JP7265845B2 - 飛行体及び飛行体の制御方法 - Google Patents

飛行体及び飛行体の制御方法 Download PDF

Info

Publication number
JP7265845B2
JP7265845B2 JP2018151639A JP2018151639A JP7265845B2 JP 7265845 B2 JP7265845 B2 JP 7265845B2 JP 2018151639 A JP2018151639 A JP 2018151639A JP 2018151639 A JP2018151639 A JP 2018151639A JP 7265845 B2 JP7265845 B2 JP 7265845B2
Authority
JP
Japan
Prior art keywords
thrust
axis
section
generating
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151639A
Other languages
English (en)
Other versions
JP2019034725A (ja
Inventor
範明 片山
薫 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Publication of JP2019034725A publication Critical patent/JP2019034725A/ja
Application granted granted Critical
Publication of JP7265845B2 publication Critical patent/JP7265845B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/503Fly-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • B64C15/02Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets
    • B64C15/12Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets the power plant being tiltable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0041Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by jet motors
    • B64C29/0075Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by jet motors the motors being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

特許法第30条第2項適用 平成29年2月14日神戸海洋博物館内大ホール(兵庫県神戸市中央区波止場町2-2)において開催されたカワサキモーターサイクルフェア2017で公開
本発明は、飛行体及び飛行体の制御方法に関する。
従来から複数のロータを回して空中を飛行する飛行体が知られている(例えば特許文献1参照)。
この飛行体は、動力源により同時あるいは別々に駆動される4つのロータを備え、このうちの2つのロータは昇降用推進ロータであり、あとの2つは昇降、前進および旋回用ロータである。そして、昇降、前進および旋回用ロータは、チルト回転するよう構成され、チルト回転することによって、前進する。また、昇降、前進および旋回用ロータの回転数に差をつけることで旋回する。
特開平4-173497号公報
しかし、特許文献1に記載の飛行体は、例えば、ガスト等の外乱によりホバリングを行っている飛行体の姿勢がロール軸周りに乱れ、これに伴って横方向に所定位置から外れたときに、元の位置及び姿勢に速やかに復帰させることは困難であるという問題があった。
上記課題を解決するため、本発明のある態様に係る飛行体は、機体本体と、前記機体本体を支持する支持部と、前側推力発生部、後側推力発生部、左側推力発生部、及び右側推力発生部を含む推力発生ユニットと、前記推力発生ユニットを制御する飛行制御器と、を備え、前記前側推力発生部は、前記支持部の前後方向に延びる第1軸線上且つ前記支持部の前方に位置して前記支持部に接続され、前記第1軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第1軸線周りに推力の向きを変更可能であり、前記後側推力発生部は、前記支持部の前後方向に延びる第2軸線上且つ前記支持部の後方に位置して前記支持部に接続され、前記第2軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第2軸線周りに推力の向きを変更可能であり、前記左側推力発生部は、前記支持部の左右方向に延びる第3軸線上且つ前記支持部の左方に位置して前記支持部に接続され、前記第3軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第3軸線周りに推力の向きを変更可能であり、前記右側推力発生部は、前記支持部の左右方向に延びる第4軸線上且つ前記支持部の右方に位置して前記支持部に接続され、前記第4軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第4軸線周りに推力の向きを変更可能である。
この構成によれば、X軸、Y軸、Z軸方向への3つの力の制御と、ピッチ軸、ロール軸、ヨー軸周りの3つのモーメントの制御の6つの制御を個別におこなうことができる。これによって、X軸、Y軸、Z軸方向への位置又は速度の制御に伴って、不必要なピッチ軸、ロール軸、ヨー軸周りの姿勢の変化が生じることを抑制することができる。
また、ガスト等の外乱により、飛行体の位置又は姿勢が乱れたときに、元の位置又は元の姿勢に速やかに復帰させることができる。
本発明は、X軸、Y軸、Z軸方向への3つの力の制御と、ピッチ軸、ロール軸、ヨー軸周りの3つのモーメントの制御の6つの制御を個別におこなうことができるという効果を奏する。
実施の形態1に係る飛行体の構成例を示す斜視図である。 図1の飛行体の推力発生ユニットの構成例を概略的に示す平面図である。 図1の飛行体の制御系統の構成例を概略的に示すブロック図である。 図1の飛行体の制御系統の構成例を概略的に示す斜視図である。 図1の飛行体の飛行制御の概要を示す図である。 図1の飛行体の旋回等の機動を含む飛行時における飛行体の姿勢制御を示すフローチャートである。 図1の飛行体の飛行シミュレーションの結果を示すタイミングチャートである。 従来の飛行体の飛行シミュレーションの結果を示すタイミングチャートである。 実施の形態1に係る飛行体の変形例を示す図であり、推力発生ユニットの変形例を概略的に示す平面図である。 実施の形態1に係る飛行体の変形例を示す図であり、推力発生ユニットの変形例を概略的に示す平面図である。 実施の形態1に係る飛行体の変形例を示す図であり、推力発生ユニットの変形例を概略的に示す平面図である。 実施の形態1に係る飛行体の変形例を示す図であり、飛行体の支持ビームと一体的に形成された翼部を有する例を示す斜視図である。 実施の形態1に係る飛行体の変形例を示す図であり、支持ビーム駆動部の変形例を示す斜視図である。 実施の形態1に係る飛行体の旋回等の機動を含む飛行時における飛行体の姿勢制御の変形例を示すフローチャートである。 実施の形態2に係る飛行体の構成例を示す斜視図である。
ある態様に係る飛行体は、機体本体と、前記機体本体を支持する支持部と、前側推力発生部、後側推力発生部、左側推力発生部、及び右側推力発生部を含む推力発生ユニットと、前記推力発生ユニットを制御する飛行制御器と、を備え、前記前側推力発生部は、前記支持部の前後方向に延びる第1軸線上且つ前記支持部の前方に位置して前記支持部に接続され、前記第1軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第1軸線周りに推力の向きを変更可能であり、前記後側推力発生部は、前記支持部の前後方向に延びる第2軸線上且つ前記支持部の後方に位置して前記支持部に接続され、前記第2軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第2軸線周りに推力の向きを変更可能であり、前記左側推力発生部は、前記支持部の左右方向に延びる第3軸線上且つ前記支持部の左方に位置して前記支持部に接続され、前記第3軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第3軸線周りに推力の向きを変更可能であり、前記右側推力発生部は、前記支持部の左右方向に延びる第4軸線上且つ前記支持部の右方に位置して前記支持部に接続され、前記第4軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第4軸線周りに推力の向きを変更可能である。
この構成によれば、X軸、Y軸、Z軸方向への3つの力の制御と、ピッチ軸、ロール軸、ヨー軸周りの3つのモーメントの制御の6つの制御を個別におこなうことができる。こ
れによって、X軸、Y軸、Z軸方向への位置又は速度の制御に伴って、不必要なピッチ軸、ロール軸、ヨー軸周りの姿勢の変化が生じることを抑制することができる。
また、ガスト等の外乱により、飛行体の位置又は姿勢が乱れたときに、元の位置又は元の姿勢に速やかに復帰させることができる。
前記飛行制御器は、前記左側推力発生部が生み出す推力の向きを前記第3軸線周り前側又は後側に傾斜させ且つ前記右側推力発生部が生み出す推力の向きを前記第4軸線周りに前側及び後側のうち前記左側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の前後方向成分を制御し、且つ前記前側推力発生部が生み出す推力の向きを前記第1軸線周り左側又は右側に傾斜させ且つ前記後側推力発生部が生み出す推力の向きを前記第2軸線周りに左側及び右側のうち前記前側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の左右方向成分を制御してもよい。
