JP7255504B2 - 粒状凝固スラグの製造方法およびその製造設備列 - Google Patents

粒状凝固スラグの製造方法およびその製造設備列 Download PDF

Info

Publication number
JP7255504B2
JP7255504B2 JP2020011889A JP2020011889A JP7255504B2 JP 7255504 B2 JP7255504 B2 JP 7255504B2 JP 2020011889 A JP2020011889 A JP 2020011889A JP 2020011889 A JP2020011889 A JP 2020011889A JP 7255504 B2 JP7255504 B2 JP 7255504B2
Authority
JP
Japan
Prior art keywords
slag
solidified
solid
equipment
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011889A
Other languages
English (en)
Other versions
JP2021116213A (ja
Inventor
伸行 紫垣
恵太 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020011889A priority Critical patent/JP7255504B2/ja
Publication of JP2021116213A publication Critical patent/JP2021116213A/ja
Application granted granted Critical
Publication of JP7255504B2 publication Critical patent/JP7255504B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、溶融スラグを凝固させた後に破砕処理を行う、粒状凝固スラグの製造方法およびこの製造に好適な製造設備列に関する。
例えば、高炉法による製鉄プロセスでは、鉄鋼製品の副産物として大量のスラグが発生する。一般に、このスラグは、水砕処理や蒸気エージング処理などにより品質制御を行った上で商品化されている。すなわち、高炉スラグの大半は水砕処理され、高炉水砕スラグとしてセメント向け原料として使用される。また、製鋼スラグについては、予め蒸気エージング処理により遊離石灰(f-CaO)の水和膨張を促進させた後に、路盤材向けなどの用途で使用されている。
一方で、近年の、CO2排出削減の観点から、スラグの新たな価値が着目されている。例えば、溶融スラグは約1.8GJ/t-slagの熱を保有しており、スラグから熱回収を行うことにより、省エネルギー化によるCO2削減が期待されている。また、スラグ中のf-CaOの炭酸化についても、CO2固定化技術の1つとして期待されている。しかしながら、これらのスラグ処理方法は、上記スラグ商品化のためのプロセスと両立しない場合が多く、実用化には多くの課題を有する。
溶融スラグの保有熱を回収しながらスラグ商品化を行うプロセスとして、例えば特許文献1に開示されるように、鋳型上で板状に高炉スラグを凝固させた後、板状の凝固スラグを熱間破砕してからスラグ熱回収設備に充填して熱回収を行う方法が考えられる。この方法によれば、スラグの熱回収による省エネルギー効果が得られると共に、スラグ商品として低吸水率かつ耐磨耗性に優れた緻密な骨材を製造することが出来る。
ここで、凝固スラグは緻密で強度が高いため、熱間で凝固スラグを破砕することが難しい。特許文献1にて開示される方法において、熱間破砕が十分に行われないと、破砕後の凝固スラグが粗粒化してしまうため、スラグ総表面積が小さくなり、熱回収の効率が下がることになる。また、溶融スラグの温度は1600℃程度と極めて高いために鋳型への熱負荷が大きく、特に凝固厚が厚い場合には、鋳型の耐久性が問題になる。更に、溶融スラグを完全に凝固させるまでに時間がかかるため、鋳型を連続的に搬送しながらスラグを凝固させる鋳滓機も大型化する必要がある。
また、特許文献2には、粒状スラグを敷き詰めてスラグ層を形成し、該スラグ層に溶融スラグを流し込んで該溶融スラグを凝固させてスラグ塊状物を得ることが提案されている。この特許文献2に記載の技術は、溶融スラグが凝固する際に凝固収縮孔や内部歪による破壊を生じさせないことによって、高品質のスラグ塊状物を提供するものである。従って、比較的大きな塊であっても崩壊しない、緻密なスラグ塊状物をもたらす点で、熱間破砕が前提になる上記した溶融スラグの熱回収には適していないものであった。
特開2014-85064号公報 特許第6414047号公報
上記の特許文献2に記載の技術は、溶融スラグが凝固する際に凝固収縮孔や内部歪による破壊を生じさせないことによって、高品質のスラグ塊状物を提供するものである。従って、比較的大きな塊であっても崩壊しない、緻密なスラグ塊状物をもたらす点で、熱間破砕が前提になる上記した溶融スラグの熱回収には適していないものであった。
