JP7176202B2 - Composition, production method and use thereof - Google Patents

Composition, production method and use thereof Download PDF

Info

Publication number
JP7176202B2
JP7176202B2 JP2018037070A JP2018037070A JP7176202B2 JP 7176202 B2 JP7176202 B2 JP 7176202B2 JP 2018037070 A JP2018037070 A JP 2018037070A JP 2018037070 A JP2018037070 A JP 2018037070A JP 7176202 B2 JP7176202 B2 JP 7176202B2
Authority
JP
Japan
Prior art keywords
mol
less
heat
composition
kcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018037070A
Other languages
Japanese (ja)
Other versions
JP2019151720A (en
Inventor
一喜 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2018037070A priority Critical patent/JP7176202B2/en
Publication of JP2019151720A publication Critical patent/JP2019151720A/en
Application granted granted Critical
Publication of JP7176202B2 publication Critical patent/JP7176202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Glass Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明はNaCl、KCl、MgCl及びZnClを含む組成物に関するものである。またその組成物を用いた熱媒体及び蓄熱材に関するものである。さらには、太陽熱などの再生可能エネルギーの輸送・貯蔵技術等に利用可能な、低凝固温度かつ高耐熱の熱媒体及び蓄熱材に関するものである。 The present invention relates to compositions containing NaCl, KCl, MgCl2 and ZnCl2 . It also relates to a heat medium and a heat storage material using the composition. Furthermore, the present invention relates to a heat medium and a heat storage material with a low solidification temperature and high heat resistance that can be used for transportation and storage technology of renewable energy such as solar heat.

太陽光などの再生可能エネルギーを利用したプラントは、化石燃料を利用したプラントに代わる次世代のエネルギープラントとして注目されている。化石燃料を利用した火力発電は、資源の枯渇、地球温暖化の原因となる温室効果ガスの排出等の問題が有り、再生可能エネルギーへの転換が喫緊の課題と成っている。 Plants using renewable energy such as sunlight are attracting attention as next-generation energy plants to replace plants using fossil fuels. Thermal power generation using fossil fuels has problems such as depletion of resources and emission of greenhouse gases that cause global warming, and conversion to renewable energy is an urgent issue.

近年、大型のミラー等で太陽光を集め、集光部で熱に変換し、当該集光部に熱媒体を通過させ、その熱媒体によりボイラー/タービンで発電を行う集光型太陽熱発電所の導入が進んでいる。この際に熱媒体として耐熱性の高い物質を用いると500℃以上の昇温が可能となる。ボイラー/タービン発電に於いては、一般に、より高温で運転する事により発電効率が高まるため、前述の高温環境下でも劣化しない、高い耐熱性を有する熱媒体の開発が求められている。 In recent years, a concentrator solar power plant has been developed in which sunlight is collected by a large mirror, etc., converted into heat in a light collecting part, a heat medium is passed through the light collecting part, and the heat medium is used to generate power in a boiler/turbine. Introduction is in progress. At this time, if a substance with high heat resistance is used as a heat medium, it is possible to raise the temperature to 500° C. or higher. In boiler/turbine power generation, generally, operating at a higher temperature increases the power generation efficiency, so there is a demand for the development of a heat medium that does not deteriorate even in the above-mentioned high-temperature environment and has high heat resistance.

また、このことは風力熱発電でも同様である。すなわち、風力熱発電は、風車による回転力を熱に変え、この熱を利用して発電を行う。この用途に於いても、より高温で運転する事で発電効率や蓄熱効率が向上するため、高い耐熱性を有する熱媒体の開発が求められている。 Moreover, this is the same for wind thermal power generation. That is, in wind thermal power generation, the rotational force of a windmill is converted into heat, and this heat is used to generate power. In this application as well, since power generation efficiency and heat storage efficiency are improved by operating at a higher temperature, the development of a heat medium with high heat resistance is required.

さらに、集光型太陽熱発電等により得られた電気を用いて、水電解により水素を製造する技術も開発されている。特に高温水蒸気電解技術に於いては、固体電解質の開発による低温運転技術が検討されてはいるが、それでも600℃~700℃程度の高温運転が必要とされている。 Furthermore, a technique for producing hydrogen by water electrolysis using electricity obtained by concentrating solar power generation or the like has also been developed. Especially in high-temperature steam electrolysis technology, although low-temperature operation technology has been studied through the development of solid electrolytes, high-temperature operation at about 600°C to 700°C is still required.

また、太陽熱をそのまま熱化学反応に利用し、化学的に水素を製造する技術も開発されている。本熱化学反応についても、触媒の改良により反応温度の低減が図られているが、600℃以上の高温が必要とされている。 In addition, a technology for chemically producing hydrogen by using solar heat as it is for a thermochemical reaction has also been developed. For this thermochemical reaction as well, attempts have been made to reduce the reaction temperature by improving the catalyst, but a high temperature of 600° C. or higher is required.