この構成によれば、X軸、Y軸方向への2つの力の制御を適切におこなうことができる。
前記飛行制御器は、前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が生み出す推力の向きをそれぞれ前記支持部の上下方向に延びる軸周りの円周方向において互いに同一の側に傾斜させ、前記機体本体のヨー軸周りの姿勢を制御してもよい。
この構成によれば、ヨー軸周りの姿勢の制御力を大きくすることができる。
前記飛行制御器は、前記機体本体が受ける慣性力と重力との合力方向を算出し、前記前側推力発生部が生み出す推力と前記後側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のピッチ軸周りの姿勢を制御し、前記合力方向に前記機体本体を傾斜させてもよい。
この構成によれば、機体本体が受ける遠心力等の慣性力と重力との合力方向に機体を傾けることができる。
前記飛行制御器は、前記機体本体が受ける慣性力と重力との合力方向を算出し、前記左側推力発生部が生み出す推力と前記右側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のロール軸周りの姿勢を制御し、前記合力方向に前記機体本体を傾斜させてもよい。
この構成によれば、機体本体が受ける遠心力等の慣性力と重力との合力方向に機体を傾けることができる。
前記飛行制御器は、前記機体本体が受ける慣性力と重力との合力方向を算出し、前記前側推力発生部が生み出す推力と前記後側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のピッチ軸周りの姿勢を制御し、前記左側推力発生部が生み出す推力と前記右側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のロール軸周りの姿勢を制御し、前記合力方向に前記機体本体を傾斜させてもよい。
この構成によれば、機体本体が受ける遠心力等の慣性力と重力との合力方向に機体を傾けることができる。特に、旋回時においては、飛行経路の曲りによる遠心力等の慣性力と重力との合力方向に機体を傾けたまま旋回する釣り合い旋回をおこなうことができる。
前記機体本体は乗員が搭乗可能であってもよい。
この構成によれば、釣り合い旋回によって、機体本体に搭乗した乗員が不快な前後又は左右方向の加速度を感じないようにすることができる。
前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部は、それぞれ前記第1軸線、前記第2軸線、前記第3軸線及び前記第4軸線のうち対応する軸線と交差する方向に延びる軸線周りに回転するロータと、先端部が前記ロータに接続され且つ基端部が前記支持部に前記対応する軸線周りに回動可能に接続された支持ビームと、前記ロータを回転させるロータ駆動部と、前記対応する軸線周りに前記支持ビームを回動させる支持ビーム駆動部と、を含んでいてもよい。
この構成によれば、各推力発生部の構成を簡素化することができ、製造に有利、且つ、製造コストも安価となる。
前記機体本体は、操縦者が鞍乗りするためのシートを有していてもよい。
この構成によれば、機体本体に搭乗する操縦者の姿勢を安定させるとともに、機体との一体感を増すことで操縦者に機体姿勢の把握を容易にさせることができる。
ある態様に係る飛行体の制御方法は、機体本体と、前記機体本体を支持する支持部と、前側推力発生部、後側推力発生部、左側推力発生部、及び右側推力発生部を含む推力発生ユニットと、前記推力発生ユニットを制御する飛行制御器と、を備え、前記前側推力発生部は、前記支持部の前後方向に延びる第1軸線上且つ前記支持部の前方に位置して前記支持部に接続され、前記第1軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第1軸線周りに推力の向きを変更可能であり、前記後側推力発生部は、前記支持部の前後方向に延びる第2軸線上且つ前記支持部の後方に位置して前記支持部に接続され、前記第2軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第2軸線周りに推力の向きを変更可能であり、前記左側推力発生部は、前記支持部の左右方向に延びる第3軸線上且つ前記支持部の左方に位置して前記支持部に接続され、前記第3軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第3軸線周りに推力の向きを変更可能であり、前記右側推力発生部は、前記支持部の左右方向に延びる第4軸線上且つ前記支持部の右方に位置して前記支持部に接続され、前記第4軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第4軸線周りに推力の向きを変更可能である、飛行体の制御方法であって、前記左側推力発生部が生み出す推力の向きを前記第3軸線周り前側又は後側に傾斜させ且つ前記右側推力発生部が生み出す推力の向きを前記第4軸線周りに前側及び後側のうち前記左側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の前後方向成分を制御するステップと、前記前側推力発生部が生み出す推力の向きを前記第1軸線周り左側又は右側に傾斜させ且つ前記後側推力発生部が生み出す推力の向きを前記第2軸線周りに左側及び右側のうち前記前側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の左右方向成分を制御するステップと、を備える。
この構成によれば、X軸、Y軸、Z軸方向への3つの力の制御と、ピッチ軸、ロール軸、ヨー軸周りの3つのモーメントの制御の6つの制御を個別におこなうことができる。これによって、X軸、Y軸、Z軸方向への位置又は速度の制御に伴って、不必要なピッチ軸、ロール軸、ヨー軸周りの姿勢の変化が生じることを抑制することができる。
また、ガスト等の外乱により、飛行体の位置又は姿勢が乱れたときに、元の位置又は元
の姿勢に速やかに復帰させることができる。
前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が生み出す推力の向きをそれぞれ前記支持部の上下方向に延びる軸周りの円周方向において互いに同一の側に傾斜させ、前記機体本体のヨー軸周りの姿勢を制御するステップを更に備えていてもよい。
この構成によれば、ヨー軸周りの姿勢の制御力を大きくすることができる。
前記機体本体が受ける慣性力と重力との合力方向を算出するステップと、前記前側推力発生部が生み出す推力と前記後側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のピッチ軸周りの姿勢を制御し、前記合力方向に前記機体本体を傾斜させるステップと、を更に備えていてもよい。
この構成によれば、機体本体が受ける遠心力等の慣性力と重力との合力方向に機体を傾けることができる。
前記機体本体が受ける慣性力と重力との合力方向を算出するステップと、前記左側推力発生部が生み出す推力と前記右側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のロール軸周りの姿勢を制御し、前記合力方向に前記機体本体を傾斜させるステップと、を更に備えていてもよい。
この構成によれば、機体本体が受ける遠心力等の慣性力と重力との合力方向に機体を傾けることができる。
前記機体本体が受ける慣性力と重力との合力方向を算出するステップと、前記前側推力発生部が生み出す推力と前記後側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のピッチ軸周りの姿勢を制御し、前記左側推力発生部が生み出す推力と前記右側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のロール軸周りの姿勢を制御し、前記合力方向に前記機体本体を傾斜させるステップと、を更に備えていてもよい。
この構成によれば、機体本体が受ける遠心力等の慣性力と重力との合力方向に機体を傾けることができる。特に、旋回時においては、飛行経路の曲りによる遠心力等の慣性力と重力との合力方向に機体を傾けたまま旋回する釣り合い旋回をおこなうことができる。
他の態様に係る飛行体の制御方法は、機体本体と、前記機体本体を支持する支持部と、前側推力発生部、後側推力発生部、左側推力発生部、及び右側推力発生部を含む推力発生ユニットと、飛行状態及び操縦入力情報を検知する飛行制御情報検知部と、前記推力発生ユニットを制御する飛行制御器と、を備え、前記前側推力発生部は、前記支持部の前後方向に延びる第1軸線上且つ前記支持部の前方に位置して前記支持部に接続され、前記第1軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第1軸線周りに推力の向きを変更可能であり、前記後側推力発生部は、前記支持部の前後方向に延びる第2軸線上且つ前記支持部の後方に位置して前記支持部に接続され、前記第2軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第2軸線周りに推力の向きを変更可能であり、前記左側推力発生部は、前記支持部の左右方向に延びる第3軸線上且つ前記支持部の左方に位置して前記支持部に接続され、前記第3軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第3軸線周りに推力の向きを変更可能であり、前記右側推力発生部は、前記支持部の左右方向に延びる第4軸線上且つ前記支持部の右方に位置して前記支持部に接続され、前記第4軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第
