JP2022052748A - Heat storage material composition - Google Patents

Heat storage material composition Download PDF

Info

Publication number
JP2022052748A
JP2022052748A JP2021152700A JP2021152700A JP2022052748A JP 2022052748 A JP2022052748 A JP 2022052748A JP 2021152700 A JP2021152700 A JP 2021152700A JP 2021152700 A JP2021152700 A JP 2021152700A JP 2022052748 A JP2022052748 A JP 2022052748A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
material composition
weight
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021152700A
Other languages
Japanese (ja)
Inventor
直達 矢野
Naotatsu Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yano Giken Co Ltd
Original Assignee
Yano Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yano Giken Co Ltd filed Critical Yano Giken Co Ltd
Publication of JP2022052748A publication Critical patent/JP2022052748A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a heat storage material composition which enables heat storage and heat dissipation and can be stably used repeatedly even in a high-temperature environment.SOLUTION: There is provided a heat storage material composition which comprises a solid-liquid phase change material containing zinc nitrate, a nucleating material and a nucleating material aid containing a silicon-containing fine powder or a carbon-containing fine powder. The nucleating material is barium hydroxide and strontium chloride, the silicon-containing fine powder is fly ash or a silica gel and the carbon-containing fine powder is carbon black. The concentration of the nucleating material is in the range of 0.001 wt.% to 0.100 wt.% based on the whole heat storage material composition and the concentration of the nucleating material aid is in the range of 0.050 wt.% to 5.000 wt.% based on the whole heat storage material composition. Thus, heat storage and heat dissipation are enabled and stable repeated use is possible even in a high-temperature environment. The heat storage material composition is useful for a heat storage material in various fields.SELECTED DRAWING: Figure 2

Description

本発明は、蓄熱材組成物に関する。 The present invention relates to a heat storage material composition.

従来より、所定の温度範囲における固体と液体との間の相変化(固液相変化)を利用して蓄熱(熱吸収)及び放熱(熱放出)を行う蓄熱材(潜熱蓄熱材、顕熱蓄熱材、蓄熱資材等)が知られている。蓄熱材は、例えば、多くの冷熱や温熱を必要とする建物(住宅やオフィスビル等)の冷暖房設備や工場の排熱回収設備等の様々な分野に幅広く利用されている。 Conventionally, a heat storage material (latent heat storage material, sensible heat storage material) that stores heat (heat absorption) and dissipates heat (heat release) by utilizing the phase change (solid-liquid phase change) between a solid and a liquid in a predetermined temperature range. Materials, heat storage materials, etc.) are known. The heat storage material is widely used in various fields such as heating and cooling equipment for buildings (houses, office buildings, etc.) and exhaust heat recovery equipment for factories, which require a large amount of cold heat and heat.

ここで、硝酸亜鉛を用いた蓄熱材に関する技術として、例えば、特開昭59-13898号公報(特許文献1)には、硝酸亜鉛6水和物に、発核剤として水酸化ストロンチウムまたはその8水和物および水酸化バリウムまたはその8水和物の少なくとも1種を添加してなる蓄熱材が開示されている。これにより、凝固時の過冷却の程度を軽減した潜熱型の蓄熱材を提供することが出来るとしている。 Here, as a technique relating to a heat storage material using zinc nitrate, for example, Japanese Patent Application Laid-Open No. 59-13898 (Patent Document 1) describes zinc nitrate hexahydrate, strontium hydroxide as a nucleating agent, or 8 thereof. A heat storage material is disclosed in which at least one of a hydrate and barium hydroxide or an octahydrate thereof is added. This makes it possible to provide a latent heat storage material that reduces the degree of supercooling during solidification.

又、特開昭60-44578号公報(特許文献2)には、酢酸ナトリウム3水塩と;硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸亜鉛、硝酸マグネシウムの無水物又は水和物の群より選ばれた1種以上の硝酸塩とから少なくともなる蓄熱材が開示されている。これにより、融点が酢酸ナトリウム6水塩に比較して低く、かつ蓄熱量の低下の少ない蓄熱材を提供することが出来るとしている。 Further, in Japanese Patent Application Laid-Open No. 60-44578 (Patent Document 2), sodium acetate trihydrate is selected from the group of anhydrates or hydrates of lithium nitrate, sodium nitrate, potassium nitrate, zinc nitrate and magnesium nitrate. A heat storage material consisting of at least one or more nitrates is disclosed. As a result, it is possible to provide a heat storage material having a melting point lower than that of sodium acetate hexahydrate and having a small decrease in heat storage amount.

又、特開昭60-203690号公報(特許文献3)には、硝酸亜鉛6水塩に、水酸化マグネシウム、メタ硅酸マグネシウム、オルト硅酸マグネシウム、メタ硅酸マグネシウムカルシウム及び水酸化亜鉛からなる群の中から選ばれた化合物を硝酸亜鉛の飽和水溶液に対する溶解度以上添加した蓄熱材が開示されている。これにより、硝酸亜鉛6水塩を主体とする蓄熱材を提供することが出来るとしている。 Further, Japanese Patent Application Laid-Open No. 60-203690 (Patent Document 3) comprises zinc hydroxide hexahydrate, magnesium hydroxide, magnesium metasilicate, magnesium orthosilicate, magnesium calcium metasilicate, and zinc hydroxide. A heat storage material is disclosed in which a compound selected from the group is added with a solubility or higher in a saturated aqueous solution of zinc nitrate. As a result, it is possible to provide a heat storage material mainly composed of zinc nitrate hexahydrate.

又、特開昭61-89284号公報(特許文献4)には、塩化カルシウム6水塩を主成分とする蓄熱材組成物中に、弗化亜鉛4水塩及び/又は硝酸亜鉛6水塩を凝固点調節剤として配合してなる蓄熱材組成物が開示されている。これにより、特定の化合物を凝固点調節剤として使用することによって、少ない配合率で凝固点を広い範囲の任意の温度に設定することができ、しかも高レベルの潜熱量を有する蓄熱材組成物を比較的安価に提供することが出来るとしている。 Further, in Japanese Patent Application Laid-Open No. 61-89284 (Patent Document 4), zinc fluoride 4 water salt and / or zinc nitrate 6 water salt is contained in a heat storage material composition containing calcium chloride 6 water salt as a main component. A heat storage material composition compounded as a freezing point adjusting agent is disclosed. Thereby, by using a specific compound as a freezing point adjusting agent, the freezing point can be set to an arbitrary temperature in a wide range with a small compounding ratio, and a heat storage material composition having a high level of latent heat is relatively obtained. It is said that it can be provided at low cost.