現在、一般に用いられている有機系熱媒体としては、ビフェニルとジフェニルオキサイドの共晶混合物[例えばダウケミカル社のダウサーモA(登録商標)]などが知られている。さらに、より高い温度域で利用可能な無機系熱媒体として、硝酸カリウムと硝酸ナトリウムの混合物(例えばソーラーソルト:非特許文献1)などの硝酸塩系熱媒体が知られている。さらに、硝酸塩に塩化物を添加することで融点を下げ、より広い温度範囲で利用可能な熱媒体(特許文献1)なども開示されている。近年では、より高温で利用可能な無機系熱媒体として、Li-Na-K-Cs-Sr-Clの塩化物系の無機組成物が開示されている(特許文献2)。 As an organic heat transfer medium generally used at present, a eutectic mixture of biphenyl and diphenyl oxide [for example, Dow Thermo A (registered trademark) of Dow Chemical Co.] is known. Furthermore, as an inorganic heat medium that can be used in a higher temperature range, a nitrate heat medium such as a mixture of potassium nitrate and sodium nitrate (for example, Solar Salt: Non-Patent Document 1) is known. Furthermore, a heating medium that can be used in a wider temperature range by adding chloride to nitrate to lower the melting point (Patent Document 1) is disclosed. In recent years, a chloride-based inorganic composition of Li—Na—K—Cs—Sr—Cl has been disclosed as an inorganic heat medium that can be used at higher temperatures (Patent Document 2).

また、低融点の無機系熱媒体としては、NaCl-KCl-ZnCl系の共晶組成物である、7.5NaCl-23.9KCl-68.6ZnCl[wt%]が、低コストの無機系熱媒体としては、KCl-MgClの共晶組成物である、62.5KCl-37.5MgCl[wt%]が開示されている(非特許文献2)。 In addition, as an inorganic heat medium with a low melting point, 7.5NaCl-23.9KCl-68.6ZnCl 2 [wt%], which is a NaCl-KCl-ZnCl 2 system eutectic composition, is a low-cost inorganic heat medium. As a heat medium, 62.5KCl-37.5MgCl 2 [wt %], which is a KCl-MgCl 2 eutectic composition, is disclosed (Non-Patent Document 2).

また、NaCl-KCl-ZnCl系熱媒体については、組成と融点の関係が特許文献3に開示されている。 In addition, Patent Document 3 discloses the relationship between the composition and the melting point of a NaCl--KCl--ZnCl.sub.2 - based heat transfer medium.

特開2015-67670JP 2015-67670 US2013/0180520 A1US2013/0180520 A1 US2015/0010875 A1US2015/0010875 A1

N.Boerema,G.Morrison,R.Taylor,G.Rosengarten,Solar Energy,86(2012)(2294頁)N. Boerema, G.; Morrison, R.; Taylor, G.; Rosengarten, Solar Energy, 86 (2012) (2294 pages) M.Mehos,C.Turchi,J.Vidal,M.Wagner,Z.Ma,C.Ho,W.Kolb,C.Andraka,A.Kruizenga,NREL Technical Report(NREL/TP-5500-67464)(2017)(25頁)M. Mehos, C.; Turchi, J.; Vidal, M.; Wagner, Z.; Ma, C.I. Ho, W.; Kolb, C.; Andraka, A.; Kruizenga, NREL Technical Report (NREL/TP-5500-67464) (2017) (25 pages)

しかしながら、有機系熱媒体は高温では分解、発火等の危険が有り、使用可能な上限温度は400℃程度に制限される。より耐熱性が高い硝酸塩系熱媒体であっても、温度の上昇と共に硝酸塩の熱分解反応が進行する事から、使用可能な上限温度は580℃程度に制限されている。 However, the organic heat transfer medium has the danger of decomposition, ignition, etc. at high temperatures, and the upper temperature limit that can be used is limited to about 400.degree. Even with a nitrate-based heat transfer medium having higher heat resistance, the thermal decomposition reaction of nitrate proceeds as the temperature rises, so the upper limit temperature that can be used is limited to about 580°C.

一方、特許文献2の塩化物系熱媒体は、熱分解温度が比較的高い塩化物を利用している為耐熱性は高い。しかしながら、資源的な制約が有りかつ高価なLiやCs,Srを含有する為、コストが高いと言う課題が有った。 On the other hand, the chloride-based heat transfer medium of Patent Document 2 uses chloride having a relatively high thermal decomposition temperature, and therefore has high heat resistance. However, there is a problem that the cost is high because there are resource restrictions and it contains expensive Li, Cs, and Sr.

非特許文献2に記載のNaCl-KCl-ZnCl共晶組成物も、融点が204℃と低く低温域での利用が可能であるが、高価なZnClを68.6wt%(52.9mol%)と多量に含むため、コストが高いと言う課題が有った。また、ZnClは揮発性が高い為、高温域での熱媒体の揮発量が大きいという課題も有った。 The NaCl-KCl-ZnCl 2 eutectic composition described in Non-Patent Document 2 also has a low melting point of 204 ° C. and can be used in a low temperature range, but 68.6 wt% (52.9 mol%) of expensive ZnCl 2 ) and a large amount, there is a problem that the cost is high. Moreover, since ZnCl 2 is highly volatile, there is also a problem that the amount of volatilization of the heat medium is large in a high temperature range.