4軸線周りに推力の向きを変更可能である、飛行体の制御方法であって、前記飛行制御情報検知部で検知された前記飛行状態及び前記操作入力情報に基づいて、前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が発生すべき推力の大きさを制御するステップと、前記飛行制御情報検知部で検知された前記機体本体が受けている加速度情報に基づいて、前記機体本体が受けている加速度が目標値となるように、前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が発生する前記推力の向きを制御するステップとを、備える。
この構成によれば、X軸、Y軸、Z軸方向への3つの力の制御と、ピッチ軸、ロール軸、ヨー軸周りの3つのモーメントの制御の6つの制御を個別におこなうことができる。これによって、X軸、Y軸、Z軸方向への位置又は速度の制御に伴って、不必要なピッチ軸、ロール軸、ヨー軸周りの姿勢の変化が生じることを抑制することができる。
また、ガスト等の外乱により、飛行体の位置又は姿勢が乱れたときに、元の位置又は元の姿勢に速やかに復帰させることができる。
前記飛行制御情報検知部は、前記機体が受ける前後方向慣性力を検出し、前記推力の向きを制御するステップは、前記前後方向慣性力の変動が少なくなるよう左側推力発生部が生み出す推力の向きを前記第3軸線周り前側又は後側に傾斜させ且つ右側推力発生部が生み出す推力の向きを前記第4軸線周りに前側及び後側のうち前記左側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の前後方向成分を制御するステップを含んでいてもよい。
この構成によれば、機体本体が受ける前後方向慣性力の変動を小さく抑えることができ、乗員の乗り心地が向上するとともに、推力発生部の発生する推力の大きさのみを制御して機体全体の向きを制御する場合と比較し、推力発生部のみの向きを制御することで動かす慣性モーメントが小さくなり、応答性を上げることができる。
前記飛行制御情報検知部は、前記機体が受ける左右方向慣性力を検出し、前記推力の向きを制御するステップは、前記左右方向慣性力がゼロに近づくよう前側推力発生部が生み出す推力の向きを前記第1軸線周り左側又は右側に傾斜させ且つ後側推力発生部が生み出す推力の向きを前記第2軸線周りに左側及び右側のうち前記前側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の左右方向成分を制御するステップを含んでいてもよい。
この構成によれば、機体本体が受ける左右方向慣性力を小さく抑えることができ、乗員の乗り心地が向上するとともに、推力発生部の発生する推力の大きさのみを制御して機体全体の向きを制御する場合と比較し、推力発生部のみの向きを制御することで動かす慣性モーメントが小さくなり、応答性を上げることができる。
前記飛行制御情報検知部は、前記機体が受ける前後及び左右方向慣性力を検出し、前記推力の向きを制御するステップは、前記前後方向慣性力の変動が少なくなるよう左側推力発生部が生み出す推力の向きを前記第3軸線周り前側又は後側に傾斜させ且つ右側推力発生部が生み出す推力の向きを前記第4軸線周りに前側及び後側のうち前記左側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の前後方向成分を制御し、且つ前記左右方向慣性力がゼロに近づくよう前側推力発生部が生み出す推力の向きを前記第1軸線周り左側又は右側に傾斜させ且つ後側推力発生部が生み出す推力の向きを前記第2軸線周りに左側及び右側のうち前記前側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の左右方向成分を制御するステップを含んでいてもよい。
この構成によれば、機体本体が受ける前後及び左右方向慣性力を小さく抑えることができ、乗員の乗り心地が向上するとともに、推力発生部の発生する推力の大きさのみを制御して機体全体の向きを制御する場合と比較し、推力発生部のみの向きを制御することで動かす慣性モーメントが小さくなり、応答性を上げることができる。
以下、実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
(実施の形態1)
図1は、実施の形態1に係る飛行体100の構成例を示す斜視図である。
飛行体100は、垂直離着陸可能なマルチロータ航空機である。飛行体100は、例えば有人機であるが、無人機であってもよい。
飛行体100は、図1に示すように、機体本体1と、支持部2と、推力発生ユニット3と、飛行制御器4(図3,図4参照)と、飛行制御情報検知部5(図3,図4参照)とを備える。
機体本体1は、操縦者等の乗員が搭乗可能に構成され、飛行体100を操縦するための図示しない操縦機器が設けられている。また、飛行体100が前進することによって揚力を発生させる固定翼部11が機体本体1に設けられていてもよい。これによって、高速飛行時の推力発生ユニット3の揚力に余裕をもたせることができ、より大きな推力を前進方向に向けることができ、飛行体100を高速化することができる。なお、本実施の形態において、機体本体1は、推力発生ユニット3の下方に配設されているがこれに限られるものではない。これに代えて、推力発生ユニット3の上方に配設されてもよく、更には推力発生ユニット3と同一平面上に配設されてもよい。
支持部2は、推力発生ユニット3と機体本体1とを接続し、推力発生ユニット3から機体本体1を吊り下げた状態で、機体本体1を支持する。なお、支持部2は機体本体1と区別することなく一体に構成されてもよい。
図2は、推力発生ユニット3の構成例を概略的に示す平面図である。
推力発生ユニット3は、例えば空気流を生み出し、空気流の流れ方向と反対向きに推力を発生させる機構である。推力発生ユニット3は、図2に示すように、機体本体1の前後左右に位置する4つの推力発生部、すなわち前側推力発生部31と、後側推力発生部32と、左側推力発生部33と、右側推力発生部34とを含む。すなわち、ある水平面上において、4つの推力発生部は90度の回転対称に配置されている。これら4つの推力発生部は、例えば後述するロータ51を回転させて推力を得る機構であるがこれに限られるものではない。
前側推力発生部31は、支持部2の前後方向に延びる第1軸線R1上に位置する。そして、前側推力発生部31は、支持部2の前方に位置して支持部2に接続され、第1軸線R1と交差する方向に推力を生み出すように構成されている。また、前側推力発生部31は、推力の大きさ及び第1軸線R1周りに推力の向きを変更可能に構成されている。
後側推力発生部32は、支持部2の前後方向に延びる第2軸線R2上に位置する。そして、後側推力発生部32は、支持部2の後方に位置して支持部2に接続され、第2軸線R
2と交差する方向に推力を生み出すように構成されている。また、後側推力発生部32は、推力の大きさ及び第2軸線R2周りに推力の向きを変更可能に構成されている。本実施の形態において、第1軸線R1及び第2軸線R2は、同軸に構成され、第1軸線R1及び第2軸線R2が延びる方向がX方向となるように規定されている。また、第1軸線R1及び第2軸線R2は、飛行体100のロール軸と平行に延びている。
左側推力発生部33は、支持部2の左右方向に延びる第3軸線R3上に位置する。そして、左側推力発生部33は、支持部2の左方に位置して支持部2に接続され、第3軸線R3と交差する方向に推力を生み出すように構成されている。また、左側推力発生部33は、推力の大きさ及び第3軸線R3周りに推力の向きを変更可能に構成されている。
右側推力発生部34は、支持部2の左右方向に延びる第4軸線R4上に位置する。そして、右側推力発生部34は、支持部2の右方に位置して支持部2に接続され、第4軸線R4と交差する方向に推力を生み出すように構成されている。また、右側推力発生部34は、推力の大きさ及び第4軸線R4周りに推力の向きを変更可能に構成されている。本実施の形態において、第3軸線R3及び第4軸線R4は、同軸に構成され、第3軸線R3及び第4軸線R4が延びる方向がX方向と直交するY方向となるように規定されている。また、第3軸線R3及び第4軸線R4は、飛行体100のピッチ軸と平行に延びている。そして、第1軸線R1乃至第4軸線R4に直交する方向がZ方向となるように規定されている。
前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右側推力発生部34は、本実施の形態において、図1に示すように、それぞれ、ロータ51と、支持ビーム52と、ロータ駆動部53(図3,図4参照)と、支持ビーム駆動部54(図3,図4参照)とを含む。
ロータ51は、所定の軸線回りに回転する回転翼である。前側推力発生部31のロータ51は、第1軸線R1と交差する方向に延びる軸線L1周りに回転する。回転するロータ51の軌跡がロータ面である。後側推力発生部32のロータ51は、第2軸線R2と交差する方向に延びる軸線L2周りに回転する。左側推力発生部33のロータ51は、第3軸線R3と交差する方向に延びる軸線L3周りに回転する。右側推力発生部34のロータ51は、第4軸線R4と交差する方向に延びる軸線L4周りに回転する。第1軸線R1乃至第4軸線R4は、それぞれ軸線L1乃至軸線L4と直交してもよい。
ロータ51は、図1において、ロータヘッド51aと、ロータヘッド51aに取り付けられた2枚のロータブレード51bを有する迎角固定のものを例示している。ロータヘッド51aとロータブレード51bとは、ロータブレード51bの迎角を変化させることができる図示しない関節を介して接続されていてもよい。
支持ビーム52は、先端部がロータ51に接続され、基端部が支持部2に所定の軸線周りに回動可能に接続されている。前側推力発生部31の支持ビーム52は、支持部2に第1軸線R1周りに回動可能に接続されている。後側推力発生部32の支持ビーム52は、支持部2に第2軸線R2周りに回動可能に接続されている。左側推力発生部33の支持ビーム52は、支持部2に第3軸線R3周りに回動可能に接続されている。右側推力発生部34の支持ビーム52は、支持部2に第4軸線R4周りに回動可能に接続されている。