そこで、本発明は、溶融スラグを凝固して作製する凝固スラグについて、溶融スラグが有する熱を回収するのに好適な、凝固スラグを簡便な熱間破砕にて作製することを目的とする。また、本発明の別の目的は、凝固スラグからの熱回収に加えて、蒸気エージング処理や炭酸化処理をそれぞれ高効率に行うことを可能とする、粒状凝固スラグの製造設備列を提供することにある。
発明者らは、溶融スラグを固形スラグと共に鋳込んで粒状凝固スラグを作製する場合に、溶融スラグの凝固過程において、溶融スラグが凝固した凝固域および/または固形スラグに亀裂を発生させることが、その後の熱間破砕を簡便に行うのに極めて有効であることを知見し、本発明を完成するに到った。
すなわち、本発明の要旨は次のとおりである。
1.鋳型内に、溶融スラグおよび固形スラグのいずれか一方を供給してから前記溶融スラグおよび固形スラグのいずれか他方を供給し、前記鋳型内において前記固形スラグ相互間の隙間を前記溶融スラグで満たした状態にて前記溶融スラグの凝固を進行させて該凝固域および/または固形スラグに亀裂を導入し、該凝固後の凝固スラグを前記鋳型から取り出し粒状に破砕する、粒状凝固スラグの製造方法。
ここで、前記「凝固域」とは溶融スラグが凝固した部分であり、前記「凝固スラグ」とは前記溶融スラグが凝固後の、前記凝固域および前記固形スラグからなる前記鋳型内の鋳片を意味する。
2.前記溶融スラグおよび固形スラグのいずれか他方を供給した後、前記固形スラグを前記鋳型の底部に向かって押し込む、前記1に記載の粒状凝固スラグの製造方法。
3.前記凝固スラグを破砕して得られる粒状凝固スラグに対して熱回収処理を行う、前記1または2に記載の粒状凝固スラグ製造方法。
4.前記凝固スラグを破砕して得られる粒状凝固スラグに対して蒸気エージング処理を行う、前記1から3のいずれかに記載の粒状凝固スラグ製造方法。
5.前記凝固スラグを破砕して得られる粒状凝固スラグに対して炭酸化処理を行う、前記1から4のいずれかに記載の粒状凝固スラグ製造方法。
6.前記凝固スラグを破砕して得られる粒状凝固スラグを分級して選別した、粒状凝固スラグを前記固形スラグとして供給する、前記1から5のいずれかに記載の粒状凝固スラグ製造方法。
7.鋳型、該鋳型内に溶融スラグを供給する溶融スラグ供給装置および、前記鋳型内に固形スラグを供給する固形スラグ供給装置を有する固液スラグ混合凝固設備と、
前記固液スラグ混合凝固設備にて作製される凝固スラグを破砕して粒状凝固スラグを作製するスラグ破砕設備と、
を備える、粒状凝固スラグの製造設備列。
8.前記固液スラグ混合凝固設備は、前記溶融スラグおよび固形スラグが供給された前記鋳型に対して前記固形スラグの押し込みを行う圧下装置を有する、前記7に記載の粒状凝固スラグの製造設備列。
9.前記鋳型は、底部に複数の隆起部を有する、前記7または8に記載の粒状凝固スラグの製造設備列。
10.前記スラグ破砕設備は、前記凝固スラグに衝突による衝撃力を与えて該凝固スラグを破砕する回転体を有する、前記7から9のいずれかに記載の粒状凝固スラグの製造設備列。
11.前記スラグ破砕設備の下流側に、前記粒状凝固スラグの顕熱を回収するスラグ熱回収設備を有する、前記7から10のいずれかに記載の粒状凝固スラグの製造設備列。
12.前記スラグ破砕設備の下流側に、前記粒状凝固スラグに水蒸気を供給して蒸気エージングを行う水蒸気供給装置を有する、前記7から11のいずれかに記載の粒状凝固スラグの製造設備列。
13.前記スラグ破砕設備の下流側に、前記粒状凝固スラグに炭酸ガスを供給して炭酸化処理を行う炭酸ガス供給装置を有する、前記7から12のいずれかに記載の粒状凝固スラグの製造設備列。
14.前記熱回収設備の下流側に、前記水蒸気供給装置および炭酸ガス供給装置のいずれか一方または両方を配置する前記12または13に記載の粒状凝固スラグの製造設備列。
15.前記スラグ破砕設備の下流側に、前記粒状凝固スラグを粒度に応じて分級する分級装置を有し、前記分級装置と前記固形スラグ供給装置との間に、前記分級後の粒状凝固スラグを前記固形スラグ供給装置へ搬送するための搬送路を有する、前記7から14のいずれかに記載の粒状凝固スラグの製造設備列。
本発明によれば、粒状凝固スラグを簡便な熱間破砕によって得られるため、例えば、この粒状凝固スラグを用いる熱回収を高効率で行うことができ、凝固スラグからの熱回収による省エネルギー化が実現される。また、粒状凝固スラグはスラグ炭酸化処理にも適しているため、このスラグ炭酸化処理に供することでCO2固定化効果が得られ、その結果、CO2排出量を大幅に削減することが出来るため、工業上極めて有用である。
本発明の第1実施形態である製造設備列を示す図である。 本発明の第2実施形態である製造設備列を示す図である。 本発明の第3実施形態である製造設備列を示す図である。 鋳型の底部形状を示す図である。 本発明の第4実施形態である製造設備列を示す図である。 本発明の第5実施形態である製造設備列を示す図である。 本発明の第6実施形態である製造設備列を示す図である。 本発明の第9実施形態である製造設備列を示す図である。 本発明の第10実施形態である製造設備列を示す図である。
本発明の粒状凝固スラグの製造方法は、まず、鋳型内に、溶融スラグおよび固形スラグのいずれか一方を供給してから該溶融スラグおよび固形スラグのいずれか他方を供給し、前記鋳型内において溶融スラグを凝固することを基本とする。ここで、溶融スラグには、製鉄プロセスにて排出される高炉スラグや製鋼スラグを用いることができる。固形スラグには、高炉スラグや製鋼スラグを凝固させて粒状化したスラグを用いることができる。なお、固形スラグには、固形スラグ以外にも、例えばスラグと混合して使用されるコンクリートガラなどのスラグ以外の固形物を副次的に混合して固形スラグとして用いてもよい。