特許文献3に記載のNaCl-KCl-ZnCl系熱媒体については、ZnCl含有量が28.9mol%以上の組成域のみ融点が開示されている。 Regarding the NaCl--KCl--ZnCl.sub.2 - based heat medium described in Patent Document 3, the melting point is disclosed only in the composition range where the ZnCl.sub.2 content is 28.9 mol % or more.

非特許文献2に記載のKCl-MgCl共晶組成物は、比較的安価なKClとMgClを使用する為、コスト的には有利なものの、融点が430℃である為、溶融状態を保持する為に多大なエネルギーを必要とし、太陽熱プラント等の再生可能エネルギープラントに用いられる熱媒体としては不適切であった。 The KCl-MgCl 2 eutectic composition described in Non-Patent Document 2 uses relatively inexpensive KCl and MgCl 2 , so it is advantageous in terms of cost. Therefore, it is not suitable as a heat medium for use in renewable energy plants such as solar thermal plants.

本発明の目的は、耐熱性が高く、低コストかつ融点の低い熱媒体を提供することにある。また、これらの溶融塩を用いた熱移送システムや蓄熱システム、更には、これらを備えた再生可能エネルギープラントや化学プラントを提供することにある。 An object of the present invention is to provide a heat medium having high heat resistance, low cost and a low melting point. Another object of the present invention is to provide a heat transfer system and a heat storage system using these molten salts, as well as a renewable energy plant and a chemical plant equipped with these.

本課題を解決する為、筆者らが鋭意検討したところによれば、NaCl、KCl、MgCl及びZnClを含む組成物が、450℃以上800℃以下の温度下で熱媒体として利用可能であり、熱媒体として好適に使用可能であることを見出した。 In order to solve this problem, the authors conducted extensive studies and found that a composition containing NaCl, KCl, MgCl2 and ZnCl2 can be used as a heat transfer medium at a temperature of 450°C or higher and 800°C or lower. , can be suitably used as a heat medium.

すなわち、本発明はNaCl、KCl、MgCl及びZnClを含む組成物を提供することをその要旨とする。 That is, the gist of the present invention is to provide a composition comprising NaCl, KCl, MgCl2 and ZnCl2 .

以下、本発明の組成物について説明する。 The composition of the present invention is described below.

本発明は、NaCl、KCl、MgCl及びZnClを含む組成物(以下、「本発明の組成物」という。)である。これにより耐熱性に優れ、広い温度範囲における熱媒体として好適に使用できる。 The present invention is a composition comprising NaCl, KCl, MgCl2 and ZnCl2 ( hereinafter referred to as "the composition of the present invention"). As a result, it has excellent heat resistance and can be suitably used as a heat medium over a wide temperature range.

また、好ましくは本発明の組成物は以下の組成を有する。
NaCl : 10mol%以上40mol%以下
KCl : 10mol%以上50mol%
MgCl : 20mol%以上50mol%以下
ZnCl : 3mol%以上30mol%以下
これにより、本組成物の凝固温度を概ね420℃以下に抑える事が出来る。
Also preferably, the composition of the present invention has the following composition.
NaCl: 10 mol% or more and 40 mol% or less KCl: 10 mol% or more and 50 mol%
MgCl 2 : 20 mol % or more and 50 mol % or less ZnCl 2 : 3 mol % or more and 30 mol % or less By this, the solidification temperature of the present composition can be suppressed to approximately 420° C. or less.

さらには、本発明の組成物はZnClを10mol%以上25mol%以下含む。これにより、本組成物の凝固温度を概ね400℃以下に抑える事が出来る。 Furthermore, the composition of the present invention contains ZnCl 2 from 10 mol % to 25 mol %. As a result, the solidification temperature of the present composition can be suppressed to approximately 400° C. or lower.

またさらに好ましくは、本発明の組成物は以下の組成を有する。
NaCl : 20mol%以上35mol%以下
KCl : 12mol%以上27mol%
MgCl : 20mol%以上42mol%以下
ZnCl : 12mol%以上25mol%以下
これにより、本組成物の凝固温度を350℃以下に抑える事が出来る。
Still more preferably, the composition of the present invention has the following composition.
NaCl: 20 mol% or more and 35 mol% or less KCl: 12 mol% or more and 27 mol%
MgCl 2 : 20 mol % or more and 42 mol % or less ZnCl 2 : 12 mol % or more and 25 mol % or less By this, the solidification temperature of the present composition can be suppressed to 350° C. or less.