特開昭59-13898号公報Japanese Unexamined Patent Publication No. 59-13898 特開昭60-44578号公報Japanese Unexamined Patent Publication No. 60-44578 特開昭60-203690号公報Japanese Unexamined Patent Publication No. 60-203690 特開昭61-89284号公報Japanese Unexamined Patent Publication No. 61-89284

地球環境の温暖化に伴い、周囲環境は高温化しつつある。そのため、高温環境でも固液相変化を起こし、蓄熱・放熱の効果を得ることが出来る蓄熱材組成物が求められるようになっている。 With the warming of the global environment, the surrounding environment is getting hotter. Therefore, there is a demand for a heat storage material composition capable of causing a solid-liquid phase change even in a high temperature environment and obtaining the effects of heat storage and heat dissipation.

ここで、硝酸亜鉛を固液相変化材として用いた蓄熱材組成物では、核形成材を添加したとしても、例えば、周囲環境の温度の下限が、比較的高い30度の場合、液体から固体への相変化が生じず、蓄熱・放熱の効果が得られないという課題がある。この課題に対して、上述した特許文献1-4に記載の技術では解決することは出来ない。 Here, in the heat storage material composition using zinc nitrate as a solid-liquid phase changing material, even if a nucleating material is added, for example, when the lower limit of the temperature of the ambient environment is 30 degrees, which is relatively high, the liquid to solid There is a problem that the effect of heat storage and heat dissipation cannot be obtained because the phase change does not occur. This problem cannot be solved by the technique described in Patent Document 1-4 described above.

そこで、本発明は、前記課題を解決するためになされたものであり、高温環境下であっても、蓄熱・放熱が可能となるとともに、安定的に繰り返し使用が可能な蓄熱材組成物を提供することを目的とする。 Therefore, the present invention has been made to solve the above problems, and provides a heat storage material composition that can store and dissipate heat even in a high temperature environment and can be stably and repeatedly used. The purpose is to do.

本発明に係る蓄熱材組成物は、硝酸亜鉛を含む固液相変化材と、核形成材と、ケイ素含有微粉末又は炭素含有微粉末を含む核形成補助材と、を含有する。 The heat storage material composition according to the present invention contains a solid-liquid phase changing material containing zinc nitrate, a nucleation material, and a nucleation auxiliary material containing silicon-containing fine powder or carbon-containing fine powder.

本発明によれば、高温環境下であっても、蓄熱・放熱が可能となるとともに、安定的に繰り返し使用が可能となる。 According to the present invention, heat can be stored and dissipated even in a high temperature environment, and stable and repeated use is possible.

実施例1-3と、比較例1の蓄熱材組成物の成分表である。It is a composition table of the heat storage material composition of Example 1-3 and Comparative Example 1. 5回目のヒートサイクルにおける実施例1-3と、比較例1の蓄熱材組成物の温度変化のグラフである。It is a graph of the temperature change of the heat storage material composition of Example 1-3 and Comparative Example 1 in the 5th heat cycle. 実施例4-6と、比較例1の蓄熱材組成物の成分表である。4 is a composition table of the heat storage material composition of Example 4-6 and Comparative Example 1. 5回目のヒートサイクルにおける実施例4-6と、比較例1の蓄熱材組成物の温度変化のグラフである。It is a graph of the temperature change of the heat storage material composition of Example 4-6 and Comparative Example 1 in the 5th heat cycle. 実施例7-8の蓄熱材組成物の成分表である。It is a composition table of the heat storage material composition of Example 7-8. 15回目から17回目までのヒートサイクルにおける実施例7-8の蓄熱材組成物の温度変化のグラフである。It is a graph of the temperature change of the heat storage material composition of Example 7-8 in the heat cycle from the 15th time to the 17th time. 実施例1-2、9の蓄熱材組成物の成分表である。It is a composition table of the heat storage material composition of Examples 1-2 and 9. 35回目のヒートサイクルにおける実施例1-2、9の蓄熱材組成物の温度変化のグラフである。It is a graph of the temperature change of the heat storage material composition of Examples 1-2 and 9 in the 35th heat cycle. 実施例5、10の蓄熱材組成物の成分表である。It is a composition table of the heat storage material composition of Examples 5 and 10. 25回目のヒートサイクルにおける実施例5、10の蓄熱材組成物の温度変化のグラフである。It is a graph of the temperature change of the heat storage material composition of Examples 5 and 10 in the 25th heat cycle. 実施例11の蓄熱材組成物の成分表である。It is a composition table of the heat storage material composition of Example 11. 6回目のヒートサイクルにおける実施例11の蓄熱材組成物の温度変化のグラフである。It is a graph of the temperature change of the heat storage material composition of Example 11 in the 6th heat cycle.

以下に、添付図面を参照して、本発明の実施形態について説明し、本発明の理解に供する。尚、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for the purpose of understanding the present invention. It should be noted that the following embodiment is an example embodying the present invention and does not limit the technical scope of the present invention.

本発明者は、硝酸亜鉛を固液相変化材として用いた蓄熱材組成物を長年研究しているが、硝酸亜鉛を含有する蓄熱材組成物は、環境温度が、例えば、80度から30度の温度まで下がっても、硝酸亜鉛の固液相変化材が液体から固体へ相変化せず、蓄熱・放熱の効果が得られないことを確認している。 The present inventor has been studying a heat storage material composition using zinc nitrate as a solid-liquid phase change material for many years, and the heat storage material composition containing zinc nitrate has an environmental temperature of, for example, 80 to 30 degrees. It has been confirmed that the solid-liquid phase change material of zinc nitrate does not change phase from liquid to solid even when the temperature drops to the above temperature, and the effects of heat storage and heat dissipation cannot be obtained.

又、蓄熱材組成物に核形成材を添加した上で、環境温度が、例えば、80度から30度の温度まで下がっても、やはり、硝酸亜鉛の相変化が生じないことを確認している。 Further, it has been confirmed that even if the environmental temperature is lowered from, for example, 80 degrees to 30 degrees after adding the nucleation material to the heat storage material composition, the phase change of zinc nitrate does not occur. ..

そこで、本発明者は、更に、核形成補助材に着目し、後述する実施例に基づいて、本発明を完成させたのである。 Therefore, the present inventor has further focused on the nucleation auxiliary material and completed the present invention based on the examples described later.

即ち、本発明に係る蓄熱材組成物は、硝酸亜鉛を含む固液相変化材と、核形成材と、ケイ素含有微粉末又は炭素含有微粉末を含む核形成補助材と、を含有する。これにより、高温環境下であっても、蓄熱・放熱が可能となるとともに、安定的に繰り返し使用が可能となる。 That is, the heat storage material composition according to the present invention contains a solid-liquid phase changing material containing zinc nitrate, a nucleation material, and a nucleation auxiliary material containing silicon-containing fine powder or carbon-containing fine powder. As a result, heat can be stored and dissipated even in a high temperature environment, and stable and repeated use becomes possible.

