JP7251173B2 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP7251173B2
JP7251173B2 JP2019014970A JP2019014970A JP7251173B2 JP 7251173 B2 JP7251173 B2 JP 7251173B2 JP 2019014970 A JP2019014970 A JP 2019014970A JP 2019014970 A JP2019014970 A JP 2019014970A JP 7251173 B2 JP7251173 B2 JP 7251173B2
Authority
JP
Japan
Prior art keywords
compression ratio
control shaft
housing
lubricating oil
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019014970A
Other languages
English (en)
Other versions
JP2020122436A (ja
Inventor
亮介 日吉
卓儀 古川
恵美 徳納
悟 大熊
紀彦 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2019014970A priority Critical patent/JP7251173B2/ja
Publication of JP2020122436A publication Critical patent/JP2020122436A/ja
Application granted granted Critical
Publication of JP7251173B2 publication Critical patent/JP7251173B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

本発明は、可変圧縮比機構を備えた内燃機関に関する。
複リンク式のピストンクランク機構を利用して内燃機関の圧縮比を変更可能な可変圧縮比内燃機関が従来から知られている。
例えば、特許文献1には、制御シャフトの回転位置に応じて内燃機関の圧縮比を変更可能な可変圧縮比機構と、制御シャフトの回転位置を変更及び保持するアクチュエータと、制御シャフトと平行に配置され、アクチュエータの回転が減速機を介して伝達される補助シャフトと、制御シャフトと補助シャフトとを連結するレバーと、を有し、補助シャフトの回転に応じてレバーが往復運動し、レバーの動きに応じて制御シャフトが回転する可変圧縮比内燃機関が開示されている。
この特許文献1においては、可変圧縮比内燃機関が減速機とアクチュエータとを機関本体に取り付けるためのハウジングを有している。そして、このハウジングには、減速機の潤滑部位が配置される減速機収容室が形成されている。減速機収容室には、油路形成体に形成された油路を介して潤滑油が供給されている。
そして、減速機収容室の壁面の一部を構成する補助シャフトの大径部には、高圧縮比時に比べて低圧縮比時に高い位置となり、低圧縮比時における減速機収容室内の油面高さが高圧縮比時における減速機収容室内の油面高さよりも高くなるように油孔が形成されている。
特許第5614505号公報
しかしながら、この特許文献1は、内燃機関の温度状態に応じて減速機収容室に供給する潤滑油の油量を調整するものではない。そのため、特許文献1においては、潤滑油の粘度が高くなるような極低温始動時等において、潤滑油の粘度が高くなることによって減速機収容室に供給される潤滑油の油量が減少して、減速機収容室内の潤滑油の油温の昇温速度が遅くなる虞がある。
可変圧縮比内燃機関は、減速機収容室内の油温の昇温速度が遅くなると、暖機運転完了直後の減速機収容室内の潤滑油の油温が低くなり、減速機のフリクションが悪化して、圧縮比を変更する際の応答性が悪化する。
つまり、制御シャフトの回転位置に応じて内燃機関の圧縮比を変更可能な可変圧縮比機構と、減速機を介して制御シャフトの回転位置を変更及び保持するアクチュエータと、を有する内燃機関においては、暖機運転完了直後の減速機収容室内の潤滑油の油温を高くして、暖機運転完了直後の減速機のフリクションを低減する上で、更なる改善の余地がある。
本発明の内燃機関は、制御軸の回転位置に応じて圧縮比を変更する可変圧縮比機構と、減速機を介して上記制御軸を回転駆動するアクチュエータと、上記減速機及び上記制御軸を収容するハウジングと、を有している。
上記ハウジングは、上記減速機を収容する第1空間と、上記制御軸が貫通する第2空間と、上記第1空間と上記第2空間を隔てる隔壁と、を有している。
上記隔壁には、上記第1空間内の潤滑油を上記第2空間へ排出する第1排出孔及び第2排出孔が貫通形成されている。
上記第1排出孔は、上記第2排出孔よりも下方に位置し、かつ上記第2排出孔よりも通路抵抗が大きくなっている。
そして、内燃機関の始動直後は、上記第1排出孔により上記第1空間内の油面高さを調整し、圧縮比を所定の圧縮比に保持する冷機時は、始動直後よりも多くの潤滑油を上記第1空間に供給し、上記第2排出孔により上記第1空間内の油面高さを調整する。
本発明の内燃機関は、冷機時に第1空間への潤滑油の供給量を増加させることで、冷機時に第1空間に供給される熱量が増大する。つまり、第1空間内の潤滑油の油温は、冷機時において急速に上昇させることが可能となる。そのため、本発明の内燃機関は、暖機直後の圧縮比変更時に減速機のフリクションを低減できる。
本発明に係る内燃機関に適用される可変圧縮比機構の概略構成を模式的に示した説明図。 第1制御軸と第2制御軸との連結機構を模式的に示した説明図。 本発明に係る内燃機関の要部であるアクチュエータユニットの断面を模式的に示した説明図。 ハウジング側油路開口部と第2制御軸側油路の一端側開口部との位置関係を模式的に示した説明図であって、(a)は圧縮比が中間圧縮比よりも低い低圧縮比の状態を示し、(b)は圧縮比が中間圧縮比の状態を示し、(c)は圧縮比が中間圧縮比よりも高い高圧縮比の状態を示している。 本発明に係る内燃機関の冷機始動時における各種状態量の変化を示したタイミングチャート。
以下、本発明の一実施例を図面に基づいて詳細に説明する。
図1は、本発明に係る内燃機関に適用される可変圧縮比機構1の概略構成を模式的に示した説明図である。
可変圧縮比機構1を有する内燃機関(可変圧縮比内燃機関)は、例えば、自動車等の車両に、当該車両の駆動源として搭載される。
可変圧縮比機構1は、ピストン2と、第1リンクとしてのアッパリンク4と、第2リンクとしてのロアリンク7と、第3リンクとしてのコントロールリンク9と、から大略構成されている。可変圧縮比機構1は、ピストン2とクランクシャフト6のクランクピン6aとを複数のリンクで連係(連結)した複リンク式ピストンクランク機構である。
ピストン2は、ピストンピン3を介してアッパリンク4の一端に回転可能に連結されている。
アッパリンク4の他端は、第1リンク連結ピンとしてのアッパピン5を介してロアリンク7の一端側に回転可能に連結されている。
クランクシャフト6は、複数のジャーナル部6bとクランクピン6aとを備えており、シリンダブロック(図示せず)の主軸受(図示せず)に、ジャーナル部6bが回転可能に支持されている。クランクピン6aは、ジャーナル部6bから所定量偏心している。
ロアリンク7は、クランクシャフト6のクランクピン6aに回転可能に連結されている。
コントロールリンク9の一端は、第3リンク連結ピンとしてのコントロールピン8を介してロアリンク7の他端側に回転可能に連結されている。
コントロールリンク9の他端は、機関本体側に支持される第1制御軸10の偏心軸部10aに回転可能に連結されている。
金属製の第1制御軸10は、クランクシャフト6と平行に配置され、例えば、上記シリンダブロックに回転可能に支持される。
つまり、金属製の偏心軸部10aに回転可能に連結されているコントロールリンク9の他端は、機関本体側に揺動可能に支持されていることになる。
偏心軸部10aの中心軸は、第1制御軸10の回転中心に対して所定量偏心している。
可変圧縮比機構1は、第1制御軸10を回転させて偏心軸部10aの位置を変更することで、上死点におけるピストン2の位置が変更可能となり、内燃機関の機械的圧縮比を変更することができる。
第1制御軸10は、ロアリンク7の自由度を規制するものであり、後述するアクチュエータユニット21によって回転位置が変更及び保持される。つまり、本発明が適用される内燃機関は、第1制御軸10の回転位置の変更及び保持が可能なアクチュエータユニット21を有している。
図2は、第1制御軸10とアクチュエータユニット21の第2制御軸24との連結機構を模式的に示した説明図である。
なお、図2においては、説明の便宜上、後述する第2制御軸24の一部やハウジング28の底壁64等の構成を省略または簡略化して示している。
第1制御軸10は、金属製で二股状の第1アーム部22を有し、上記シリンダブロックやその下側(下部)に固定されるオイルパンアッパ23等からなる内燃機関本体の内部に回転可能に支持されている。第1アーム部22は、第1制御軸10の径方向外側に向かって延出している。つまり、第1アーム部22は、第1制御軸10から突出している。