ロータ駆動部53(図3,図4参照)は、ロータ51を回転させる駆動部である。ロータ駆動部53は、例えば、電動モータ、レシプロエンジン等の駆動源と、駆動源の駆動力をロータ51に伝達するギヤ、プーリ等の駆動力伝達機構とを含む。ロータ駆動部53は、回転駆動出力を変化させることにより、生み出す推力を変化させるように構成されてい
る。また、前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右側推力発生部34のロータ駆動部53は、それぞれ対応するロータ51を回転させるように構成され、推力発生部31~34が生み出す推力を個別に変化させることができる。なお、推力発生部31~34が生み出す推力は、ロータブレード51bの迎角を変化させることによって変化させてもよい。
なお、前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右側推力発生部34は、偶数個のロータ51を含むように構成されている。そして、これら偶数個のロータ51は、同数のロータ51を含む2つの群に分けられ、一方の群に属するロータ51と他方の群に属するロータ51とは反対方向に回転するように構成されている。本実施の形態において、前側推力発生部31及び後側推力発生部32が一方の群に属し、左側推力発生部33及び右側推力発生部34が他方の群に属するように構成されている。
支持ビーム駆動部54(図3,図4参照)は、支持ビーム52を回動させる駆動部である。支持ビーム駆動部54は、電動モータ等の駆動源と、駆動源の駆動力を支持ビーム52に伝達するギヤ、リンク等の駆動力伝達機構とを含む。支持ビーム駆動部54が前側推力発生部31及び後側推力発生部32の支持ビーム52を回動させることによって、前側推力発生部31及び後側推力発生部32のロータ51のロータ面を左右に傾斜させることができ、推力の向きを左右に傾斜させるように構成されている。また、支持ビーム駆動部54が左側推力発生部33及び右側推力発生部34の支持ビーム52を回動させることによって、左側推力発生部33及び右側推力発生部34のロータ51のロータ面を前後に傾斜させることができ、推力の向きを前後に傾斜させるように構成されている。前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右側推力発生部34の支持ビーム駆動部54は、それぞれ対応する支持ビーム52を回動させるように構成され、推力発生部31~34が生み出す推力の向きを個別に変化させることができる。
このように、機体本体1は、4つの推力発生部31,32,33,34によって囲まれる領域の略中心に位置するように構成されている。よって、飛行体100の重心付近に機体本体1を位置させることができ、機体本体1に搭乗する乗員が飛行体100の姿勢の変化によって大きく揺さぶられることを防止することができ、乗り心地を向上させることができる。
図3は、飛行体100の制御系統の構成例を概略的に示すブロック図である。図4は、飛行体100の制御系統の構成例を概略的に示す斜視図である。
図3及び図4に示すように、飛行制御情報検知部5は、飛行体100に搭載された、飛行体100の飛行状態及び操縦入力を検出するための情報を検知するセンサである。飛行制御情報検知部5は、例えば、ジャイロセンサ、加速度センサ、速度センサ、GPS(Global Positioning System)等の検知器を含み、飛行体100の位置、速度、及び加速度の
少なくとも何れかを検出し、また、飛行体100のロール軸周りの姿勢、ピッチ軸周りの姿勢、及びヨー軸周りの姿勢を検出し、また、操縦装置から入力されたコマンドを検出し、検出した情報を出力する。
飛行制御器4は、例えば、CPU等の演算器を有する制御部41と、ROM及びRAM等のメモリを有する記憶部42とを備えている。飛行制御情報検知部5から出力された情報は、飛行制御器4に入力される。制御部41は、集中制御する単独の制御器で構成されていてもよく、互いに協働して分散制御する複数の制御器で構成されてもよい。飛行制御器4は、記憶部42に記憶された飛行制御プログラム、及び飛行制御情報検知部5が検知した操縦者が操縦機器に入力した操縦内容を含む飛行制御に関する情報の少なくとも何れかに基づいて、前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右
側推力発生部34のそれぞれのロータ駆動部53及び支持ビーム駆動部54を制御し、飛行体100のX軸、Y軸、Z軸方向への3つの力と、ピッチ軸、ロール軸、ヨー軸周りの3つのモーメントを制御する。記憶部42には、所定の制御プログラムが格納されており、この所定の制御プログラムを制御部41が実行することにより飛行体100の飛行制御が行われる。
[動作例]
以下、飛行体100の飛行制御について詳述する。
図5は、飛行体100の飛行制御の概要を示す図である。
(X軸方向への力制御)
飛行体100をX軸方向前側に移動させるときは、飛行制御器4は、左側推力発生部33及び右側推力発生部34が生み出す推力の向きを第3軸線R3及び第4軸線R4周りにおける機体本体1の前側に傾斜させるように、すなわち左側推力発生部33及び右側推力発生部34のロータ面を第3軸線R3及び第4軸線R4周りにおける機体本体1の前側に傾斜させるように、左側推力発生部33を第3軸線R3周りに回動させ、且つ右側推力発生部34を第4軸線R4周りに回動させる。これによって、推力発生ユニット3が生み出す推力にX軸方向前側成分を発生させ、飛行体100をX軸方向前側に移動させることができる。
また、飛行体100をX軸方向後側に移動させるときは、飛行制御器4は、左側推力発生部33及び右側推力発生部34が生み出す推力の向きを第3軸線R3及び第4軸線R4周りにおける機体本体1の後側に傾斜させるように、すなわち左側推力発生部33及び右側推力発生部34のロータ面を第3軸線R3及び第4軸線R4周りにおける機体本体1の後側に傾斜させるように、左側推力発生部33を第3軸線R3周りに回動させ、且つ右側推力発生部34を第4軸線R4周りに回動させる。これによって、推力発生ユニット3が生み出す推力にX軸方向後側成分を発生させ、飛行体100をX軸方向後側に移動させることができる。
このようにして、飛行体100のX軸方向への移動を制御することができる。
(Y軸方向への力制御)
飛行体100をY軸方向左側に移動させるときは、飛行制御器4は、前側推力発生部31及び後側推力発生部32が生み出す推力の向きを第1軸線R1及び第2軸線R2周りにおける機体本体1の左側に傾斜させるように、すなわち前側推力発生部31及び後側推力発生部32のロータ面を第1軸線R1及び第2軸線R2周りにおける機体本体1の左側に傾斜させるように、前側推力発生部31を第1軸線R1周りに回動させ、且つ後側推力発生部32を第2軸線R2周りに回動させる。これによって、推力発生ユニット3が生み出す推力にY軸方向左側成分を発生させ、飛行体100をY軸方向左側に移動させることができる。
飛行体100をY軸方向右側に移動させるときは、飛行制御器4は、前側推力発生部31及び後側推力発生部32が生み出す推力の向きを第1軸線R1及び第2軸線R2周りにおける機体本体1の右側に傾斜させるように、すなわち前側推力発生部31及び後側推力発生部32のロータ面第1軸線R1及び第2軸線R2周りにおける機体本体1の右側に傾斜させるように、前側推力発生部31を第1軸線R1周りに回動させ、且つ後側推力発生部32を第2軸線R2周りに回動させる。これによって、推力発生ユニット3が生み出す推力にY軸方向右側成分を発生させ、飛行体100をY軸方向右側に移動させることができる。
このようにして、飛行体100のY軸方向への移動を制御することができる。
(Z軸方向への力制御)
飛行体100をZ軸方向上側に移動させるとき(上昇させるとき)は、飛行制御器4は、前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右側推力発生部34の支持ビーム駆動部54を駆動してロータ面を上方に向ける。そして、飛行制御器4は、各推力発生部のロータ駆動部53の回転駆動出力を増大させ、推力発生ユニット3が生み出す推力の上向き成分を増大させる。これによって、飛行体100を上昇させることができる。
飛行体100をZ軸方向下側に移動させるとき(下降させるとき)は、飛行制御器4は、前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右側推力発生部34の支持ビーム駆動部54を駆動してロータ面を上方に向ける。そして、飛行制御器4は、各推力発生部のロータ駆動部53の回転駆動出力を減少させ、推力発生ユニット3が生み出す推力の上向き成分を減少させる。これによって、飛行体100を下降させることができる。
このようにして、飛行体100のZ軸方向への移動を制御することができる。
(ピッチ軸周りのモーメント制御)
機体本体1をピッチ軸周りに回転させるモーメントを生み出すときは、飛行制御器4は、前側推力発生部31が生み出す推力と後側推力発生部32が生み出す推力との間に推力差を発生させる。
すなわち、乗員から見て機体本体1をピッチ軸周り前側に回転させるときは、前側推力発生部31が生み出す推力が後側推力発生部32が生み出す推力よりも小さくなるように、前側推力発生部31のロータ駆動部53の回転駆動出力と後側推力発生部32のロータ駆動部53の回転駆動出力とを変化させる。また、乗員から見て機体本体1をピッチ軸周り後側に回転させるときは、後側推力発生部32が生み出す推力が前側推力発生部31が生み出す推力よりも小さくなるように、前側推力発生部31のロータ駆動部53の回転駆動出力と後側推力発生部32のロータ駆動部53の回転駆動出力とを変化させる。このようにして、ピッチ軸周りの機体本体1の姿勢を制御することができる。