つまり、ケイ素含有微粉末又は炭素含有微粉末を添加することで、環境温度が、例えば、80度から30度の温度まで下がると、核形成材の核形成を促すことが可能となり、硝酸亜鉛の固液相変化材を液体から固体へ相変化させ、蓄熱・放熱の効果を得ることが可能となる。 That is, by adding silicon-containing fine powder or carbon-containing fine powder, when the environmental temperature drops from, for example, a temperature of 80 ° C to 30 ° C, it becomes possible to promote nucleation of the nucleating material, and zinc nitrate can be promoted. It is possible to change the phase of the solid-liquid phase changing material from liquid to solid, and obtain the effects of heat storage and heat dissipation.

このように、硝酸亜鉛を含む固液相変化材に対して核形成材と核形成補助材の組み合わせにより、核形成材の核形成を促進することが出来るため、80度から30度までの高温環境下であっても、蓄熱材組成物の蓄熱・放熱を可能とするのである。 In this way, the combination of the nucleating material and the nucleation auxiliary material with respect to the solid-liquid phase changing material containing zinc nitrate can promote the nucleation of the nucleating material, so that the temperature is as high as 80 to 30 degrees. Even in an environment, it is possible to store and dissipate heat in the heat storage material composition.

又、高温から低温へ下げた後に再度高温へ上げるヒートサイクルにおいて、ケイ素含有微粉末又は炭素含有微粉末の核形成補助材の存在により、蓄熱材組成物の融解と凝固の繰り返しを可能とし、蓄熱材組成物の蓄熱・放熱を安定して行わせ、過冷却現象を抑える。そのため、長期間の繰り返し使用も可能となる。 Further, in the heat cycle in which the temperature is lowered from a high temperature to a low temperature and then raised to a high temperature again, the presence of the silicon-containing fine powder or the carbon-containing fine powder nucleation auxiliary material enables the heat storage material composition to be repeatedly melted and solidified, and heat storage is possible. Stable heat storage and heat dissipation of the material composition and suppress the supercooling phenomenon. Therefore, it can be used repeatedly for a long period of time.

ここで、硝酸亜鉛を含む固液相変化材の種類に特に限定は無いが、例えば、硝酸亜鉛の無水物{Zn(NO}やその六水和物{Zn(NO・6HO}を採用することが出来る。又、硝酸亜鉛は、無水物と六水和物とを適宜組み合わせても良い。 Here, the type of the solid-liquid phase change material containing zinc nitrate is not particularly limited, and for example, zinc nitrate anhydride {Zn (NO 3 ) 2 } and its hexahydrate {Zn (NO 3 ) 2 . 6H 2 O} can be adopted. Further, zinc nitrate may be an appropriate combination of anhydrate and hexahydrate.

尚、硝酸亜鉛以外の他の固液相変化材は、相変化の温度範囲が異なるものの、所定の温度範囲において、硝酸亜鉛と同様の相変化を行い、蓄熱及び放熱を生じさせるため、他の固液相変化材を含有しても構わない。他の固液相変化材は、例えば、塩化カルシウム、酢酸ナトリウム、リン酸水素ナトリウム等を挙げることが出来る。これらは無水物であってもその水和物であっても構わない。更に、他の固液相変化材は、1種類でも良いし、2種類以上を適宜組み合わせても良い。 Although the solid-liquid phase change material other than zinc nitrate has a different phase change temperature range, it undergoes the same phase change as zinc nitrate in a predetermined temperature range, and causes heat storage and heat dissipation. It may contain a solid-liquid phase change material. Examples of other solid-liquid phase change materials include calcium chloride, sodium acetate, sodium hydrogen phosphate and the like. These may be anhydrous or their hydrates. Further, the other solid-liquid phase changing material may be one kind or a combination of two or more kinds as appropriate.

又、固液相変化材の濃度に特に限定は無いが、例えば、全蓄熱材組成物に対して75.000重量%~99.500重量%の範囲内であると好ましく、80.000重量%~99.500重量%の範囲内であると更に好ましい。 The concentration of the solid-liquid phase changing material is not particularly limited, but is preferably in the range of 75.000% by weight to 99.500% by weight, preferably 80.000% by weight, based on the total heat storage material composition. It is more preferably in the range of ~ 99.500% by weight.

又、核形成材の種類に特に限定は無いが、例えば、水酸化バリウム{Ba(OH)}、塩化バリウム(BaCl)、二酸化バリウム(BaCO)、硫酸バリウム(BaSO)、硝酸バリウム{Ba(NO}、臭化カリウム(KBr)、臭化ナトリウム(NaBr)、塩化ストロンチウム(SrCl)、水酸化ストロンチウム{Sr(OH)}等を挙げることが出来る。これらの核形成材は、種類によって、水和物を形成するため、無水物やその水和物を用いても良いし、これらを適宜組み合わせても良い。 The type of nucleating material is not particularly limited, but for example, barium hydroxide {Ba (OH) 2 }, barium chloride (BaCl 2 ), barium dioxide (BaCO 3 ), barium sulfate (BaSO 4 ), barium nitrate. {Ba (NO 3 ) 2 }, potassium bromide (KBr), sodium bromide (NaBr), strontium chloride (SrCl 2 ), strontium hydroxide {Sr (OH) 2 } and the like can be mentioned. Since these nucleating materials form hydrates depending on the type, anhydrous or hydrates thereof may be used, or these may be appropriately combined.

又、核形成材は、1種類でも良いし、2種類以上を適宜組み合わせても良い。核形成材を2種類以上添加する場合、その割合に特に限定は無く、例えば、第一の核形成材の水酸化バリウムと第二の核形成材の水酸化ストロンチウムとの混合割合は、重量比で1.0:0.2~1.0:2.0の範囲内であると好ましく、重量比で1.0:0.5~1.0:1.5の範囲内であると更に好ましい。 Further, the nucleating material may be one kind or a combination of two or more kinds as appropriate. When two or more kinds of nucleating materials are added, the ratio is not particularly limited. For example, the mixing ratio of barium hydroxide of the first nucleating material and strontium hydroxide of the second nucleating material is a weight ratio. It is preferably in the range of 1.0: 0.2 to 1.0: 2.0, and more preferably in the range of 1.0: 0.5 to 1.0: 1.5 in terms of weight ratio. ..

