以下の定義および詳細な説明は、本明細書において説明する本発明の理解を容易にするために提供される。
アミノ酸
本明細書において、たとえば、Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、Val/Vと表されるように、アミノ酸は1文字コードまたは3文字コード、またはその両方で表記されている。
および/または
本明細書において、「および/または」の用語の意義は、「および」と「または」が適宜組み合わされたあらゆる組合せを含む。具体的には、例えば「33位、55位、および/または96位のアミノ酸が置換されている」とは以下のアミノ酸の改変のバリエーションが含まれる;
(a) 33位、(b) 55位、(c) 96位、(d) 33位および55位、(e) 33位および96位、(f) 55位および96位、(g) 33位および55位および96位。
抗原
本明細書において「抗原」は抗原結合ドメインが結合するエピトープを含む限りその構造は特定の構造に限定されない。別の意味では、抗原は無機物でもあり得るし有機物でもあり得る。本発明の方法によって薬物動態を向上させる抗原結合分子の例としては、例えば、受容体蛋白質(膜結合型受容体、可溶型受容体)や細胞表面マーカーなどの膜抗原を認識する抗原結合分子、サイトカインなどの可溶型抗原を認識する抗原結合分子などが好適に挙げられる。抗原としては下記のような分子;17-IA、4-1BB、4Dc、6-ケト-PGF1a、8-イソ-PGF2a、8-オキソ-dG、A1 アデノシン受容体、A33、ACE、ACE-2、アクチビン、アクチビンA、アクチビンAB、アクチビンB、アクチビンC、アクチビンRIA、アクチビンRIA ALK-2、アクチビンRIB ALK-4、アクチビンRIIA、アクチビンRIIB、ADAM、ADAM10、ADAM12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMTS、ADAMTS4、ADAMTS5、アドレシン、aFGF、ALCAM、ALK、ALK-1、ALK-7、アルファ-1-アンチトリプシン、アルファ-V/ベータ-1アンタゴニスト、ANG、Ang、APAF-1、APE、APJ、APP、APRIL、AR、ARC、ART、アルテミン、抗Id、ASPARTIC、心房性ナトリウム利尿因子、av/b3インテグリン、Axl、b2M、B7-1、B7-2、B7-H、B-リンパ球刺激因子(BlyS)、BACE、BACE-1、Bad、BAFF、BAFF-R、Bag-1、BAK、Bax、BCA-1、BCAM、Bcl、BCMA、BDNF、b-ECGF、bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、BMP、BMP-2 BMP-2a、BMP-3 オステオゲニン(Osteogenin)、BMP-4 BMP-2b、BMP-5、BMP-6 Vgr-1、BMP-7(OP-1)、BMP-8(BMP-8a、OP-2)、BMPR、BMPR-IA(ALK-3)、BMPR-IB(ALK-6)、BRK-2、RPK-1、BMPR-II(BRK-3)、BMP、b-NGF、BOK、ボンベシン、骨由来神経栄養因子、BPDE、BPDE-DNA、BTC、補体因子3(C3)、C3a、C4、C5、C5a、C10、CA125、CAD-8、カルシトニン、cAMP、癌胎児35性抗原(CEA)、癌関連抗原、カテプシンA、カテプシンB、カテプシンC/DPPI、カテプシンD、カテプシンE、カテプシンH、カテプシンL、カテプシンO、カテプシンS、カテプシンV、カテプシンX/Z/P、CBL、CCI、CCK2、CCL、CCL1、CCL11、CCL12、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL19、CCL2、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CCL3、CCL4、CCL5、CCL6、CCL7、CCL8、CCL9/10、CCR、CCR1、CCR10、CCR10、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CD1、CD2、CD3、CD3E、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD13、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD27L、CD28、CD29、CD30、CD30L、CD32、CD33(p67タンパク質)、CD34、CD38、CD40、CD40L、CD44、CD45、CD46、CD49a、CD52、CD54、CD55、CD56、CD61、CD64、CD66e、CD74、CD80(B7-1)、CD89、CD95、CD123、CD137、CD138、CD140a、CD146、CD147、CD148、CD152、CD164、CEACAM5、CFTR、cGMP、CINC、ボツリヌス菌毒素、ウェルシュ菌毒素、CKb8-1、CLC、CMV、CMV UL、CNTF、CNTN-1、COX、C-Ret、CRG-2、CT-1、CTACK、CTGF、CTLA-4、CX3CL1、CX3CR1、CXCL、CXCL1、CXCL2、CXCL3、CXCL4、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL15、CXCL16、CXCR、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、サイトケラチン腫瘍関連抗原、DAN、DCC、DcR3、DC-SIGN、補体制御因子(Decay accelerating factor)、des(1-3)-IGF-I(脳IGF-1)、Dhh、ジゴキシン、DNAM-1、Dnase、Dpp、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、EDAR、EGF、EGFR(ErbB-1)、EMA、EMMPRIN、ENA、エンドセリン受容体、エンケファリナーゼ、eNOS、Eot、エオタキシン1、EpCAM、エフリンB2/EphB4、EPO、ERCC、E-セレクチン、ET-1、ファクターIIa、ファクターVII、ファクターVIIIc、ファクターIX、線維芽細胞活性化タンパク質(FAP)、Fas、FcR1、FEN-1、フェリチン、FGF、FGF-19、FGF-2、FGF3、FGF-8、FGFR、FGFR-3、フィブリン、FL、FLIP、Flt-3、Flt-4、卵胞刺激ホルモン、フラクタルカイン、FZD1、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9、FZD10、G250、Gas6、GCP-2、GCSF、GD2、GD3、GDF、GDF-1、GDF-3(Vgr-2)、GDF-5(BMP-14、CDMP-1)、GDF-6(BMP-13、CDMP-2)、GDF-7(BMP-12、CDMP-3)、GDF-8(ミオスタチン)、GDF-9、GDF-15(MIC-1)、GDNF、GDNF、GFAP、GFRa-1、GFR-アルファ1、GFR-アルファ2、GFR-アルファ3、GITR、グルカゴン、Glut4、糖タンパク質IIb/IIIa(GPIIb/IIIa)、GM-CSF、gp130、gp72、GRO、成長ホルモン放出因子、ハプテン(NP-capまたはNIP-cap)、HB-EGF、HCC、HCMV gBエンベロープ糖タンパク質、HCMV gHエンベロープ糖タンパク質、HCMVUL、造血成長因子(HGF)、Hep B gp120、ヘパラナーゼ、Her2、Her2/neu(ErbB-2)、Her3(ErbB-3)、Her4(ErbB-4)、単純ヘルペスウイルス(HSV)gB糖タンパク質、HSV gD糖タンパク質、HGFA、高分子量黒色腫関連抗原(HMW-MAA)、HIV gp120、HIV IIIB gp 120 V3ループ、HLA、HLA-DR、HM1.24、HMFG PEM、HRG、Hrk、ヒト心臓ミオシン、ヒトサイトメガロウイルス(HCMV)、ヒト成長ホルモン(HGH)、HVEM、I-309、IAP、ICAM、ICAM-1、ICAM-3、ICE、ICOS、IFNg、Ig、IgA受容体、IgE、IGF、IGF結合タンパク質、IGF-1R、IGFBP、IGF-I、IGF-II、IL、IL-1、IL-1R、IL-2、IL-2R、IL-4、IL-4R、IL-5、IL-5R、IL-6、IL-6R、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、IL-18、IL-18R、IL-23、インターフェロン(INF)-アルファ、INF-ベータ、INF-ガンマ、インヒビン、iNOS、インスリンA鎖、インスリンB鎖、インスリン様増殖因子1、インテグリンアルファ2、インテグリンアルファ3、インテグリンアルファ4、インテグリンアルファ4/ベータ1、インテグリンアルファ4/ベータ7、インテグリンアルファ5(アルファV)、インテグリンアルファ5/ベータ1、インテグリンアルファ5/ベータ3、インテグリンアルファ6、インテグリンベータ1、インテグリンベータ2、インターフェロンガンマ、IP-10、I-TAC、JE、カリクレイン2、カリクレイン5、カリクレイン6、カリクレイン11、カリクレイン12、カリクレイン14、カリクレイン15、カリクレインL1、カリクレインL2、カリクレインL3、カリクレインL4、KC、KDR、ケラチノサイト増殖因子(KGF)、ラミニン5、LAMP、LAP、LAP(TGF-1)、潜在的TGF-1、潜在的TGF-1 bp1、LBP、LDGF、LECT2、レフティ、ルイス-Y抗原、ルイス-Y関連抗原、LFA-1、LFA-3、Lfo、LIF、LIGHT、リポタンパク質、LIX、LKN、Lptn、L-セレクチン、LT-a、LT-b、LTB4、LTBP-1、肺表面、黄体形成ホルモン、リンホトキシンベータ受容体、Mac-1、MAdCAM、MAG、MAP2、MARC、MCAM、MCAM、MCK-2、MCP、M-CSF、MDC、Mer、METALLOPROTEASES、MGDF受容体、MGMT、MHC(HLA-DR)、MIF、MIG、MIP、MIP-1-アルファ、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3、MMP-7、MMP-8、MMP-9、MPIF、Mpo、MSK、MSP、ムチン(Muc1)、MUC18、ミュラー管抑制物質、Mug、MuSK、NAIP、NAP、NCAD、N-Cアドヘリン、NCA 90、NCAM、NCAM、ネプリライシン、ニューロトロフィン-3、-4、または-6、ニュールツリン、神経成長因子(NGF)、NGFR、NGF-ベータ、nNOS、NO、NOS、Npn、NRG-3、NT、NTN、OB、OGG1、OPG、OPN、OSM、OX40L、OX40R、p150、p95、PADPr、副甲状腺ホルモン、PARC、PARP、PBR、PBSF、PCAD、P-カドヘリン、PCNA、PDGF、PDGF、PDK-1、PECAM、PEM、PF4、PGE、PGF、PGI2、PGJ2、PIN、PLA2、胎盤性アルカリホスファターゼ(PLAP)、PlGF、PLP、PP14、プロインスリン、プロレラキシン、プロテインC、PS、PSA、PSCA、前立腺特異的膜抗原(PSMA)、PTEN、PTHrp、Ptk、PTN、R51、RANK、RANKL、RANTES、RANTES、レラキシンA鎖、レラキシンB鎖、レニン、呼吸器多核体ウイルス(RSV)F、RSV Fgp、Ret、リウマイド因子、RLIP76、RPA2、RSK、S100、SCF/KL、SDF-1、SERINE、血清アルブミン、sFRP-3、Shh、SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD、SPARC、Stat、STEAP、STEAP-II、TACE、TACI、TAG-72(腫瘍関連糖タンパク質-72)、TARC、TCA-3、T細胞受容体(例えば、T細胞受容体アルファ/ベータ)、TdT、TECK、TEM1、TEM5、TEM7、TEM8、TERT、睾丸PLAP様アルカリホスファターゼ、TfR、TGF、TGF-アルファ、TGF-ベータ、TGF-ベータPan Specific、TGF-ベータRI(ALK-5)、TGF-ベータRII、TGF-ベータRIIb、TGF-ベータRIII、TGF-ベータ1、TGF-ベータ2、TGF-ベータ3、TGF-ベータ4、TGF-ベータ5、トロンビン、胸腺Ck-1、甲状腺刺激ホルモン、Tie、TIMP、TIQ、組織因子、TMEFF2、Tmpo、TMPRSS2、TNF、TNF-アルファ、TNF-アルファベータ、TNF-ベータ2、TNFc、TNF-RI、TNF-RII、TNFRSF10A(TRAIL R1 Apo-2、DR4)、TNFRSF10B(TRAIL R2 DR5、KILLER、TRICK-2A、TRICK-B)、TNFRSF10C(TRAILR3 DcR1、LIT、TRID)、TNFRSF10D(TRAIL R4 DcR2、TRUNDD)、TNFRSF11A(RANK ODF R、TRANCE R)、TNFRSF11B(OPG OCIF、TR1)、TNFRSF12(TWEAK RFN14)、TNFRSF13B(TACI)、TNFRSF13C(BAFF R)、TNFRSF14(HVEM ATAR、HveA、LIGHT R、TR2)、TNFRSF16(NGFRp75NTR)、TNFRSF17(BCMA)、TNFRSF18(GITR AITR)、TNFRSF19(TROY TAJ、TRADE)、TNFRSF19L(RELT)、TNFRSF1A(TNF RI CD120a、p55-60)、TNFRSF1B(TNF RII CD120b、p75-80)、TNFRSF26(TNFRH3)、TNFRSF3(LTbR TNF RIII、TNFC R)、TNFRSF4(OX40ACT35、TXGP1 R)、TNFRSF5(CD40 p50)、TNFRSF6(Fas Apo-1、APT1、CD95)、TNFRSF6B(DcR3 M68、TR6)、TNFRSF7(CD27)、TNFRSF8(CD30)、TNFRSF9(4-1BB CD137、ILA)、TNFRSF21(DR6)、TNFRSF22(DcTRAIL R2 TNFRH2)、TNFRST23(DcTRAIL R1 TNFRH1)、TNFRSF25(DR3 Apo-3、LARD、TR-3、TRAMP、WSL-1)、TNFSF10(TRAIL Apo-2リガンド、TL2)、TNFSF11(TRANCE/RANKリガンドODF、OPGリガンド)、TNFSF12(TWEAK Apo-3リガンド、DR3リガンド)、TNFSF13(APRIL TALL2)、TNFSF13B(BAFF BLYS、TALL1、THANK、TNFSF20)、TNFSF14(LIGHT HVEMリガンド、LTg)、TNFSF15(TL1A/VEGI)、TNFSF18(GITRリガンドAITRリガンド、TL6)、TNFSF1A(TNF-aコネクチン(Conectin)、DIF、TNFSF2)、TNFSF1B(TNF-b LTa、TNFSF1)、TNFSF3(LTb TNFC、p33)、TNFSF4(OX40リガンドgp34、TXGP1)、TNFSF5(CD40リガンドCD154、gp39、HIGM1、IMD3、TRAP)、TNFSF6(FasリガンドApo-1リガンド、APT1リガンド)、TNFSF7(CD27リガンドCD70)、TNFSF8(CD30リガンドCD153)、TNFSF9(4-1BBリガンドCD137リガンド)、TP-1、t-PA、Tpo、TRAIL、TRAIL R、TRAIL-R1、TRAIL-R2、TRANCE、トランスフェリン受容体、TRF、Trk、TROP-2、TSG、TSLP、腫瘍関連抗原CA125、腫瘍関連抗原発現ルイスY関連炭水化物、TWEAK、TXB2、Ung、uPAR、uPAR-1、ウロキナーゼ、VCAM、VCAM-1、VECAD、VE-Cadherin、VE-cadherin-2、VEFGR-1(flt-1)、VEGF、VEGFR、VEGFR-3(flt-4)、VEGI、VIM、ウイルス抗原、VLA、VLA-1、VLA-4、VNRインテグリン、フォン・ヴィレブランド因子、WIF-1、WNT1、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、WNT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、WNT9A、WNT9A、WNT9B、WNT10A、WNT10B、WNT11、WNT16、XCL1、XCL2、XCR1、XCR1、XEDAR、XIAP、XPD、HMGB1、IgA、Aβ、CD81, CD97, CD98, DDR1, DKK1, EREG、Hsp90, IL-17/IL-17R、IL-20/IL-20R、酸化LDL, PCSK9, prekallikrein , RON, TMEM16F、SOD1, Chromogranin A, Chromogranin B、tau, VAP1、高分子キニノーゲン、IL-31、IL-31R、Nav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.5、Nav1.6、Nav1.7、Nav1.8、Nav1.9、EPCR、C1, C1q, C1r, C1s, C2, C2a, C2b, C3, C3a, C3b, C4, C4a, C4b, C5, C5a, C5b, C6, C7, C8, C9, factor B, factor D, factor H, properdin、sclerostin、fibrinogen, fibrin,prothrombin, thrombin, 組織因子, factor V, factor Va, factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, factor IXa, factor X, factor Xa, factor XI, factor XIa, factor XII, factor XIIa, factor XIII, factor XIIIa, TFPI, antithrombin III, EPCR, トロンボモデュリン、TAPI, tPA, plasminog