以下に、この粒状凝固スラグの製造方法に用いる、種々の製造設備列を参照して、詳しく説明する。
[第1実施形態]
すなわち、本発明の第1の実施形態について、図1を参照して詳しく説明する。図1は、本発明の方法に用いる製造設備列を示し、図中の符号1は鋳型であり、該鋳型1内に固形スラグS1を供給する固形スラグ供給装置2および、溶融スラグS2を供給する溶融スラグ供給装置3からなる、固液スラグ混合凝固設備4と、この固液スラグ混合凝固設備4にて作製される凝固スラグSを破砕して粒状凝固スラグSgを作製するスラグ破砕設備5とを備える。
この製造設備列において、第1の実施形態では、鋳型1に、固形スラグ供給装置2から固形スラグS1を供給したのち、同鋳型1に溶融スラグ供給装置3から溶融スラグS2を供給し、前記鋳型1に内において溶融スラグS2の凝固を行う。
[第2実施形態]
或いは、図2に示す別の製造設備列を用いる、第2の実施形態として示すとおり、鋳型1に、溶融スラグ供給装置3から溶融スラグS2を供給したのち、固形スラグ供給装置2から固形スラグS1を供給し、前記鋳型1内において溶融スラグS2の凝固を行う、手順でもよい。
なお、図1および2に示す実施形態において、固形スラグ供給装置2は、固形スラグS1を収容し所定量を切り出すホッパー2aと、ホッパーで切り出された固形スラグを鋳型1内に誘導するためのスラグ樋2bとを備えている。同様に、溶融スラグ供給装置3は、溶融スラグS2を収容し傾動することによって溶融スラグS2を供給する傾動鍋3aと、傾動鍋3aから供給された溶融スラグを鋳型1に注ぐためのスラグ樋3bとを備えている。いずれの装置も図示例に限定されず、固形スラグS1および溶融スラグS2の所定量での供給を行うことができれば構成は問わない。
ちなみに、上記した第1の実施形態は、用いる鋳型1が比較的小さい場合に特に有効である。一方、鋳型1が比較的大きい場合は、溶融スラグS2供給時のスラグ流量が大きくなると、事前に装入した固形スラグS1が溶融スラグS2の流れにより押し流されて鋳型1内に均一に分散配置出来なくなる、場合も想定される。かように、大型の鋳型1を用いる場合は、該鋳型1内に先に溶融スラグS2を供給した後に、固形スラグS1を装入する、第2実施形態が好適である。
いずれの実施形態においても、鋳型1内に、固形スラグS1および溶融スラグS2を供給したのち、当該鋳型1内において、固形スラグS1相互間の隙間を溶融スラグS2で満たした状態にて該溶融スラグS2の凝固を進行させて該凝固域に亀裂を導入することが肝要である。
すなわち、常温に近い固形スラグS1と約1600℃の溶融スラグS2とでは温度差が極めて大きいため、溶融スラグと固形スラグとを混合して凝固させると、凝固スラグ内部に大きな熱応力が発生し、亀裂発生が促進される。また、凝固スラグは冷却により熱収縮するのに対し、固形スラグは加熱により熱膨張するため、体積変化に伴う亀裂発生も促進される。更に、凝固スラグと固形スラグの境界部では結晶界面の不整合が生じるため、凝固スラグと固形スラグの境界部は、溶融スラグのみを凝固させた凝固スラグに比べると亀裂が進展し易い。以上の相乗効果により、固液スラグを混合して凝固させたスラグは、溶融スラグのみを凝固させた凝固スラグと比べて熱間破砕し易いため、簡易的な破砕により凝固スラグの粒状化が可能となる。
上記の相乗効果を確実に発揮させるには、例えば、図1および2に示すように、鋳型1内において固形スラグS1の積層数を制限(図示例は単層)し、この固形スラグS1の層内に溶融スラグS2を配置して凝固を進行させることによって、上記した相乗効果を確実に現出させて、当該凝固中に亀裂を導入することが有利である。
ここに、鋳型内に供給する固形スラグは、凝固スラグを容易に破砕できるようにするため、好ましくは凝固厚の3/4以上の層厚になるまで供給することが好ましい。なぜなら、本発明では固形スラグと凝固スラグとの界面近傍に生じる亀裂をスラグ破砕処理における破壊の起点とするため、固形スラグの層厚が凝固スラグの層厚に比べて薄くなると、凝固スラグ内部に破壊の起点となる亀裂が生じない領域が多くなり、スラグ破砕処理が困難になるためである。
また、固形スラグの粒径は、凝固厚の3/4以上の粒径を有する固形スラグを1層のみ供給する方法が最も好ましいが、それ以下の粒径である固形スラグを用いて複層化して供給しても良い。但し、固形スラグの粒径が細かくなり過ぎると、溶融スラグが固形スラグの間隙に浸透し難くなり、更に、凝固スラグと固形スラグとの境界部に生じる亀裂も、固液混合凝固スラグの厚さ方向に対して進展し難くなる。したがって、固形スラグを複層化して供給する場合には、鋳型内の固形スラグが3層以下程度になるように固形スラグの粒径を調整する。固形スラグと凝固スラグの固液比については、固液混合凝固スラグが容易に破砕可能であれば特に制限はされないが、例えば高炉スラグのようにSiO2が多いスラグの場合には、固形スラグが溶融スラグに対して多過ぎると、固形スラグと鋳型による急冷作用により凝固スラグが一部ガラス化する可能性があるので、固形スラグの供給量を抑えて凝固スラグの冷却速度および凝固完了後のスラグ温度を調整しても良い。
