealed in a sealed container for DSC. Here, the process from melting to encapsulation of the sample was performed in a nitrogen stream, so that moisture in the air was not absorbed by the sample. Hereinafter, the melting temperature and the latent heat of fusion were measured in the same procedure as in Example 1.

【0017】 [0017]

【0018】[0018]

【実施例3】市販の硝酸マンガン6水和物を約40℃に
加温し、7.5gを精秤し50mlのサンプル瓶に分取
した。ここに塩化ナトリウムを2.5g正確に添加し
た。以下実施例2と同様の手順で、融解温度及び融解潜
熱を測定したところ、融解温度3.1℃、融解潜熱が6
1.1J/gであった。
Example 3 A commercially available manganese nitrate hexahydrate was heated to about 40 ° C., 7.5 g was precisely weighed and dispensed into a 50 ml sample bottle. To this was precisely added 2.5 g of sodium chloride. When the melting temperature and the latent heat of fusion were measured in the same procedure as in Example 2, the melting temperature was 3.1 ° C. and the latent heat of fusion was 6
1.1 J / g.

【0019】[0019]

【比較例1】市販の硝酸マンガン6水和物を約40℃に
加温し、5.0gを精秤し50mlのサンプル瓶に分取
した。ここに塩化ナトリウムを5.0g正確に添加し
た。以下実施例2と同様の手順で、融解温度及び融解潜
熱を測定したところ、融解温度−5.5℃、融解潜熱が
8.1J/gであった。
Comparative Example 1 Commercially available manganese nitrate hexahydrate was heated to about 40 ° C., and 5.0 g was precisely weighed and dispensed into a 50 ml sample bottle. To this was precisely added 5.0 g of sodium chloride. When the melting temperature and the latent heat of fusion were measured in the same manner as in Example 2, the melting temperature was −5.5 ° C. and the latent heat of fusion was 8.1 J / g.

【0020】[0020]

【比較例2】市販の硝酸マンガン6水和物を約40℃に
加温し、これに硝酸ナトリウムを添加し、第2表に示す
割合の混合物を50mlのサンプル瓶に調整した。以下
実施例2と同様の手順で融解温度及び融解潜熱を測定し
た。結果を第2表に示す
COMPARATIVE EXAMPLE 2 A commercially available manganese nitrate hexahydrate was heated to about 40 ° C., sodium nitrate was added thereto, and the mixture at the ratio shown in Table 2 was adjusted to a 50 ml sample bottle. Hereinafter, the melting temperature and the latent heat of fusion were measured in the same procedure as in Example 2. The results are shown in Table 2.

【0021】 [0021]

【0022】[0022]

【発明の効果】本発明により、新規な潜熱蓄熱材料であ
る硝酸マンガン水和物が見いだされた。更にこの硝酸マ
ンガン水和物に金属の塩化物を添加することで、融解温
度を自在に制御することが可能となった。この潜熱蓄熱
材量は空調用冷暖房用システムに好適である。
According to the present invention, a novel latent heat storage material, manganese nitrate hydrate, has been found. Further, by adding a metal chloride to this manganese nitrate hydrate, the melting temperature can be freely controlled. This amount of latent heat storage material is suitable for an air conditioning cooling and heating system.

フロントページの続き (72)発明者 堀川 弘善 札幌市北区北19条西11丁目北海道立工業試 験場内 (72)発明者 勝世 敬一 札幌市北区北19条西11丁目北海道立工業試 験場内 (72)発明者 岩田 耕平 札幌市北区北13条西8丁目北海道大学内Continuing on the front page (72) Inventor Hiroyoshi Horikawa 11-chome, Kita-ku, Sapporo City 11-Chome, Hokkaido Industrial Testing Laboratory (72) Inventor Keiichi Katsuyo 11-chome, Kita-ku, Sapporo City On-site (72) Inventor Kohei Iwata 8-Hokkaido Kita-ku, Kita-ku, Sapporo City Inside Hokkaido University

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式Mn(NO・nHO(ここ
にnは3から7)の組成を有する硝酸マンガン水和物を
主成分とする潜熱蓄熱材料組成物。
1. A latent heat storage material composition mainly composed of manganese nitrate hydrate having a composition of the general formula Mn (NO 3 ) 2 .nH 2 O (where n is 3 to 7).
【請求項2】一般式Mn(NO・nHO(ここ
にnは3から7)の組成を有する硝酸マンガン水和物を
主成分とする潜熱蓄熱材料において、0.1〜30部の
金属の塩化物を添加し融解温度を制御せしめることを特
徴とする潜熱蓄熱材料組成物。
2. A latent heat storage material mainly composed of manganese nitrate hydrate having a composition of the general formula Mn (NO 3 ) 2 .nH 2 O (where n is 3 to 7). A latent heat storage material composition characterized by adding a part of metal chloride to control the melting temperature.
JP27982899A 1999-08-25 1999-08-25 Latent heat storage material composition Pending JP2001064635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27982899A JP2001064635A (en) 1999-08-25 1999-08-25 Latent heat storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27982899A JP2001064635A (en) 1999-08-25 1999-08-25 Latent heat storage material composition

Publications (1)

Publication Number Publication Date
JP2001064635A true JP2001064635A (en) 2001-03-13

Family

ID=17616495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27982899A Pending JP2001064635A (en) 1999-08-25 1999-08-25 Latent heat storage material composition

Country Status (1)

Country Link
JP (1) JP2001064635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151720A (en) * 2018-03-02 2019-09-12 東ソー株式会社 Composition, manufacturing method, and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151720A (en) * 2018-03-02 2019-09-12 東ソー株式会社 Composition, manufacturing method, and application thereof
JP7176202B2 (en) 2018-03-02 2022-11-22 東ソー株式会社 Composition, production method and use thereof

Similar Documents

Publication Publication Date Title
EP0240583B1 (en) Heat storage composition
EP0255928B1 (en) Hydrated calcium bromide reversible phase change composition
CN106221675A (en) A kind of phase-change and energy-storage medium
EP3864106B1 (en) Metal nitrate based compositions for use as phase change materials
US4406806A (en) Thermal energy storage
JP2001064635A (en) Latent heat storage material composition
JP2021172791A (en) Heat storage material composition and heat storage system for building cooling and heating
CN105694821A (en) Phase-change energy storage medium
Bukovec et al. Tg and dsc investigation of CaCl2· 6H2O, a phase change material for energy storage
JPS59109578A (en) Heat storage material
JPS6251311B2 (en)
CN103881661B (en) Phase-change energy storage medium and preparation method thereof
JPH0554518B2 (en)
JPS6221038B2 (en)
JPS6251993B2 (en)
JPS59170179A (en) Heat storage material
JPH05500523A (en) Calcium chloride hexahydrate formulation for low temperature heat storage
JPH0237957B2 (en)
JPS59149977A (en) Heat storing material
JPS6151079A (en) Thermal energy storage material
JPS5821942B2 (en) Heat storage agent composition
JPS6049081A (en) Heat storage material
JPH0261995B2 (en)
JPS58176291A (en) Thermal energy storage material composition
JPS645633B2 (en)