又、核形成材の濃度に特に限定は無いが、例えば、全蓄熱材組成物に対して0.001重量%~0.100重量%の範囲内であると好ましく、0.001重量%~0.050重量%の範囲内であると更に好ましい。 The concentration of the nucleating material is not particularly limited, but is preferably in the range of 0.001% by weight to 0.100% by weight, preferably 0.001% by weight to 0, based on the total heat storage material composition. It is more preferably in the range of .050% by weight.

又、核形成補助材のケイ素含有微粉末の種類に特に限定は無いが、例えば、フライアッシュ、シリカゲル、珪砂(石英砂)、ガラスビーズ、スラグ粉末、シリカセメント、珪藻土、マイクロシリカ(珪石粉末)等を挙げることが出来る。これらのケイ素含有微粉末は、1種類でも良いし、2種類以上を適宜組み合わせても良い。 The type of silicon-containing fine powder of the nucleus formation auxiliary material is not particularly limited, but for example, fly ash, silica gel, silica sand (quartz sand), glass beads, slag powder, silica cement, diatomaceous earth, and microsilica (silica stone powder). And so on. These silicon-containing fine powders may be used alone or in combination of two or more.

又、ケイ素含有微粉末の平均粒子径に特に限定は無いが、例えば、0.01μm~100.00μmの範囲内であると好ましく、0.1μm~50.00μmの範囲内であると更に好ましい。尚、ケイ素含有微粉末の平均粒子径は、例えば、光子相関法(動的光散乱法)やレーザ回折/散乱法(静的光散乱法)を採用して測定することが出来る。 The average particle size of the silicon-containing fine powder is not particularly limited, but is preferably in the range of 0.01 μm to 100.00 μm, and more preferably in the range of 0.1 μm to 50.00 μm. The average particle size of the silicon-containing fine powder can be measured by using, for example, a photon correlation method (dynamic light scattering method) or a laser diffraction / scattering method (static light scattering method).

又、核形成補助材の炭素含有微粉末の種類に特に限定は無いが、例えば、カーボンブラック、黒鉛(グラファイト)微粉末、カーボンファイバー微粉末、カーボンナノチューブ微粉末等を挙げることが出来る。これらの炭素含有微粉末は、1種類でも良いし、2種類以上を適宜組み合わせても良い。 The type of carbon-containing fine powder of the nucleation auxiliary material is not particularly limited, and examples thereof include carbon black, graphite fine powder, carbon fiber fine powder, and carbon nanotube fine powder. These carbon-containing fine powders may be used alone or in combination of two or more.

ここで、カーボンブラックとは、天然ガス、炭化水素ガスの気相熱分解や不完全燃焼によって生成する微粉の球状又は鎖状の導電性物質を意味する。カーボンブラックの種類に特に限定は無いが、例えば、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック等を挙げることが出来る。これらの種類のカーボンブラックは適宜組み合わせても良い。 Here, carbon black means a spherical or chain-shaped conductive substance of fine powder produced by vapor phase thermal decomposition or incomplete combustion of natural gas or hydrocarbon gas. The type of carbon black is not particularly limited, and examples thereof include acetylene black, furnace black, thermal black, and channel black. These types of carbon black may be combined as appropriate.

又、炭素含有微粉末の平均粒子径に特に限定は無いが、例えば、0.01μm~100.00μmの範囲内であると好ましく、0.1μm~50.00μmの範囲内であると更に好ましい。尚、炭素含有微粉末の平均粒子径は、上述と同様に、例えば、光子相関法やレーザ回折/散乱法を採用して測定することが出来る。 The average particle size of the carbon-containing fine powder is not particularly limited, but is preferably in the range of 0.01 μm to 100.00 μm, and more preferably in the range of 0.1 μm to 50.00 μm. The average particle size of the carbon-containing fine powder can be measured by, for example, a photon correlation method or a laser diffraction / scattering method in the same manner as described above.

又、核形成補助材は、1種類でも良いし、2種類以上を適宜組み合わせても良い。核形成補助材を2種類以上添加する場合、その割合に特に限定は無く、例えば、第一の核形成補助材のケイ素含有微粉末と第二の核形成材の炭素含有微粉末との混合割合は、重量比で1.0:0.2~1.0:2.0の範囲内であると好ましく、重量比で1.0:0.5~1.0:1.5の範囲内であると更に好ましい。 Further, the nucleation auxiliary material may be of one type or may be a combination of two or more types as appropriate. When two or more types of nucleation auxiliary materials are added, the ratio is not particularly limited. For example, the mixing ratio of the silicon-containing fine powder of the first nucleation auxiliary material and the carbon-containing fine powder of the second nucleation auxiliary material. Is preferably in the range of 1.0: 0.2 to 1.0: 2.0 in terms of weight ratio, and in the range of 1.0: 0.5 to 1.0: 1.5 in terms of weight ratio. It is more preferable to have it.

又、核形成補助材の濃度に特に限定は無いが、例えば、全蓄熱材組成物に対して0.05重量%~5.000重量%の範囲内であると好ましく、0.10重量%~3.000重量%の範囲内であると更に好ましい。 The concentration of the nucleation auxiliary material is not particularly limited, but is preferably in the range of 0.05% by weight to 5.000% by weight, preferably 0.10% by weight or more, based on the total heat storage material composition. It is more preferably in the range of 3,000% by weight.

又、核形成材と核形成補助材との混合比率に特に限定は無いが、例えば、核形成材と核形成補助材との混合割合は、重量比で1.0:0.2~1.0:2.0の範囲内であると好ましく、重量比で1.0:0.5~1.0:1.5の範囲内であると更に好ましい。 The mixing ratio of the nucleating material and the nucleating auxiliary material is not particularly limited, but for example, the mixing ratio of the nucleating material and the nucleating auxiliary material is 1.0: 0.2 to 1. It is preferably in the range of 0: 2.0, and more preferably in the range of 1.0: 0.5 to 1.0: 1.5 in terms of weight ratio.

又、蓄熱材組成物は、固液相変化材と核形成材と核形成補助材以外に他の添加物を添加しても構わない。他の添加物として、例えば、融点調整材、増粘材等を挙げることが出来る。他の添加物の濃度は、全蓄熱材組成物に対して0.001重量%~20.000重量%の範囲内であると好ましく、0.001重量%~10.000重量%の範囲内であると更に好ましい。 Further, in the heat storage material composition, other additives may be added in addition to the solid-liquid phase changing material, the nucleation material and the nucleation auxiliary material. Examples of other additives include a melting point adjusting material and a thickening material. The concentration of the other additive is preferably in the range of 0.001% by weight to 20.000% by weight, preferably in the range of 0.001% by weight to 10.000% by weight, based on the total heat storage material composition. It is more preferable to have it.