上述した特許文献1に記載の方法では、凝固厚が厚くなると鋳型への熱負荷が大きくなるが、本件第1の発明による設備を用いると、固形スラグに伝わる熱量分だけ鋳型への熱負荷が小さくなるので、鋳型の熱負荷低減という観点においても好適である。
ここでいう「亀裂」とは、固形スラグ相互の間隙に浸透した溶融スラグが凝固する際に、固形スラグによる急冷効果や、固形スラグと溶融スラグとの熱収縮および/または熱膨張の差により、溶融スラグ凝固域と固形スラグとの界面近傍に熱応力が生じることで発生する局所的な亀裂である。この亀裂は、凝固スラグ内部の熱応力を緩和する形で進展し、主には固形スラグ相互の間隙の凝固域において、固形スラグ間を橋渡しするような形態で5~20mm程度の長さで発生するが、この熱応力は固形スラグ側にも作用するため、固形スラグ側に亀裂が発生する場合もある。いずれにしても、凝固域および/または固形スラグに亀裂を導入することによって、割れの起点を形成しておくことが肝要である。
かように溶融スラグS2の凝固域に亀裂を導入しておけば、固形スラグS1および溶融スラグS2が混合後に凝固した凝固スラグSを、その後のスラグ破砕設備5において簡便に粒状に破砕することができる。すなわち、上記に従って固液スラグを混合凝固させた凝固スラグSは、溶融スラグのみを供給して凝固させた従前の凝固スラグに比べて割れ易いため、簡易的な破砕により粒状化が可能である。
なお、凝固後の凝固スラグSを前記鋳型から取り出したのち粒状に破砕するための、スラグ破砕設備5は、後述の図6に示すような回転体を適用することができるが、これに限られない。
[第3実施形態]
また、図3に示すように、上記した図2の手順において、固形スラグS1および溶融スラグS2をそれぞれ供給した後に、圧下装置6を用いて、固形スラグS1を前記鋳型1の底部に向かって押し込む、操作を加えることが、以下の点で有利である。すなわち、溶融スラグS2を鋳型1で凝固させる際、溶融スラグS2の温度が非常に高温であるため、溶融スラグS2の表面が大気により急冷されて凝固層が形成される。鋳型1に供給された溶融スラグS2の表面に凝固層が形成される前に固形スラグS1の供給が完了していれば問題はないが、固形スラグS1の供給に先立って凝固層が形成されてしまうと、固形スラグS1の自重のみで固形スラグS1を鋳型1内に装入することが難しくなる。そのため、第3実施形態では、図3に示すように、固形スラグ供給装置2の下流側に圧下装置6を設け、鋳型1内に溶融スラグS2を供給した後に、鋳型1内に固形スラグS1を供給し、更に前記圧下装置6により固形スラグS1を鋳型1の底部方向へ圧下することによって、固形スラグS1を確実に鋳型1内の溶融スラグS2層内に装入する。なお、溶融スラグS2表面の凝固層が成長するに従い固形スラグS1の押し込みが難しくなるため、前記圧下装置6による固形スラグS1の圧下を凝固層が成長する前の比較的早い段階で実施できるように、前記圧下装置6は、固形スラグ供給装置2に近接して配置することが望ましい。
なお、圧下装置6としては、上下1軸のみで昇降する圧下装置や、鋳型1の水平移動に合わせて移動または揺動しながら昇降する多軸型の圧下装置を適用できるが、これに限られない。
さらに、鋳型1は、図4に示すように、底部に複数の隆起部1aを有することが、次の点で有利である。すなわち、鋳型1の底部の複数の隆起部1aにより固形スラグS1を支持することにより、固形スラグS1が溶融スラグS2供給時のスラグ流により押し流されるのを防止することができる。また、隆起部1a自体が鋳型1深さ方向の凝固厚tを局所的に小さくする効果もあるため、凝固スラグSの破砕時に有効に作用する。なお、隆起部1aは鋳型1の底部から隆起する部分が僅かでもあれば、上記した作用を発揮するが、隆起部の形状が先鋭だと熱応力が高くなり鋳型1を損傷させる懸念があるため、固形スラグS1を支持可能な高さで且つ比較的なだらかな隆起部形状として、等間隔に固形スラグS1が分配される形状とすることが好ましい。
[第4実施形態]
第4の実施形態は、上記した第1から第3の実施形態のいずれかによって破砕された粒状凝固スラグSgを用いて熱回収を行う、スラグ熱の熱回収設備を付帯する形態である。すなわち、図5に示すように、前記固液スラグ混合凝固設備4で凝固させた凝固スラグSは熱間でも容易に破砕可能であるため、前記スラグ破砕設備5を、図示のような回転体7に凝固スラグSを落下させて熱間で破砕する熱間破砕設備として、熱間破砕により高温の粒状凝固スラグSgを製造する。そして、高温の粒状凝固スラグSgを熱回収設備8へ装入してスラグ充填槽8a内に粒状凝固スラグSgを充填し、このスラグ充填槽8a内に空気等の冷却ガス8bを供給して粒状凝固スラグSgの保有熱の熱回収を行う。得られた熱回収ガス8cは、例えば製鉄所の各工程へ供給し、溶融スラグの保有熱の有効活用が図られる。また、熱回収後の粒状凝固スラグSgは、熱回収設備8から排出されたのち、製品スラグとして路盤材や骨材として出荷される。
ここで、上記した特許文献1に記載の従来方法では、溶融スラグを鋳型で凝固させる際に、溶融スラグの保有熱(凝固潜熱も含む)の多くは鋳型に奪われるか大気中に熱放散して損失する。これに対して、本発明に従う第4実施形態では、溶融スラグの保有熱の一部は固形スラグ側に移動して蓄熱されるため、当該熱回収設備による回収熱量は、特許文献1に記載の従来方法における回収熱量よりも大きくなる。熱回収設備8は、粒状凝固スラグSgの搬送方法や供給ピッチ等に応じて、コークス乾式消火設備(CDQ)のような縦型充填槽方式や、焼結クーラーのような回転床方式など、適宜に設計して用いることが可能である。