とくに好ましくは、本発明の組成物は以下の組成を有する。
NaCl : 20mol%以上27mol%以下
KCl : 12mol%以上20mol%
MgCl : 35mol%以上42mol%以下
ZnCl : 18mol%以上25mol%以下
これにより、本組成物の凝固温度を概ね300℃以下に抑える事が出来る。
Particularly preferably, the composition of the invention has the following composition.
NaCl: 20 mol% or more and 27 mol% or less KCl: 12 mol% or more and 20 mol%
MgCl 2 : 35 mol % or more and 42 mol % or less ZnCl 2 : 18 mol % or more and 25 mol % or less By this, the solidification temperature of the present composition can be suppressed to approximately 300° C. or less.

本発明の組成物は、NaCl、KCl、MgCl及びZnCl以外の元素を含む事が出来るが、その結果、耐熱性が低下する、凝固温度が上昇する、腐食速度が増大するなどの好ましくない影響が有る場合については、不可避的な不純物の含有量を低く抑える事が好ましい。不可避的な不純物の量は0.1mol%以下であることが好ましい。 The compositions of the present invention can contain elements other than NaCl, KCl, MgCl2 and ZnCl2 , which result in undesirable effects such as decreased heat resistance, increased solidification temperature, increased corrosion rate, and the like. It is preferable to keep the content of unavoidable impurities low when there is an influence. The amount of unavoidable impurities is preferably 0.1 mol % or less.

本発明の組成物の凝固温度は、当該組成物に対して示差熱(DTA)分析を行う際の冷却過程において、熱出力のピーク端部における、出力が急激に変化する点をいう。より詳細には、DTA曲線において、平坦部から低温側に接線を求め、また、平坦部から急激に熱出力が発熱側に変化する部分における近似的な接線を求めて、これら2つの接線の交点直下の温度の値を読み取った点とする。 The solidification temperature of the composition of the present invention refers to the point at which the output suddenly changes at the peak edge of the thermal output during the cooling process when the composition is subjected to differential thermal analysis (DTA). More specifically, in the DTA curve, a tangent line is obtained from the flat portion to the low temperature side, and an approximate tangent line is obtained at a portion where the thermal output rapidly changes from the flat portion to the heat generation side, and the intersection of these two tangent lines is obtained. The point where the value of the temperature directly below is read.

本発明の組成物は、熱媒体として使用することができる。前記熱媒体は、熱移送システムにおいて好適に用いることができる。 The composition of the invention can be used as a heat carrier. The heat medium can be suitably used in a heat transfer system.

本発明の組成物は、蓄熱体として使用することができる。前記蓄熱体は、蓄熱システムにおいて好適に用いることができる。 The composition of the invention can be used as a heat reservoir. The heat storage medium can be suitably used in a heat storage system.

本発明の組成物を利用した熱移送・蓄熱システムの例を図1に示す。 An example of a heat transfer/storage system utilizing the composition of the present invention is shown in FIG.

前記熱移送システム、または前記蓄熱システムの少なくともいずれかを備える再生可能エネルギープラントは、エネルギー使用効率に優れる。 A renewable energy plant including at least one of the heat transfer system and the heat storage system has excellent energy use efficiency.

前記熱移送システム、または前記蓄熱システムの少なくともいずれかを備える化学プラントは、エネルギー使用効率に優れる。 A chemical plant including at least one of the heat transfer system and the heat storage system has excellent energy use efficiency.

より詳細には、本発明の組成物は、熱を移送・貯蔵する種々の用途に利用可能であるが、特に再生可能エネルギープラント用や化学プラント用の熱媒体や蓄熱材として好適に利用する事が出来る。再生可能エネルギープラントとしては、太陽熱発電プラント、太陽熱化学水素製造プラント、風力熱発電プラント、風力熱水素製造プラント等に好適に利用する事が出来る。 More specifically, the composition of the present invention can be used in various applications for transferring and storing heat, and is particularly suitable for use as a heat medium and heat storage material for renewable energy plants and chemical plants. can be done. As renewable energy plants, it can be suitably used in solar thermal power plants, solar thermal chemical hydrogen production plants, wind thermal power plants, wind thermal hydrogen production plants, and the like.

本発明の組成物は高耐熱性で有る為、例えば発電プラントに利用した場合は、より高温の蒸気を利用する事が出来る為、タービンの効率が向上し、より効率的な発電を行う事が出来る。また、水素製造プラントや化学プラントに利用した場合には、反応温度を高める事が出来る為、反応速度の向上や反応収率の向上などが期待できる。 Since the composition of the present invention has high heat resistance, for example, when it is used in a power plant, it is possible to use steam of a higher temperature. I can. In addition, when it is used in a hydrogen production plant or a chemical plant, the reaction temperature can be raised, so an improvement in the reaction rate and reaction yield can be expected.