第1制御軸10は、潤滑用のオイル(潤滑油)が飛散する上記内燃機関本体内に配置されている。
制御軸としての金属製の第2制御軸24は、第1制御軸10と平行に配置されており、オイルパンアッパ側壁27に沿って、機関前後方向に延在している。換言すれば、第2制御軸24は、上記内燃機関本体の気筒列方向に沿って、上記内燃機関本体の外部に配置されている。
つまり、第2制御軸24は、第2制御軸24軸方向が上記内燃機関本体の気筒列方向と一致するように上記内燃機関本体の外部に配置されている。従って、本明細書においては、気筒列方向と第2制御軸24軸方向とは一致したものとなっている。
第2制御軸24は、金属製で二股状の第2アーム部26を有している。第2アーム部26は、第2制御軸24の径方向外側に向かって延出している。つまり、第2アーム部26は、第2制御軸24から突出している。
第2アーム部26は、例えば第2制御軸24に圧入される部品であり、圧入によって第2制御軸24に固定されている。
第1アーム部22と第2アーム部26とは、アクチュエータユニット21のリンク部材30により連係(連結)されている。リンク部材30は、第1制御軸10及び第2制御軸24に対して直交する細長い金属製の部材である。
すなわち、第1制御軸10と第2制御軸24とは、オイルパンアッパ側壁27を貫通するリンク部材30によって機械的に連結された構成となっている。
第1アーム部22の先端には、リンク部材30の一端が挟み込まれている。第1アーム部22とリンク部材30は、金属製で円筒状の第1連結ピン31を介して回転可能に連結されている。第1連結ピン31は、第1制御軸10に平行な状態で、第1アーム部22の先端及びリンク部材30の一端を貫通している。
第1連結ピン31を介して連結された第1アーム部22とリンク部材30との連結部分は、例えば上記内燃機関本体内を飛散する潤滑油や、上記内燃機関本体内の底部に滞留した潤滑油によって潤滑される。
第2アーム部26の先端には、リンク部材30の他端が挟み込まれている。つまり、第2アーム部26は、他端がリンク部材30の他端を挟み込めるように二股状に形成されている。第2アーム部26とリンク部材30は、金属製で円筒状の第2連結ピン32を介して回転可能に連結されている。第2連結ピン32は、第2制御軸24に平行な状態で、第2アーム部26の先端及びリンク部材30の他端を貫通している。
第2連結ピン32は、第2アーム部26及びリンク部材30の双方に対して相対回転可能な状態となっている。
第2連結ピン32を介して連結された第2アーム部26とリンク部材30との連結部分は、例えばアクチュエータユニット21のハウジング28内に供給された潤滑油によって潤滑される。ハウジング28内に供給された潤滑油は、例えば、リンク部材30が貫通するオイルパンアッパ側壁27のリンク部材用開口部(図示せず)を介して上記内燃機関本体内に戻される。
ハウジング28は、オイルパンアッパ側壁27に固定されている。つまり、アクチュエータユニット21は、オイルパンアッパ側壁27に固定されている。
リンク部材30は、第2制御軸24が回転すると、第2制御軸24の回転に伴う第2アーム部26の揺動により第1制御軸10に直交する平面に沿って往復運動する。そして、第1制御軸10は、リンク部材30の往復運動に伴い第1アーム部22が揺動することで回転する。つまり、第1制御軸10は、第2制御軸24が回転することによって回転する。換言すれば、第2制御軸24の回転位置に応じて可変圧縮比機構1の圧縮比が変更される。
なお、図2中の符号36は、第2制御軸24を回転駆動する電動モータ36である。電動モータ36は、ハウジング28に固定されている。
図3を用いて、本願発明の要部であるアクチュエータユニット21の構造について説明する。図3は、本発明に係る内燃機関の要部であるアクチュエータユニットの断面を模式的に示した説明図である。なお、図3においては、ハウジング側油路75(後述)から第1空間61(後述)への潤滑油の流れを矢印D1で示し、第1空間61(後述)から第2空間62(後述)への潤滑油の流れを矢印D2で示している。
アクチュエータユニット21は、第2制御軸24と、第2制御軸24に連結された減速機35と、減速機35を介して第2制御軸24を回転駆動するアクチュエータとしての電動モータ36と、第2制御軸24の回転を第1制御軸10に伝達するリンク部材30と、リンク部材30の一部と第2制御軸24と減速機35とが収容されるハウジング28と、を有している。
詳述すると、アクチュエータユニット21は、気筒列方向の一端側(図3における矢印A方向側)から順に電動モータ36、減速機35、第2制御軸24が直列に並んだ構成となっている。
第2制御軸24は、略段付き円筒形状を呈し、気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向側)に鍔状に形成されたフランジ部38を有している。詳述すると、制御軸としての第2制御軸24は、気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向側)に位置してフランジ部38となる第1軸部24aと、ハウジング28の第1軸受部66a(後述)に支持される一端側軸部としての第2軸部24bと、気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向側)に位置してハウジング28の第2軸受部66b(後述)に支持される他端側軸部としての第3軸部24cと、を有している。
第2軸部24bは、一端側(図3における矢印A方向側)が第1軸受部66a(後述)に支持され、他端側(図3における矢印B方向側)に第2アーム部26が圧入固定されている。
第3軸部24cには、第2軸受部66b(後述)と対向する外周面に、全周に亙って連続する環状の油溝39が形成されている。
第1軸部24aは、第2軸部24bよりも大径となっている。第2軸部24bは、第3軸部24cよりも大径となっている。つまり、第2制御軸24は、大径部となる第1軸部24aと、第1軸部24aに対して小径部となる第2軸部24b及び第3軸部24cを有している。
第1軸部24aは、ハウジング28の第1空間61(後述)に収容されている。
第2軸部24bの他端側(図3における矢印B方向側)及び第2アーム部26は、ハウジング28の第2空間62(後述)に収容されている。
また、制御軸としての第2制御軸24には、第1空間61(後述)に潤滑油を供給するための第2制御軸側油路40が形成されている。第2制御軸側油路40は、一端側が第2制御軸24の外周面に開口し、他端側が第2制御軸24の一端側(図3における矢印A方向側)の端面に開口している。
第2制御軸側油路40は、軸方向油路としての第2制御軸側第1油路41と、一端側通路部としての第2制御軸側第2油路42と、他端側通路部としての第2制御軸側第3油路43と、から構成されている。
第2制御軸側第1油路41は、第2制御軸24の軸方向に沿って形成され、一端が第2制御軸24の一端側(図3における矢印A方向側)の端面に開口している。つまり、第2制御軸側第1油路41の一端側開口部41aは、第1軸部24aの一端側(図3における矢印A方向側)の端面に開口している。第2制御軸側第1油路41の一端側開口部41aは、第2制御軸側油路40の他端側開口部40bに相当する。
第2制御軸側第2油路42は、第2制御軸24の径方向に沿って形成され、一端が第1軸受部66a(後述)と対向する第2軸部24bの外周面に開口し、他端が第2制御軸側第1油路41に接続されている。つまり、第2制御軸側第2油路42の一端側開口部42aは、第2軸部24bの外周面に開口している。第2制御軸側第2油路42の一端側開口部42aは、第2制御軸側油路40の一端側開口部40aに相当する。
第2制御軸側第3油路43は、第2制御軸24の径方向に沿って形成され、一端が第2軸受部66b(後述)と対向する第3軸部24cの外周面に開口し、他端が第2制御軸側第1油路41に接続されている。詳述すると、第2制御軸側第3油路43の一端側開口部43aは、油溝39の底面に開口している。第2制御軸側第3油路43の一端側開口部43aは、第2制御軸側油路40の一端側開口部40aに相当する。
減速機35は、いわゆる波動歯車減速機であり、電動モータ36の出力軸36aの回転を減速して第2制御軸24へ伝達している。なお、波動歯車減速機以外の減速機構を用いて電動モータ36の出力軸36aの回転を減速して伝達するようにしてもよい。
減速機35は、内歯車部材50と、内歯車部材50の内側に同心状に配置された外歯車部材51と、電動モータ36の出力軸36aに連結された楕円形輪郭の入力側部材52と、第2制御軸24に連結された出力側部材53と、から大略構成されている。
内歯車部材50は、ハウジング28に対して固定されたものであって、円環状を呈し、内周側に固定歯車部54が形成されている。