[第5実施形態]
図6に示す、第5の実施形態は、上記した第1から第3の実施形態のいずれかによって破砕された粒状凝固スラグSgに水蒸気を供給して蒸気エージングを行うための水蒸気供給装置9を付帯する形態である。すなわち、熱間破砕後の粒状凝固スラグSgをスラグ安定化処理設備10に装入し、このスラグ安定化処理設備10内に水蒸気供給装置9から水蒸気を供給する。粒状凝固スラグSgは総表面積が大きいため、スラグ内部への水蒸気の浸透効率が高く、効率的な蒸気エージング処理が可能である。そこで、前記スラグ破砕設備5を用いて破砕した粒状凝固スラグSgに水蒸気を供給して、以下の式(1)を主反応とする蒸気エージング処理を行う。かくして得られる製品スラグは、蒸気エージング処理によって膨張反応済のものとなり、路盤材や骨材として出荷することが可能になる。
CaO + H2O → Ca(OH)2 …(1)
[第6実施形態]
図7に示す、第6の実施形態は、前記スラグ破砕設備にて破砕した粒状凝固スラグSgに炭酸ガスを供給して炭酸化処理を行うための炭酸ガス供給装置11を付帯する形態である。すなわち、熱間破砕後の粒状凝固スラグSgをスラグ安定化処理設備10に装入し、このスラグ安定化処理設備10内に炭酸ガス供給装置11から炭酸ガスを供給する。粒状凝固スラグは総表面積が大きいため、炭酸ガスについても水蒸気の場合と同様に、スラグ内部への炭酸ガスの浸透効率が高く、効率的な炭酸化処理が可能である。そこで、前記スラグ破砕設備5を用いて破砕した粒状凝固スラグSgに炭酸ガスを供給して、以下の式(2)を主反応とする炭酸化処理を行う。かくして得られる製品スラグは、炭酸化処理によって膨張反応済のものとなり、路盤材や骨材として出荷することが可能になる。
CaO + CO2 → CaCO3 (2)
[第7実施形態]
第7実施形態として、前記熱回収設備8に、前記水蒸気供給装置9および炭酸ガス供給装置11の両方または何れか1つを組み込む形態とすることが可能である。すなわち、高温の粒状凝固スラグSgは1000℃程度の高温で熱回収設備8へ装入される。ここで、スラグの蒸気エージング処理および炭酸化処理について、平衡論上では、蒸気エージング処理におけるf-CaOの水和膨張は580℃以下、炭酸化処理におけるf-CaOの炭酸化は898℃以下において進行するため、蒸気エージング処理または炭酸化処理に先立って熱回収を行い、スラグ温度が十分に低下した後に、蒸気エージング処理および/または炭酸化処理に切り替えることが有利である。これらの処理方法の切り替えを、同じスラグ充填槽8a(図5参照)内にて行うことが好ましく、そのためには、前記熱回収設備8に、前記水蒸気供給装置9および炭酸ガス供給装置11の両方または何れか1つを組み込むことが好ましい。このような設備について特に図示はしないが、図5において、冷却ガス8bの供給を、空気、水蒸気および炭酸ガスに切換弁などにて選択できるように構成すればよい。以上の第7実施形態では、スラグ熱回収の進行度に応じて、例えば熱回収のための空気供給から蒸気エージングのための水蒸気供給への切り替えが可能となる。
なお、スラグ充填槽8a内におけるスラグ温度は、充填したスラグの形状および温度、熱回収中の熱回収ガス温度などを用いて、例えば、ISIJ International, Vol. 55 (2015), No. 10, pp. 2258-2265に示される、スラグ充填槽の非定常伝熱モデルを用いた計算により予測することが出来る。或いは、スラグと直接接触しているスラグ充填槽の内壁に熱電対を設置して、内壁温度から凝固スラグの温度を予測する方法も可能である。
[第8実施形態]
第8実施形態として、前記第4実施形態の熱回収設備8の下流側に、前記水蒸気供給装置9および炭酸ガス供給装置11の両方または何れか1つを設置する形態とすることも可能である。すなわち、図5に示した第4実施形態において、熱回収設備8のスラグ充填槽8a内の粒状凝固スラグSgは、冷却ガス8bの流通方向に温度分布を有するため、十分な時間をかけて熱回収を行うケース以外では、スラグ充填槽8a内の温度は均一にはならない。例えば、装入直後の1000℃程度の高温の凝固スラグと、熱回収終了後の100℃以下程度の低温の凝固スラグとが混在するようなスラグ充填槽になると、熱回収設備8内で蒸気エージング処理および炭酸化処理を行う際に、処理効果が何れも不均一になる可能性がある。そこで、熱回収設備8の下流側に、水蒸気供給装置9および炭酸ガス供給装置11の両方または何れか1つを、熱回収設備8と独立させて設け、熱回収設備8で所定温度まで凝固スラグを冷却した後に、熱回収後の凝固スラグを排出し、この排出スラグを、図6または図7に示したスラグ安定化処理設備10装入した後、水蒸気供給装置9および炭酸ガス供給装置11による、蒸気エージング処理および/または炭酸化処理を行うことが有効になる。
[第9実施形態]