なお、前側推力発生部31が生み出す推力と後側推力発生部32が生み出す推力との合計の推力を一定に保ちながら、前側推力発生部31が生み出す推力と後側推力発生部32が生み出す推力との間に推力差を発生させてもよい。すなわち、一方の推力発生部が生み出す推力は基準となる値に所定の値を加算した推力とし、他方の推力発生部が生み出す推力は基準となる値に所定の値を減算した推力としてもよい。これによって、前側推力発生部31及び後側推力発生部32が生み出すZ軸周り一方側のトルクと、左側推力発生部33及び右側推力発生部34が生み出すZ軸周り他方側のトルクとの釣り合いを保つことができ、ピッチ軸周りの姿勢制御がヨー軸周りの姿勢制御に影響を及ぼすことを防止することができ、飛行体100の制御を簡素化することができる。後述するロール軸周りのモーメント制御についても同様に制御してもよい。
(ロール軸周りのモーメント制御)
機体本体1をロール軸周りに回転させるモーメントを生み出すときは、飛行制御器4は、左側推力発生部33が生み出す推力と右側推力発生部34が生み出す推力との間に推力差を発生させる。
すなわち、乗員から見て機体本体1をロール軸周り左側に回転させるときは、左側推力発生部33が生み出す推力が右側推力発生部34が生み出す推力よりも小さくなるように、左側推力発生部33のロータ駆動部53の回転駆動出力と右側推力発生部34のロータ駆動部53の回転駆動出力とを変化させる。また、乗員から見て機体本体1をロール軸周り右側に回転させるときは、右側推力発生部34が生み出す推力が左側推力発生部33が生み出す推力よりも小さくなるように、左側推力発生部33のロータ駆動部53の回転駆動出力と右側推力発生部34のロータ駆動部53の回転駆動出力とを変化させる。このようにして、ロール軸周りの機体本体1の姿勢を制御することができる。
(ヨー軸周りのモーメント制御)
機体本体1をヨー軸周りに回転させるモーメントを生み出すときは、飛行制御器4は、前側推力発生部31、後側推力発生部32、左側推力発生部33、及び右側推力発生部34が生み出す推力の向きをそれぞれ支持部2の上下方向に延びる軸周り、すなわちZ軸周りの円周方向において互いに同一の側に傾斜させ、機体本体1のヨー軸周りの姿勢を制御する。
すなわち、乗員から見て機体本体1をヨー軸周り左側に回転させるときは、前側推力発生部31が生み出す推力の向きが飛行体100の左方に傾斜するように、前側推力発生部31を第1軸線R1周り左側に回動させ、且つ左側推力発生部33が生み出す推力の向きが飛行体100の後方に傾斜するように、左側推力発生部33を第3軸線R3周り後側に回動させ、且つ後側推力発生部32が生み出す推力の向きが飛行体100の右方に傾斜するように、後側推力発生部32を第2軸線R2周り右側に回動させ、且つ右側推力発生部34が生み出す推力の向きが飛行体100の前方に傾斜するように、右側推力発生部34を第4軸線R4周り前側に回動させる。
また、乗員から見て機体本体1をヨー軸周り右側に回転させるときは、前側推力発生部31が生み出す推力の向きが飛行体100の右方に傾斜するように、前側推力発生部31を第1軸線R1周り右側に回動させ、且つ左側推力発生部33が生み出す推力の向きが飛行体100の前方に傾斜するように、左側推力発生部33を第3軸線R3周り前側に回動させ、且つ後側推力発生部32が生み出す推力の向きが飛行体100の左方に傾斜するように、後側推力発生部32を第2軸線R2周り左側に回動させ、且つ右側推力発生部34が生み出す推力の向きが飛行体100の後方に傾斜するように、右側推力発生部34を第4軸線R4周り後側に回動させる。
なお、機体本体1のヨー軸周りの姿勢変更は、前側推力発生部31及び後側推力発生部32のロータ51の回転によって生み出されるZ軸周り一方側のトルクと、左側推力発生部33及び右側推力発生部34のロータ51の回転によって生み出されるZ軸周り一方側のトルクとの釣り合いを崩すことによって行うこともできる。しかし、本実施の形態において、飛行体100は、推力発生ユニット3が生み出す推力を用いて機体本体1のヨー軸周りの姿勢制御をおこなうことができるので、上記の釣り合いを崩すことにより制御する場合と比較して、制御力を大きくすることができる。
なお、前側推力発生部31及び後側推力発生部32が生み出す推力の向きをそれぞれ支持部2の上下方向に延びる軸周り、すなわちZ軸周りの円周方向において互いに同一の側に傾斜させ、機体本体1のヨー軸周りの姿勢を制御してもよい。若しくは、左側推力発生部33、及び右側推力発生部34が生み出す推力の向きをそれぞれ支持部2の上下方向に延びる軸周り、すなわちZ軸周りの円周方向において互いに同一の側に傾斜させ、機体本体1のヨー軸周りの姿勢を制御してもよい。
なお、機体本体1のヨー軸周りの姿勢変更は、上記のZ軸周り一方側のトルクとの釣り
合いを崩す制御を併用してもよい。
以上のように、飛行体100は、X軸方向への移動、Y軸方向への移動、Z軸方向への移動、ロール軸周りの機体本体1の姿勢変更、ピッチ軸周りの機体本体1の姿勢変更、ヨー軸周りの機体本体1の姿勢変更に係る6つの制御を互いに独立して制御することができる。すなわち、不必要な機体本体1の姿勢変化を起こさずに機体本体1の位置又は速度を制御することができるので、機体本体1の姿勢を安定させることができる。
図6は、旋回等の機動を含む飛行時における飛行体100の姿勢制御を示すフローチャートである。
図6に示すように、姿勢制御において、飛行制御器4は、まず、飛行制御情報検知部5が検知した飛行状態と操縦入力情報から飛行体100の飛行経路を予測する(ステップS11)。
次に、飛行制御器4は、予測した飛行経路に基づき機体本体1が受ける遠心力等の慣性力と重力との合力方向を算出する(ステップS12)。すなわち、予測した飛行経路を飛行体100が飛行した場合に機体本体1に作用する加速度の向きを算出する。
次に、飛行制御器4は、飛行制御情報検知部5が検知した機体本体1が受けている現在の加速度と、前記予測した加速度とを比較する(ステップS13)。
次に、飛行制御器4は、機体本体1のピッチ軸、及びロール軸周りの少なくとも何れか一方の姿勢を制御し(ステップS14)、算出した合力方向に機体本体1を向ける。すなわち、飛行制御器4は、前記ステップS12において予測した加速度の向きが機体のZ軸と合致するよう機体本体1のピッチ軸、ロール軸周りの入力量を求め姿勢を制御する。これによって、機体本体1が受ける慣性力と重力との合力方向に機体を傾けることができる。特に、旋回時においては、飛行経路の曲りによる遠心力等の慣性力と重力との合力方向に機体を傾けたまま旋回する釣り合い旋回をおこなうことができる。そして、有人機においては、機体本体1に搭乗する乗員が不快な前後及び左右方向の加速度を感じないようにすることができる。なお、この制御と同時にX軸、Y軸、Z軸方向への力制御、並びにヨー軸周りの姿勢制御を行ってもよい。
図7は、飛行体100の飛行シミュレーションの結果を示すタイミングチャートであり、時刻t1において外乱によってロール軸周りに姿勢が乱れた後、時刻t2から行った制御によって飛行体100が元の位置及び姿勢に復帰するまでの飛行体100の挙動を示す図である。図7の1段目において飛行体100のロール軸周りの角度位置の経時的な変化を示し、2段目において飛行体100のY方向の位置の経時的な変化を示し、3段目において飛行体100の左側推力発生部33及び右側推力発生部34の推力の経時的な変化を示し、4段目において飛行体100の前側推力発生部31の第1軸線R1周りの回転角及び後側推力発生部32の第2軸線R2周りの回転角の経時的な変化を示している。なお、図7の2段目に示すように、時刻t1において外乱によって機体本体1がロール軸周りに傾いて姿勢が乱れると、これと同時に推力発生ユニット3が生み出す推力の機体本体1の左右方向成分が生じ、飛行体100がY軸方向に移動し、元の位置から外れる。
図8は、図7に示すシミュレーションと同一の条件のシミュレーションを従来の飛行体を用いて行った結果を示すタイミングチャートであり、図7と同様に、時刻t1において外乱によってロール軸周りに姿勢が乱れた後、時刻t2から行った制御によって飛行体100が元の位置及び姿勢に復帰するまでの従来の飛行体の挙動を示す図である。この従来の飛行体とは、機体本体に対する推力発生ユニットが生み出す推力の向きが所定方向(機
体本体の上方)に固定されている周知の飛行体である。この従来の飛行体がX軸、Y軸方向に移動するときは、ピッチ軸、ロール軸周りに姿勢を変更することによって、移動方向への成分を有する推力を生み出すように制御される。図8の1段目において飛行体100のロール軸周りの角度位置の経時的な変化を示し、2段目において飛行体100のY方向の位置の経時的な変化を示し、3段目において飛行体100の左側推力発生部33及び右側推力発生部34の推力の経時的な変化を示している。
図7に示すように、時刻t2において、飛行制御器4は、左側推力発生部33が生み出す推力と右側推力発生部34が生み出す推力との間に推力差を発生させ、機体本体1をロール軸周りに回転させ、機体本体1の姿勢を元の姿勢に復帰させる。図8に示す従来の飛行体と比較して、短時間で元の姿勢に収束させることができることがわかる。これによって、乗員が前後左右に揺さぶられることを抑制することができ、乗り心地を向上させることができる。同時に、飛行制御器4は、前側推力発生部31及び後側推力発生部32が生み出す推力の向きを第1軸線R1及び第2軸線R2周りに傾斜させ、推力発生ユニット3が生み出す推力の飛行体100のY軸方向成分を生じさせ、飛行体100をY軸方向右側への移動を止めたうえで左側に移動させ、飛行体100の位置を元の位置に復帰させる。このように、飛行体100は、姿勢を安定化しつつ、位置又は速度を制御できるので、図8に示す従来の飛行体と比較して、短時間で元の位置に収束させることができることがわかる。また、機体本体1は、移動方向の制御とは別に姿勢を制御することができるので、特に高速前進飛行時において機体本体1が受ける空気抵抗が小さい概略水平姿勢を維持することで機体本体1が受ける空気抵抗を抑制することができる。
更に、ロール軸周りのモーメント制御に用いる推力発生部(左側推力発生部33及び右側推力発生部34)とY軸方向への力制御に用いる推力発生部(前側推力発生部31及び後側推力発生部32)とが異なっているので、ロール軸周りのモーメント制御とY軸方向への力制御とを同時におこなう場合における制御力を大きくすることができる。これは、ピッチ軸周りのモーメント制御とX軸方向への力制御とを同時に行う場合についても同様である。