en, plasmin, PAI-1, PAI-2、GPC3、Syndecan-1、Syndecan-2、Syndecan-3、Syndecan-4、LPA、S1P、Acetylcholine receptor、AdipoR1、AdipoR2、ADP ribosyl cyclase-1、alpha-4/beta-7 integrin、alpha-5/beta-1 integrin、alpha-v/beta-6 integrin、alphavbeta1 integrin、Angiopoietin ligand-2、Angptl2、Anthrax、Cadherin、Carbonic anhydrase-IX、CD105、CD155、CD158a、CD37、CD49b、CD51、CD70、CD72、Claudin 18、Clostridium difficile toxin、CS1、Delta-like protein ligand 4、DHICA oxidase、Dickkopf-1 ligand、Dipeptidyl peptidase IV、EPOR、F protein of RSV、Factor Ia、FasL、Folate receptor alpha、Glucagon receptor、Glucagon-like peptide 1 receptor、Glutamate carboxypeptidase II、GMCSFR、Hepatitis C virus E2 glycoprotein、Hepcidin、IL-17 receptor、IL-22 receptor、IL-23 receptor、IL-3 receptor、Kit tyrosine kinase、Leucine Rich Alpha-2-Glycoprotein 1 (LRG1)、Lysosphingolipid receptor、Membrane glycoprotein OX2、Mesothelin、MET、MICA、MUC-16、Myelin associated glycoprotein、Neuropilin-1、Neuropilin-2、Nogo receptor、PLXNA1、PLXNA2、PLXNA3、PLXNA4A、PLXNA4B 、PLXNB1、PLXNB2、PLXNB3 、PLXNC1 、PLXND1 、Programmed cell death ligand 1、Proprotein convertase PC9、P-selectin glycoprotein ligand-1、RAGE、Reticulon 4、RF、RON-8、SEMA3A、SEMA3B、SEMA3C、SEMA3D、SEMA3E、SEMA3F、SEMA3G、SEMA4A、SEMA4B、SEMA4C、SEMA4D、SEMA4F、SEMA4G、SEMA5A、SEMA5B、SEMA6A、SEMA6B、SEMA6C、SEMA6D、SEMA7A、Shiga like toxin II、Sphingosine-1-phosphate receptor-1、ST2、Staphylococcal lipoteichoic acid、Tenascin、TG2、Thymic stromal lymphoprotein receptor、TNF superfamily receptor 12A、Transmembrane glycoprotein NMB、TREM-1、TREM-2、Trophoblast glycoprotein、TSH receptor、TTR、Tubulin、ULBP2ならびにホルモンおよび成長因子のための受容体が例示され得る。
抗原中に存在する抗原決定基を意味するエピトープは、本明細書において開示される抗原結合分子中の抗原結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗原結合分子中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。
直線状エピトープは、アミノ酸一次配列が認識されたエピトープを含むエピトープである。直線状エピトープは、典型的には、少なくとも3つ、および最も普通には少なくとも5つ、例えば約8ないし約10個、6ないし20個のアミノ酸が固有の配列において含まれる。
立体構造エピトープは、直線状エピトープとは対照的に、エピトープを含むアミノ酸の一次配列が、認識されたエピトープの単一の規定成分ではないエピトープ(例えば、アミノ酸の一次配列が、必ずしもエピトープを規定する抗体により認識されないエピトープ)である。立体構造エピトープは、直線状エピトープに対して増大した数のアミノ酸を包含するかもしれない。立体構造エピトープの認識に関して、抗体は、ペプチドまたはタンパク質の三次元構造を認識する。例えば、タンパク質分子が折り畳まれて三次元構造を形成する場合には、立体構造エピトープを形成するあるアミノ酸および/またはポリペプチド主鎖は、並列となり、抗体がエピトープを認識するのを可能にする。エピトープの立体構造を決定する方法には、例えばX線結晶学、二次元核磁気共鳴分光学並びに部位特異的なスピン標識および電磁常磁性共鳴分光学が含まれるが、これらには限定されない。例えば、Epitope Mapping Protocols in Methods in Molecular Biology (1996)、第66巻、Morris(編)を参照。
結合活性
下記にIL-6Rに対する抗原結合ドメインを含む被験抗原結合分子によるエピトープへの結合の確認方法が例示されるが、IL-6R以外の抗原に対する抗原結合ドメインを含む被験抗原結合分子によるエピトープへの結合の確認方法も下記の例示に準じて適宜実施され得る。
例えば、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が、IL-6R分子中に存在する線状エピトープを認識することは、たとえば次のようにして確認することができる。上記の目的のためにIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状のペプチドが合成される。当該ペプチドは、化学的に合成され得る。あるいは、IL-6RのcDNA中の、細胞外ドメインに相当するアミノ酸配列をコードする領域を利用して、遺伝子工学的手法により得られる。次に、細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドと、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子との結合活性が評価される。たとえば、固定化された線状ペプチドを抗原とするELISAによって、当該ペプチドに対する当該抗原結合分子の結合活性が評価され得る。あるいは、IL-6R発現細胞に対する当該抗原結合分子の結合における、線状ペプチドによる阻害のレベルに基づいて、線状ペプチドに対する結合活性が明らかにされ得る。これらの試験によって、線状ペプチドに対する当該抗原結合分子の結合活性が明らかにされ得る。
また、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が立体構造エピトープを認識することは、次のようにして確認され得る。上記の目的のために、IL-6Rを発現する細胞が調製される。IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子がIL-6R発現細胞に接触した際に当該細胞に強く結合する一方で、当該抗原結合分子が固定化されたIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドに対して実質的に結合しないとき等が挙げられる。ここで、実質的に結合しないとは、ヒトIL-6R発現細胞に対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性をいう。
IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子のIL-6R発現細胞に対する結合活性を測定する方法としては、例えば、Antibodies A Laboratory Manual記載の方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)が挙げられる。即ちIL-6R発現細胞を抗原とするELISAやFACS(fluorescence activated cell sorting)の原理によって評価され得る。
ELISAフォーマットにおいて、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子のIL-6R発現細胞に対する結合活性は、酵素反応によって生成するシグナルレベルを比較することによって定量的に評価される。すなわち、IL-6R発現細胞を固定化したELISAプレートに被験抗原結合分子を加え、細胞に結合した被験抗原結合分子が、被験抗原結合分子を認識する酵素標識抗体を利用して検出される。あるいはFACSにおいては、被験抗原結合分子の希釈系列を作成し、IL-6R発現細胞に対する抗体結合力価(titer)を決定することにより、IL-6R発現細胞に対する被験抗原結合分子の結合活性が比較され得る。
緩衝液等に懸濁した細胞表面上に発現している抗原に対する被験抗原結合分子の結合は、フローサイトメーターによって検出することができる。フローサイトメーターとしては、例えば、次のような装置が知られている。
FACSCantoTMII
FACSAriaTM
FACSArrayTM
FACSVantageTMSE
FACSCaliburTM(いずれもBD Biosciences社の商品名)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)
例えば、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子の抗原に対する結合活性の好適な測定方法の一例として、次の方法が挙げられる。まず、IL-6Rを発現する細胞と反応させた被験抗原結合分子を認識するFITC標識した二次抗体で染色する。被験抗原結合分子を適宜好適な緩衝液によって希釈することによって、当該抗原結合分子が所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用され得る。次に、FACSCalibur(BD社)により蛍光強度と細胞数が測定される。当該細胞に対する抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、被験抗原結合分子の結合量によって表される被験抗原結合分子の結合活性が測定され得る。
IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が、ある抗原結合分子とエピトープを共有することは、両者の同じエピトープに対する競合によって確認され得る。抗原結合分子間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。
具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートしたIL-6Rタンパク質が、候補となる競合抗原結合分子の存在下、または非存在下でプレインキュベートされた後に、被験抗原結合分子が添加される。ウェル中のIL-6Rタンパク質に結合した被験抗原結合分子の量は、同じエピトープへの結合に対して競合する候補となる競合抗原結合分子の結合能に間接的に相関している。すなわち同一エピトープに対する競合抗原結合分子の親和性が大きくなればなる程、被験抗原結合分子のIL-6Rタンパク質をコートしたウェルへの結合活性は低下する。
IL-6Rタンパク質を介してウェルに結合した被験抗原結合分子の量は、予め抗原結合分子を標識しておくことによって、容易に測定され得る。たとえば、ビオチン標識された抗原結合分子は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定される。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイは、特に競合ELISAアッセイといわれる。抗原結合分子は、検出あるいは測定が可能な他の標識物質で標識され得る。具体的には、放射標識あるいは蛍光標識などが公知である。
候補の競合抗原結合分子の非存在下で実施されるコントロール試験において得られる結合活性と比較して、競合抗原結合分子が、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子の結合を少なくとも20%、好ましくは少なくとも20-50%、さらに好ましくは少なくとも50%ブロックできるならば、当該被験抗原結合分子は競合抗原結合分子と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗原結合分子である。
IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が結合するエピトープの構造が同定されている場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、当該エピトープを構成するペプチドにアミノ酸変異を導入したペプチドに対する両者の抗原結合分子の結合活性を比較することによって評価され得る。
こうした結合活性を測定する方法としては、例えば、前記のELISAフォーマットにおいて変異を導入した線状のペプチドに対する被験抗原結合分子及び対照抗原結合分子の結合活性を比較することによって測定され得る。ELISA以外の方法としては、カラムに結合した当該変異ペプチドに対する結合活性を、当該カラムに被検抗原結合分子と対照抗原結合分子を流下させた後に溶出液中に溶出される抗原結合分子を定量することによっても測定され得る。変異ペプチドを例えばGSTとの融合ペプチドとしてカラムに吸着させる方法は公知である。
また、同定されたエピトープが立体エピトープの場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、次の方法で評価され得る。まず、IL-6Rを発現する細胞とエピトープに変異が導入されたIL-6Rを発現する細胞が調製される。これらの細胞がPBS等の適切な緩衝液に懸濁された細胞懸濁液に対して被験抗原結合分子と対照抗原結合分子が添加される。次いで、適宜緩衝液で洗浄された細胞懸濁液に対して、被験抗原結合分子と対照抗原結合分子を認識することができるFITC標識された抗体が添加される。標識抗体によって染色された細胞の蛍光強度と細胞数がFACSCalibur(BD社)によって測定される。被験抗原結合分子と対照抗原結合分子の濃度は好適な緩衝液によって適宜希釈することによって所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用される。当該細胞に対する標識抗体の結合量は、CELLQUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、標識抗体の結合量によって表される被験抗原結合分子と対照抗原結合分子の結合活性を測定することができる。
本方法において、例えば「変異IL-6R発現細胞に実質的に結合しない」ことは、以下の方法によって判断することができる。まず、変異IL-6Rを発現する細胞に対して結合した被験抗原結合分子と対照抗原結合分子が、標識抗体で染色される。次いで細胞の蛍光強度が検出される。蛍光検出にフローサイトメトリーとしてFACSCaliburを用いた場合、得られた蛍光強度はCELL QUEST Softwareを用いて解析され得る。抗原結合分子の存在下および非存在下でのGeometric Meanの値から、この比較値(ΔGeo-Mean)を下記の計算式に基づいて算出することにより、抗原結合分子の結合による蛍光強度の増加割合を求めることができる。
ΔGeo-Mean=Geo-Mean(抗原結合分子の存在下)/Geo-Mean(抗原結合分子の非存在下)