本発明の組成物は凝固温度が低い為、特に太陽熱プラントなどで夜間に温度が下がった場合に、熱媒体の凝固防止の為のヒーターの電力を抑える事が出来る、また熱媒体の溶融立上げ時のヒーター電力を抑える事が出来る、あるいは粘性率の低減によるポンプ動力の削減による、エネルギー消費を低減できる等、多くの利点を有する。 Since the composition of the present invention has a low solidification temperature, it is possible to reduce the electric power of the heater to prevent the solidification of the heat medium, especially when the temperature drops at night in a solar thermal plant, etc., and the heat medium can be melted and started. It has many advantages, such as being able to reduce heater power consumption at times, and reducing energy consumption by reducing pump power due to reduced viscosity.

さらに、最高使用温度と最低使用温度の差であるΔTを大きく取る事が出来る事から、同じ体積の熱媒体で比べた場合、より多くの熱量を移送・貯蔵する事が出来る為、好ましい。再生可能エネルギーにおける電力の平準化は、再生可能エネルギー導入における大きな課題の一つであり、より多くの熱量を貯蔵できると言う事は、より少量の蓄熱材で平準化が行える、あるいはより長時間の平準化が行える事を意味する。 Furthermore, since ΔT, which is the difference between the maximum use temperature and the minimum use temperature, can be made large, it is possible to transfer and store a larger amount of heat when compared with the same volume of heat medium, which is preferable. Electric power leveling in renewable energy is one of the major challenges in the introduction of renewable energy, and the ability to store more heat means that it can be leveled with a smaller amount of heat storage material, or it can be used for a longer time. It means that the leveling of

また、本発明の組成物は、資源制約が少なく比較的安価な元素で構成されている事から、特にトラフ型の太陽熱プラントなど、集熱部分の配管が非常に長く、さらには夜間運転を実現する為に大型の蓄熱タンクを備えるプラント用などの、大量の熱媒体を使用する用途に好適に用いる事が出来る。 In addition, since the composition of the present invention is composed of relatively inexpensive elements with few resource restrictions, the piping of the heat collecting part is very long, especially in trough-type solar thermal plants, and even nighttime operation is realized. Therefore, it can be suitably used for applications that use a large amount of heat medium, such as plants equipped with large-sized heat storage tanks.

なお、本発明の組成物は吸湿性が高く、取り扱い・保管・運搬等は湿度の低い環境で行う事が望ましい。また溶融して熱媒体として使用する前に、200℃程度の温度で予備加熱を行い、十分脱水してから使用する事も可能である。 Since the composition of the present invention has high hygroscopicity, it is desirable to handle, store, and transport the composition in a low-humidity environment. Moreover, before being melted and used as a heat medium, it is also possible to preheat at a temperature of about 200° C. and dehydrate sufficiently before use.

以下、本発明の組成物の製造方法を説明する。 The method for producing the composition of the present invention is described below.

本発明の組成物の製造方法は、Na、K、Mg、Zn及びClを含む原料を混合する混合工程を有する。 The method for producing the composition of the present invention has a mixing step of mixing raw materials containing Na, K, Mg, Zn and Cl.

本発明の組成物の原料は、所望の組成を達成できるものであれば特に制限は無く、構成金属の塩化物が利用可能である。具体的には、NaCl、KCl、MgCl、ZnClなどが利用可能である。 The raw materials for the composition of the present invention are not particularly limited as long as the desired composition can be achieved, and chlorides of constituent metals can be used. Specifically, NaCl, KCl, MgCl 2 , ZnCl 2 and the like can be used.

これらの塩化物は、構成金属の水酸化物を塩酸で中和した後、濃縮乾燥することでも得る事が出来る。また、構成金属をそのまま塩酸と反応させて塩化物を得ることも出来る。 These chlorides can also be obtained by concentrating and drying after neutralizing the constituent metal hydroxides with hydrochloric acid. Alternatively, a chloride can be obtained by reacting the constituent metal as it is with hydrochloric acid.

原料の形態についても特に制限は無く、粉末、チャンク、塊状原料、融体など様々な形態が利用可能である。粉末の場合はそのまま、チャンクや塊状原料の場合はそのまま若しくは粉砕した物を、所望の組成比となる様に秤量した後、磁性乳鉢、ブレンダー、ボールミル、などの混合手段で混合すれば十分である。 There are no particular restrictions on the form of the raw material, and various forms such as powder, chunk, massive raw material, and melt can be used. In the case of powder, it is sufficient to weigh the material as it is in the case of chunks or lumps, or to obtain a pulverized material so as to obtain a desired composition ratio. .

本発明の組成物は、前述の混合物を、るつぼ等の耐熱容器に投入したものを500℃~600℃程度の温度で溶融し、再凝固させてもよい。すなわち、本発明の組成物の製造方法は、混合工程得られた混合物を550℃以上750℃以下の温度で溶融する溶融工程を有することが好ましい。この場合、当該溶融物を解砕してもよい。 The composition of the present invention may be obtained by putting the above-mentioned mixture into a heat-resistant container such as a crucible, melting it at a temperature of about 500° C. to 600° C., and solidifying it again. That is, the method for producing the composition of the present invention preferably has a melting step of melting the mixture obtained in the mixing step at a temperature of 550°C or higher and 750°C or lower. In this case, the melt may be pulverized.