外歯車部材51は、円環状を呈し、外周側に、内歯車部材50の固定歯車部54と噛み合う第1歯車部55と、出力側部材53の出力側歯車部58と噛み合う第2歯車部56とが並んで形成されている。この外歯車部材51は、内側に挿入された入力側部材52の楕円形状に応じて径方向に弾性変形し、この楕円形状の長軸方向の2箇所で内歯車部材50及び出力側部材53に対して噛み合っている。
入力側部材52は、いわゆる波動発生器であって、中心部分が電動モータ36の出力軸36aに固定されている。また、入力側部材52と外歯車部材51との間にはベアリング57(例えば、ボールベアリング)が配置されており、外歯車部材51は、入力側部材52に対して相対回転可能となっている。
出力側部材53は、円環状を呈し、内周側に出力側歯車部58が形成されている。この出力側部材53は、複数のボルト(図示せず)によって、第2制御軸24のフランジ部38に固定されている。
ここで、減速機35は、例えば、外歯車部材51の第1歯車部55の歯数と内歯車部材50の固定歯車部54の歯数とは異なるように設定されており、入力側部材52が1回転すると歯数差の分だけ外歯車部材51と内歯車部材50とが相対回転する。
また、外歯車部材51の第2歯車部56の歯数と出力側部材53の出力側歯車部58の歯数とは異なるように設定されており、入力側部材52が1回転すると歯数差の分だけ外歯車部材51と出力側部材53とが相対回転する。
さらに、減速機35は、第1歯車部55の歯数に対する固定歯車部54の歯数の比が、第2歯車部56の歯数に対する出力側歯車部58の歯数の比よりも小さくなるよう設定される。つまり、出力側部材53の出力側歯車部58歯数が、内歯車部材50の固定歯車部54の歯数よりも小さくなるように設定される。
そのため、減速機35は、入力側部材52の回転に伴う外歯車部材51の回転と、入力側部材52の回転に伴う出力側部材53の回転との回転数差を第2制御軸24に対して出力することが可能となる。つまり減速機35は、電動モータ36の出力軸36aと第2制御軸24との間で大きな減速比を実現可能となっている。
電動モータ36は、ハウジング28の一端側(図3における矢印A方向側)の端面に、図示せぬボルト等によって固定されている。電動モータ36の出力軸36aは、後述する第1空間61内に突出している。
アクチュエータユニット21のハウジング28は、第1空間61と、第2空間62と、第1空間61と第2空間62との間に位置して両者を隔てる隔壁63と、隔壁63との間に第2空間を形成する底壁64と、を有している。つまり、ハウジング28内には、気筒列方向の一端側(図3における矢印A方向側)から順に第1空間61、隔壁63、第2空間62、底壁64が直列に並んだ構成となっている。
第1空間61には、減速機35とフランジ部38(第1軸部24a)が収容される。第1空間61には、第2制御軸24に形成された第2制御軸側油路40を介して潤滑油が供給されている。
第2空間62には、第2アーム部26と、第2軸部24bの一部と、リンク部材30の他端側と、が収容される。第2空間は、オイルパンアッパ側壁27の上記リンク部材用開口部(図示せず)と連続しており、内部の潤滑油をオイルパンに戻すことが可能となっている。
隔壁63は、第2制御軸24を回転可能に支持する軸受部66としての第1軸受部66aを有している。第1軸受部66aは、一端側軸受部に相当する。
隔壁63には、第1空間61内の潤滑油を第2空間62へ排出する第1排出孔67及び第2排出孔68が貫通形成されている。
第1排出孔67は、車両が平地にいる状態における隔壁63の下端付近に形成されている。また、第1排出孔67は、第2排出孔68よりも下方に位置している。詳述すると、第1排出孔67は、車両が平地にいる状態で、隔壁63の鉛直方向における下端付近に形成されている。また第1排出孔67は、第2排出孔68よりも鉛直方向で下方に位置するよう形成されている。
第1排出孔67は、第2排出孔68よりも通路抵抗が大きくなるように形成されている。本実施例では、第1排出孔67の孔径が第2排出孔68の孔径よりも小さく設定されている。
また、第1排出孔67は、第2空間62側の端部にフィルタ69が設置されている。このフィルタ69は、例えば傾斜路等で内燃機関が搭載された車両が傾いてオイルパン内からオイルパンアッパ側壁27の上記リンク部材用開口部(図示せず)を介して第2空間62に流入した潤滑油内の異物(コンタミネーション)を第1空間61内に流入させないために設置されている。
第1排出孔67の通路抵抗は、潤滑油の油温(温度)が暖機完了後の油温以上のときに潤滑油を排出できるように設定されている。
すなわち、第1排出孔67の通路抵抗は、第1空間61内の潤滑油の油温(温度)が所定温度Tr以上のときに潤滑油を排出できるように設定されている。
換言すれば、第1排出孔67の通路抵抗は、第1空間61内の潤滑油の粘度が暖機完了後の潤滑油の粘度以下のときに第1空間61内の潤滑油を排出できるように設定されている。さらに言えば、第1排出孔67の通路抵抗は、第1空間61内の潤滑油の油温が冷機時の潤滑油の油温(上記所定温度Tr未満の油温)であれば、第1空間61内の潤滑油を排出しないように設定されている。なお、第1排出孔67の通路抵抗は、第1空間61内の潤滑油の油温が冷機時の潤滑油の油温(上記所定温度Tr未満の油温)であれば、第1空間61内の潤滑油を排出しにくくなるように設定してもよい。
ここで、上記所定温度Trは、例えば、内燃機関の暖機完了後におけるメインギャラリ(図示せず)内の潤滑油の油温(温度)であり、少なくとも内燃機関の暖機完了後における第1空間61内の潤滑油の油温(温度)ではない。潤滑油の油温は、例えば油温センサ(図示せず)によって検出される。
第2排出孔68は、車両が平地にいる状態で、第1軸受部66aよりも鉛直方向で下方に位置するよう形成されている。
第2排出孔68の通路抵抗は、潤滑油の油温が冷機時の油温であっても第1空間61内の潤滑油を排出できるように設定されている。すなわち、第2排出孔68の通路抵抗は、第1空間61内の潤滑油の油温(温度)が上記所定温度Tr未満であっても潤滑油を排出できるように設定されている。
換言すれば、第2排出孔68の通路抵抗は、第1空間61内の潤滑油の粘度が暖機完了後の潤滑油の粘度よりも高くても第1空間61内の潤滑油を排出できるように設定されている。つまり、第2排出孔68の通路抵抗は、第1空間61内の潤滑油の油温が冷機時の潤滑油の油温(上記所定温度Tr未満の油温)であっても第1空間61内の潤滑油を排出できるように設定されている。さらに言えば、第2排出孔68の通路抵抗は、外気温が極低温となり第1空間61内の潤滑油の油温が極低温(例えば-30℃)となっても、第1空間61内の潤滑油を排出できるように設定されている。
第1排出孔67及び第2排出孔68の通路抵抗は、孔径や孔の長さ等を適宜設定することによって設定される。なお、第1排出孔67の通路抵抗については、上述したフィルタ69によっても調整可能である。
内燃機関は、機関停止時に第1排出孔67から第1空間61内に潤滑油を排出することができ、次回の低温始動時の第1空間61内の潤滑油の油量(油面高さ)を調整(低く)できる。そのため、内燃機関は、次回の低温始動時の応答性を向上させることができる。
内燃機関は、低温の潤滑油が第1空間61に供給された場合には、第2排出孔68により第1空間61内の潤滑油の油量(油面高さ)を調整できる。そのため、内燃機関は、低温始動時の応答性を向上させることができる。
第1空間61に供給された潤滑油は、減速機35の各部を潤滑するとともに、隔壁63に形成された第1排出孔67や第2排出孔68を介して第2空間62へと排出される。第1空間61から第2空間62に排出された潤滑油は、オイルパンアッパ側壁27の上記リンク部材用開口部(図示せず)を介して、オイルパンに戻される。
底壁64は、第2制御軸24を回転可能に支持する軸受部66としての第2軸受部66bを有している。第2軸受部66bは、他端側軸受部に相当する。
また、ハウジング28には、隔壁63内を通り第1軸受部66aに潤滑油を供給するハウジング側油路75としてのハウジング側第1油路76と、底壁64内を通り第2軸受部66bに潤滑油を供給するハウジング側油路75としてのハウジング側第2油路77と、が形成されている。
ハウジング側第1油路76及びハウジング側第2油路77には、図示外のオイルポンプから潤滑油が供給されている。
ハウジング側第1油路76は、一端側の開口であるハウジング側第1油路開口部79が第1軸受部66aの内周面に開口し、他端側がオイルポンプへと通じる油路(図示せず)に接続されている。ハウジング側第1油路開口部79は、ハウジング側油路75の一端側の開口であり、軸受部66の内周面に開口するハウジング側油路開口部78に相当する。
ハウジング側第1油路76によって第1軸受部66aに供給された潤滑油は、第2軸部24bと第1軸受部66aとの間を潤滑するとともに、第2制御軸側第2油路42及び第2制御軸側第1油路41を介して第1空間61に供給される。
ハウジング側第1油路開口部79と第2制御軸側第2油路42の一端側開口部42aとは、第2制御軸24の軸方向で、互いに重なり合う位置に形成されている。
そして、ハウジング側第1油路開口部79と第2制御軸側第2油路42の一端側開口部42aとは、第2制御軸24が所定の回転角度のときに、第2制御軸24の周方向に沿った位置が重なり合うよう設定されている。