解析によって得られる被験抗原結合分子の変異IL-6R発現細胞に対する結合量が反映されたGeometric Mean比較値(変異IL-6R分子ΔGeo-Mean値)を、被験抗原結合分子のIL-6R発現細胞に対する結合量が反映されたΔGeo-Mean比較値と比較する。この場合において、変異IL-6R発現細胞及びIL-6R発現細胞に対するΔGeo-Mean比較値を求める際に使用する被験抗原結合分子の濃度は互いに同一又は実質的に同一の濃度で調製されることが特に好ましい。予めIL-6R中のエピトープを認識していることが確認された抗原結合分子が、対照抗原結合分子として利用される。
被験抗原結合分子の変異IL-6R発現細胞に対するΔGeo-Mean比較値が、被験抗原結合分子のIL-6R発現細胞に対するΔGeo-Mean比較値の、少なくとも80%、好ましくは50%、更に好ましくは30%、特に好ましくは15%より小さければ、「変異IL-6R発現細胞に実質的に結合しない」ものとする。Geo-Mean値(Geometric Mean)を求める計算式は、CELL QUEST Software User’s Guide(BD biosciences社)に記載されている。比較値を比較することによってそれが実質的に同視し得る程度であれば、被験抗原結合分子と対照抗原結合分子のエピトープは同一であると評価され得る。
抗原結合ドメイン
本明細書において、「抗原結合ドメイン」は目的とする抗原に結合するかぎりどのような構造のドメインも使用され得る。そのようなドメインの例として、例えば、抗体の重鎖および軽鎖の可変領域、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれたバレル構造の片側を支える4つのループ領域であるAnticalin等(WO2003/029462)、ヤツメウナギ、ヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なった馬てい形の構造の内部の並行型シート構造のくぼんだ領域(WO2008/016854)が好適に挙げられる。本発明の抗原結合ドメインの好適な例として、抗体の重鎖および軽鎖の可変領域を含む抗原結合ドメインが挙げられる。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「diabody」、「Fab」、「F(ab')2」、domain antibody(dAb)(WO2004/058821、WO2003/002609)、scFv-sc(WO2005/037989)またはFc融合タンパク質等が好適に挙げられる。Fc領域を含んでいる分子は、Fc領域をFcRn特にヒトFcRnに対する結合ドメインとして使用され得る。また、これらの分子にヒトFcRn結合ドメインが融合された分子も使用され得る。
本発明の抗原結合分子における抗原結合ドメインは、同一のエピトープに結合することができる。ここで同一のエピトープは、例えば、配列番号:1(IL-6R_PP;NP_000556.1)に記載のアミノ酸配列からなるタンパク質中に存在することができる。また、配列番号:1に記載のアミノ酸配列の20番目から365番目のアミノ酸からなるタンパク質中に存在することができる。あるいは、本発明の抗原結合分子における抗原結合ドメインは、互いに異なるエピトープに結合することができる。ここで異なるエピトープは、例えば、配列番号:1に記載のアミノ酸配列からなるタンパク質中に存在することができる。また、配列番号:1に記載のアミノ酸配列の20番目から365番目のアミノ酸からなるタンパク質中に存在することができる。このような目的のために二重特異性抗体に含まれる抗原結合ドメインが適宜利用され得る。二重特異性抗体は、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいう。二種特異性抗体は2つ以上の異なる抗原を認識する抗体であり得るし、同一抗原上の異なる2つ以上のエピトープを認識する抗体でもあり得る。
また、本発明の抗原結合ドメインとしては、標的(抗原)に結合するレセプター(受容体)タンパク質におけるその標的(抗原)に対する結合に関与するドメインが好適に使用され得る。すなわち、抗原結合分子は、標的(抗原)に結合するレセプタータンパク質にFcRn特にFcRnに対する結合ドメインおよび糖鎖受容体結合ドメインが融合されたタンパク質であっても良い。こうした抗原結合分子の例としては、例えば、TNFR-Fc融合タンパク、IL1R-Fc融合タンパク、VEGFR-Fc融合タンパク、CTLA4-Fc融合タンパク等(Nat Med. (2003) 9 (1), 47-52、BioDrugs. (2006) 20 (3), 151-160)が挙げられる。本発明の抗原結合分子がこれらレセプタータンパク質とFcRn特にヒトFcRnに対する結合ドメインとの融合タンパク質であっても、イオン濃度の条件によって標的分子に対する結合活性が変化し、糖鎖受容体に対する結合活性、およびFcRn特にヒトFcRnに対する結合活性を有する抗原結合分子は、抗原の細胞内への取込を促進させ、抗原結合分子の投与により血漿中の抗原濃度の減少を促進させることが可能である。また、そのような抗原結合分子の薬物動態は向上されており、1つの抗原結合分子が結合可能な抗原の数を増加させることが可能である。
また、本発明の抗原結合ドメインとしては、標的に結合する天然または人工のリガンドにおけるその標的に対する結合に関与するドメインが好適に使用され得る。すなわち、抗原結合分子は、標的に結合しアンタゴニスト活性や中和効果を有する天然または人工のタンパク質リガンドにFcRn特にFcRnに対する結合ドメインおよび糖鎖受容体結合ドメインが融合した分子でもあり得る。こうした抗原結合ドメインのうち人工リガンドの例として、例えば、変異IL-6(EMBO J. (1994) 13 (24), 5863-70)等の人工リガンドが挙げられる。本発明の抗原結合分子がこれら人工リガンド融合分子であっても、イオン濃度の条件によって標的分子に対する結合が変化し、糖鎖受容体に対する結合活性、およびFcRn特にヒトFcRnに対する結合活性を有する抗原結合分子は、抗原の細胞内への取込を促進させ、抗原結合分子の投与により血漿中の抗原濃度の減少を促進させることが可能である。また、そのような抗原結合分子の薬物動態は向上されており、1つの抗原結合分子が結合可能な抗原の数を増加させることが可能である。
特異的
特異的とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては何ら有意な結合を示さない状態をいう。また、抗原結合ドメインが、ある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異的である場合にも用いられる。また、抗原結合ドメインが結合するエピトープが複数の異なる抗原に含まれる場合には、当該抗原結合ドメインを有する抗原結合分子は当該エピトープを含む様々な抗原と結合することができる。
抗体
本明細書において、抗体とは、天然のものであるかまたは部分的もしくは完全合成により製造された免疫グロブリンをいう。抗体はそれが天然に存在する血漿や血清等の天然資源や抗体を産生するハイブリドーマ細胞の培養上清から単離され得るし、または遺伝子組換え等の手法を用いることによって部分的にもしくは完全に合成され得る。抗体の例としては免疫グロブリンのアイソタイプおよびそれらのアイソタイプのサブクラスが好適に挙げられる。ヒトの免疫グロブリンとして、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD、IgE、IgMの9種類のクラス(アイソタイプ)が知られている。本発明の抗体には、これらのアイソタイプのうちIgG1、IgG2、IgG3、IgG4が含まれ得る。
所望の結合活性を有する抗体を作製する方法は当業者において公知である。以下に、IL-6Rに結合する抗体(抗IL-6R抗体)を作製する方法が例示される。IL-6R以外の抗原に結合する抗体も下記の例示に準じて適宜作製され得る。
抗IL-6R抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として取得され得る。抗IL-6R抗体としては、哺乳動物由来のモノクローナル抗体が好適に作製され得る。哺乳動物由来のモノクローナル抗体には、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主細胞によって産生されるもの等が含まれる。なお本願発明のモノクローナル抗体には、「ヒト化抗体」や「キメラ抗体」が含まれる。
モノクローナル抗体産生ハイブリドーマは、公知技術を使用することによって、例えば以下のように作製され得る。すなわち、IL-6Rタンパク質を感作抗原として使用して、通常の免疫方法にしたがって哺乳動物が免疫される。得られる免疫細胞が通常の細胞融合法によって公知の親細胞と融合される。次に、通常のスクリーニング法によって、モノクローナルな抗体産生細胞をスクリーニングすることによって抗IL-6R抗体を産生するハイブリドーマが選択され得る。
具体的には、モノクローナル抗体の作製は例えば以下に示すように行われる。まず、配列番号:2(IL-6R_PN;NM_000565.3)にそのヌクレオチド配列が開示されたIL-6R遺伝子を発現することによって、抗体取得の感作抗原として使用される配列番号:1で表されるIL-6Rタンパク質が取得され得る。すなわち、IL-6Rをコードする遺伝子配列を公知の発現ベクターに挿入することによって適当な宿主細胞が形質転換される。当該宿主細胞中または培養上清中から所望のヒトIL-6Rタンパク質が公知の方法で精製される。培養上清中から可溶型のIL-6Rを取得するためには、例えば、Mullbergら(J. Immunol. (1994) 152 (10), 4958-4968)によって記載されているような可溶型IL-6Rである、配列番号:1で表されるIL-6Rポリペプチド配列のうち、1から357番目のアミノ酸からなるタンパク質が、配列番号:1で表されるIL-6Rタンパク質の代わりに発現される。また、精製した天然のIL-6Rタンパク質もまた同様に感作抗原として使用され得る。
哺乳動物に対する免疫に使用する感作抗原として当該精製IL-6Rタンパク質が使用できる。IL-6Rの部分ペプチドもまた感作抗原として使用できる。この際、当該部分ペプチドはヒトIL-6Rのアミノ酸配列より化学合成によっても取得され得る。また、IL-6R遺伝子の一部を発現ベクターに組み込んで発現させるによっても取得され得るが、部分ペプチドとして用いるIL-6Rペプチドの領域および大きさは特に特別の態様に限定されない。好ましい領域は配列番号:1のアミノ酸配列において20-357番目のアミノ酸に相当するアミノ酸配列から任意の配列が選択され得る。感作抗原とするペプチドを構成するアミノ酸の数は少なくとも5以上、例えば6以上、或いは7以上であることが好ましい。より具体的には8~50、好ましくは10~30残基のペプチドが感作抗原として使用され得る。
また、IL-6Rタンパク質の所望の部分ポリペプチドやペプチドを異なるポリペプチドと融合した融合タンパク質が感作抗原として利用され得る。感作抗原として使用される融合タンパク質を製造するために、例えば、抗体のFc断片やペプチドタグなどが好適に利用され得る。融合タンパク質を発現するベクターは、所望の二種類又はそれ以上のポリペプチド断片をコードする遺伝子がインフレームで融合され、当該融合遺伝子が前記のように発現ベクターに挿入されることにより作製され得る。融合タンパク質の作製方法はMolecular Cloning 2nd ed. (Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58(1989)Cold Spring Harbor Lab. press)に記載されている。感作抗原として用いられるIL-6Rの取得方法及びそれを用いた免疫方法は、WO2003/000883、WO2004/022754、WO2006/006693等にも具体的に記載されている。
当該感作抗原で免疫される哺乳動物としては、特定の動物に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましい。一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が好適に使用される。
公知の方法にしたがって上記の動物が感作抗原により免疫される。例えば、一般的な方法として、感作抗原が哺乳動物の腹腔内または皮下に注射によって投与されることにより免疫が実施される。具体的には、PBS(Phosphate-Buffered Saline)や生理食塩水等で適当な希釈倍率で希釈された感作抗原が、所望により通常のアジュバント、例えばフロイント完全アジュバントと混合され、乳化された後に、該感作抗原が哺乳動物に4から21日毎に数回投与される。また、感作抗原の免疫時には適当な担体が使用され得る。特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、アルブミン、キーホールリンペットヘモシアニン等の担体タンパク質と結合した該感作抗原ペプチドを免疫することが望ましい場合もある。
また、所望の抗体を産生するハイブリドーマは、DNA免疫を使用し、以下のようにしても作製され得る。DNA免疫とは、免疫動物中で抗原タンパク質をコードする遺伝子が発現され得るような態様で構築されたベクターDNAが投与された当該免疫動物中で、感作抗原が当該免疫動物の生体内で発現されることによって、免疫刺激が与えられる免疫方法である。蛋白質抗原が免疫動物に投与される一般的な免疫方法と比べて、DNA免疫には、次のような優位性が期待される。
-IL-6Rのような膜蛋白質の構造を維持して免疫刺激が与えられ得る
-免疫抗原を精製する必要が無い
DNA免疫によって本発明のモノクローナル抗体を得るために、まず、IL-6Rタンパク質を発現するDNAが免疫動物に投与される。IL-6RをコードするDNAは、PCRなどの公知の方法によって合成され得る。得られたDNAが適当な発現ベクターに挿入され、免疫動物に投与される。発現ベクターとしては、たとえばpcDNA3.1などの市販の発現ベクターが好適に利用され得る。ベクターを生体に投与する方法として、一般的に用いられている方法が利用され得る。たとえば、発現ベクターが吸着した金粒子が、gene gunで免疫動物個体の細胞内に導入されることによってDNA免疫が行われる。さらに、IL-6Rを認識する抗体の作製は国際公開WO2003/104453に記載された方法を用いても作製され得る。
このように哺乳動物が免疫され、血清中におけるIL-6Rに結合する抗体力価の上昇が確認された後に、哺乳動物から免疫細胞が採取され、細胞融合に供される。好ましい免疫細胞としては、特に脾細胞が使用され得る。
前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形質を指す。選択マーカーには、ヒポキサンチン-グアニン-ホスホリボシルトランスフェラーゼ欠損(以下HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下TK欠損と省略する)などが公知である。HGPRTやTKの欠損を有する細胞は、ヒポキサンチン-アミノプテリン-チミジン感受性(以下HAT感受性と省略する)を有する。HAT感受性の細胞はHAT選択培地中でDNA合成を行うことができず死滅するが、正常な細胞と融合すると正常細胞のサルベージ回路を利用してDNAの合成を継続することができるためHAT選択培地中でも増殖するようになる。
HGPRT欠損やTK欠損の細胞は、それぞれ6チオグアニン、8アザグアニン(以下8AGと省略する)、あるいは5'ブロモデオキシウリジンを含む培地で選択され得る。これらのピリミジンアナログをDNA中に取り込む正常な細胞は死滅する。他方、これらのピリミジンアナログを取り込めないこれらの酵素を欠損した細胞は、選択培地の中で生存することができる。この他G418耐性と呼ばれる選択マーカーは、ネオマイシン耐性遺伝子によって2-デオキシストレプタミン系抗生物質(ゲンタマイシン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公知である。
このようなミエローマ細胞として、例えば、P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)、NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519)、MPC-11(Cell(1976)8 (3), 405-415)、SP2/0(Nature(1978)276 (5685), 269-270)、FO(J. Immunol. Methods(1980)35 (1-2), 1-21)、S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323)、R210(Nature(1979)277 (5692), 131-133)等が好適に使用され得る。