又、蓄熱材組成物の使用方法に特に限定は無いが、例えば、蓄熱材組成物を容器に充填・密封した物を蓄熱資材として使用する方法を挙げることが出来る。蓄熱材組成物の熱伝導率が高いため、容器の形状に特に限定は無く、例えば、板状、円柱状等、用途に合わせて適宜設計変更可能である。 The method of using the heat storage material composition is not particularly limited, and examples thereof include a method of filling and sealing the heat storage material composition in a container and using the heat storage material as the heat storage material. Since the heat conductivity of the heat storage material composition is high, the shape of the container is not particularly limited, and the design can be appropriately changed according to the application such as plate shape and columnar shape.

又、蓄熱材組成物の用途に特に限定は無く、例えば、冷暖房設備、工場の排熱回収設備、ビニールハウス等の農業関連設備、端末装置、携帯端末装置等の電子機器、自動車・バス等に利用される位置特定装置等の蓄熱資材として用いることが出来る。蓄熱資材の利用方法としては、昼間の周囲環境から蓄熱し、夜間の周囲環境へ放熱することで、熱エネルギーの有効利用を図ることが出来る。特に、本発明に係る蓄熱材組成物は、高温環境下であっても蓄熱・放熱が可能となるため、 The use of the heat storage material composition is not particularly limited, and is used, for example, for heating / cooling equipment, factory exhaust heat recovery equipment, agricultural equipment such as vinyl houses, terminal equipment, electronic equipment such as portable terminal equipment, automobiles / buses, and the like. It can be used as a heat storage material for used position identification devices and the like. As a method of using the heat storage material, heat energy can be effectively used by storing heat from the surrounding environment in the daytime and dissipating heat to the surrounding environment at night. In particular, the heat storage material composition according to the present invention can store and dissipate heat even in a high temperature environment.

以下に、本発明における実施例、比較例等を具体的に説明するが、本発明の適用が本実施例などに限定されるものではない。 Hereinafter, examples, comparative examples, and the like in the present invention will be specifically described, but the application of the present invention is not limited to the present examples and the like.

<実施例1>
固液相変化材(硝酸亜鉛六水和物){Zn(NO・6HO}を99.495重量%、核形成材(水酸化バリウム){Ba(OH)}を0.005重量%、核形成補助材(フライアッシュ)を0.500重量%に調整して蓄熱材組成物を製造した。蓄熱材組成物の凝固点(融点)は、硝酸亜鉛により35℃に設定した。この製造した蓄熱材組成物を実施例1とした。尚、核形成材の濃度は、核形成補助剤の効果を確認するために、低濃度としている。
<Example 1>
Solid-liquid phase change material (zinc nitrate hexahydrate) {Zn (NO 3 ) 2.6H 2 O } was 99.495% by weight, and nucleation material (barium hydroxide) {Ba (OH) 2 } was 0. The heat storage material composition was produced by adjusting 005% by weight and the nucleation auxiliary material (fly ash) to 0.500% by weight. The freezing point (melting point) of the heat storage material composition was set to 35 ° C. with zinc nitrate. This produced heat storage material composition was designated as Example 1. The concentration of the nucleation material is set to a low concentration in order to confirm the effect of the nucleation aid.

<比較例1>
実施例1の蓄熱材組成物において、固液相変化材を99.980重量%とし、核形成材として、水酸化バリウム0.010重量%とともに、塩化ストロンチウム二水和物(SrCl・2HO)を0.010重量%添加し、核形成補助材を添加しないこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を比較例1とした。
<Comparative Example 1>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 99.980% by weight, and the nucleating material was barium hydroxide 0.010% by weight and strontium chloride dihydrate (SrCl 2.2H 2 ) . An heat storage material composition was produced by adjusting in the same manner as in Example 1 except that 0.010% by weight of O) was added and no nucleation auxiliary material was added. The produced heat storage material composition was designated as Comparative Example 1.

<実施例2>
実施例1の蓄熱材組成物において、核形成補助材のフライアッシュをカーボンブラック(ファーネスブラック)に変更したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例2とした。
<Example 2>
In the heat storage material composition of Example 1, the heat storage material composition was produced by adjusting in the same manner as in Example 1 except that the fly ash of the nucleation auxiliary material was changed to carbon black (furness black). This produced heat storage material composition was designated as Example 2.

<実施例3>
実施例1の蓄熱材組成物において、固液相変化材を98.995重量%とし、核形成補助材として、フライアッシュ0.500重量%とともにシリカゲルを0.500重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例3とした。
<Example 3>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 98.995% by weight, and 0.500% by weight of silica gel was added together with 0.500% by weight of fly ash as a nucleation auxiliary material. The heat storage material composition was produced by adjusting in the same manner as in Example 1. This produced heat storage material composition was designated as Example 3.

<実施例4>
実施例1の蓄熱材組成物において、固液相変化材を99.480重量%とし、核形成材として、水酸化バリウム0.010重量%とともに、塩化ストロンチウム二水和物を0.010重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例4とした。
<Example 4>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 99.480% by weight, and as the nucleating material, barium hydroxide was 0.010% by weight and strontium chloride dihydrate was 0.010% by weight. A heat storage material composition was produced by adjusting in the same manner as in Example 1 except that it was added. This produced heat storage material composition was designated as Example 4.

<実施例5>
実施例1の蓄熱材組成物において、固液相変化材を99.485重量%とし、核形成材として、水酸化バリウム0.010重量%とともに、塩化ストロンチウム二水和物を0.010重量%添加し、核形成補助材のフライアッシュをカーボンブラック(ファーネスブラック)に変更したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例5とした。
<Example 5>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 99.485% by weight, and as the nucleating material, barium hydroxide was 0.010% by weight and strontium chloride dihydrate was 0.010% by weight. A heat storage material composition was produced by adjusting in the same manner as in Example 1 except that the fly ash of the nucleation auxiliary material was changed to carbon black (furness black). This produced heat storage material composition was designated as Example 5.

<実施例6>
実施例1の蓄熱材組成物において、固液相変化材を98.985重量%とし、核形成材として、水酸化バリウム0.010重量%とともに、塩化ストロンチウム二水和物を0.010重量%添加し、核形成補助材として、フライアッシュ0.500重量%とともにシリカゲルを0.500重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例6とした。
<Example 6>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 98.985% by weight, and as the nucleating material, barium hydroxide 0.010% by weight and strontium chloride dihydrate 0.010% by weight were used. A heat storage material composition was produced by adjusting in the same manner as in Example 1 except that 0.500% by weight of fly ash and 0.500% by weight of silica gel were added as a nucleation auxiliary material. This produced heat storage material composition was designated as Example 6.