以上に説明したように、飛行体100は、X軸、Y軸、Z軸方向への3つの力の制御と、ピッチ軸、ロール軸、ヨー軸周りの3つのモーメントの制御の6つの制御を個別におこなうことができる。これによって、X軸、Y軸、Z軸方向への位置又は速度の制御に伴って、不必要なピッチ軸、ロール軸、ヨー軸周りの姿勢の変化が生じることを抑制することができる。
また、外乱等により、飛行体100の位置又は姿勢が乱れたときに、元の位置又は元の姿勢に速やかに復帰させることができる。
<推力発生ユニットの変形例>
図9~11は、推力発生ユニットの変形例を示す図である。
上記実施の形態において、推力発生ユニット3は、機体本体1の前後左右に位置する4つの推力発生部、すなわち前側推力発生部31と、後側推力発生部32と、左側推力発生部33と、右側推力発生部34とを含む。しかし、これに限られるものではない。
これに代えて、図9に示すように、推力発生ユニット3は、第1前側推力発生部231Aと、第2前側推力発生部231Bと、第1後側推力発生部232Aと、第2後側推力発生部232Bと、左側推力発生部33と、右側推力発生部34とを含み、機体本体1の前後左右に位置する6つの推力発生部を備えていてもよい。第1前側推力発生部231A及び第1後側推力発生部232Aは、X軸方向に延びる同一の軸線上に位置するように構成されている。また、第2前側推力発生部231B及び第2後側推力発生部232Bは、X
軸方向に延びる同一の軸線上に位置するように構成されている。第1前側推力発生部231A及び第2前側推力発生部231Bのその他の構成は、前側推力発生部31と同様であるのでその詳細な説明を省略する。第1後側推力発生部232A及び第2後側推力発生部232Bのその他の構成は、後側推力発生部32と同様であるのでその詳細な説明を省略する。
また、図10に示すように、推力発生ユニット3は、第1前側推力発生部331Aと、第2前側推力発生部331Bと、第1後側推力発生部332Aと、第2後側推力発生部332Bと、第1左側推力発生部333Aと、第2左側推力発生部333Bと、第1右側推力発生部334Aと、第2右側推力発生部334Bとを含み、機体本体1の前後左右に位置する8つの推力発生部を備えていてもよい。第1左側推力発生部333A及び第1右側推力発生部334Aは、Y軸方向に延びる同一の軸線上に位置するように構成されている。また、第2左側推力発生部333B及び第2右側推力発生部334Bは、Y軸方向に延びる同一の軸線上に位置するように構成されている。第1左側推力発生部333A及び第2左側推力発生部333Bのその他の構成は、左側推力発生部33と同様であるのでその詳細な説明を省略する。第1右側推力発生部334A及び第2右側推力発生部334Bのその他の構成は、右側推力発生部34と同様であるのでその詳細な説明を省略する。また、第1前側推力発生部331A及び第2前側推力発生部331Bの構成は、それぞれ第1前側推力発生部231A及び第2前側推力発生部231Bの構成と同様であるのでその詳細な説明を省略する。更に、第1後側推力発生部332A及び第2後側推力発生部332Bの構成は、それぞれ第1後側推力発生部232A及び第2後側推力発生部232Bと同様であるのでその詳細な説明を省略する。
更に、図11に示すように、推力発生ユニット3の前側推力発生部431、後側推力発生部432、左側推力発生部433及び右側推力発生部434は、それぞれ2つのロータ、すなわち、外側ロータ451A及び内側ロータ451Bを備えていてもよい。この場合において、支持ビーム52は、先端部が外側ロータ451Aに接続され、基端部寄りの部分が内側ロータ451Bに接続されている。
<翼部の変形例>
図12は、飛行体100の変形例を示す図であり、飛行体100の支持ビーム52と一体的に形成された翼部552を有する例を示す斜視図である。
図12に示すように、支持ビーム52と一体的に形成された翼部552を有していてもよい。翼部552は、ロータ51よりもロータ51が生み出す空気流の流れ方向下流側に位置し、ロータ51が生み出す空気流が流れる方向をコード方向(翼弦方向)とする翼形に形成されている。これによって、前進飛行時には左側推力発生部33及び右側推力発生部34の前傾に伴って翼部552はコード方向が前方に傾斜し、翼部552が生み出す揚力によって飛行体100の重力の多くを支持することができる。なお、翼部552は、支持ビーム52が延びる方向において、根元が支持ビーム52の基端部に対応する位置に位置し、根元から翼端に向かう部分が支持ビーム52が延びる方向に延び、翼端が支持ビーム52の先端部よりもさらに外側まで延びている。
<支持ビーム駆動部の変形例>
図13は、支持ビーム駆動部の変形例を示す図である。
上記実施の形態において、支持ビーム駆動部54は、電動モータ等のアクチュエータを例示したがこれに限られるものではない。これに代えて、支持ビーム駆動部は、ロータ51のサイクリックピッチ角を変化させる機構であってもよい。ロータ51のサイクリックピッチ角を変化させることによって、ロータ自身が発生する空気力により支持ビーム52
を回動させることができる。
また、図13に示すように、支持ビーム駆動部は、空力的舵面を有する舵654と、舵654の舵面迎角をロータ51が生み出す空気流の流れ方向に対して変更する駆動部とを含む機構であってもよい。舵654をロータ51が生み出す空気流の流れ方向に対して迎角をとることによって空気力を発生させ、支持ビーム52を回動させるモーメントを生み出し、支持ビーム52を回動させてもよい。
<姿勢制御の変形例>
図14は、飛行体100の姿勢制御の変形例を示すフローチャートである。
本変形例において、飛行制御情報検知部5は、飛行体100が受ける前後及び左右方向慣性力及び操縦装置から入力されたコマンドを検出する。
そして、図14に示すように、姿勢制御において、飛行制御器4は、まず、飛行制御情報検知部5が検知した飛行状態と操縦入力情報に基づいて、推力発生ユニット3の各推力発生部31-34が発生すべき推力の大きさを算出し(ステップS21)、各推力発生部の推力の大きさを制御する(ステップS22)。すなわち、飛行制御器4は、ピッチ軸周りのモーメント制御、ロール軸周りのモーメント制御、及びZ軸方向への力制御を実施し、飛行体100が操縦入力に対応した飛行経路をたどるように制御する。
次に、飛行制御器4は、機体本体1が受けている前後及び/又は左右方向加速度が目標とする状態になるように各推力発生装置の向きの調整量を算出し(ステップS23)、各推力発生部の発生する推力の向き(ステップ24)を制御する。すなわち、飛行制御器4は、X軸方向及びY軸方向への力制御を実施し、機体本体1が受けている加速度状態が目標とする加速度状態に近づくように制御する。
このうち目標とする前後方向の加速度状態は、例えば変動が無い状態である。固定翼部11の迎角の制御によって、前後方向に加速度が生じる場合があり、目標を変動が無い状態とすることによって、ステップ24に係る制御が迎角の制御と干渉することを防ぐことができる。そして、飛行制御器4は、目標とする加速度状態に近づくように、すなわち前後方向慣性力の変動が少なくなるように、左側推力発生部33が生み出す推力の向きを第3軸線R3周り前側又は後側に傾斜させる。更に、飛行制御器4は、右側推力発生部34が生み出す推力の向きを第4軸線R4周りに前側及び後側のうち左側推力発生部33と同じ側に傾斜させる。これによって、推力発生ユニット3が生み出す推力の機体本体1の前後方向成分を制御することができる。なお、固定翼部11の迎角の制御を実施しない場合においては、目標とする前後方向の加速度をゼロとしてもよい。
また、目標とする左右方向の加速度状態は、例えばゼロである。そして、飛行制御器4は、目標とする加速度状態に近づくように、すなわち、左右方向慣性力の変動が少なくなるように、前側推力発生部31が生み出す推力の向きを第1軸線R1周り左側又は右側に傾斜させる。更に、飛行制御器4は、後側推力発生部32が生み出す推力の向きを第2軸線R2周りに左側及び右側のうち前側推力発生部31と同じ側に傾斜させる。これによって、推力発生ユニット3が生み出す推力の機体本体1の左右方向成分を制御することができる。
これによって、飛行体100は操縦者あるいは自動操縦装置が望んだ飛行経路をたどるために推力発生部の推力の大きさを調整し飛行体100全体の姿勢を変化させながら飛行し、その操縦の結果やガスト等の外乱の影響を受けて生じた姿勢の乱れを推力発生部の向きを制御することで素早く修正することができる。また、機体本体が受ける前後及び左右
方向慣性力の変動を小さく抑えることができ、乗員の乗り心地が向上するとともに、推力発生部の発生する推力の大きさのみを制御して機体全体の向きを制御する場合と比較し、推力発生部のみの向きを制御することで動かす慣性モーメントが小さくなり、応答性を上げることができる。
(実施の形態2)
図15は、実施の形態2に係る飛行体00の構成例を示す斜視図である。
図15に示すように、本実施の形態において、機体本体1は、操縦者が鞍乗りするためのシート701を有する。シート701の前方にはハンドル702が配設され、操縦者はシート701に鞍乗りした上で、ハンドル702を握って飛行体00に載ることができる。これによって、有人の飛行体00において、機体本体1の構成を簡素化することができ、機体本体1を軽量化することができ、推力発生ユニット3を小型化することができる。また、外乱により機体本体1の姿勢が不安定となったときにおいても、操縦者の姿勢を安定させるとともに、操縦者に機体姿勢の把握を容易にさせることができる。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
R1 第1軸線
R2 第2軸線
R3 第3軸線
R4 第4軸線
1 機体本体
2 支持部
3 推力発生ユニット
4 飛行制御器
31 前側推力発生部
32 後側推力発生部
33 左側推力発生部
34 右側推力発生部
100 飛行体