基本的には公知の方法、たとえば、ケーラーとミルステインらの方法(Methods Enzymol.(1981)73, 3-46)等に準じて、前記免疫細胞とミエローマ細胞との細胞融合が行われる。より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前記細胞融合が実施され得る。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルス(HVJ)等が使用され、更に融合効率を高めるために所望によりジメチルスルホキシド等の補助剤が添加されて使用される。
免疫細胞とミエローマ細胞との使用割合は任意に設定され得る。例えば、ミエローマ細胞に対して免疫細胞を1から10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用され、さらに、牛胎児血清(FCS)等の血清補液が好適に添加され得る。
細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温されたPEG溶液(例えば平均分子量1000から6000程度)が通常30から60%(w/v)の濃度で添加される。混合液が緩やかに混合されることによって所望の融合細胞(ハイブリドーマ)が形成される。次いで、上記に挙げた適当な培養液が逐次添加され、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等が除去され得る。
このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、係る十分な時間は数日から数週間である)上記HAT培養液を用いた培養が継続され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施される。
このようにして得られたハイブリドーマは、細胞融合に用いられたミエローマが有する選択マーカーに応じた選択培養液を利用することによって選択され得る。例えばHGPRTやTKの欠損を有する細胞は、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。すなわち、HAT感受性のミエローマ細胞を細胞融合に用いた場合、HAT培養液中で、正常細胞との細胞融合に成功した細胞が選択的に増殖し得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記HAT培養液を用いた培養が継続される。具体的には、一般に、数日から数週間の培養によって、所望のハイブリドーマが選択され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施され得る。
所望の抗体のスクリーニングおよび単一クローニングが、公知の抗原抗体反応に基づくスクリーニング方法によって好適に実施され得る。例えば、IL-6Rに結合するモノクローナル抗体は、細胞表面に発現したIL-6Rに結合することができる。このようなモノクローナル抗体は、たとえば、FACS(fluorescence activated cell sorting)によってスクリーニングされ得る。FACSは、蛍光抗体と接触させた細胞をレーザー光で解析し、個々の細胞が発する蛍光を測定することによって細胞表面への抗体の結合を測定することを可能にするシステムである。
FACSによって本発明のモノクローナル抗体を産生するハイブリドーマをスクリーニングするためには、まずIL-6Rを発現する細胞を調製する。スクリーニングのための好ましい細胞は、IL-6Rを強制発現させた哺乳動物細胞である。宿主細胞として使用した形質転換されていない哺乳動物細胞を対照として用いることによって、細胞表面のIL-6Rに対する抗体の結合活性が選択的に検出され得る。すなわち、宿主細胞に結合せず、IL-6R強制発現細胞に結合する抗体を産生するハイブリドーマを選択することによって、IL-6Rモノクローナル抗体を産生するハイブリドーマが取得され得る。
あるいは固定化したIL-6R発現細胞に対する抗体の結合活性がELISAの原理に基づいて評価され得る。たとえば、ELISAプレートのウェルにIL-6R発現細胞が固定化される。ハイブリドーマの培養上清をウェル内の固定化細胞に接触させ、固定化細胞に結合する抗体が検出される。モノクローナル抗体がマウス由来の場合、細胞に結合した抗体は、抗マウスイムノグロブリン抗体によって検出され得る。これらのスクリーニングによって選択された、抗原に対する結合能を有する所望の抗体を産生するハイブリドーマは、限界希釈法等によりクローニングされ得る。
このようにして作製されるモノクローナル抗体を産生するハイブリドーマは通常の培養液中で継代培養され得る。また、該ハイブリドーマは液体窒素中で長期にわたって保存され得る。
当該ハイブリドーマを通常の方法に従い培養し、その培養上清から所望のモノクローナル抗体が取得され得る。あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖せしめ、その腹水からモノクローナル抗体が取得され得る。前者の方法は、高純度の抗体を得るのに好適なものである。
組換え抗体(Recombinant Antibody)
当該ハイブリドーマ等の抗体産生細胞からクローニングされる抗体遺伝子によってコードされる抗体も好適に利用され得る。クローニングした抗体遺伝子を適当なベクターに組み込んで宿主に導入することによって、当該遺伝子によってコードされる抗体が発現する。抗体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は例えば、Vandammeらによって既に確立されている(Eur.J. Biochem.(1990)192 (3), 767-775)。下記に述べるように組換え抗体の製造方法もまた公知である。
たとえば、抗IL-6R抗体を産生するハイブリドーマ細胞から、抗IL-6R抗体の可変領域(V領域)をコードするcDNAが取得される。そのために、通常、まずハイブリドーマから全RNAが抽出される。細胞からmRNAを抽出するための方法として、たとえば次のような方法を利用することができる。
-グアニジン超遠心法(Biochemistry (1979) 18 (24), 5294-5299)
-AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)
抽出されたmRNAは、mRNA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して精製され得る。あるいは、QuickPrep mRNA Purificati on Kit (GEヘルスケアバイオサイエンス製)などのように、細胞から直接全mRNAを抽出するためのキットも市販されている。このようなキットを用いて、ハイブリドーマからmRNAが取得され得る。得られたmRNAから逆転写酵素を用いて抗体V領域をコードするcDNAが合成され得る。cDNAは、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化学工業社製)等によって合成され得る。また、cDNAの合成および増幅のために、SMART RACE cDNA増幅キット(Clontech製)およびPCRを用いた5’-RACE法(Proc. Natl. Acad. Sci. USA (1988) 85 (23), 8998-9002、Nucleic Acids Res. (1989) 17 (8), 2919-2932)が適宜利用され得る。更にこうしたcDNAの合成の過程においてcDNAの両末端に後述する適切な制限酵素サイトが導入され得る。
得られたPCR産物から目的とするcDNA断片が精製され、次いでベクターDNAと連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製され得る。そして、該組換えベクターが目的とするcDNAの塩基配列を有しているか否かについて、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認される。
可変領域をコードする遺伝子を取得するためには、可変領域遺伝子増幅用のプライマーを使った5’-RACE法を利用するのが簡便である。まずハイブリドーマ細胞より抽出されたRNAを鋳型としてcDNAが合成され、5’-RACE cDNAライブラリが得られる。5’-RACE cDNAライブラリの合成にはSMART RACE cDNA 増幅キットなど市販のキットが適宜用いられる。
得られた5’-RACE cDNAライブラリを鋳型として、PCR法によって抗体遺伝子が増幅される。公知の抗体遺伝子配列をもとにマウス抗体遺伝子増幅用のプライマーがデザインされ得る。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列である。したがって、サブクラスは予めIso Stripマウスモノクローナル抗体アイソタイピングキット(ロシュ・ダイアグノスティックス)などの市販キットを用いて決定しておくことが望ましい。
具体的には、たとえばマウスIgGをコードする遺伝子の取得を目的とするときには、重鎖としてγ1、γ2a、γ2b、γ3、軽鎖としてκ鎖とλ鎖をコードする遺伝子の増幅が可能なプライマーが利用され得る。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーには可変領域に近い定常領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、5’ RACE cDNAライブラリ作製キットに付属するプライマーが利用される。
こうして増幅されたPCR産物を利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンが再構成され得る。再構成されたイムノグロブリンの、IL-6Rに対する結合活性を指標として、所望の抗体がスクリーニングされ得る。たとえばIL-6Rに対する抗体の取得を目的とするとき、抗体のIL-6Rへの結合は、特異的であることがさらに好ましい。IL-6Rに結合する抗体は、たとえば次のようにしてスクリーニングされ得る;
(1)ハイブリドーマから得られたcDNAによってコードされるV領域を含む抗体をIL-6R発現細胞に接触させる工程、
(2)IL-6R発現細胞と抗体との結合を検出する工程、および
(3)IL-6R発現細胞に結合する抗体を選択する工程。
抗体とIL-6R発現細胞との結合を検出する方法は公知である。具体的には、先に述べたFACSなどの手法によって、抗体とIL-6R発現細胞との結合が検出され得る。抗体の結合活性を評価するためにIL-6R発現細胞の固定標本が適宜利用され得る。
結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法も好適に用いられる。ポリクローナルな抗体発現細胞群より抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。
重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)を形成することができる(Nat. Biotechnol. (2005) 23(9), 1126-1136)。scFvをコードする遺伝子をファージベクターに挿入することにより、scFvを表面に発現するファージが取得され得る。このファージと所望の抗原との接触の後に、抗原に結合したファージを回収することによって、目的の結合活性を有するscFvをコードするDNAが回収され得る。この操作を必要に応じて繰り返すことにより、所望の結合活性を有するscFvが濃縮され得る。
目的とする抗IL-6R抗体のV領域をコードするcDNAが得られた後に、当該cDNAの両末端に挿入した制限酵素サイトを認識する制限酵素によって該cDNAが消化される。好ましい制限酵素は、抗体遺伝子を構成する塩基配列に出現する頻度が低い塩基配列を認識して消化する。更に1コピーの消化断片をベクターに正しい方向で挿入するためには、付着末端を与える制限酵素の挿入が好ましい。上記のように消化された抗IL-6R抗体のV領域をコードするcDNAを適当な発現ベクターに挿入することによって、抗体発現ベクターが取得され得る。このとき、抗体定常領域(C領域)をコードする遺伝子と、前記V領域をコードする遺伝子とがインフレームで融合されれば、キメラ抗体が取得される。ここで、キメラ抗体とは、定常領域と可変領域の由来が異なることをいう。したがって、マウス-ヒトなどの異種キメラ抗体に加え、ヒト-ヒト同種キメラ抗体も、本発明におけるキメラ抗体に含まれる。予め定常領域を有する発現ベクターに、前記V領域遺伝子を挿入することによって、キメラ抗体発現ベクターが構築され得る。具体的には、たとえば、所望の抗体定常領域(C領域)をコードするDNAを保持した発現ベクターの5’側に、前記V領域遺伝子を消化する制限酵素の制限酵素認識配列が適宜配置され得る。同じ組合せの制限酵素で消化された両者がインフレームで融合されることによって、キメラ抗体発現ベクターが構築される。
抗IL-6Rモノクローナル抗体を製造するために、抗体遺伝子が発現制御領域による制御の下で発現するように発現ベクターに組み込まれる。抗体を発現するための発現制御領域とは、例えば、エンハンサーやプロモーターを含む。また、発現した抗体が細胞外に分泌されるように、適切なシグナル配列がアミノ末端に付加され得る。後に記載される実施例ではシグナル配列として、アミノ酸配列MGWSCIILFLVATATGVHS(配列番号:3)を有するペプチドが使用されているが、これ以外にも適したシグナル配列が付加される。発現されたポリペプチドは上記配列のカルボキシル末端部分で切断され、切断されたポリペプチドが成熟ポリペプチドとして細胞外に分泌され得る。次いで、この発現ベクターによって適当な宿主細胞が形質転換されることによって、抗IL-6R抗体をコードするDNAを発現する組換え細胞が取得され得る。
抗体遺伝子の発現のために、抗体重鎖(H鎖)および軽鎖(L鎖)をコードするDNAは、それぞれ別の発現ベクターに組み込まれる。H鎖とL鎖が組み込まれたベクターによって、同じ宿主細胞に同時に形質転換(co-transfect)されることによって、H鎖とL鎖を備えた抗体分子が発現され得る。あるいはH鎖およびL鎖をコードするDNAが単一の発現ベクターに組み込まれることによって宿主細胞が形質転換され得る(国際公開WO 1994/011523を参照のこと)。
単離された抗体遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の抗原結合ドメインを単離するのに応用され得る。真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO、COS、ミエローマ、BHK (baby hamster kidney)、Hela、Vero、HEK(human embryonic kidney)293など
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞が適宜利用され得る。
更に真菌細胞としては、次のような細胞を利用することができる。
-酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces )属、メタノール資化酵母(Pichia pastor is)などのPichia属
-糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus )属
また、原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli )、枯草菌などの細菌細胞が適宜利用され得る。これらの細胞中に、目的とする抗体遺伝子を含む発現ベクターが形質転換によって導入される。形質転換された細胞をin vitroで培養することにより、当該形質転換細胞の培養物から所望の抗体が取得され得る。
組換え抗体の産生には、上記宿主細胞に加えて、トランスジェニック動物も利用され得る。すなわち所望の抗体をコードする遺伝子が導入された動物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質をコードする遺伝子の内部にインフレームで挿入することによって融合遺伝子として構築され得る。乳汁中に分泌されるタンパク質として、たとえば、ヤギβカゼインなどを利用され得る。抗体遺伝子が挿入された融合遺伝子を含むDNA断片はヤギの胚へ注入され、当該注入された胚が雌のヤギへ導入される。胚を受容したヤギから生まれるトランスジェニックヤギ(またはその子孫)が産生する乳汁からは、所望の抗体が乳汁タンパク質との融合タンパク質として取得され得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがトランスジェニックヤギに対して投与され得る(Bio/Technology (1994),12 (7), 699-702)。
ヒト化抗体、ヒト抗体
本明細書において記載される抗原結合分子がヒトに投与される場合、当該抗原結合分子における抗原結合ドメインとして、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体由来の抗原結合ドメインが適宜採用され得る。遺伝子組換え抗体には、前記されたキメラ抗体のほかに、例えば、ヒト化(Humanized)抗体等が含まれる。これらの改変抗体は、公知の方法を用いて適宜製造される。