従って、ハウジング側第1油路開口部79と第2制御軸側第2油路42の一端側開口部42aとは、第2制御軸24が所定の回転角度のときに、全体が重なり合う。
ハウジング側第2油路77は、一端側の開口であるハウジング側第2油路開口部80が第2軸受部66bの内周面に開口し、他端側がオイルポンプへと通じる油路(図示せず)に接続されている。ハウジング側第2油路開口部80は、ハウジング側油路75の一端側の開口であり、軸受部66の内周面に開口するハウジング側油路開口部78に相当する。
ハウジング側第2油路77によって第2軸受部66bに供給された潤滑油は、第3軸部24cと第2軸受部66bとの間を潤滑するとともに、第2制御軸側第3油路43及び第2制御軸側第1油路41を介して第1空間61に供給される。
ハウジング側第2油路開口部80と第2制御軸側第3油路43の一端側開口部43aとは、第2制御軸24の軸方向で、互いに重なり合う位置に形成されている。
そして、ハウジング側第2油路開口部80と第2制御軸側第3油路43の一端側開口部43aとは、第2制御軸24が所定の回転角度のときに、第2制御軸24の周方向に沿った位置が重なり合うよう設定されている。
従って、ハウジング側第2油路開口部80と第2制御軸側第3油路43の一端側開口部43aとは、第2制御軸24が所定の回転角度のときに、全体が重なり合う。
つまり、ハウジング側油路75は、一端側の開口であるハウジング側油路開口部78が軸受部66の内周面に開口し、他端側がオイルポンプへと通じる油路(図示せず)に接続されている。ハウジング側油路75によって軸受部66に供給された潤滑油は、第2制御軸24と軸受部66との間を潤滑するとともに、第2制御軸側油路40を介して第1空間61に供給される。
ハウジング側油路開口部78と第2制御軸24の外周面に開口する第2制御軸側油路40の一端側開口部40aとは、第2制御軸24の軸方向で、互いに重なり合う位置に形成されている。そして、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとは、第2制御軸24が所定の回転角度のときに、第2制御軸24の周方向に沿った位置が重なり合うよう設定されている。
従って、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部43aとは、第2制御軸24が所定の回転角度のときに、全体が重なり合う。
本実施例では、内燃機関の圧縮比が所定の中間圧縮比(例えば圧縮比9.5)のときに、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが全体的に重なり合うように設定されている。
図4を用いて詳述すると、ハウジング側油路75のハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとは、第2制御軸24の回転角度に応じて、軸受部66と第2制御軸24との摺動面上における距離が変化する。
図4は、ハウジング側油路開口部78と一端側開口部40aとの位置関係を圧縮比毎に模式的に示した説明図である。なお、図4においては、ハウジング側油路75から第2制御軸側油路40への潤滑油の流れを矢印D3で示している。
図4の(a)は、圧縮比が上記中間圧縮比よりも低い低圧縮比(例えば圧縮比8)の状態を示している。内燃機関は、圧縮比が所定の中間圧縮比(例えば9.5)よりも低い圧縮比のとき、図4の(a)に示すように、ハウジング側油路開口部78と一端側開口部40aとは、互いに重ならないように設定されている。
図4の(b)は、圧縮比が上記中間圧縮比(例えば9.5)の状態を示している。内燃機関は、圧縮比が所定の中間圧縮比のとき、図4の(b)に示すように、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが全体的に重なるように設定されている。つまり、内燃機関は、圧縮比が所定の中間圧縮比のとき、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが、軸受部66と第2制御軸24との摺動面上で一致した位置となるように設定されている。
図4の(c)は、圧縮比が上記中間圧縮比よりも高い高圧縮比(例えば圧縮比14)の状態を示している。内燃機関は、圧縮比が上記中間圧縮比よりも高い圧縮比のとき、図4の(c)に示すように、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとは、互いに重ならないように設定されている。
本実施例では、第2制御軸24が図4における時計回り方向に回転すると圧縮比が相対的に高くなり、第2制御軸24が図4における反時計回り方向に回転すると圧縮比が相対的に低くなっている。そのため、第2制御軸側油路40の一端側開口部40aは、圧縮比が上記中間圧縮比よりも低くなるほどハウジング側油路開口部78に対して反時計方向側にずれることになる。また、第2制御軸側油路40の一端側開口部40aは、圧縮比が上記中間圧縮比よりも高くなるほど、ハウジング側油路開口部78に対して時計方向側にずれることになる。
従って、ハウジング側油路75から第2制御軸側油路40を経て第1空間61に潤滑油を供給する第1空間用潤滑油供給通路の通路抵抗は、第2制御軸24の回転角度に応じて変化し、軸受部66と第2制御軸24との摺動面上におけるハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとの距離が近くなるほど小さくなる。
換言すると、上記第1空間用潤滑油供給通路の通路抵抗は、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが重なり合うとき最小となり、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが軸受部66と第2制御軸24との摺動面上で離間するほど大きくなる。
そのため、第1空間61に供給される潤滑油の油量は、上記第1空間用潤滑油供給通路の通路抵抗が小さくなるほど多くなる。
つまり、上記第1空間用潤滑油供給通路の通路抵抗は、圧縮比が中間圧縮比のときに最小となり、圧縮比が中間圧縮比から乖離する(ずれる)ほど大きくなるよう設定されている。
なお、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとは、第2制御軸24の軸方向で、互いに重なり合わないような位置に形成することも可能である。この場合、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとは、上記中間圧縮比のとき、互いに重なり合わないものの、軸受部66と第2制御軸24との摺動面上において最短距離となる。
このような実施例の内燃機関においては、第1排出孔67により始動時の第1空間61内の油面高さを予め低くしておくことができる。つまり、内燃機関は、始動直後の第1空間61内の潤滑油の油面高さを第1排出孔67により調整することができる。
そして、内燃機関は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)、始動直後よりも多くの潤滑油を第1空間61に供給する。
また、内燃機関は、第2排出孔68により第1空間61内の潤滑油の油面高さを調整することができる。これによって、内燃機関は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に、始動直後よりも第1空間61内の潤滑油の油面高さを高くすることができる。
内燃機関は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に、第1空間61への潤滑油の供給量を増加させることで、このとき第1空間61に供給される熱量を増大させることができる。つまり、第1空間61内の潤滑油の油温は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に急速に上昇させることが可能となり、暖機直後、すなわち暖機完了(終了)直後のメインギャラリ内の潤滑油(オイル)の油温に対する第1空間61内の潤滑油の油温の乖離を縮小できる。
そのため、内燃機関は、暖機直後の圧縮比変更時に減速機35のフリクションを低減できる。これによって、内燃機関は、圧縮比の目標圧縮比に対する追従性(応答性)が向上し、燃費及び動力性能の向上を図ることができる。
内燃機関は、始動時に第1空間61内の油面高さを予め低くしておくことで、始動時における第1空間61内の熱容量を低減できる。そのため、内燃機関は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に、暖められた潤滑油を第1空間61に供給した際の第1空間61内の潤滑油の油温の上昇速度を早めることができる。