図8に示す、第9実施形態は、前記スラグ破砕設備5の下流側に、前記粒状凝固スラグSgから所定粒度の凝固スラグSgを分級するためのスラグ分級装置12と、前記分級装置12により分級した凝固スラグの全部または一部を、前記固液スラグ混合凝固設備4の固形スラグ供給装置2まで搬送するためのスラグ搬送路13を設けた、形態である。すなわち、分級装置12において、前記鋳型1に供給する固形スラグとして適した粒度の凝固スラグSgを選別することを目的として、篩目を用いた篩分法などにより凝固スラグSgの分級を行うものである。ここで分級された凝固スラグは、その全部または一部を、固液スラグ混合凝固設備4の固形スラグ供給装置2における固形スラグS1として再利用する。
なお、分級装置12は、前記スラグ破砕設備5の下流側であれば、その設置場所は限定されない。例えば、図示例では、スラグ破砕設備5からの粒状凝固スラグSgをそのまま分級装置12に搬送しているが、図5に示した熱回収設備8の下流側に分級装置12を設け、熱回収設備8による熱回収を行ってから、分級装置12に導入して分級しても良い。或いは、図6および図7に示した水蒸気供給装置9および炭酸ガス供給装置11の下流側に分級装置12を設け、蒸気エージング処理および炭酸化処理のいずれか一方または両方を行ってから、分級装置12に導入して分級しても良い。
上記のように、蒸気エージング処理および/または炭酸化処理を行った凝固スラグを、固液スラグ混合凝固設備4における固形スラグとして再利用すると、固液混合凝固時における凝固完了温度が高い場合には、固形スラグS1が高温化して、上記した式(1)および/または式(2)の逆反応により水蒸気および/または炭酸ガスが発生する。この発生ガスの圧力によっても固液混合凝固スラグSgの亀裂発生が促進されるため、固液混合凝固スラグSgの破砕を目的とする本発明においては有効である。
[第10実施形態]
上記した熱回収設備8、水蒸気供給装置9、炭酸ガス供給装置11および分級装置12の全てを、前記固液スラグ混合凝固設備4およびスラグ破砕設備5に付帯することも可能である。例えば、図9に示すように、スラグ破砕設備5の出側に、熱回収設備8、分級装置12、水蒸気供給装置9および炭酸ガス供給装置11を順に配置した、製造設備列とすることが可能である。この実施形態によれば、上記した熱回収設備8、水蒸気供給装置9、炭酸ガス供給装置11および分級装置12のそれぞれの作用効果を併せ持つことができるのは勿論である。
ちなみに、分級装置12の配置は、熱回収設備8の出側とした図示例に限らず、スラグ破砕設備5の出側、水蒸気供給装置9の出側および炭酸ガス供給装置11の出側のいずれの位置であってもよいのは上述の通りである。
図1に示した製造設備列によって、表1に示す固形スラグおよび溶融スラグを用いて、粒状凝固スラグを作製する実験を実施した。固液スラグ混合凝固設備4における凝固条件を表2に示す。
本実験では、予め粒子径5~40mmの固形スラグを粒子径ごとに篩分けしたものを用意して、長さ250mm×幅250mm×高さ50mmの鉄製鋳型内に、固形スラグを単層または複層となるように敷き詰めた後、高周波溶解炉にて1600℃で溶融させた製鋼スラグを、該鋳型内で溶融スラグ深さが40mmになるまで供給し、固液混合凝固を行った。そして、溶融スラグ凝固開始から3分以上経過した後、固液混合凝固スラグを鋳型から取り出し、鋳型と接触していた側を上側として、表面目視観察により凝固スラグ表面の亀裂発生有無を確認した。次に、固液混合凝固スラグの表面をハンマーで軽く5回殴打して凝固スラグの破砕性を評価した。この凝固スラグの破砕性については、ハンマーによる殴打後の固形スラグと凝固スラグとの剥離性の良否により評価した。その結果を表2に示す。
Figure 0007255504000001
Figure 0007255504000002
表2に示すように、粒子径が10mm以下の細かい固形スラグを単層敷き詰めた実験(No.1~2)では、固形スラグ間隙への溶融スラグの浸透が不十分であったため、亀裂発生有無の目視確認が出来なかった。破砕性については、何れも固液混合凝固スラグの大半が凝固スラグであるため、固形スラグを巻き込んだ塊状スラグとなって大半が破砕しなかった。粒子径5mmの細かい固形スラグを多層に充填した実験(No.8)では、溶融スラグが固形スラグの間隙にほとんど浸透せず、固液混合凝固スラグ自体が得られなかった。固形スラグの粒子径を大きくした実験(No.3~7)では、固液混合凝固スラグの凝固スラグ表面に明瞭な亀裂が確認されるようになり、破砕性が大幅に改善した。特に、粒子径25mm以上の固形スラグを充填した実験(No.5~7)では、大半の凝固スラグが固形スラグから剥離して良好な破砕性が得られた。また、粒子径が25mmよりも小さい固形スラグの場合であっても、粒子径10mm以上の比較的大きめな固形スラグを3層以上敷き詰めた実験(No.9)では、溶融スラグが固形スラグの間隙に十分に浸透し、破砕性についても、当該サイズの固形スラグを単層で敷き詰めた実験と比べて良好な破砕性が得られた。
1 鋳型
2 固形スラグ供給装置
3 溶融スラグ供給装置
4 固液スラグ混合凝固設備
5 スラグ破砕設備
8 熱回収設備
9 水蒸気供給装置
11 炭酸ガス供給装置
12 分級装置
13 搬送路
S1 固形スラグ
S2 溶融スラグ
S 凝固スラグ
Sg 粒状凝固スラグ

Claims (15)