本明細書において記載される、抗原結合分子における抗原結合ドメインを作製するために用いられる抗体の可変領域は、通常、4つのフレームワーク領域(FR)にはさまれた3つの相補性決定領域(complementarity-determining region ; CDR)で構成されている。CDRは、実質的に、抗体の結合特異性を決定している領域である。CDRのアミノ酸配列は多様性に富む。一方FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い同一性を示すことが多い。そのため、一般に、CDRの移植によって、ある抗体の結合特異性を、他の抗体に移植することができるとされている。
ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。Overlap Extension PCRにおいては、ヒト抗体のFRを合成するためのプライマーに、移植すべきマウス抗体のCDRをコードする塩基配列が付加される。プライマーは4つのFRのそれぞれについて用意される。一般に、マウスCDRのヒトFRへの移植においては、マウスのFRと同一性の高いヒトFRを選択するのが、CDRの機能の維持において有利であるとされている。すなわち、一般に、移植すべきマウスCDRに隣接しているFRのアミノ酸配列と同一性の高いアミノ酸配列からなるヒトFRを利用するのが好ましい。
また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる。それぞれのプライマーによってヒトFRが個別に合成される。その結果、各FRにマウスCDRをコードするDNAが付加された産物が得られる。各産物のマウスCDRをコードする塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト抗体遺伝子を鋳型として合成された産物のオーバーラップしたCDR部分を互いにアニールさせて相補鎖合成反応が行われる。この反応によって、ヒトFRがマウスCDRの配列を介して連結される。
最終的に3つのCDRと4つのFRが連結されたV領域遺伝子は、その5'末端と3'末端にアニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が増幅される。上記のように得られたDNAとヒト抗体C領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト型抗体発現用ベクターが作成できる。当該組込みベクターを宿主に導入して組換え細胞を樹立した後に、当該組換え細胞を培養し、当該ヒト化抗体をコードするDNAを発現させることによって、当該ヒト化抗体が当該培養細胞の培養物中に産生される(欧州特許公開EP239400、国際公開WO1996/002576参照)。
上記のように作製されたヒト化抗体の抗原への結合活性を定性的又は定量的に測定し、評価することによって、CDRを介して連結されたときに該CDRが良好な抗原結合部位を形成するようなヒト抗体のFRが好適に選択できる。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。具体的には、FRにアニーリングするプライマーに部分的な塩基配列の変異を導入することができる。このようなプライマーによって合成されたFRには、塩基配列の変異が導入される。アミノ酸を置換した変異型抗体の抗原への結合活性を上記の方法で測定し評価することによって所望の性質を有する変異FR配列が選択され得る(Cancer Res., (1993) 53, 851-856)。
また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。
さらに、ヒト抗体ライブラリを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。
また、抗体遺伝子を取得する方法としてBernasconiら(Science (2002) 298, 2199-2202)またはWO2008/081008に記載のようなB細胞クローニング(それぞれの抗体のコード配列の同定およびクローニング、その単離、およびそれぞれの抗体(特に、IgG1、IgG2、IgG3またはIgG4)の作製のための発現ベクター構築のための使用等)の手法が、上記のほか適宜使用され得る。
EUナンバリングおよびKabatナンバリング
本発明で使用されている方法によると、抗体のCDRとFRに割り当てられるアミノ酸位置はKabatにしたがって規定される(Sequences of Proteins of Immunological Interest(National Institute of Health, Bethesda, Md., 1987年および1991年)。本明細書において、抗原結合分子が抗体または抗原結合断片である場合、可変領域のアミノ酸はKabatナンバリングにしたがい、定常領域のアミノ酸はKabatのアミノ酸位置に準じたEUナンバリングにしたがって表される。
FcRn
免疫グロブリンスーパーファミリーに属するFcγレセプターと異なり、ヒトFcRnは構造的には主要組織不適合性複合体(MHC)クラスIのポリペプチドに構造的に類似しクラスIのMHC分子と22から29%の配列同一性を有する(Ghetieら,Immunol. Today (1997) 18 (12), 592-598)。FcRnは、可溶性βまたは軽鎖(β2マイクログロブリン)と複合体化された膜貫通αまたは重鎖よりなるヘテロダイマーとして発現される。MHCのように、FcRnのα鎖は3つの細胞外ドメイン(α1,α2,α3)よりなり、短い細胞質ドメインはタンパク質を細胞表面に繋留する。α1およびα2ドメインが抗体のFc領域中のFcRn結合ドメインと相互作用する(Raghavanら(Immunity (1994) 1, 303-315)。
FcRnは、哺乳動物の母性胎盤または卵黄嚢で発現され、それは母親から胎児へのIgGの移動に関与する。加えてFcRnが発現するげっ歯類新生児の小腸では、FcRnが摂取された初乳または乳から母性IgGの刷子縁上皮を横切る移動に関与する。FcRnは多数の種にわたって多数の他の組織、並びに種々の内皮細胞系において発現している。それはヒト成人血管内皮、筋肉血管系、および肝臓洞様毛細血管でも発現される。FcRnは、IgGに結合し、それを血清にリサイクルすることによって、IgGの血漿中濃度を維持する役割を演じていると考えられている。FcRnのIgG分子への結合は、通常、厳格にpHに依存的であり、最適結合は7.0未満のpH酸性域において認められる。
配列番号:4(FcRn;NP_004098.1)で表されたシグナル配列を含むポリペプチドを前駆体とするヒトFcRnは、生体内で(配列番号:5(beta2-microglobulin;NP_004039.1)にシグナル配列を含むそのポリペプチドが記載されている)ヒトβ2-ミクログロブリンとの複合体を形成する。後に参考実施例で示されるように、β2-ミクログロブリンと複合体を形成している可溶型ヒトFcRnが通常の組換え発現手法を用いることによって製造される。このようなβ2-ミクログロブリンと複合体を形成している可溶型ヒトFcRnに対する本発明のFc領域の結合活性が評価され得る。本発明において、特に記載のない場合は、ヒトFcRnは本発明のFc領域に結合し得る形態であるものを指し、例としてヒトFcRnとヒトβ2-ミクログロブリンとの複合体が挙げられる。
FcRn結合ドメイン
本発明の抗原結合分子は、FcRn結合ドメインを有する。FcRn結合ドメインは、抗原結合分子がpH酸性域においてFcRnに対する結合活性を有していれば特に限定されず、また、直接または間接的にFcRnに対して結合活性を有するドメインであってもよい。そのようなドメインとしては、例えば、直接的にFcRnに対する結合活性を有するIgG型免疫グロブリンのFc領域、アルブミン、アルブミンドメイン3、抗FcRn抗体、抗FcRnペプチド、抗FcRn足場(Scaffold)分子等、あるいは間接的にFcRnに対する結合活性を有するIgGやアルブミンに結合する分子等が好適に挙げられる。本発明においては、pH酸性域およびpH中性域においてFcRnに対する結合活性を有するドメインが好ましい。当該ドメインは、あらかじめpH酸性域においてFcRnに対する結合活性を有しているドメインであればそのまま好適に使用され得る。当該ドメインがpH酸性域においてFcRnに対する結合活性がない若しくは弱い場合には、抗原結合分子中のアミノ酸を改変してFcRnに対する結合活性を付与することが可能である。また、あらかじめpH酸性域においてFcRnに対する結合活性を有しているドメイン中のアミノ酸を改変して、FcRn結合活性を高めてもよい。FcRn結合ドメインのアミノ酸の改変は、アミノ酸改変前と改変後のpH酸性域におけるFcRnに対する結合活性を比較することによって目的の改変を見出すことができる。
FcRn結合ドメインは、直接FcRnと結合する領域であることが好ましい。FcRn結合ドメインの好ましい例として、抗体のFc領域を挙げることができる。しかしながら、アルブミンやIgGなどのFcRnとの結合活性を有するポリペプチドに結合可能な領域は、アルブミンやIgGなどを介して間接的にFcRnと結合することが可能である。そのため、本発明におけるFcRn結合領域としては、FcRnとの結合活性を有するポリペプチドに結合する領域が好適に使用され得る。Fc領域は、抗体重鎖の定常領域に由来するアミノ酸配列を含む。Fc領域は、EUナンバリングで表されるおよそ216のアミノ酸における、パパイン切断部位のヒンジ領域のN末端から、当該ヒンジ、CH2およびCH3ドメインを含める抗体の重鎖定常領域の部分である。
本発明におけるFcRn結合ドメインのFcRn特にヒトFcRnに対する結合活性は、前記結合活性の項で述べられているように、当業者に公知の方法により測定することが可能であり、pH以外の条件については当業者が適宜決定することが可能である。抗原結合分子の抗原結合活性とヒトFcRn結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度)、又は見かけのkd(Apparent dissociation:見かけの解離速度)等として評価され得る。これらは当業者公知の方法で測定され得る。例えばBiacore (GE healthcare)、スキャッチャードプロット、フローサイトメーター等を使用され得る。
FcRn結合ドメインのFcRnに対する結合活性を測定する際のpH以外の条件は当業者が適宜選択することが可能であり、特に限定されない。例えば、WO2009/125825に記載されているようにMESバッファー、37℃の条件において測定され得る。また、本発明のFcRn結合ドメインのFcRnに対する結合活性の測定は当業者公知の方法により行うことが可能であり、例えば、Biacore(GE Healthcare)などを用いて測定され得る。FcRn結合ドメインとFcRnの結合活性の測定は、FcRn結合ドメインまたはFcRn結合ドメインを含む本発明の抗原結合分子あるいはFcRnを固定化したチップへ、それぞれFcRnあるいはFcRn結合ドメインまたはFcRn結合ドメインを含む本発明の抗原結合分子をアナライトとして流すことによって評価され得る。
本発明の抗原結合分子に含まれるFcRn結合ドメインとFcRnとの結合活性を有する条件としてのpH酸性域とは、通常pH4.0~pH6.5を意味する。好ましくはpH5.5~pH6.5を意味し、特に好ましくは、生体内の早期エンドソーム内のpHに近いpH5.8~pH6.0を意味する。測定条件に使用される温度として、FcRn結合ドメインとFcRnとの結合アフィニティーは、10℃~50℃の任意の温度で評価してもよい。好ましくは、FcRn結合ドメインとヒトFcRnとの結合アフィニティーを決定するために、15℃~40℃の温度が使用される。より好ましくは、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、および35℃のいずれか1つのような20℃から35℃までの任意の温度も同様に、FcRn結合ドメインとFcRnとの結合アフィニティーを決定するために使用される。25℃という温度は本発明の態様の非限定な一例である。
Yeungら(J. Immunol. (2009) 182, 7663-7671)によれば、天然型ヒトIgG1のヒトFcRnに対する結合活性はpH酸性域(pH6.0)でKD 1.7μMであるが、pH中性域では活性をほとんど検出できていない。よって、好ましい態様においては、pH酸性域の条件下でヒトFcRnに対する結合活性がKD 20μMまたはそれより強く、pH中性域の条件下でヒトFcRnに対する結合活性が天然型ヒトIgGと同等な抗原結合分子を含む、pH酸性域の条件下でヒトFcRnに対する結合活性を有する本発明の抗原結合分子が使用され得る。より好ましい態様においては、pH酸性域の条件下でヒトFcRn結合活性がKD 2.0μMまたはそれより強い抗原結合分子を含む本発明の抗原結合分子が使用され得る。さらにより好ましい態様においては、pH酸性域の条件下でヒトFcRn結合活性がKD 0.5μMまたはそれより強い抗原結合分子が使用され得る。上記のKD値は、The Journal of Immunology (2009) 182: 7663-7671に記載された方法(抗原結合分子をチップに固定し、アナライトとしてヒトFcRnを流す)によって決定される。
本発明においては、pH酸性域の条件下でFcRnに対する結合活性を有するFc領域が好ましい。当該ドメインは、あらかじめpH酸性域の条件下でFcRnに対する結合活性を有しているFc領域であればそのまま用いられ得る。当該ドメインがpH酸性域の条件下でFcRnに対する結合活性がない若しくは弱い場合には、抗原結合分子中のアミノ酸を改変することによって所望のFcRnに対する結合活性を有するFc領域が取得され得るが、Fc領域中のアミノ酸を改変することによってpH酸性域の条件下で所望のFcRnに対する結合活性を有する、または増強されたFc領域も好適に取得され得る。そのような所望の結合活性をもたらすFc領域のアミノ酸改変は、アミノ酸改変前と改変後のpH酸性域の条件下でFcRnに対する結合活性を比較することによって見出され得る。本明細書のアミノ酸の改変の項で後述される公知の手法を用いて当業者は適宜アミノ酸の改変を実施することができる。
本発明の抗原結合分子に含まれるpH酸性域の条件下でFcRnに対する結合活性を有するFc領域はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によってpH酸性域の条件下でFcRnに対する結合活性を有する、または増強されたFcRn結合ドメインが取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えばヒトIgG(IgG1、IgG2、IgG3、またはIgG4、およびそれらの改変体)のFc領域が挙げられる。他のアミノ酸への改変は、pH酸性域の条件下でFcRnに対する結合活性を有する、もしくは酸性域の条件下でヒトFcRnに対する結合活性を高められるかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変が含まれていることが好ましい。そのような改変が可能なアミノ酸として、例えば、WO2000/042072に記載されるように、EUナンバリングで表される238位、252位、253位、254位、255位、256位、265位、272位、286位、288位、303位、305位、307位、309位、311位、312位、317位、340位、356位、360位、362位、376位、378位、380位、382位、386位、388位、400位、413位、415位、424位、433位、434位、435位、436位、439位および/または447位のアミノ酸が好適に挙げられる。同様に、そのような改変が可能なアミノ酸として、例えばWO2002/060919に記載されているように、EUナンバリングで表される251位、252位、254位、255位、256位、308位、309位、311位、312位、385位、386位、387位、389位、428位、433位、434位および/または436位のアミノ酸も好適に挙げられる。さらに、そのような改変が可能なアミノ酸として、WO2004/092219に記載されているように、EUナンバリングで表される250位、314位および428位のアミノ酸も挙げられる。また、そのような改変が可能なアミノ酸として、例えばWO2010/045193に記載されているように、EUナンバリングで表される251位、252位、307位、308位、378位、428位、430位、434位および/または436位のアミノ酸も好適に挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH酸性域の条件下でFcRnに対する結合が増強される。
例えばこれらのアミノ酸の改変を単独、あるいは複数を組み合わせて用いることによって、IgGのFc領域のpH酸性域におけるFcRnに対する結合を増強することが可能であるが、導入されるアミノ酸改変は特に限定されず、血漿中滞留性を改善する効果がもたらされる限りにおいて、どのようなアミノ酸改変が導入されても良い。