また、内燃機関は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)、第1空間61内の油面高さを高くして第1空間61内に滞留する潤滑油の油量が多くすることで、減速機35及び減速機35の周囲の壁(第1空間61を構成する隔壁63等のハウジング28の壁)への伝熱を促進することができる。そのため、内燃機関は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に、第1空間61内の温度を急速に上昇させることが可能となり、暖機直後、すなわち暖機完了(終了)直後のメインギャラリ内の潤滑油(オイル)の油温に対する第1空間61内の潤滑油の油温の乖離を縮小できる。
内燃機関は、始動時に第1空間61内の油面高さが低いため、始動後に第1空間61内の油面高さが上昇すると、第1空間61内の潤滑油の温度を速やかに上昇させることができる。
そのため、内燃機関は、暖機直後の圧縮比変更時に減速機35のフリクションを低減できる。それによって、内燃機関は、圧縮比の目標圧縮比に対する追従性(応答性)が向上し、燃費及び動力性能の向上を図ることができる。
また、内燃機関は、暖機直後は、減速機35の潤滑のために始動時よりも第1空間内の油面高さを高くすることができる。
内燃機関は、停止時、始動直後の燃焼安定性を考慮して、圧縮温度を高める必要がある。また、内燃機関の始動後の暖機中(冷機時)は、排気温度上昇により触媒(排気浄化触媒)の活性化を促進して排気性能悪化を抑制する必要がある。そして、内燃機関は、極低温時(例えば-30℃)に潤滑油の粘度が高くなって圧縮比可変応答性が低下するため、機関停止状態の圧縮比から冷機時に設定される圧縮比までの変化量を低減する必要がある。
そこで、機関停止時の内燃機関は、始動直後の燃焼安定性を考慮して、圧縮温度(燃焼室内の混合気を圧縮した際の温度)を高めるために、上記中間圧縮比以上となる所定の始動時用圧縮比(例えば圧縮比10.5)に設定されている。つまり、上記始動時用圧縮比は、内燃機関を停止する際に設定する圧縮比である。そして、始動後の暖機中の内燃機関は、排気温度を上昇させるために上記中間圧縮比に設定されている。
そのため、内燃機関は、始動直後に第2制御軸24とハウジング28の軸受部66との間を潤滑する潤滑油の油量が、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に第2制御軸24とハウジング28の軸受部66との間を潤滑する潤滑油の油量よりも多くなっている。
より具体的には、内燃機関は、始動直後に第1軸受部66aと第2軸部24bとの間を潤滑する潤滑油の油量が、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に第1軸受部66aと第2軸部24bとの間を潤滑する潤滑油の油量よりも多く、始動直後に第2軸受部66bと第3軸部24cとの間を潤滑する潤滑油の油量が、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に第2軸受部66bと第3軸部24cとの間を潤滑する潤滑油の油量よりも多くなっている。
内燃機関は、始動直後の圧縮比が上記中間圧縮比ではないため、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aが互いに重なりあっておらず、第2制御軸24とハウジング28の軸受部66との間を潤滑する潤滑油の油量が相対的に増加する。つまり、内燃機関は、始動直後に、第2制御軸24とハウジング28の軸受部66との間を潤滑する潤滑油の油量を十分に確保できる。
内燃機関は、機関停止状態で長期間放置されていると、始動直後に第2制御軸24とハウジング28の軸受部66との間に十分な量の潤滑油を供給しなければ始動直後から暖機中(冷機時)にかけて第2制御軸24の油膜が不足する虞がある。
また、内燃機関は、始動直後に第2制御軸24とハウジング28の軸受部66との間に十分な量の潤滑油を供給しない場合、暖機運転中に第1空間61への潤滑油の供給が優先されると、暖機完了まで第2制御軸24とハウジング28の軸受部66との間に十分な量の潤滑油が給油されない虞がある。
内燃機関は、圧縮比を所定の圧縮比に保持する暖機中(冷機時)にドライバーの運転状態によって高負荷荷重をハウジング28の軸受部66に受けた場合に耐摩耗性が不利となる虞がある。
そのため、内燃機関は、始動後なるべく早いタイミングで各摺動部位に給油するのが望ましい。
そして、内燃機関は、圧縮比を上記中間圧縮比に保持する内燃機関の始動後の暖機中(冷機時)に、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aが全体的に重なり合っているので、第1空間61に供給される潤滑油の油量が相対的に増加し、減速機35を早期に昇温させることができる。
なお、本実施例では、ハウジング側第1油路開口部79と第2制御軸側第2油路42の一端側開口部42aとが重なり合うタイミングで、ハウジング側第2油路開口部80と第2制御軸側第3油路43の一端側開口部43aとが重なり合う。
また、内燃機関は、圧縮比を上記中間圧縮比に保持する内燃機関の始動後の暖機中(冷機時)、ハウジング28の軸受部66と第2制御軸24の軸部との摺動面上で、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが重なり合うよう設定されている。
より具体的には、内燃機関は、圧縮比を上記中間圧縮比に保持する内燃機関の始動後の暖機中(冷機時)、第1軸受部66aと第2軸部24bとの摺動面上でハウジング側第1油路開口部79と第2制御軸側第2油路42の一端側開口部42aとが重なり合い、第2軸受部66bと第3軸部24cとの摺動面上でハウジング側第2油路開口部80と第2制御軸側第3油路43の一端側開口部43aとが重なり合うよう設定されている。
これによって、内燃機関は、圧縮比を上記中間圧縮比に保持する内燃機関の始動後の暖機中(冷機時)に、上記第1空間用潤滑油供給通路の通路抵抗が低減され、第1空間61に供給される潤滑油の油量が増大する。
上記第1空間用潤滑油供給通路は、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが対向することで通路抵抗を小さくできる。
内燃機関は、圧縮比を上記中間圧縮比に保持する内燃機関の始動後の暖機中(冷機時)に第1空間61への潤滑油の供給量を増加させることで、第1空間61内の潤滑油の油温上昇、減速機35の効率向上、燃費及び動力性能の悪化回避を実現できる。
第1空間61への潤滑油の供給量は、第1空間61へ潤滑油を供給する上記第1空間用潤滑油供給通路の通路抵抗に応じて決まるため、上記第1空間用潤滑油供給通路の通路抵抗を変更することで変更(調整)可能となる。
上記第1空間用潤滑油供給通路の通路抵抗は、上述したように、第2制御軸24の回転角度に応じて変更することができる。内燃機関は、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが対向していれば、ハウジング28の軸受部66と第2制御軸24の軸部との摺動面を経由せずに、第2制御軸側油路40にハウジング側油路75から潤滑油を直接供給でき、第1空間61への潤滑油の供給量が増加させることができる。
内燃機関は、圧縮比が上記始動時用圧縮比のとき、ハウジング28の軸受部66と第2制御軸24の軸部との摺動面上で、ハウジング側油路開口部78と第2制御軸側油路40の一端側開口部40aとが重なり合わないように設定されている。
より具体的には、内燃機関は、圧縮比が上記始動時用圧縮比のとき、第1軸受部66aと第2軸部24bとの摺動面上でハウジング側第1油路開口部79と第2制御軸側第2油路42の一端側開口部42aとが重なり合わず、かつ第2軸受部66bと第3軸部24cとの摺動面上でハウジング側第2油路開口部80と第2制御軸側第3油路43の一端側開口部43aとが重なり合わないように設定されている。
これによって、ハウジング28の軸受部66と第2制御軸24の軸部との摺動面に供給される潤滑油の量を十分に確保することができる。
また、上述した実施例の内燃機関を搭載する車両が駆動源となる電動機を有するハイブリッド車両である場合、内燃機関の始動直後に設定する圧縮比は、内燃機関の始動後の暖機中(冷機時)に設定される上記中間圧縮比以下となるよう設定する。すなわち、上述した実施例の内燃機関をシリーズハイブリッド車両やパラレルハイブリッド車両に搭載する場合、内燃機関の始動直後に設定する圧縮比である始動時用圧縮比は、内燃機関の始動後の暖機中(冷機時)に設定される上記中間圧縮比以下となるよう設定する。
ハイブリッド車両に搭載される内燃機関の場合、内燃機関の始動の瞬間はエンジントルクが発生しないため、モータトルクで余裕駆動力を発生させる必要がある。ハイブリッド車両においては、始動時のエンジンフリクショントルクが大きい場合、内燃機関を始動させるモータの必要トルクを増大させる必要がある。始動時のエンジンフリクショントルクは、圧縮比が高いほど大きくなる。
従って、ハイブリッド車両に搭載される内燃機関の場合には、内燃機関を始動する際の圧縮比(始動時用圧縮比)をできる限り下げておくことが望ましい。