<評価方法>
実施例1-6と、比較例1の蓄熱材組成物について、各蓄熱材組成物の周囲温度を所定の時間で約80℃から約30℃まで下げた(冷却)後に、再び約30℃から80℃まで上げる(加熱)操作のヒートサイクルを所定回数繰り返すことで、各蓄熱材組成物の温度変化を測定した。
<Evaluation method>
For the heat storage material compositions of Examples 1-6 and Comparative Example 1, the ambient temperature of each heat storage material composition was lowered from about 80 ° C. to about 30 ° C. (cooling) in a predetermined time, and then from about 30 ° C. again. The temperature change of each heat storage material composition was measured by repeating the heat cycle of the operation of raising (heating) to 80 ° C. a predetermined number of times.

<評価結果>
図1には、実施例1-3と、比較例1の蓄熱材組成物の成分表を示す。図2には、5回目のヒートサイクルにおける実施例1-3と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図2に示すように、ヒートサイクルの冷却時において、2種類の核形成材の水酸化バリウムと塩化ストロンチウムが添加されている比較例1の蓄熱材組成物では、過冷却を起こして、グラフの立ち上がりが見られないことが理解される。一方、1種類の核形成材に1種類のケイ素含有微粉末又は炭素含有微粉末の核形成補助材を添加されている実施例1-2の蓄熱材組成物では、過冷却を起こさずに、吸熱に対応するグラフの立ち上がりが見られていることが理解される。更に、1種類の核形成材に2種類のケイ素含有微粉末の核形成補助材を添加されている実施例3の蓄熱材組成物では、吸熱に対応するグラフの立ち上がりが早くなっていることが理解される。
<Evaluation result>
FIG. 1 shows a composition table of the heat storage material composition of Example 1-3 and Comparative Example 1. FIG. 2 shows graphs of temperature changes of the heat storage material composition of Example 1-3 and Comparative Example 1 in the fifth heat cycle. As shown in FIG. 2, in the heat storage material composition of Comparative Example 1 in which barium hydroxide and strontium chloride, which are two types of nucleating materials, are added during cooling of the heat cycle, supercooling occurs and the graph shows. It is understood that there is no rise. On the other hand, in the heat storage material composition of Example 1-2 in which one kind of silicon-containing fine powder or one kind of carbon-containing fine powder nucleation auxiliary material is added to one kind of nucleation material, the heat storage material composition of Example 1-2 does not cause supercooling. It is understood that the rising edge of the graph corresponding to the endothermic is seen. Further, in the heat storage material composition of Example 3 in which two types of silicon-containing fine powder nucleation auxiliary materials are added to one type of nucleation material, the graph corresponding to endothermic rise is accelerated. Understood.

又、ヒートサイクルの加熱時において、実施例1-3の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、単位時間当たりの加熱温度が大きく、加熱速度が速くなり、グラフの立ち上がりが早くなっていることが理解される。 Further, at the time of heating in the heat cycle, the heat storage material composition of Example 1-3 has a higher heating temperature per unit time and a faster heating rate than the heat storage material composition of Comparative Example 1, and is a graph. It is understood that the rise of is faster.

図3には、実施例4-6と、比較例1の蓄熱材組成物の成分表を示す。図4には、5回目のヒートサイクルにおける実施例4-6と、比較例1の蓄熱材組成物の温度変化のグラフを示す。図4に示すように、ヒートサイクルの冷却時において、2種類の核形成材に1種類のケイ素含有微粉末の核形成補助材を添加されている実施例4-5の蓄熱材組成物では、上述と同様に、過冷却を起こさずに、吸熱に対応するグラフの立ち上がりが見られていることが理解される。更に、2種類の核形成材に2種類のケイ素含有微粉末の核形成補助材を添加されている実施例6の蓄熱材組成物では、吸熱に対応するグラフの立ち上がりが早くなっていることが理解される。 FIG. 3 shows a composition table of the heat storage material composition of Example 4-6 and Comparative Example 1. FIG. 4 shows graphs of temperature changes of the heat storage material composition of Example 4-6 and Comparative Example 1 in the fifth heat cycle. As shown in FIG. 4, in the heat storage material composition of Example 4-5, in which one kind of silicon-containing fine powder nucleation auxiliary material is added to two kinds of nucleation materials at the time of cooling in the heat cycle. Similar to the above, it is understood that the rising edge of the graph corresponding to the endothermic is seen without causing supercooling. Further, in the heat storage material composition of Example 6 in which two types of silicon-containing fine powder nucleation auxiliary materials are added to two types of nucleation materials, the graph corresponding to endothermic rise is accelerated. Understood.

又、ヒートサイクルの加熱時において、実施例4-6の蓄熱材組成物では、比較例1の蓄熱材組成物と比較して、単位時間当たりの加熱温度が大きく、加熱速度が速くなり、グラフの立ち上がりが早くなっていることが理解される。 Further, at the time of heating in the heat cycle, the heat storage material composition of Example 4-6 has a higher heating temperature per unit time and a faster heating rate than the heat storage material composition of Comparative Example 1, and is a graph. It is understood that the rise of is faster.

<実施例7>
実施例1の蓄熱材組成物において、固液相変化材を97.985重量%とし、核形成材として、水酸化バリウム0.005重量%とともに、塩化ストロンチウム二水和物を0.010重量%添加し、核形成補助材として、フライアッシュを0.500重量%、シリカゲルを0.500重量%、カーボンブラックを1.000重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例7とした。
<Example 7>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 97.985% by weight, and as the nucleating material, barium hydroxide 0.005% by weight and strontium chloride dihydrate 0.010% by weight were used. Adjusted in the same manner as in Example 1 except that 0.500% by weight of fly ash, 0.500% by weight of silica gel, and 1.000% by weight of carbon black were added as nucleation auxiliary materials. A heat storage material composition was produced. This produced heat storage material composition was designated as Example 7.

<実施例8>
実施例1の蓄熱材組成物において、固液相変化材を97.985重量%とし、核形成材として、水酸化バリウム0.005重量%とともに、塩化ストロンチウム二水和物を0.010重量%添加し、核形成補助材として、フライアッシュを0.500重量%、シリカゲルを1.000重量%、カーボンブラックを0.5重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例8とした。尚、図5には、実施例7-8の蓄熱材組成物の成分表を示す。実施例7-8については、冷却温度を約15℃とし、加熱温度を約80度として、上述と同様の評価方法で評価した。
<Example 8>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 97.985% by weight, and as the nucleating material, barium hydroxide 0.005% by weight and strontium chloride dihydrate 0.010% by weight were used. Adjusted in the same manner as in Example 1 except that 0.500% by weight of fly ash, 1.000% by weight of silica gel, and 0.5% by weight of carbon black were added as nucleation auxiliary materials. A heat storage material composition was produced. This produced heat storage material composition was designated as Example 8. In addition, FIG. 5 shows the composition table of the heat storage material composition of Example 7-8. Examples 7-8 were evaluated by the same evaluation method as described above, with the cooling temperature set to about 15 ° C and the heating temperature set to about 80 ° C.