また、前記溶融工程では、耐熱容器に上述原料を所望の組成比となる様に秤量した物を投入し、550℃以上750℃以下の温度で加熱溶融し、プロペラ等の撹拌機構により混合する事でも同様に組成物を得る事が出来る。このとき、加熱溶融した液体をポンプ等により配管内を循環させる事によっても混合効果が得られ、同様に組成物を得る事が出来る。 In the melting step, the raw materials described above are weighed to a desired composition ratio and put into a heat-resistant container, heated and melted at a temperature of 550° C. or higher and 750° C. or lower, and mixed by a stirring mechanism such as a propeller. However, a similar composition can be obtained. At this time, a mixing effect can also be obtained by circulating the heated and melted liquid in the piping by means of a pump or the like, and the composition can be similarly obtained.

本発明により、450℃以上800℃以下の温度下で熱媒体として利用可能であり、かつ、当該温度域における鉄系材料に対する腐食性も低いことから、再生エネルギープラント又は化学プラントにおける熱媒体として好適に利用できる組成物を提供する。 According to the present invention, it can be used as a heat medium at a temperature of 450 ° C. or higher and 800 ° C. or lower, and has low corrosiveness to iron-based materials in this temperature range, so it is suitable as a heat medium in renewable energy plants or chemical plants. To provide a composition that can be used for

本発明の組成物を利用した熱移送・蓄熱システムの例である。1 is an example of a heat transfer/storage system utilizing the composition of the present invention.

以下、実施例により本発明を具体的に説明する。しかし、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples. However, the invention is not limited to these examples.

なお、実施例、比較例における各測定方法は以下の通りである。 The measurement methods used in Examples and Comparative Examples are as follows.

実施例1~40
NaCl、KCl、MgCl、ZnCl(全て和光純薬製特級グレード)の各試薬を、表1に示す組成比となる様に所定量を計り取り、乳鉢で混合した後、磁製るつぼに投入し、200℃で10時間脱水処理を施したのち、大気中500℃~600℃で1時間溶融した。得られた溶融物をるつぼから取出し、乳鉢で解砕し評価用の試料とした。
Examples 1-40
Predetermined amounts of each reagent of NaCl, KCl, MgCl 2 , and ZnCl 2 (all special grades manufactured by Wako Pure Chemical Industries) are weighed so as to achieve the composition ratio shown in Table 1, mixed in a mortar, and then put into a porcelain crucible. After dehydration treatment at 200° C. for 10 hours, it was melted in air at 500° C. to 600° C. for 1 hour. The obtained melt was taken out from the crucible and pulverized with a mortar to obtain a sample for evaluation.

(凝固温度の測定)
試料を白金製サンプルパンに秤取り、リガク製TG-DTA装置TG8120、もしくは日立ハイテクノロジー製TG-DTA装置STA7200RVを用いて、流量200ml/分の不活性ガス(ArもしくはN)中で、10℃/分の速度で600℃まで昇温し、30分間保持した後、10℃/分の速度で降温した際に現れる最初のピーク(初晶ピーク)について、ピークの高温側より計測した外挿温度を凝固温度とした。
(Measurement of solidification temperature)
Weigh the sample in a platinum sample pan, and use Rigaku TG-DTA device TG8120 or Hitachi High Technology TG-DTA device STA7200RV in an inert gas (Ar or N 2 ) at a flow rate of 200 ml / min. The first peak (primary crystal peak) that appears when the temperature is raised to 600 ° C. at a rate of ° C./min and held for 30 minutes, and then the temperature is lowered at a rate of 10 ° C./min is extrapolated from the high temperature side of the peak. The temperature was taken as the freezing temperature.

Figure 0007176202000001
Figure 0007176202000001

実施例1~40の凝固温度を表1に示す。全ての組成に於いて凝固温度は420℃以下であった。さらに、ZnClの含有量が10mol%以上の組成については、全て400℃未満の凝固温度を示した。 Solidification temperatures for Examples 1-40 are shown in Table 1. The solidification temperature was 420° C. or less in all compositions. Furthermore, for compositions with a ZnCl2 content of 10 mol% or more, all exhibited solidification temperatures below 400 °C.

比較例1~8
NaCl、KCl、MgCl(全て和光純薬製特級グレード)の各試薬を表2に示す組成比となる様に、実施例1~40と同様の手順で調合し、組成物を作製した。つぎに実施例1~40と同様の手順で組成物の凝固温度を求めた。ここで「-」は添加していないことを示す。
Comparative Examples 1-8
Reagents of NaCl, KCl, and MgCl 2 (all special grades manufactured by Wako Pure Chemical Industries, Ltd.) were prepared in the same manner as in Examples 1 to 40 so as to have composition ratios shown in Table 2 to prepare compositions. Next, the solidification temperature of the composition was obtained in the same manner as in Examples 1-40. Here, "-" indicates no addition.