そこで、ハイブリッド車両に搭載される内燃機関の場合には、内燃機関の始動直後に設定される圧縮比(始動時用圧縮比)を上記中間圧縮比以下となるよう設定する。これによって、内燃機関は、上記始動時用圧縮比が下がるためモータの必要トルクを低減することができる。
また、上述した実施例の内燃機関を搭載する車両が当該内燃機関のみを駆動源とする車両である場合、内燃機関の始動直後に設定する圧縮比である始動時用圧縮比は、内燃機関の始動後の暖機中(冷機時)に設定される上記中間圧縮比よりも高くなるよう設定する。
駆動源が内燃機関のみとなる車両に搭載される内燃機関の場合、始動時は、燃焼安定性確保のためにある程度高い圧縮比が必要となる。一方で、冷機時には、早期昇温による触媒活性化のため、圧縮比を下げておくことが望ましい。
そこで、駆動源が内燃機関のみとなる車両に搭載される内燃機関の場合には、内燃機関の始動直後に設定する圧縮比(始動時用圧縮比)を上記中間圧縮比よりも高くなるよう設定する。これによって、内燃機関は、始動時に圧縮比を高くして燃焼安定性を確保し、暖機中(冷機時)は圧縮比を下げて早期昇温を実現できる。
内燃機関は、内燃機関の始動後の暖機中(冷機時)に設定(保持)される圧縮比が上記中間圧縮比となり、上記中間圧縮比のときに第1空間61へ供給する潤滑油の油量が、上記中間圧縮比よりも高い圧縮比のときに第1空間61へ供給する潤滑油の油量よりも多くなっている。
換言すれば、内燃機関は、内燃機関の始動後の暖機中(冷機時)に設定(保持)される圧縮比が上記中間圧縮比となり、第1空間61内の潤滑油の油面は、圧縮比が上記中間圧縮比よりも高い高圧縮比のときに上記中間圧縮比のときよりも低くなる。
内燃機関は、内燃機関の始動後の暖機中(冷機時)に第1空間61に供給する潤滑油の油量が増大し、第1空間61内の潤滑油の油温が上昇し、内燃機関の始動後の暖機中(冷機時)及び暖機直後の減速機35の効率を向上させることができる。
また、内燃機関は、圧縮比が上記中間圧縮比のとき第1空間61への潤滑油の供給量が増大するため、極低温時(例えば-30℃)であっても第1空間61内の潤滑油の油温を急速に上昇させることが可能となる。
内燃機関は、圧縮比が高圧縮比となる常用域で第1空間61へ供給される潤滑油の油量が低減するので、常用域におけるオイルポンプの負荷が低減され、常用域における燃費向上を図ることができる。
また、内燃機関は、圧縮比が上記中間圧縮比のときに減速機35に作用する負荷トルクが最大となるため、圧縮比が上記中間圧縮比のときに第1空間61へ供給される潤滑油の油量を増大させることで減速機35の歯面摩耗を抑制することができる。
内燃機関は、暖機中(冷機時)に設定(保持)される圧縮比が上記中間圧縮比となり、上記中間圧縮比のときに第1空間61へ供給する潤滑油の油量が、上記中間圧縮比よりも低い圧縮比のときに第1空間61へ供給する潤滑油の油量よりも多くなっている。換言すれば、内燃機関は、暖機中(冷機時)に設定(保持)される圧縮比が上記中間圧縮比となり、第1空間61内の潤滑油の油面は、圧縮比が上記中間圧縮比よりも低い低圧縮比のときに上記中間圧縮比のときよりも低くなる。
内燃機関は、圧縮比が上記中間圧縮比よりも低い低圧縮比のときに第1空間61へ供給する潤滑油の油量が減少するため、低圧縮比のとき第2制御軸24とハウジング28の軸受部66との間を潤滑する潤滑油の油量が相対的に増加する。
内燃機関は、圧縮比が低圧縮比のときに高負荷が入力されるので、圧縮比が低圧縮比のときに第1空間61へ供給される潤滑油の油量を減少させることで、第2制御軸24とハウジング28の軸受部66との間を潤滑する潤滑油の油量を増加させ、ハウジング28の軸受部66の耐摩耗性を向上させることができる。
また、内燃機関がハイブリッド車両に搭載されるものである場合、内燃機関は、始動後に低圧縮比から熱効率の高い高圧縮比に圧縮比を変更することが望ましい。内燃機関は、このような圧縮比変更時に、第1空間61内の潤滑油の油面が低ければ、減速機35のフリクションが低い状態となり、高応答かつ低消費電力で圧縮比を変更可能となる。
内燃機関は、第1空間61内の潤滑油の油面が、圧縮比が上記中間圧縮比に保持される内燃機関の始動後の暖機中(冷機時)に所定の規定油面高さH2に到達するよう設定されている。本実施例では、上記規定油面高さH2が第2排出孔68の形成位置となっている。
なお、本実施例では、機関停止時における第1空間61内の潤滑油の油面の高さである停止時油面高さH1が第1排出孔67の形成位置となっている。
内燃機関は、第1空間61内の潤滑油の油面を暖機運転中に早期に上昇させることによって、第1空間61内の潤滑油の昇温速度を早くするとともに、暖機終了後の圧縮比可変開始時に必要な油面高さ(十分な油面高さ)を確保できていることにより減速機35の良好な潤滑性を確実に確保することができる。
図5は、上述した実施例の内燃機関の冷機始動時における各種状態量の変化を示したタイミングチャートである。より詳しくは、図5は、上述した実施例の内燃機関の極低温状態(潤滑油や冷却水の温度が-30℃)からの始動時における各種状態量の変化を示したタイミングチャートである。
時刻t1は、内燃機関のクランキングを開始したタイミングである。
時刻t2は、クランキングにより第1空間61に潤滑油が供給され始めるタイミングである。第1空間61に潤滑油が供給され始めるタイミングは、油圧の立ち上がりの遅れにより、クランキング開始のタイミングよりも遅れた時刻t2のタイミングとなる。
図5中に実線で示す特性線L1は、上記第1空間用潤滑油供給通路から第1空間61に供給される潤滑油の油量の変化を示している。図5中に破線で示す特性線L2は、第1空間61から排出される潤滑油の油量の変化を示している。また、図5中に実線で示す特性線L3は、第1空間61内の潤滑油の油面高さの変化を示している。
時刻t3は、クランキングが完了するタイミングであり、目標圧縮比が上記中間圧縮比に変更されるタイミングである。
図5中に破線で示す特性線L4は、内燃機関の目標圧縮比の変化を示している。図5中に実線で示す特性線L5は、内燃機関の実圧縮比(実際の圧縮比)の変化を示している。
時刻t4は、実圧縮比が上記中間圧縮比になったタイミングである。時刻t3~時刻t4の期間は、内燃機関の始動直後に相当する期間であり、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)に比べて、第1空間61への潤滑油の供給量が少なくなっている。また、時刻t3~時刻t4の期間は、第1空間61内の潤滑油の油面高さが低くなっている。
時刻t5は、第1空間61内の潤滑油の油面高さが上記規定油面高さH2に達したタイミングである。
時刻t6は、冷却水温度が所定の暖機完了判定温度Tc(例えば60℃)となったタイミングであり、目標圧縮比が回転負荷に応じて設定されるタイミングである。この例では、時刻t6のタイミングで目標圧縮比がアイドル運転用の圧縮比である高圧縮比(例えば圧縮比14)に変更されている。
図5中に一点鎖線で示す特性線L6は、内燃機関の冷却水温度の変化を示している。図5中に破線で示す特性線L7は、メインギャラリ内の潤滑油の温度(M/G油温)の変化を示している。図5中に実線で示す特性線L8は、第1空間61内の潤滑油温度の変化を示している。
時刻t4~時刻t6の期間は、圧縮比を上記中間圧縮比に保持する暖機中(冷機時)の期間であり、内燃機関の始動直後に比べて、第1空間61への潤滑油の供給量が多くなっている。また、時刻t4~時刻t6の期間は、内燃機関の始動直後に比べて、第1空間61内の潤滑油の油面高さが高くなっている。
また、時刻t6のタイミングでは、内燃機関の冷却水温度、メインギャラリ内の潤滑油の温度及び第1空間61内の潤滑油温度の間には、温度上昇速度の違いから互いの温度に乖離が生じている。冷機始動時においては、図5に示すように、内燃機関の冷却水温度の上昇速度が最も早く、第1空間61内の潤滑油温度の上昇速度が最も遅くなっている。そのため、時刻t6のタイミングでは、内燃機関の冷却水温度、メインギャラリ内の潤滑油の温度、第1空間61内の潤滑油温度、の順で温度が高くなっている。
時刻t7は、実圧縮比が目標圧縮比に達したタイミングである。
時刻t8は、冷却水温度が所定の暖機完了温度Th(例えば80℃)となったタイミングであり、第1排出孔67から第1空間61の潤滑油が排出され始めるタイミングである。
時刻t9は、図5中に破線で示すM/G油温(メインギャラリ内の潤滑油の温度)が所定の暖機完了温度Th(例えば80℃)となった冷却水温度と一致するタイミングである。
時刻t10は、図5中に実線で示す第1空間61内の潤滑油温度が所定の暖機完了温度Th(例えば80℃)となった冷却水温度及びM/G油温と一致するタイミングである。
時刻t11は、イグニッションをオフしたタイミングである。目標圧縮比は、時刻t11のタイミングで、上記始動時用圧縮比に変更される。なお、第1空間61内の潤滑油の油面高さは、時刻t5~時刻t11の期間、上記規定油面高さH2で釣り合った状態となっている。
時刻t12は、実圧縮比が目標圧縮比に達したタイミングである。時刻t11~時刻12の期間は、実圧縮比をイグニッションオフにより変更された目標圧縮比である始動時用圧縮比まで変更する期間である。