また、本発明の非限定の一態様では、FcRn結合ドメインとしてFcRn、特にヒトFcRnに対する結合活性を有する抗原結合ドメインも適宜使用され得る。前記されたように、本発明の抗原結合分子として二重特異性抗体も適宜使用され得るが、当該二重特異性抗体が結合する一方のエピトープがFcRn以外の所望の抗原に存在するエピトープであり、もう一方のエピトープがFcRnに存在するエピトープである二重特異性抗体が好適に挙げられる。二重特異性抗体の構造は、所望の抗原とFcRnに対する結合価を有する二価の結合ドメインおよび糖鎖受容体結合ドメインを含む限り、特定の構造に限定されることはない。例えば、Fc領域が連結されたIgG型抗体のような抗体の構造も使用され得るし、「scFv2(single chain Fv 2)」、「diabody」、または「F(ab')2」等も好適に使用され得る。IgG型抗体のような抗体の構造が使用されるときは、糖鎖結合ドメインがFc領域にも含まれ得るし、FcRn結合ドメインおよび/または抗原結合ドメインにも含まれ得る。また、「scFv2(single chain Fv 2)」、「diabody」、または「F(ab')2」のような構造が使用されるときは、糖鎖結合ドメインがFcRn結合ドメインおよび/または抗原結合ドメインにも含まれ得る。
このような二重特異性抗体が使用されるときは、FcRn結合ドメインとして、「イオン濃度の条件」の項で後述されるようなイオン濃度の条件によってFcRnに対する結合が変化するFcRn結合ドメインが適宜使用され得る。すなわち、本発明の非限定な一態様では、「イオン濃度の条件」の項で後述されるように、FcRn結合ドメインのFcRnに対する結合が金属イオン濃度の条件やpHの条件によってFcRnに対する結合活性が変化するFcRn結合ドメインが使用され得る。
イオン濃度の条件
(1)金属イオン濃度の条件
本発明の非限定の一態様では、イオン濃度とは金属イオン濃度のことをいう。「金属イオン」とは、水素を除くアルカリ金属および銅族等の第I族、アルカリ土類金属および亜鉛族等の第II族、ホウ素を除く第III族、炭素とケイ素を除く第IV族、鉄族および白金族等の第VIII族、V、VIおよびVII族の各A亜族に属する元素と、アンチモン、ビスマス、ポロニウム等の金属元素のイオンをいう。金属原子は原子価電子を放出して陽イオンになる性質を有しており、これをイオン化傾向という。イオン化傾向の大きい金属は、化学的に活性に富むとされる。
本発明で好適な金属イオンの例としてカルシウムイオンが挙げられる。カルシウムイオンは多くの生命現象の調節に関与しており、骨格筋、平滑筋および心筋等の筋肉の収縮、白血球の運動および貪食等の活性化、血小板の変形および分泌等の活性化、リンパ球の活性化、ヒスタミンの分泌等の肥満細胞の活性化、カテコールアミンα受容体やアセチルコリン受容体を介する細胞の応答、エキソサイトーシス、ニューロン終末からの伝達物質の放出、ニューロンの軸策流等にカルシウムイオンが関与している。細胞内のカルシウムイオン受容体として、複数個のカルシウムイオン結合部位を有し、分子進化上共通の起源から由来したと考えられるトロポニンC、カルモジュリン、パルブアルブミン、ミオシン軽鎖等が知られており、その結合モチーフも数多く知られている。例えば、カドヘリンドメイン、カルモジュリンに含まれるEFハンド、Protein kinase Cに含まれるC2ドメイン、血液凝固タンパク質FactorIXに含まれるGlaドメイン、アシアログライコプロテインレセプターやマンノースレセプターに含まれるC型レクチン、LDL受容体に含まれるAドメイン、アネキシン、トロンボスポンジン3型ドメインおよびEGF様ドメインがよく知られている。
本発明においては、金属イオンがカルシウムイオンの場合には、カルシウムイオン濃度の条件として低カルシウムイオン濃度の条件と高カルシウムイオン濃度の条件が挙げられる。カルシウムイオン濃度の条件によって結合活性が変化するとは、低カルシウムイオン濃度と高カルシウムイオン濃度の条件の違いによって抗原に対する抗原結合分子の結合活性が変化することをいう。例えば、低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合が挙げられる。また、高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合もまた挙げられる。
本明細書において、高カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には100μMから10 mMの間から選択される濃度であり得る。また、別の態様では、200μMから5 mMの間から選択される濃度でもあり得る。また、異なる態様では500μMから2.5 mMの間から選択される濃度でもあり得るし、ほかの態様では200μMから2 mMの間から選択される濃度でもあり得る。さらに400μMから1.5 mMの間から選択される濃度でもあり得る。特に生体内の血漿中(血中)でのカルシウムイオン濃度に近い500μMから2.5 mMの間から選択される濃度が好適に挙げられる。
本明細書において、低カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には0.1μMから30μMの間から選択される濃度であり得る。また、別の態様では、0.2μMから20μMの間から選択される濃度でもあり得る。また、異なる態様では0.5μMから10μMの間から選択される濃度でもあり得るし、ほかの態様では1μMから5μMの間から選択される濃度でもあり得る。さらに2μMから4μMの間から選択される濃度でもあり得る。特に生体内の早期エンドソーム内でのイオン化カルシウム濃度に近い1μMから5μMの間から選択される濃度が好適に挙げられる。
本発明において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低いとは、抗原結合分子の0.1 μMから30μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、100μMから10 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。好ましくは、抗原結合分子の0.5μMから10μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、200μMから5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味し、特に好ましくは、生体内の早期エンドソーム内のカルシウムイオン濃度における抗原結合活性が、生体内の血漿中のカルシウムイオン濃度における抗原結合活性より弱いことを意味し、具体的には、抗原結合分子の1μMから5μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、500μMから2.5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。
金属イオン濃度の条件によって抗原に対する本発明の抗原結合ドメインの結合活性が変化しているか否かは、例えば前記の結合活性の項で記載されたような公知の測定方法を使用することによって決定され得る。例えば、低カルシウムイオン濃度の条件下における本発明の抗原結合ドメインを含む抗原結合分子の抗原に対する結合活性よりも高カルシウムイオン濃度の条件下における当該抗原結合ドメインを含む抗原結合分子の抗原に対する結合活性の方が高く変化することを確認するためには、低カルシウムイオン濃度および高カルシウムイオン濃度の条件下における抗原に対する抗原結合ドメインを含む抗原結合分子の結合活性が比較される。
さらに本発明において、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」という表現は、抗原結合分子の高カルシウムイオン濃度条件下における抗原に対する結合活性が低カルシウムイオン濃度条件下における抗原に対する結合活性よりも高いと表現することもできる。なお本発明においては、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」を「低カルシウムイオン濃度条件下における抗原結合能が高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱い」と記載する場合もあり、また、「低カルシウムイオン濃度の条件における抗原結合活性を高カルシウムイオン濃度の条件における抗原に対する結合活性より低下させる」を「低カルシウムイオン濃度条件下における抗原結合能を高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱くする」と記載する場合もある。
抗原に対する結合活性を測定する際のカルシウムイオン濃度以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合ドメインを含む抗原結合分子と抗原との結合活性の測定は、抗原が可溶型抗原である場合は、抗原結合ドメインを含む抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことで可溶型抗原に対する結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合ドメインを含む抗原結合分子をアナライトとして流すことで膜型抗原に対する結合活性を評価することが可能である。
本発明の抗原結合分子において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性よりも弱い限り、低カルシウムイオン濃度条件下における抗原に対する結合活性と高カルシウムイオン濃度条件下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する低カルシウムイオン濃度の条件におけるKD(Dissociation constant:解離定数)と高カルシウムイオン濃度の条件におけるKDの比であるKD (Ca 3μM)/KD (Ca 2 mM)の値が2以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が10以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が40以上である。KD (Ca 3μM)/KD (Ca 2 mM)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。また、KD (Ca3μM)/KD (Ca 1.2 mM)の値でも特定され得る。すなわち、KD (Ca 3μM)/KD (Ca 1.2 mM)の値が2以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 1.2 mM)の値が10以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 1.2 mM)の値が40以上である。KD (Ca 3μM)/KD (Ca 1.2 mM)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
抗原に対する結合活性の値として、抗原が可溶型抗原の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を用いることが可能である。
また、本発明の抗原結合分子の低カルシウム濃度の条件における抗原に対する結合活性と高カルシウム濃度の条件における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対する低カルシウム濃度の条件におけるkd(解離速度定数)と高カルシウム濃度の条件におけるkd(解離速度定数)の比であるkd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。
抗原結合活性の値として、抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、異なるカルシウムイオン濃度における抗原結合分子の抗原に対する結合活性を測定する際は、カルシウム濃度以外の条件は同一とすることが好ましい。
例えば、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗体のスクリーニングによって取得され得る。
(a) 低カルシウム濃度の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、
(b) 高カルシウム濃度の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、および
(c) 低カルシウム濃度の条件における抗原結合活性が、高カルシウム濃度の条件における抗原結合活性より低い抗原結合ドメインまたは抗体を選択する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗体もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 高カルシウム濃度の条件における抗原結合ドメインまたは抗体もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインまたは抗体を低カルシウム濃度条件下に置く工程、および
(c) 前記工程(b)で解離した抗原結合ドメインまたは抗体を単離する工程。
また、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(d)を含む抗原結合ドメインまたは抗体若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 低カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン又は抗体を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン又は抗体を高カルシウム濃度条件下で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに高カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン又は抗体を低カルシウム濃度条件下でカラムから溶出する工程、および
(c) 前記工程(b)で溶出された抗原結合ドメイン又は抗体を単離する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに低カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン又は抗体を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン又は抗体を高カルシウム濃度条件下で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 高カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン又は抗体を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン又は抗体を低カルシウム濃度条件下に置く工程、および
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン又は抗体を単離する工程。
なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)~(c)あるいは(a)~(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得された低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体が提供される。(a)~(c)あるいは(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
本発明のスクリーニング方法において、低カルシウム濃度条件下における抗原結合ドメイン又は抗体の抗原結合活性は、イオン化カルシウム濃度が0.1μM~30μMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として、0.5μM~10μMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の早期エンドソーム内のイオン化カルシウム濃度が挙げられ、具体的には1μM~5μMにおける抗原結合活性を挙げることができる。また、高カルシウム濃度条件下における抗原結合ドメイン又は抗体の抗原結合活性は、イオン化カルシウム濃度が100μM~10 mMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として200μM~5 mMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の血漿中でのイオン化カルシウム濃度を挙げることができ、具体的には0.5 mM~2.5 mMにおける抗原結合活性を挙げることができる。