Claims (13)

  1. 機体本体と、
    前記機体本体を支持する支持部と、
    前側推力発生部、後側推力発生部、左側推力発生部、及び右側推力発生部を含む推力発生ユニットと、
    前記推力発生ユニットを制御する飛行制御器と、を備え、
    前記前側推力発生部は、前記支持部の前後方向に延びる第1軸線上且つ前記支持部の前方に位置して前記支持部に接続され、前記第1軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第1軸線周りに推力の向きを変更可能であり、
    前記後側推力発生部は、前記支持部の前後方向に延びる第2軸線上且つ前記支持部の後方に位置して前記支持部に接続され、前記第2軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第2軸線周りに推力の向きを変更可能であり、
    前記左側推力発生部は、前記支持部の左右方向に延びる第3軸線上且つ前記支持部の左方に位置して前記支持部に接続され、前記第3軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第3軸線周りに推力の向きを変更可能であり、
    前記右側推力発生部は、前記支持部の左右方向に延びる第4軸線上且つ前記支持部の右方に位置して前記支持部に接続され、前記第4軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第4軸線周りに推力の向きを変更可能であり、
    前記飛行制御器は、前記機体本体が受ける慣性力と重力との合力方向を算出し、前記推力発生ユニットを制御して前記合力方向に前記機体本体を傾斜させる、
    飛行体。
  2. 前記飛行制御器は、
    前記前側推力発生部が生み出す推力の向きを前記第1軸線周り左側又は右側に傾斜させ且つ前記後側推力発生部が生み出す推力の向きを前記第2軸線周りに左側及び右側のうち前記前側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の左右方向成分を制御し、
    前記前側推力発生部が生み出す推力と前記後側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のピッチ軸周りの姿勢を制御し、
    前記左側推力発生部が生み出す推力と前記右側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のロール軸周りの姿勢を制御し、
    前記合力方向に前記機体本体を傾斜させる、
    請求項1に記載の飛行体。
  3. 前記飛行制御器は、
    前記左側推力発生部が生み出す推力の向きを前記第3軸線周り前側又は後側に傾斜させ且つ前記右側推力発生部が生み出す推力の向きを前記第4軸線周りに前側及び後側のうち前記左側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の前後方向成分を制御する、
    請求項1又は2に記載の飛行体。
  4. 前記飛行制御器は、
    前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が生み出す推力の向きをそれぞれ前記支持部の上下方向に延びる軸周りの円周方向において互いに同一の側に傾斜させ、前記機体本体のヨー軸周りの姿勢を制御する、
    請求項1乃至3のいずれか1に記載の飛行体。
  5. 前記機体本体は乗員が搭乗可能である、
    請求項1乃至4の何れか1に記載の飛行体。
  6. 前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部は、
    それぞれ前記第1軸線、前記第2軸線、前記第3軸線及び前記第4軸線のうち対応する軸線と交差する方向に延びる軸線周りに回転するロータと、
    先端部が前記ロータに接続され且つ基端部が前記支持部に前記対応する軸線周りに回動可能に接続された支持ビームと、
    前記ロータを回転させるロータ駆動部と、前記対応する軸線周りに前記支持ビームを回動させる支持ビーム駆動部と、を含む、
    請求項1乃至5の何れか1に記載の飛行体。
  7. 前記機体本体は、
    操縦者が鞍乗りするためのシートを有する、
    請求項1乃至6の何れか1に記載の飛行体。
  8. 機体本体と、
    前記機体本体を支持する支持部と、
    前側推力発生部、後側推力発生部、左側推力発生部、及び右側推力発生部を含む推力発生ユニットと、
    前記推力発生ユニットを制御する飛行制御器と、を備え、
    前記前側推力発生部は、前記支持部の前後方向に延びる第1軸線上且つ前記支持部の前方に位置して前記支持部に接続され、前記第1軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第1軸線周りに推力の向きを変更可能であり、
    前記後側推力発生部は、前記支持部の前後方向に延びる第2軸線上且つ前記支持部の後方に位置して前記支持部に接続され、前記第2軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第2軸線周りに推力の向きを変更可能であり、
    前記左側推力発生部は、前記支持部の左右方向に延びる第3軸線上且つ前記支持部の左方に位置して前記支持部に接続され、前記第3軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第3軸線周りに推力の向きを変更可能であり、
    前記右側推力発生部は、前記支持部の左右方向に延びる第4軸線上且つ前記支持部の右方に位置して前記支持部に接続され、前記第4軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第4軸線周りに推力の向きを変更可能である、
    飛行体の制御方法であって、
    前記機体本体が受ける慣性力と重力との合力方向を算出するステップと、
    前記推力発生ユニットを制御し前記合力方向に前記機体本体を傾斜させるステップと、
    を備える飛行体の制御方法。
  9. 前記前側推力発生部が生み出す推力の向きを前記第1軸線周り左側又は右側に傾斜させ且つ前記後側推力発生部が生み出す推力の向きを前記第2軸線周りに左側及び右側のうち前記前側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の左右方向成分を制御するステップをさらに備え、
    前記推力発生ユニットを制御し前記合力方向に前記機体本体を傾斜させるステップは、
    前記前側推力発生部が生み出す推力と前記後側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のピッチ軸周りの姿勢を制御し、
    前記左側推力発生部が生み出す推力と前記右側推力発生部が生み出す推力との間に推力差を発生させ、前記機体本体のロール軸周りの姿勢を制御する、
    請求項8に記載の飛行体の制御方法。
  10. 前記左側推力発生部が生み出す推力の向きを前記第3軸線周り前側又は後側に傾斜させ且つ前記右側推力発生部が生み出す推力の向きを前記第4軸線周りに前側及び後ろ側のうち前記左側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の前後方向成分を制御するステップをさらに備える、
    請求項8又は9に記載の飛行体の制御方法。
  11. 前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が生み出す推力の向きをそれぞれ前記支持部の上下方向に延びる軸周りの円周方向において互いに同一の側に傾斜させ、前記機体本体のヨー軸周りの姿勢を制御するステップを更に備える、
    請求項8乃至10の何れか1に記載の飛行体の制御方法。
  12. 機体本体と、
    前記機体本体を支持する支持部と、
    前側推力発生部、後側推力発生部、左側推力発生部、及び右側推力発生部を含む推力発生ユニットと、
    飛行状態及び操縦入力情報を検知する飛行制御情報検知部と、
    前記推力発生ユニットを制御する飛行制御器と、を備え、
    前記前側推力発生部は、前記支持部の前後方向に延びる第1軸線上且つ前記支持部の前方に位置して前記支持部に接続され、前記第1軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第1軸線周りに推力の向きを変更可能であり、
    前記後側推力発生部は、前記支持部の前後方向に延びる第2軸線上且つ前記支持部の後方に位置して前記支持部に接続され、前記第2軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第2軸線周りに推力の向きを変更可能であり、
    前記左側推力発生部は、前記支持部の左右方向に延びる第3軸線上且つ前記支持部の左方に位置して前記支持部に接続され、前記第3軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第3軸線周りに推力の向きを変更可能であり、
    前記右側推力発生部は、前記支持部の左右方向に延びる第4軸線上且つ前記支持部の右方に位置して前記支持部に接続され、前記第4軸線と交差する方向に推力を生み出し且つ推力の大きさ及び前記第4軸線周りに推力の向きを変更可能である、飛行体の制御方法であって、
    前記飛行制御情報検知部で検知された前記飛行状態及び前記操縦入力情報に基づいて、前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が発生すべき推力の大きさを制御するステップと、
    前記飛行制御情報検知部で検知された前記機体本体が受けている加速度情報に基づいて、前記機体本体が受けている加速度が目標値となるように、前記前側推力発生部、前記後側推力発生部、前記左側推力発生部及び前記右側推力発生部が発生する前記推力の向きを制御するステップとを、備え、
    前記飛行制御情報検知部は、前記機体本体が受ける左右方向慣性力を検出し、
    前記推力の向きを制御するステップは、前記左右方向慣性力がゼロに近づくよう前側推力発生部が生み出す推力の向きを前記第1軸線周り左側又は右側に傾斜させ且つ後側推力発生部が生み出す推力の向きを前記第2軸線周りに左側及び右側のうち前記前側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の左右方向成分を制御するステップを含む、
    飛行体の制御方法。
  13. 前記飛行制御情報検知部は、前記機体本体が受ける前後方向慣性力を検出し、
    前記推力の向きを制御するステップは、
    前記前後方向慣性力の変動が少なくなるよう左側推力発生部が生み出す推力の向きを前記第3軸線周り前側又は後側に傾斜させ且つ右側推力発生部が生み出す推力の向きを前記第4軸線周りに前側及び後側のうち前記左側推力発生部と同じ側に傾斜させて前記推力発生ユニットが生み出す推力の前記機体本体の前後方向成分を制御するステップを含む、
    請求項12に記載の飛行体の制御方法。
JP2018151639A 2017-08-10 2018-08-10 飛行体及び飛行体の制御方法 Active JP7265845B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017155967 2017-08-10
JP2017155967 2017-08-10