時刻t13は、内燃機関の停止後、第1空間61内の潤滑油の油面高さが停止時油面高さH1に達したタイミングである。
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、上記実施例では、リンク部材30介して第1制御軸10と第2制御軸24とが連結された構成となっているが、リンク部材30及び第2制御軸24が省略され、第1制御軸10が減速機35を介して電動モータ36に連結された構成の内燃機関に対しても適用可能である。この場合には、制御軸側油路が第1制御軸10に形成されるものとなり、第2空間が第1制御軸10に貫通されるものとなる。
1…可変圧縮比機構
21…アクチュエータユニット
24…第2制御軸
24a…第1軸部
24b…第2軸部
24c…第3軸部
26…第2アーム部
28…ハウジング
30…リンク部材
35…減速機
36…電動モータ
40…第2制御軸側油路
40a…一端側開口部
40b…他端側開口部
41…第2制御軸側第1油路
41a…一端側開口部
42…第2制御軸側第2油路
42a…一端側開口部
43…第2制御軸側第3油路
43a…一端側開口部
61…第1空間
62…第2空間
63…隔壁
64…底壁
66…軸受部
66a…第1軸受部
66b…第2軸受部
67…第1排出孔
68…第2排出孔
69…フィルタ
75…ハウジング側油路
76…ハウジング側第1油路
77…ハウジング側第2油路
78…ハウジング側油路開口部
79…ハウジング側第1油路開口部
80…ハウジング側第2油路開口部

Claims (16)

  1. 制御軸の回転位置に応じて圧縮比を変更する可変圧縮比機構と、
    減速機を介して上記制御軸を回転駆動するアクチュエータと、
    上記減速機及び上記制御軸を収容するハウジングと、を有し、
    上記ハウジングは、上記減速機を収容する第1空間と、上記制御軸が貫通する第2空間と、上記第1空間と上記第2空間とを隔てる隔壁と、を有し、
    上記隔壁には、上記第1空間内の潤滑油を上記第2空間へ排出する第1排出孔及び第2排出孔を貫通形成し、
    上記第1排出孔は、上記第2排出孔よりも下方に位置し、かつ上記第2排出孔よりも通路抵抗が大きくなるよう形成し、内燃機関の始動時に上記第1空間内の油面高さを予め低くしておくことができるものであり、
    クランキングが完了してから圧縮比が所定の中間圧縮比となるまでの期間である内燃機関の始動直後は、上記第1排出孔により上記第1空間内の油面高さを調整し、
    圧縮比を所定の圧縮比に保持する冷機時には、上記始動直後よりも多くの潤滑油を上記第1空間に供給し、上記第2排出孔により上記第1空間内の油面高さを調整し、
    上記第1空間に供給する潤滑油は、上記制御軸を回転可能に支持する上記ハウジングの軸受部に当該ハウジング側から供給した潤滑油を当該制御軸の内部に形成した制御軸側油路を介して供給したものであって、
    始動直後に上記制御軸と上記ハウジングの軸受部との間に供給される潤滑油の油量は、圧縮比を所定の圧縮比に保持する冷機時に上記制御軸と上記ハウジングの軸受部との間に供給される潤滑油の油量よりも多いことを特徴とする内燃機関。
  2. 制御軸の回転位置に応じて圧縮比を変更する可変圧縮比機構と、
    減速機を介して上記制御軸を回転駆動するアクチュエータと、
    上記減速機及び上記制御軸を収容するハウジングと、を有し、
    上記ハウジングは、上記減速機を収容する第1空間と、上記制御軸が貫通する第2空間と、上記第1空間と上記第2空間とを隔てる隔壁と、を有し、
    上記隔壁には、上記第1空間内の潤滑油を上記第2空間へ排出する第1排出孔及び第2排出孔を貫通形成し、
    上記第1排出孔は、上記第2排出孔よりも下方に位置し、かつ上記第2排出孔よりも通路抵抗が大きくなるよう形成し、内燃機関の始動時に上記第1空間内の油面高さを予め低くしておくことができるものであり、
    クランキングが完了してから圧縮比が所定の中間圧縮比となるまでの期間である内燃機関の始動直後は、上記第1排出孔により上記第1空間内の油面高さ調整し、
    圧縮比を所定の圧縮比に保持する冷機時には、上記始動直後よりも上記第1空間内の油面高さが高くなるように、上記第2排出孔により上記第1空間内の油面高さを調整し、
    上記第1空間に供給する潤滑油は、上記制御軸を回転可能に支持する上記ハウジングの軸受部に当該ハウジング側から供給した潤滑油を当該制御軸の内部に形成した制御軸側油路を介して供給したものであって、
    始動直後に上記制御軸と上記ハウジングの軸受部との間に供給される潤滑油の油量は、圧縮比を所定の圧縮比に保持する冷機時に上記制御軸と上記ハウジングの軸受部との間に供給される潤滑油の油量よりも多いことを特徴とする内燃機関。
  3. 上記隔壁は、上記制御軸の一端側に位置する一端側軸部を回転可能に支持する一端側軸受部を有し、
    上記ハウジングは、上記制御軸の他端側に位置する他端側軸部を回転可能に支持する他端側軸受部と、上記一端側軸受部に潤滑油を供給するハウジング側第1油路と、上記他端側軸受部に潤滑油を供給するハウジング側第2油路と、を有し、
    始動直後に上記一端側軸部と上記一端側軸受部との間に供給される潤滑油の油量は、圧縮比を所定の圧縮比に保持する冷機時に上記一端側軸部と上記一端側軸受部との間に供給される潤滑油の油量よりも多く、
    始動直後に上記他端側軸部と上記他端側軸受部との間に供給される潤滑油の油量は、圧縮比を所定の圧縮比に保持する冷機時に上記他端側軸部と上記他端側軸受部との間に供給される潤滑油の油量よりも多いことを特徴とする請求項1または2に記載の内燃機関。
  4. 上記ハウジングは、当該ハウジングの軸受部に潤滑油を供給するハウジング側油路を有し、
    上記制御軸側油路は、上記ハウジングの軸受部に支持される上記制御軸の軸部に開口するよう形成され、
    圧縮比を所定の圧縮比に保持する冷機時に、上記ハウジングの軸受部と上記制御軸の軸部との摺動面上で、上記ハウジング側油路の開口と上記制御軸側油路の開口とが重なり合うことを特徴とする請求項1または2に記載の内燃機関。
  5. 上記制御軸側油路は、上記一端側軸受部に支持される上記一端側軸部に開口する一端側通路部と、上記他端側軸受部に支持される上記他端側軸部に開口する他端側通路部と、を有し、
    圧縮比を所定の圧縮比に保持する冷機時に、上記一端側軸受部と上記一端側軸部との摺動面上で上記ハウジング側第1油路の開口と上記一端側通路部の開口とが重なり合い、上記他端側軸受部と上記他端側軸部との摺動面上で上記ハウジング側第2油路の開口と上記他端側通路部の開口とが重なり合うことを特徴とする請求項に記載の内燃機関。
  6. 上記ハウジングは、当該ハウジングの軸受部に潤滑油を供給するハウジング側油路を有し、
    上記制御軸側油路は、上記ハウジングの軸受部に支持される上記制御軸の軸部に開口するよう形成され、
    内燃機関を停止する際に設定する圧縮比のとき、上記ハウジングの軸受部と上記制御軸の軸部との摺動面上で、上記ハウジング側油路の開口と上記制御軸側油路の開口とが重なり合わないことを特徴とする請求項1、2、4のいずれかに記載の内燃機関。
  7. 上記ハウジングは、上記制御軸の一端側に位置する一端側軸部を回転可能に支持する一端側軸受部に潤滑油を供給するハウジング側第1油路と、上記制御軸の他端側に位置する他端側軸部を回転可能に支持する他端側軸受部に潤滑油を供給するハウジング側第2油路と、を有し、
    上記制御軸側油路は、上記一端側軸受部に支持される一端側軸部に開口する一端側通路部と、上記他端側軸受部に支持される他端側軸部に開口する他端側通路部と、を有し、
    内燃機関を停止する際に設定する圧縮比のとき、上記一端側軸受部と上記一端側軸部との摺動面上で上記ハウジング側第1油路の開口と上記一端側通路部の開口とが重なり合わず、上記他端側軸受部と上記他端側軸部との摺動面上で上記ハウジング側第2油路の開口と上記他端側通路部の開口とが重なり合わないことを特徴とする請求項1、2、4のいずれかに記載の内燃機関。
  8. 内燃機関を搭載する車両が駆動源となる電動機を有するハイブリッド車両であって、
    内燃機関の始動直後に設定する圧縮比は、冷機時に設定する圧縮比以下となるよう設定することを特徴とする請求項1~のいずれかに記載の内燃機関。
  9. 駆動源が内燃機関のみとなる車両であって、
    内燃機関の始動直後に設定する圧縮比は、冷機時に設定する圧縮比よりも高くなるよう設定することを特徴とする請求項1~いずれかに記載の内燃機関。
  10. 冷機時の圧縮比は、所定の中間圧縮比となり、
    上記中間圧縮比のときに上記第1空間へ供給する潤滑油の油量は、圧縮比が上記中間圧縮比よりも高い高圧縮比のときに上記第1空間へ供給する潤滑油の油量よりも多くなることを特徴とする請求項1~のいずれかに記載の内燃機関。
  11. 冷機時の圧縮比は、所定の中間圧縮比となり、
    上記中間圧縮比のときに上記第1空間へ供給する潤滑油の油量は、圧縮比が上記中間圧縮比よりも低い低圧縮比のときに上記第1空間へ供給する潤滑油の油量よりも多くなることを特徴とする請求項1~1のいずれかに記載の内燃機関。