抗原結合ドメイン又は抗体の抗原結合活性は当業者に公知の方法により測定することが可能であり、イオン化カルシウム濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン又は抗体の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
本発明において、高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い抗原結合ドメイン又は抗体を選択する工程は、低カルシウム濃度条件下における抗原結合活性が高カルシウム濃度条件下における抗原結合活性より低い抗原結合ドメイン又は抗体を選択する工程と同じ意味である。
高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い限り、高カルシウム濃度条件下における抗原結合活性と低カルシウム濃度条件下における抗原結合活性の差は特に限定されないが、好ましくは高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
前記のスクリーニング方法によりスクリーニングされる本発明の抗原結合ドメイン又は抗体はいかなる抗原結合ドメイン又は抗体でもよく、例えば上述の抗原結合ドメイン又は抗体をスクリーニングすることが可能である。例えば、天然の配列を有する抗原結合ドメイン又は抗体をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合ドメイン又は抗体をスクリーニングしてもよい。
(2)カルシウムイオン濃度の条件によって抗原に対する抗原結合ドメインの結合活性が変化するアミノ酸
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン又は抗体はどのように調製されてもよく、例えば、金属イオンがカルシウムイオン濃度である場合には、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリにカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)や非天然アミノ酸変異を導入した抗体又はライブラリ(カルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸の含有率を高くしたライブラリや特定箇所にカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である。
前記のようにイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸の例として、例えば、金属イオンがカルシウムイオンである場合には、カルシウム結合モチーフを形成するアミノ酸であれば、その種類は問わない。カルシウム結合モチーフは、当業者に周知であり、詳細に記載されている(例えばSpringerら(Cell (2000) 102, 275-277)、KawasakiおよびKretsinger(Protein Prof. (1995) 2, 305-490)、Moncriefら(J. Mol. Evol. (1990) 30, 522-562)、Chauvauxら(Biochem. J. (1990) 265, 261-265)、BairochおよびCox(FEBS Lett. (1990) 269, 454-456)、Davis(New Biol. (1990) 2, 410-419)、Schaeferら(Genomics (1995) 25, 638~643)、Economouら(EMBO J. (1990) 9, 349-354)、Wurzburgら(Structure. (2006) 14, 6, 1049-1058))。すなわち、ASGPR, CD23、MBR、DC-SIGN等のC型レクチン等の任意の公知のカルシウム結合モチーフが、本発明の抗原結合分子に含まれ得る。このようなカルシウム結合モチーフの好適な例として、上記のほかには配列番号:6に記載される抗原結合ドメインに含まれるカルシウム結合モチーフも挙げられ得る。
また、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化するアミノ酸の例として、金属キレート作用を有するアミノ酸も好適に用いられる得る。金属キレート作用を有するアミノ酸の例として、例えばセリン(Ser(S))、スレオニン(Thr(T))、アスパラギン(Asn(N))、グルタミン(Gln(Q))、アスパラギン酸(Asp(D))およびグルタミン酸(Glu(E))等が好適に挙げられる。
前記のアミノ酸が含まれる抗原結合ドメインの位置は特定の位置に限定されず、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる限り、抗原結合ドメインを形成する重鎖可変領域または軽鎖可変領域中のいずれの位置でもあり得る。すなわち、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、別の非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3のKabatナンバリングで表される95位、96位、100a位および/または101位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
また、本発明の非限定の一態様では、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が軽鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、別の態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1のKabatナンバリングで表される30位、31位および/または32位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
また、別の非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR2に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、当該アミノ酸残基が軽鎖のCDR2のKabatナンバリングで表される50位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリが提供される。
さらに別の非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3のKabatナンバリングで表される92位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
また、本発明の抗原結合ドメインは、当該アミノ酸残基が、前記に記載された軽鎖のCDR1、CDR2およびCDR3から選択される2つまたは3つのCDRに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから本発明の異なる態様として取得され得る。さらに、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のKabatナンバリングで表される30位、31位、32位、50位および/または92位のいずれかひとつ以上に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
また、これらのアミノ酸残基が、カルシウム結合モチーフを形成し、および/または、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。また、複数個のカルシウムイオン結合部位を有し、分子進化上共通の起源から由来したと考えられるトロポニンC、カルモジュリン、パルブアルブミン、ミオシン軽鎖等が知られており、その結合モチーフが含まれるように軽鎖CDR1、CDR2および/またはCDR3を設計することも可能である。例えば、上記の目的でカドヘリンドメイン、カルモジュリンに含まれるEFハンド、Protein kinase Cに含まれるC2ドメイン、血液凝固タンパク質FactorIXに含まれるGlaドメイン、アシアログライコプロテインレセプターやマンノースレセプターに含まれるC型レクチン、LDL受容体に含まれるAドメイン、アネキシン、トロンボスポンジン3型ドメインおよびEGF様ドメインが適宜使用され得る。
本発明の一つの態様では、「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が予め含まれているフレームワーク配列として選択された重鎖可変領域と、ランダム化可変領域配列ライブラリとして作製された軽鎖可変領域とを組み合わせることによって本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリから、本発明の抗原結合ドメインが取得され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、配列番号:7(6RL#9-IgG1)または配列番号:8(6KC4-1#85-IgG1)に記載された重鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。また、ランダム化可変領域配列ライブラリとして作製された軽鎖可変領域の代わりに、生殖細胞系列の配列を有する軽鎖可変領域の中から適宜選択することによって作製され得る。例えば、配列番号:7(6RL#9-IgG1)または配列番号:8(6KC4-1#85-IgG1)に記載された重鎖可変領域配列と生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。
本明細書において「ライブラリ」とは複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチド、もしくはこれらの配列をコードする核酸、ポリヌクレオチドをいう。ライブラリ中に含まれる複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチドの配列は単一の配列ではなく、互いに配列の異なる抗原結合分子または抗原結合分子を含む融合ポリペプチドである。こうしたライブラリとしてバクテリオファージの表面で抗体断片を含んでいる融合ポリペプチドを提示する方法は当技術分野で公知であり、例えばWO1992001047および本明細書で記載されている。他にもWO1992020791、WO1993006213、WO1993011236および1993019172では関連した方法が記載されており、当業者はこれらの方法を適宜使用することが可能である。他の公知文献(H.R.Hoogenboom & G.Winter (1992) J. Mol. Biol. 227, 381-388、WO1993006213およびWO1993011236)では、ファージ表面で提示された様々な抗原に対する、人工的に再配置された可変領域遺伝子レパートリーによる抗体の同定が示されている。
(3)水素イオン濃度の条件
また、本発明の一つの態様では、イオン濃度の条件とは水素イオン濃度の条件またはpHの条件をいう。本発明で、プロトンすなわち水素原子の原子核の濃度の条件は、水素指数(pH)の条件とも同義に取り扱われる。水溶液中の水素イオンの活動量をaH+で表すと、pHは-log10aH+と定義される。水溶液中のイオン強度が(例えば10-3より)低ければ、aH+は水素イオン強度にほぼ等しい。例えば25℃、1気圧における水のイオン積はKw=aH+aOH=10-14であるため、純水ではaH+=aOH=10-7である。この場合のpH=7が中性であり、pHが7より小さい水溶液は酸性、pHが7より大きい水溶液はアルカリ性である。
本発明においては、イオン濃度の条件としてpHの条件が用いられる場合には、pHの条件として高水素イオン濃度または低pHすなわちpH酸性域の条件と低水素イオン濃度または高pHすなわちpH中性域の条件が挙げられる。pHの条件によって結合活性が変化するとは、高水素イオン濃度または低pH(pH酸性域)と低水素イオン濃度または高pH(pH中性域)の条件の違いによって抗原に対する抗原結合分子の結合活性が変化することをいう。例えば、pH酸性域の条件における抗原に対する抗原結合分子の結合活性よりもpH中性域の条件における抗原に対する抗原結合分子の結合活性の方が高い場合が挙げられる。また、pH中性域の条件における抗原に対する抗原結合分子の結合活性よりもpH酸性域の条件における抗原に対する抗原結合分子の結合活性の方が高い場合もまた挙げられる。
本明細書において、pH中性域とはとくに一義的な数値に限定されるわけではないが、好適にはpH6.7からpH10.0の間から選択され得る。また、別の態様では、pH6.7からpH9.5の間から選択され得る。また、異なる態様ではpH7.0からpH9.0の間から選択され得るし、ほかの態様ではpH7.0からpH8.0の間から選択され得る。特に生体内の血漿中(血中)でのpHに近いpH7.4が好適に挙げられる。
本明細書において、pH酸性域とはとくに一義的な数値に限定されるわけではないが、好適にはpH4.0からpH6.5の間から選択され得る。また、別の態様では、pH4.5からpH6.5の間から選択され得る。また、異なる態様ではpH5.0からpH6.5の間から選択され得るし、ほかの態様ではpH5.5からpH6.5の間から選択され得る。特に生体内の早期エンドソーム内でのイオン化カルシウム濃度に近いpH5.8が好適に挙げられる。
本発明において、抗原結合分子の高水素イオン濃度または低pH(pH酸性域)の条件における抗原に対する結合活性が低水素イオン濃度または高pH(pH中性域)の条件における抗原に対する結合活性より低いとは、抗原結合分子のpH4.0からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH6.7からpH10.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。好ましくは、抗原結合分子のpH4.5からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH6.7からpH9.5の間から選択されるpHでの抗原に対する結合活性より弱いことを意味し、より好ましくは、抗原結合分子のpH5.0からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH7.0からpH9.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。また、好ましくは抗原結合分子のpH5.5からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH7.0からpH8.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。特に好ましくは、生体内の早期エンドソーム内のpHにおける抗原結合活性が、生体内の血漿中のpHにおける抗原結合活性より弱いことを意味し、具体的には、抗原結合分子のpH5.8での抗原に対する結合活性が、pH7.4での抗原に対する結合活性より弱いことを意味する。
pHの条件によって抗原に対する本発明の抗原結合ドメインの結合活性が変化しているか否かは、例えば前記の結合活性の項で記載されたような公知の測定方法を使用することによって決定され得る。すなわち、当該測定方法に際して異なるpHの条件下での結合活性が測定される。例えば、pH酸性域の条件下における本発明の抗原結合ドメインを含む抗原結合分子の抗原に対する結合活性よりもpH中性域の条件下における本発明の抗原結合ドメインを含む抗原結合分子の抗原に対する結合活性の方が高く変化することを確認するためには、pH酸性域およびpH中性域の条件下における抗原に対する抗原結合分子の結合活性が比較される。
さらに本発明において、「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い」という表現は、抗原結合分子の低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性よりも高いと表現することもできる。なお本発明においては、「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い」を「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合能よりも弱い」と記載する場合もあり、また、「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低下させる」を「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合能よりも弱くする」と記載する場合もある。
抗原に対する結合活性を測定する際の水素イオン濃度またはpH以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合ドメインを含む抗原結合分子と抗原との結合活性の測定は、抗原が可溶型抗原である場合は、抗原結合ドメインを含む抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことで可溶型抗原に対する結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合ドメインを含む抗原結合分子をアナライトとして流すことで膜型抗原に対する結合活性を評価することが可能である。