<評価結果>
図6には、15回目から17回目までのヒートサイクルにおける実施例7-8の蓄熱材組成物の温度変化のグラフを示す。又、図6には、雰囲気温度も併せて示した。図6に示すように、ヒートサイクルの冷却時において、3種類の核形成補助材を添加されている実施例7-8の蓄熱材組成物では、吸熱に対応するグラフの立ち上がりが見られていることが理解される。又、ヒートサイクルの加熱時において、実施例7-8の蓄熱材組成物では、単位時間当たりの加熱温度が大きく、加熱速度が速くなり、グラフの立ち上がりが早くなっていることが理解される。
<Evaluation result>
FIG. 6 shows a graph of the temperature change of the heat storage material composition of Example 7-8 in the 15th to 17th heat cycles. In addition, FIG. 6 also shows the atmospheric temperature. As shown in FIG. 6, in the heat storage material composition of Example 7-8 to which three kinds of nucleation auxiliary materials are added during the cooling of the heat cycle, the rise of the graph corresponding to the endothermic is seen. Is understood. Further, it is understood that in the heat storage material composition of Example 7-8, the heating temperature per unit time is large, the heating rate is high, and the rise of the graph is quick during the heating of the heat cycle.

<実施例9>
実施例1の蓄熱材組成物において、固液相変化材を98.995重量%とし、核形成材として、水酸化バリウムを0.005重量%添加し、塩化ストロンチウム二水和物を転嫁せず、核形成補助材として、フライアッシュを添加せず、シリカゲルを0.500重量%、カーボンブラックを0.500重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例9とした。尚、図7には、実施例1-2、9の蓄熱材組成物の成分表を示す。実施例1-2、9については、冷却温度を約15℃とし、加熱温度を約80度として、上述と同様の評価方法で評価した。
<Example 9>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was set to 98.995% by weight, barium hydroxide was added in an amount of 0.005% by weight as the nucleating material, and strontium chloride dihydrate was not passed on. As a nucleation auxiliary material, the heat storage material composition was adjusted in the same manner as in Example 1 except that 0.500% by weight of silica gel and 0.500% by weight of carbon black were added without adding fly ash. Manufactured. This produced heat storage material composition was designated as Example 9. In addition, FIG. 7 shows the composition table of the heat storage material composition of Examples 1-2 and 9. Examples 1-2 and 9 were evaluated by the same evaluation method as described above, with the cooling temperature set to about 15 ° C and the heating temperature set to about 80 ° C.

<評価結果>
図8には、35回目のヒートサイクルにおける実施例1-2、9の蓄熱材組成物の温度変化のグラフを示す。又、図8には、雰囲気温度も併せて示した。図8に示すように、ヒートサイクルの冷却時において、1種類の核形成材と2種類の核形成補助材を添加されている実施例9の蓄熱材組成物であっても、実施例1-2の蓄熱材組成物と同様に、吸熱に対応するグラフの立ち上がりが見られ、且つ、放熱に対するグラフの立ち上がりが早くなっていることが理解される。
<Evaluation result>
FIG. 8 shows a graph of the temperature change of the heat storage material composition of Examples 1-2 and 9 in the 35th heat cycle. In addition, FIG. 8 also shows the atmospheric temperature. As shown in FIG. 8, even in the heat storage material composition of Example 9 to which one type of nucleation material and two types of nucleation auxiliary materials are added during cooling of the heat cycle, Example 1-. Similar to the heat storage material composition of No. 2, it is understood that the rise of the graph corresponding to the endothermic is seen and the rise of the graph with respect to the heat dissipation is faster.

<実施例10>
実施例1の蓄熱材組成物において、固液相変化材を99.485重量%とし、核形成材として、水酸化バリウム0.005重量%とともに、塩化ストロンチウム二水和物を0.010重量%添加し、核形成補助材として、フライアッシュとシリカゲルを添加せずに、カーボンブラックを0.500重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例10とした。尚、図9には、実施例5、10の蓄熱材組成物の成分表を示す。実施例5、10については、冷却温度を約15℃とし、加熱温度を約80度として、上述と同様の評価方法で評価した。
<Example 10>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 99.485% by weight, the nucleating material was 0.005% by weight of barium hydroxide, and 0.010% by weight of strontium chloride dihydrate. A heat storage material composition was produced by adjusting in the same manner as in Example 1 except that 0.500% by weight of carbon black was added without adding fly ash and silica gel as a nucleation auxiliary material. .. This produced heat storage material composition was designated as Example 10. Note that FIG. 9 shows a composition table of the heat storage material compositions of Examples 5 and 10. Examples 5 and 10 were evaluated by the same evaluation method as described above, with the cooling temperature set to about 15 ° C and the heating temperature set to about 80 ° C.

<評価結果>
図10には、25回目のヒートサイクルにおける実施例5、10の蓄熱材組成物の温度変化のグラフを示す。又、図10には、雰囲気温度も併せて示した。図10に示すように、ヒートサイクルの冷却時において、2種類の核形成材と1種類の核形成補助材を添加されている実施例10の蓄熱材組成物であっても、実施例5の蓄熱材組成物と同様に、吸熱に対応するグラフの立ち上がりが見られ、且つ、放熱に対するグラフの立ち上がりが早くなっていることが理解される。
<Evaluation result>
FIG. 10 shows a graph of the temperature change of the heat storage material composition of Examples 5 and 10 in the 25th heat cycle. In addition, FIG. 10 also shows the atmospheric temperature. As shown in FIG. 10, even in the heat storage material composition of Example 10 to which two kinds of nucleation materials and one kind of nucleation auxiliary material are added at the time of cooling of the heat cycle, the heat storage material composition of Example 5 Similar to the heat storage material composition, it is understood that the rise of the graph corresponding to the endothermic is seen and the rise of the graph with respect to the heat dissipation is faster.