  1. 鋳型内に、溶融スラグおよび固形スラグのいずれか一方を供給してから前記溶融スラグおよび固形スラグのいずれか他方を供給するに当たり、前記鋳型内において前記固形スラグ相互間の隙間を前記溶融スラグで満たした状態にて前記溶融スラグを凝固させたときの、凝固厚の3/4以上の層厚になるまで前記固形スラグを供給し、次いで前記溶融スラグの凝固を進行させて該凝固域および固形スラグのいずれか一方または両方に亀裂を導入し、該凝固後の凝固スラグを前記鋳型から取り出し粒状に熱間破砕する、粒状凝固スラグの製造方法。
  2. 前記溶融スラグおよび固形スラグのいずれか他方を供給した後、前記固形スラグを前記鋳型の底部に向かって押し込む、請求項1に記載の粒状凝固スラグの製造方法。
  3. 前記凝固スラグを破砕して得られる粒状凝固スラグに対して熱回収処理を行う、請求項1または2に記載の粒状凝固スラグの製造方法。
  4. 前記凝固スラグを破砕して得られる粒状凝固スラグに対して蒸気エージング処理を行う、請求項1から3のいずれかに記載の粒状凝固スラグの製造方法。
  5. 前記凝固スラグを破砕して得られる粒状凝固スラグに対して炭酸化処理を行う、請求項1から4のいずれかに記載の粒状凝固スラグの製造方法。
  6. 前記凝固スラグを破砕して得られる粒状凝固スラグを分級して選別した、粒状凝固スラグを前記固形スラグとして供給する、請求項1から5のいずれかに記載の粒状凝固スラグの製造方法。
  7. 鋳型、該鋳型内に溶融スラグを供給する溶融スラグ供給装置および、前記鋳型内に固形スラグを供給する固形スラグ供給装置を有し、前記溶融スラグ供給装置および固形スラグ供給装置から前記鋳型に供給された固液混合スラグを、前記鋳型内において前記固形スラグ相互間の隙間を前記溶融スラグで満たした状態にて前記溶融スラグの凝固を進行させて該凝固域および固形スラグのいずれか一方または両方に、前記凝固後の凝固スラグを熱間破砕するための亀裂を導入する、固液スラグ混合凝固設備と、
    前記固液スラグ混合凝固設備にて作製される凝固スラグを破砕して粒状凝固スラグを作製するスラグ破砕設備と、
    を備える、粒状凝固スラグの製造設備列。
  8. 前記固液スラグ混合凝固設備は、前記溶融スラグおよび固形スラグが供給された前記鋳型に対して前記固形スラグの押し込みを行う圧下装置を有する、請求項7に記載の粒状凝固スラグの製造設備列。
  9. 前記鋳型は、底部に複数の隆起部を有する、請求項7または8に記載の粒状凝固スラグの製造設備列。
  10. 前記スラグ破砕設備は、前記凝固スラグに衝突による衝撃力を与えて該凝固スラグを破砕する回転体を有する、請求項7から9のいずれかに記載の粒状凝固スラグの製造設備列。
  11. 前記スラグ破砕設備の下流側に、前記粒状凝固スラグの顕熱を回収するスラグ熱回収設備を有する、請求項7から10のいずれかに記載の粒状凝固スラグの製造設備列。
  12. 前記スラグ破砕設備の下流側に、前記粒状凝固スラグに水蒸気を供給して蒸気エージングを行う水蒸気供給装置を有する、請求項7から11のいずれかに記載の粒状凝固スラグの製造設備列。
  13. 前記スラグ破砕設備の下流側に、前記粒状凝固スラグに炭酸ガスを供給して炭酸化処理を行う炭酸ガス供給装置を有する、請求項7から12のいずれかに記載の粒状凝固スラグの製造設備列。
  14. 前記スラグ破砕設備の下流側に、前記粒状凝固スラグの顕熱を回収するスラグ熱回収設備を有するとともに、前記熱回収設備の下流側に、前記粒状凝固スラグに水蒸気を供給して蒸気エージングを行う水蒸気供給装置、および、前記スラグ破砕設備の下流側に、前記粒状凝固スラグに炭酸ガスを供給して炭酸化処理を行う炭酸ガス供給装置、のいずれか一方または両方を配置する、請求項7から10のいずれかに記載の粒状凝固スラグの製造設備列。
  15. 前記スラグ破砕設備の下流側に、前記粒状凝固スラグを粒度に応じて分級する分級装置を有し、前記分級装置と前記固形スラグ供給装置との間に、前記分級後の粒状凝固スラグを前記固形スラグ供給装置へ搬送するための搬送路を有する、請求項7から14のいずれかに記載の粒状凝固スラグの製造設備列。
JP2020011889A 2020-01-28 2020-01-28 粒状凝固スラグの製造方法およびその製造設備列 Active JP7255504B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020011889A JP7255504B2 (ja) 2020-01-28 2020-01-28 粒状凝固スラグの製造方法およびその製造設備列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011889A JP7255504B2 (ja) 2020-01-28 2020-01-28 粒状凝固スラグの製造方法およびその製造設備列

Publications (2)

Publication Number Publication Date
JP2021116213A JP2021116213A (ja) 2021-08-10
JP7255504B2 true JP7255504B2 (ja) 2023-04-11

Family

ID=77173948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011889A Active JP7255504B2 (ja) 2020-01-28 2020-01-28 粒状凝固スラグの製造方法およびその製造設備列