Figure 0007176202000002
Figure 0007176202000002

比較例1~8の凝固温度を表2に示す。いずれの組成物においても、430℃以上の凝固温度であった。 Table 2 shows the solidification temperatures of Comparative Examples 1-8. All compositions had a solidification temperature of 430° C. or higher.

本発明の組成物は、再生可能エネルギープラントや化学プラントの、熱媒体や蓄熱材として利用できる。 The composition of the present invention can be used as a heat medium or heat storage material for renewable energy plants and chemical plants.

Claims (11)

NaCl、KCl、MgCl及びZnClを含み、以下の組成を有する溶融物からなる熱媒体。
NaCl : 15mol%以上38mol%以下
KCl : 15mol%以上47.5mol%以下
MgCl22.5mol%以上47.5mol%以下
ZnClmol%以上25mol%以下
A heat carrier consisting of a melt containing NaCl, KCl, MgCl 2 and ZnCl 2 and having the following composition:
NaCl: 15 mol% or more and 38 mol% or less
KCl: 15 mol% or more and 47.5 mol% or less
MgCl2: 22.5 mol% or more and 47.5 mol% or less
ZnCl2 : 5 mol% or more and 25 mol% or less
ZnClを10mol%以上25mol%以下含む溶融物からなる、請求項1に記載の熱媒体。 2. The heat transfer medium according to claim 1, comprising a melt containing ZnCl2 in an amount of 10 mol % to 25 mol %. 以下の組成を有する溶融物からなる請求項1又は2に記載の熱媒体。
NaCl : 20mol%以上35mol%以下
KCl : 15mol%以上27mol%以下
MgCl22.5mol%以上42mol%以下
ZnCl : 18mol%以上25mol%以下
3. The heat transfer medium according to claim 1 or 2, comprising a melt having the following composition.
NaCl: 20 mol% or more and 35 mol% or less
KCl: 15 mol% or more and 27 mol% or less
MgCl2: 22.5 mol% or more and 42 mol% or less
ZnCl2 : 18 mol% or more and 25 mol% or less
以下の組成を有する溶融物からなる請求項1乃至3のいずれか一項に記載の熱媒体。
NaCl : 20mol%以上27mol%以下
KCl : 15mol%以上20mol%以下
MgCl : 35mol%以上42mol%以下
ZnCl : 18mol%以上25mol%以下
4. The heat transfer medium according to any one of claims 1 to 3, comprising a melt having the following composition.
NaCl: 20 mol% or more and 27 mol% or less
KCl: 15 mol% or more and 20 mol% or less
MgCl2: 35 mol% or more and 42 mol% or less
ZnCl2 : 18 mol% or more and 25 mol% or less
Na、K、Mg、Zn及びClを含む原料を混合する混合工程を有する請求項1乃至4いずれか一項に記載の溶融物からなる熱媒体の製造方法。 5. The method for producing a heat transfer medium comprising a melt according to any one of claims 1 to 4, comprising a mixing step of mixing raw materials containing Na, K, Mg, Zn and Cl. 混合工程で得られた混合物を550℃以上750℃以下の温度で溶融する溶融工程を有する、請求項5に記載の製造方法。 The manufacturing method according to claim 5, further comprising a melting step of melting the mixture obtained in the mixing step at a temperature of 550°C or higher and 750°C or lower. 請求項6に記載の熱媒体を用いた熱移送システム。 A heat transfer system using the heat medium according to claim 6. NaCl、KCl、MgCl及びZnClを含み、以下の組成を有する溶融物からなる蓄熱体。
NaCl : 15mol%以上38mol%以下
KCl : 15mol%以上47.5mol%以下
MgCl22.5mol%以上47.5mol%以下
ZnClmol%以上25mol%以下
Heat store consisting of a melt containing NaCl, KCl, MgCl 2 and ZnCl 2 and having the following composition:
NaCl: 15 mol% or more and 38 mol% or less
KCl: 15 mol% or more and 47.5 mol% or less
MgCl2: 22.5 mol% or more and 47.5 mol% or less
ZnCl2 : 5 mol% or more and 25 mol% or less
請求項8に記載の蓄熱体を用いた蓄熱システム。 A heat storage system using the heat storage medium according to claim 8 . 請求項7に記載の熱移送システム、または請求項9に記載の蓄熱システムの少なくともいずれかを備えた再生可能エネルギープラント。 A renewable energy plant comprising at least one of the heat transfer system according to claim 7 or the heat storage system according to claim 9. 請求項7に記載の熱移送システム、または請求項9に記載の蓄熱システムの少なくともいずれかを備えた化学プラント A chemical plant comprising at least one of the heat transfer system according to claim 7 or the heat storage system according to claim 9 .
JP2018037070A 2018-03-02 2018-03-02 Composition, production method and use thereof Active JP7176202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037070A JP7176202B2 (en) 2018-03-02 2018-03-02 Composition, production method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037070A JP7176202B2 (en) 2018-03-02 2018-03-02 Composition, production method and use thereof