Publications (2)

Publication Number Publication Date
JP2019034725A JP2019034725A (ja) 2019-03-07
JP7265845B2 true JP7265845B2 (ja) 2023-04-27

Family

ID=65274741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151639A Active JP7265845B2 (ja) 2017-08-10 2018-08-10 飛行体及び飛行体の制御方法

Country Status (2)

Country Link
US (1) US11161605B2 (ja)
JP (1) JP7265845B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3784570B1 (en) * 2018-04-27 2022-10-26 Textron Systems Corporation Variable pitch rotor assembly for electrically driven vectored thrust aircraft applications
JP6923026B1 (ja) * 2020-02-27 2021-08-18 沖電気工業株式会社 飛行体およびプログラム
US11840351B2 (en) * 2021-04-05 2023-12-12 Beta Air, Llc Aircraft for self-neutralizing flight

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226281A1 (en) 2004-11-17 2006-10-12 Walton Joh-Paul C Ducted fan vertical take-off and landing vehicle
US20100301168A1 (en) 2006-11-02 2010-12-02 Severino Raposo System and Process of Vector Propulsion with Independent Control of Three Translation and Three Rotation Axis
JP2016501154A (ja) 2012-12-07 2016-01-18 デロリアン エアロスペース リミテッド ライアビリティ カンパニー 垂直離着陸機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880071A (en) * 1988-08-10 1989-11-14 Tracy Stephen E Toy air vehicle
JPH04173497A (ja) 1990-11-05 1992-06-22 Haruo Sukai 飛行体
US5419514A (en) * 1993-11-15 1995-05-30 Duncan; Terry A. VTOL aircraft control method
EP2121439B1 (en) * 2007-02-16 2012-11-14 Donald Orval Shaw Modular flying vehicle
EP2625098A4 (en) * 2010-10-06 2018-01-17 Donald Orval Shaw Aircraft with wings and movable propellers
US20150274289A1 (en) * 2014-03-31 2015-10-01 The Boeing Corporation Vertically landing aircraft
FR3032687B1 (fr) * 2015-02-16 2018-10-12 Hutchinson Aerodyne vtol a soufflante(s) axiale(s) porteuse(s)
WO2016136848A1 (ja) * 2015-02-25 2016-09-01 株式会社プロドローン マルチコプター
US10655728B2 (en) * 2015-12-01 2020-05-19 The Boeing Company Reconfigurable lubrication system for tiltrotor transmission
WO2018056484A1 (ko) * 2016-09-26 2018-03-29 장태정 다목적 비행체
WO2018064209A1 (en) * 2016-09-28 2018-04-05 Kitty Hawk Corporation Tilt-wing aircraft
EP3366582B1 (en) * 2017-02-28 2019-07-24 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A multirotor aircraft with an airframe and a thrust producing units arrangement
AU2018278804A1 (en) * 2017-06-01 2020-01-23 Surefly, Inc. Auxiliary power system for rotorcraft with folding propeller arms and crumple zone landing gear
US10850842B2 (en) * 2017-07-17 2020-12-01 National Chiao Tung University Unmanned aerial vehicle and method using the same
US11104427B2 (en) * 2017-08-01 2021-08-31 Panasonic Intellectual Property Corporation Of America Unmanned air vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226281A1 (en) 2004-11-17 2006-10-12 Walton Joh-Paul C Ducted fan vertical take-off and landing vehicle
US20100301168A1 (en) 2006-11-02 2010-12-02 Severino Raposo System and Process of Vector Propulsion with Independent Control of Three Translation and Three Rotation Axis
JP2016501154A (ja) 2012-12-07 2016-01-18 デロリアン エアロスペース リミテッド ライアビリティ カンパニー 垂直離着陸機

Also Published As

Publication number Publication date
JP2019034725A (ja) 2019-03-07
US20190047693A1 (en) 2019-02-14
US11161605B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US10739791B2 (en) Method and apparatus for flight control of tiltrotor aircraft
US8128033B2 (en) System and process of vector propulsion with independent control of three translation and three rotation axis
EP3000722B1 (en) Aircraft
JP4412545B2 (ja) ジェットパワー3モード航空機のための高度な飛行制御のシステムおよび方法
JP6456641B2 (ja) マルチロータクラフトの姿勢安定化制御装置
JP2008513296A (ja) 回転翼航空機
US20020113165A1 (en) Aircraft and control system
JP7265845B2 (ja) 飛行体及び飛行体の制御方法
JP2020535079A (ja) 垂直離着陸機
US10836482B2 (en) Rotorcraft having a rotary wing and at least two propellers, and a method applied by the rotorcraft
KR20170012543A (ko) 고정 로터 추력 벡터링
JP2021529695A (ja) テールシッター
EP3730404B1 (en) Vertical take-off and landing aircraft and related control method
CN112292317B (zh) 飞行体以及飞行体的控制方法
JP2018086916A (ja) 飛行体
JP6803602B2 (ja) 飛行体の姿勢制御方法
WO2023167130A1 (ja) 飛行体
JP3236741U (ja) テールシッタ式飛行体
WO2021140555A1 (ja) 飛行体の制御装置および飛行体の制御方法
WO2021070262A1 (ja) 飛行体
Yathish et al. THE DESIGN AND DEVELOPMENT OF TRANSITIONAL UAV CONFIGURATION
JPH04138192A (ja) プロペラ駆動式風船玩具

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7265845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150