Country Status (1)

Country Link
JP (1) JP7255504B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448033B2 (ja) * 2021-06-23 2024-03-12 Jfeスチール株式会社 粒状凝固スラグの製造方法およびその製造設備列
JP7173425B1 (ja) * 2021-06-24 2022-11-16 Jfeスチール株式会社 粒状凝固スラグの製造方法及び製造設備
WO2022270480A1 (ja) * 2021-06-24 2022-12-29 Jfeスチール株式会社 粒状凝固スラグの製造方法及び製造設備

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085064A (ja) 2012-10-24 2014-05-12 Jfe Steel Corp 凝固スラグの熱回収システムおよび熱回収方法
JP2017114717A (ja) 2015-12-22 2017-06-29 新日鐵住金株式会社 鉄鋼スラグの処理方法及び鉄鋼スラグの処理装置
JP2017114736A (ja) 2015-12-25 2017-06-29 Jfeスチール株式会社 スラグ塊状物及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202487A (en) * 1981-06-03 1982-12-11 Sumitomo Metal Ind Method of treating melted metallurgical slag
JPS57210287A (en) * 1981-06-22 1982-12-23 Sumitomo Metal Ind Method of treating melted metallurgical slag
JPS58221379A (ja) * 1982-06-18 1983-12-23 住友金属工業株式会社 冶金スラグ塊の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085064A (ja) 2012-10-24 2014-05-12 Jfe Steel Corp 凝固スラグの熱回収システムおよび熱回収方法
JP2017114717A (ja) 2015-12-22 2017-06-29 新日鐵住金株式会社 鉄鋼スラグの処理方法及び鉄鋼スラグの処理装置
JP2017114736A (ja) 2015-12-25 2017-06-29 Jfeスチール株式会社 スラグ塊状物及びその製造方法

Also Published As

Publication number Publication date
JP2021116213A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
JP7255504B2 (ja) 粒状凝固スラグの製造方法およびその製造設備列
US8470067B2 (en) Process for preparing a foaming slag former, product and use thereof
CN103261443B (zh) 冶金渣的粒化
WO2007145384A1 (en) A method for stabilizing slag and novel materials produced thereby
JP6318982B2 (ja) 凝固スラグの熱回収方法および熱回収システム
JP5998845B2 (ja) 凝固スラグの熱回収システムおよび熱回収方法
JPH06256814A (ja) 製鋼スラグの鉄分回収方法
WO2022270516A1 (ja) 粒状凝固スラグの製造方法およびその製造設備列
CN104651554B (zh) 一种钢渣裂解粒化方法
US3382911A (en) Casting ferroalloys
JP5870613B2 (ja) 製鋼スラグ水和硬化体およびその製造方法
JP3929600B2 (ja) 廃棄物溶融スラグの鋳造設備
CN114276031A (zh) 道路工程用钢渣的制备方法
JP7173425B1 (ja) 粒状凝固スラグの製造方法及び製造設備
JP5997987B2 (ja) コンクリートの製造方法
WO2022270480A1 (ja) 粒状凝固スラグの製造方法及び製造設備
JPH1121153A (ja) 路盤材及びその製造方法
JP4012344B2 (ja) 高炉スラグ細骨材の製造方法
JP5942427B2 (ja) 溶融スラグの熱回収方法
JP6107866B2 (ja) スラグ鋳造体の製造方法
JPS58221378A (ja) 定粒度冶金スラグ塊の製造方法
EP2242860B1 (en) Process for preparing a foaming slag former and use thereof
KR102127566B1 (ko) 용융 슬래그 입상화 장치 및 방법
JP6414181B2 (ja) 酸化物鋳造体の製造方法
JPH04326975A (ja) 廃棄物溶融によるスラグの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150