Publications (2)

Publication Number Publication Date
JP2019151720A JP2019151720A (en) 2019-09-12
JP7176202B2 true JP7176202B2 (en) 2022-11-22

Family

ID=67948285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037070A Active JP7176202B2 (en) 2018-03-02 2018-03-02 Composition, production method and use thereof

Country Status (1)

Country Link
JP (1) JP7176202B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064635A (en) 1999-08-25 2001-03-13 Katsunori Nagano Latent heat storage material composition
JP2004205153A (en) 2002-12-26 2004-07-22 Sumika Plastech Co Ltd Heat accumulator and activating method for the electrode thereof
CN102746830A (en) 2012-07-26 2012-10-24 北京精新相能科技有限公司 Normal-temperature energy storage material composition
CN103938142A (en) 2014-05-13 2014-07-23 国家电网公司 Coating thickness reduction ammonium salt-free plating auxiliary for hot galvanizing by solvent method
JP2015045090A (en) 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel
JP2015045088A (en) 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel
CN104946209A (en) 2015-07-14 2015-09-30 贵州华益能环保科技有限公司 Preparation method of phase change energy storage emulsion and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138389A (en) * 1989-10-23 1991-06-12 Kawasaki Steel Corp Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
JPH04180592A (en) * 1990-11-15 1992-06-26 Kawasaki Steel Corp Zn-mg alloy plated steel sheet excellent in plating adhesion and corrosion resistance and its production
JPH05214544A (en) * 1991-04-10 1993-08-24 Kawasaki Steel Corp Highly corrosion-resistant galvanized steel sheet and its production
JPH0633263A (en) * 1992-07-15 1994-02-08 Kawasaki Steel Corp Galvanized steel sheet excellent in corrosion resistance
JPH0813193A (en) * 1994-06-29 1996-01-16 Kawasaki Steel Corp Rustproof steel sheet excellent in plating adhesion and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064635A (en) 1999-08-25 2001-03-13 Katsunori Nagano Latent heat storage material composition
JP2004205153A (en) 2002-12-26 2004-07-22 Sumika Plastech Co Ltd Heat accumulator and activating method for the electrode thereof
CN102746830A (en) 2012-07-26 2012-10-24 北京精新相能科技有限公司 Normal-temperature energy storage material composition
JP2015045090A (en) 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel
JP2015045088A (en) 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel
CN103938142A (en) 2014-05-13 2014-07-23 国家电网公司 Coating thickness reduction ammonium salt-free plating auxiliary for hot galvanizing by solvent method
CN104946209A (en) 2015-07-14 2015-09-30 贵州华益能环保科技有限公司 Preparation method of phase change energy storage emulsion and application thereof

Also Published As

Publication number Publication date
JP2019151720A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
EP2118010B1 (en) Multinary salt system for storing and transferring thermal energy
US9133383B2 (en) Mixture of inorganic nitrate salts
US20110163258A1 (en) Mixtures of alkali metal polysulfides
CN103298904B (en) Heat transfer medium for solar facilities
JP6663101B2 (en) Molten salt type heat medium, method of using molten salt type heat medium, and solar heat utilization system
US9506671B2 (en) Heat transfer medium, use thereof, and method for operating a solar thermal power plant
CN108728048A (en) A kind of ternary eutectic chlorate heat transfer heat-storing material and its preparation method and application
WO2016203498A1 (en) Composition for thermal storage and heat transfer applications
US9932509B2 (en) Use of a calcium potassium nitrate salt for the manufacture of a heat transfer fluid
CA2785174A1 (en) Mixtures of alkali polysulfides
JP6483234B2 (en) Salt mixture
US20110259552A1 (en) Use of modified, low-viscosity sulfur as heat transfer and heat storage fluid
JP7176202B2 (en) Composition, production method and use thereof
ES2587254T3 (en) Liquid sulfur with improved viscosity as a heat carrier
CN104479646A (en) Five-membered molten nitrate salt heat transfer and heat accumulation medium and preparation method thereof
JP6841063B2 (en) Compositions, manufacturing methods and uses thereof
JP2017160341A (en) Latent heat storage material and heat storage system using the same
US20110247606A1 (en) Fluid sulfur with improved viscosity as a heat carrier
Redzuan Synthesis of molten salt as heat transfer fluid for waste heat recovery application
WO2018207201A1 (en) A molten salt composition for high temperature thermal energy storage
Suraparaju et al. Thermal Stability and Performance Evaluation of Hitec Molten Salt for High-Temperature Energy Storage Applications
Padilla et al. Solar Thermochemistry Overview: An Approach to Solar Thermal Energy Storage and Hydrogen Production
AU2013320326B9 (en) Use of a calcium potassium nitrate salt for the manufacture of a heat transfer fluid
WO2017217390A1 (en) Molten salt-type heat medium, method for using molten salt-type heat medium and solar heat utilization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220819

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220829

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R151 Written notification of patent or utility model registration

Ref document number: 7176202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151