<実施例11>
実施例1の蓄熱材組成物において、固液相変化材を99.490重量%とし、核形成材として、水酸化バリウムを添加せず、塩化ストロンチウム二水和物を0.010重量%添加し、核形成補助材として、フライアッシュとシリカゲルを添加せずに、カーボンブラックを0.500重量%添加したこと以外は、実施例1と同様にして調整して蓄熱材組成物を製造した。この製造した蓄熱材組成物を実施例11とした。尚、図11には、実施例11の蓄熱材組成物の成分表を示す。実施例11については、冷却温度を約15℃とし、加熱温度を約80度として、上述と同様の評価方法で評価した。
<Example 11>
In the heat storage material composition of Example 1, the solid-liquid phase changing material was 99.490% by weight, and 0.010% by weight of strontium chloride dihydrate was added as the nucleating material without adding barium hydroxide. The heat storage material composition was produced in the same manner as in Example 1 except that 0.500% by weight of carbon black was added without adding fly ash and silica gel as the nucleation auxiliary material. This produced heat storage material composition was designated as Example 11. Note that FIG. 11 shows a composition table of the heat storage material composition of Example 11. Example 11 was evaluated by the same evaluation method as described above, with the cooling temperature set to about 15 ° C and the heating temperature set to about 80 ° C.

<評価結果>
図12には、6回目のヒートサイクルにおける実施例11の蓄熱材組成物の温度変化のグラフを示す。又、図12には、雰囲気温度も併せて示した。図12に示すように、ヒートサイクルの冷却時において、1種類の核形成材と1種類の核形成補助材を添加されている実施例11の蓄熱材組成物であっても、上述と同様に、吸熱に対応するグラフの立ち上がりが見られ、且つ、放熱に対するグラフの立ち上がりが早くなっていることが理解される。
<Evaluation result>
FIG. 12 shows a graph of the temperature change of the heat storage material composition of Example 11 in the sixth heat cycle. In addition, FIG. 12 also shows the atmospheric temperature. As shown in FIG. 12, even in the case of the heat storage material composition of Example 11 to which one type of nucleation material and one type of nucleation auxiliary material are added during cooling of the heat cycle, the same as described above. It is understood that the rise of the graph corresponding to the endothermic is seen, and the rise of the graph for heat dissipation is faster.

これにより、硝酸亜鉛を含む固液相変化材と、核形成材とに、ケイ素含有微粉末又は炭素含有微粉末を含む核形成補助材を添加することで、高温環境下であっても、蓄熱・放熱が可能となるとともに、安定的に繰り返し使用が可能となることが分かった。 As a result, by adding a nucleation auxiliary material containing silicon-containing fine powder or carbon-containing fine powder to the solid-liquid phase change material containing zinc nitrate and the nucleation material, heat storage is performed even in a high temperature environment.・ It was found that heat can be dissipated and stable and repeated use is possible.

以上のように、本発明に係る蓄熱材組成物は、様々な分野における蓄熱資材に有用であり、高温環境下であっても、蓄熱・放熱が可能となるとともに、安定的に繰り返し使用が可能な蓄熱材組成物として有効である。 As described above, the heat storage material composition according to the present invention is useful as a heat storage material in various fields, and can store and dissipate heat even in a high temperature environment and can be used stably and repeatedly. It is effective as a heat storage material composition.

Claims (3)

硝酸亜鉛を含む固液相変化材と、
核形成材と、
ケイ素含有微粉末又は炭素含有微粉末を含む核形成補助材と、
を含有する蓄熱材組成物。
Solid-liquid phase change material containing zinc nitrate,
Nucleating material and
Nucleation aids containing silicon-containing fine powder or carbon-containing fine powder,
A heat storage material composition containing.
前記核形成材は、水酸化バリウム又は塩化ストロンチウムであり、
前記ケイ素含有微粉末は、フライアッシュ又はシリカゲルであり、
前記炭素含有微粉末は、カーボンブラックである、
請求項1に記載の蓄熱材組成物。
The nucleating material is barium hydroxide or strontium chloride.
The silicon-containing fine powder is fly ash or silica gel.
The carbon-containing fine powder is carbon black.
The heat storage material composition according to claim 1.
前記核形成材の濃度は、全蓄熱材組成物に対して0.001重量%~0.100重量%の範囲内であり、
前記核形成補助材の濃度は、全蓄熱材組成物に対して0.050重量%~5.000重量%の範囲内である、
請求項2に記載の蓄熱材組成物。
The concentration of the nucleating material is in the range of 0.001% by weight to 0.100% by weight with respect to the total heat storage material composition.
The concentration of the nucleation auxiliary material is in the range of 0.050% by weight to 5.000% by weight with respect to the total heat storage material composition.
The heat storage material composition according to claim 2.
JP2021152700A 2020-09-23 2021-09-18 Heat storage material composition Pending JP2022052748A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020158089 2020-09-23
JP2020158089 2020-09-23

Publications (1)

Publication Number Publication Date
JP2022052748A true JP2022052748A (en) 2022-04-04

Family

ID=80948912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021152700A Pending JP2022052748A (en) 2020-09-23 2021-09-18 Heat storage material composition

Country Status (1)

Country Link
JP (1) JP2022052748A (en)

Similar Documents

Publication Publication Date Title
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
Li et al. Phase change behavior of latent heat storage media based on calcium chloride hexahydrate composites containing strontium chloride hexahydrate and oxidation expandable graphite
JP7266282B2 (en) Heat storage material composition
CN105131910A (en) Stable inorganic hydrated salt based phase change energy storage material and preparation method thereof
CN105086948A (en) Phase change heat storage material as well as preparation method and application thereof and phase change heat storage device
CN106318330A (en) Preparation method of phase-change energy storage material and phase-change energy storage material
JPS6343992A (en) Reversible phase transfer composition of calcium bromide hydrate
Kalidasan et al. Thermal performance and corrosion resistance analysis of inorganic eutectic phase change material with one dimensional carbon nanomaterial
JP2022052748A (en) Heat storage material composition
Ma et al. A review on preparation, thermal transport properties, phase-change characteristics, and thermal stability of molten salts
JP2022052747A (en) Heat storage material composition
JP2019123832A (en) Latent heat storage material composition
JP5044539B2 (en) Thermal storage material composition
JP2013116947A (en) Powder mixture for coolant, and coolant
WO1994004630A1 (en) Phase change material formulations for low temperature heat storage applications
JPH11323320A (en) Latent heat storage agent composition
JPH09241624A (en) Material for storage of cryogenic energy
JPS5821942B2 (en) Heat storage agent composition
Fan et al. Preparation and characterization of an aluminum ammonium sulfate dodecahydrate-based composite phase change material with low supercooling and high thermal conductivity
JP3880677B2 (en) Latent heat storage material composition
JPH05331457A (en) Composition for heat storage
AU4933493A (en) Phase change material formulations for low temperature heat storage applications
JP2000063810A (en) Latent-heat heat accumulator composition
JPS58180579A (en) Heat storage material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126