  12. 上記第1空間内の潤滑油の油面は、圧縮比を所定の圧縮比に保持する冷機時の間に、所定の規定油面高さに到達することを特徴とする請求項1~1のいずれかに記載の内燃機関。
  13. 冷機時の圧縮比は、所定の中間圧縮比となり、
    上記第1空間内の潤滑油の油面は、圧縮比が上記中間圧縮比よりも高い高圧縮比のときに上記中間圧縮比よりも低くなることを特徴とする請求項1~1のいずれかに記載の内燃機関。
  14. 冷機時の圧縮比は、所定の中間圧縮比となり、
    上記第1空間内の潤滑油の油面は、圧縮比が上記中間圧縮比よりも低い低圧縮比のときに上記中間圧縮比よりも低くなることを特徴とする請求項1~1のいずれかに記載の内燃機関。
  15. 上記第1排出孔の通路抵抗は、潤滑油の油温が暖機完了後の油温のときに排出されるように設定されていることを特徴とする請求項1~1のいずれかに記載の内燃機関。
  16. 上記第2排出孔の通路抵抗は、潤滑油の油温が冷機時の油温であっても排出されるように設定されていることを特徴とする請求項1~1のいずれかに記載の内燃機関。
JP2019014970A 2019-01-31 2019-01-31 内燃機関 Active JP7251173B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014970A JP7251173B2 (ja) 2019-01-31 2019-01-31 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014970A JP7251173B2 (ja) 2019-01-31 2019-01-31 内燃機関

Publications (2)

Publication Number Publication Date
JP2020122436A JP2020122436A (ja) 2020-08-13
JP7251173B2 true JP7251173B2 (ja) 2023-04-04

Family

ID=71993488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014970A Active JP7251173B2 (ja) 2019-01-31 2019-01-31 内燃機関

Country Status (1)

Country Link
JP (1) JP7251173B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257254A (ja) 2003-02-24 2004-09-16 Nissan Motor Co Ltd レシプロ式可変圧縮比機関
JP2009215995A (ja) 2008-03-11 2009-09-24 Nissan Motor Co Ltd 可変圧縮比エンジンの制御装置及び制御方法
JP2013241846A (ja) 2012-05-18 2013-12-05 Nissan Motor Co Ltd 可変圧縮比内燃機関
JP2014169629A (ja) 2013-03-01 2014-09-18 Nissan Motor Co Ltd 可変圧縮比内燃機関の潤滑構造
JP5614505B2 (ja) 2011-11-29 2014-10-29 日産自動車株式会社 可変圧縮比内燃機関の潤滑構造
JP2016117451A (ja) 2014-12-24 2016-06-30 日産自動車株式会社 車両の制御装置
US20170167370A1 (en) 2015-12-15 2017-06-15 Hyundai Motor Company Variable compression ratio apparatus
JP2018021479A (ja) 2016-08-02 2018-02-08 日立オートモティブシステムズ株式会社 内燃機関用リンク機構のアクチュエータ
JP2018131904A (ja) 2017-02-13 2018-08-23 日産自動車株式会社 内燃機関の潤滑構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257254A (ja) 2003-02-24 2004-09-16 Nissan Motor Co Ltd レシプロ式可変圧縮比機関
JP2009215995A (ja) 2008-03-11 2009-09-24 Nissan Motor Co Ltd 可変圧縮比エンジンの制御装置及び制御方法
JP5614505B2 (ja) 2011-11-29 2014-10-29 日産自動車株式会社 可変圧縮比内燃機関の潤滑構造
JP2013241846A (ja) 2012-05-18 2013-12-05 Nissan Motor Co Ltd 可変圧縮比内燃機関
JP2014169629A (ja) 2013-03-01 2014-09-18 Nissan Motor Co Ltd 可変圧縮比内燃機関の潤滑構造
JP2016117451A (ja) 2014-12-24 2016-06-30 日産自動車株式会社 車両の制御装置
US20170167370A1 (en) 2015-12-15 2017-06-15 Hyundai Motor Company Variable compression ratio apparatus
JP2018021479A (ja) 2016-08-02 2018-02-08 日立オートモティブシステムズ株式会社 内燃機関用リンク機構のアクチュエータ
JP2018131904A (ja) 2017-02-13 2018-08-23 日産自動車株式会社 内燃機関の潤滑構造

Also Published As

Publication number Publication date
JP2020122436A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
JP5720857B2 (ja) 可変圧縮比内燃機関の制御装置及び制御方法
US7240646B2 (en) Power plant including an internal combustion engine with a variable compression ratio system
US8794200B2 (en) Engine assembly with phasing mechanism on eccentric shaft for variable cycle engine
US9422872B2 (en) Variable compression ratio internal combustion engine
JP6163831B2 (ja) エンジンのオイル供給装置
JP2003322036A (ja) 内燃機関の可変圧縮比機構
US9951664B2 (en) Method for heating the engine oil of an internal combustion engine and internal combustion engine for performing such a method
JP5966999B2 (ja) 多気筒エンジンの制御装置
WO2019176401A1 (ja) 内燃機関の可変圧縮比機構のためのアクチュエータ
US6913000B2 (en) Engine fuel delivery system
EP2057354B1 (en) Variable valve timing system and method for controlling the same
JP7251173B2 (ja) 内燃機関
JP4103731B2 (ja) 可変圧縮比内燃機関
JP2004060612A (ja) 内燃機関の潤滑装置
JPH11182222A (ja) 内燃機関の潤滑装置
JP6020307B2 (ja) 多気筒エンジンの制御装置
JP3879706B2 (ja) 車両の駆動装置及び車両
JP6631590B2 (ja) 内燃機関のオイル循環装置
JP2012042040A (ja) 滑り軸受装置および内燃機関
JP2004340066A (ja) 内燃機関
JP2001213180A (ja) 内燃機関の補機配設構造
JP7172536B2 (ja) 可変圧縮比内燃機関
SU1768784A1 (ru) Аксиально-поршневой двигатель
KR100412615B1 (ko) 엔진 시동시 터보차저의 오일 공급구조
JP2005291183A (ja) 内燃機関の給油量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R151 Written notification of patent or utility model registration

Ref document number: 7251173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151