本発明の抗原結合分子において、高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性よりも弱い限り、高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性と低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する高水素イオン濃度または低pHすなわちpH酸性域の条件におけるKD(Dissociation constant:解離定数)と低水素イオン濃度または高pHすなわちpH中性域の条件におけるKDの比であるKD (pH5.8)/KD (pH7.4)の値が2以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が10以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が40以上である。KD (pH5.8)/KD (pH7.4)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
抗原に対する結合活性の値として、抗原が可溶型抗原の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を用いることが可能である。
また、本発明の抗原結合分子の高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性と低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対する高水素イオン濃度または低pHすなわちpH酸性域の条件におけるkd(解離速度定数)と低水素イオン濃度または高pHすなわちpH中性域の条件におけるkd(解離速度定数)の比であるkd(pH酸性域の条件における)/kd(pH中性域の条件における)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(pH酸性域の条件における)/kd(pH中性域の条件における)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。
抗原結合活性の値として、抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、異なる水素イオン濃度すなわちpHにおける抗原結合分子の抗原に対する結合活性を測定する際は、水素イオン濃度すなわちpH以外の条件は同一とすることが好ましい。
例えば、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗体のスクリーニングによって取得され得る。
(a) pH酸性域の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、
(b) pH中性域の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、および
(c) pH酸性域の条件における抗原結合活性が、pH中性域の条件における抗原結合活性より低い抗原結合ドメインまたは抗体を選択する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(c)を含む抗原結合ドメインまたは抗体もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) pH中性域の条件における抗原結合ドメインまたは抗体もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインまたは抗体をpH酸性域の条件に置く工程、および
(c) 前記工程(b)で解離した抗原結合ドメインまたは抗体を単離する工程。
また、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(d)を含む抗原結合ドメインまたは抗体若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) pH酸性域の条件で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン又は抗体を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン又は抗体をpH中性域の条件で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムにpH中性域の条件で抗原結合ドメイン又は抗体のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン又は抗体をpH酸性域の条件でカラムから溶出する工程、および
(c) 前記工程(b)で溶出された抗原結合ドメイン又は抗体を単離する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムにpH酸性域の条件で抗原結合ドメイン又は抗体のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン又は抗体を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン又は抗体をpH中性域の条件で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) pH中性域の条件で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン又は抗体を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン又は抗体をpH酸性域の条件に置く工程、および
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン又は抗体を単離する工程。
なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)~(c)あるいは(a)~(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得されたpH酸性域の条件における抗原に対する結合活性がpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体が提供される。(a)~(c)あるいは(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
本発明のスクリーニング方法において、高水素イオン濃度条件または低pHすなわちpH酸性域における抗原結合ドメイン又は抗体の抗原結合活性は、pHが4.0~6.5の間の抗原結合活性であれば特に限定されないが、好ましいpHとして、pHが4.5~6.6の間の抗原結合活性を挙げることができる。別の好ましいpHとして、pHが5.0~6.5の間の抗原結合活性、さらにpHが5.5~6.5の間の抗原結合活性を挙げることができる。より好ましいpHとして、生体内の早期エンドソーム内のpHが挙げられ、具体的にはpH5.8における抗原結合活性を挙げることができる。また、低水素イオン濃度条件または高pHすなわちpH中性域における抗原結合ドメイン又は抗体の抗原結合活性は、pHが6.7~10の間の抗原結合活性であれば特に限定されないが、好ましいpHとしてpHが6.7~9.5の間の抗原結合活性を挙げることができる。別の好ましいpHとして、pHが7.0~9.5の間の抗原結合活性、さらにpHが7.0~8.0の間の抗原結合活性を挙げることができる。より好ましいpHとして、生体内の血漿中でのpHを挙げることができ、具体的にはpHが7.4における抗原結合活性を挙げることができる。
抗原結合ドメイン又は抗体の抗原結合活性は当業者に公知の方法により測定することが可能であり、イオン化カルシウム濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン又は抗体の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore (GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
本発明において、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い抗原結合ドメイン又は抗体を選択する工程は、高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性より低い抗原結合ドメイン又は抗体を選択する工程と同じ意味である。
低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い限り、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性と高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性の差は特に限定されないが、好ましくは低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
前記のスクリーニング方法によりスクリーニングされる本発明の抗原結合ドメイン又は抗体はいかなる抗原結合ドメイン又は抗体でもよく、例えば上述の抗原結合ドメイン又は抗体をスクリーニングすることが可能である。例えば、天然の配列を有する抗原結合ドメイン又は抗体をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合ドメイン又は抗体をスクリーニングしてもよい。
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン又は抗体はどのように調製されてもよく、例えば、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリに側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸変異を導入した抗体又はライブラリ(側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)又は非天然アミノ酸の含有率を高くしたライブラリや特定箇所に側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)又は非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である。
動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗原結合ドメインまたは抗体から、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い抗原結合ドメイン又は抗体を取得する方法として、例えば、WO2009/125825で記載されるような抗原結合ドメインまたは抗体中のアミノ酸の少なくとも一つが、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸変異に置換されているもしくは抗原結合ドメインまたは抗体中に、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入されている抗原結合分子または抗体が好適に挙げられる。
側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異が導入される位置は特に限定されず、置換または挿入前と比較してpH酸性域における抗原結合活性がpH中性域における抗原結合活性より弱くなる(KD(pH酸性域)/KD(pH中性域)の値が大きくなる、又はkd(pH酸性域)/kd(pH中性域)の値が大きくなる)限り、如何なる部位でもよい。例えば、抗原結合分子が抗体の場合には、抗体の可変領域やCDRなどが好適に挙げられる。側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸に置換されるアミノ酸の数、又は挿入されるアミノ酸の数は当業者が適宜決定することができ、側鎖のpKaが4.0-8.0である1つのアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸によって置換され得るし、側鎖のpKaが4.0-8.0である1つのアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入され得るし、側鎖のpKaが4.0-8.0である2つ以上の複数のアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸によって置換され得るし、側鎖のpKaが4.0-8.0である2つ以上のアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入され得る。又、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換又は側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の挿入以外に、他のアミノ酸の欠失、付加、挿入および/または置換などが同時に行われ得る。側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換又は側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の挿入は、当業者の公知のアラニンscanningのアラニンをヒスチジン等に置き換えたヒスチジン等scanning等の方法によってランダムに行われ得るし、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換または挿入の変異がランダムに導入された抗原結合ドメインまたは抗体の中から、変異前と比較してKD(pH酸性域)/KD(pH中性域)又はkd(pH酸性域)/kd(pH中性域)の値が大きくなった抗原結合分子が選択され得る。
前記のようにその側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異が行われ、かつpH酸性域での抗原結合活性がpH中性域での抗原結合活性よりも低い抗原結合分子の好ましい例として、例えば、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異後のpH中性域での抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異前のpH中性域での抗原結合活性と同等である抗原結合分子が好適に挙げられる。本発明において、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後の抗原結合分子が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前の抗原結合分子と同等の抗原結合活性を有するとは、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前の抗原結合分子の抗原結合活性を100%とした場合に、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後の抗原結合分子の抗原結合活性が少なくとも10%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上であることをいう。その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後のpH7.4での抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前のpH7.4での抗原結合活性より高くなってもよい。その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換または挿入により抗原結合分子の抗原結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などによって、抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換又は挿入前の抗原結合活性と同等にされ得る。本発明においては、そのような側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換又は挿入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことによって結合活性が同等となった抗原結合分子も含まれる。
さらに、抗原結合分子が抗体定常領域を含む物質である場合、pH酸性域での抗原結合活性がpH中性域での抗原結合活性よりも低い抗原結合分子の好ましい他の態様として、抗原結合分子に含まれる抗体定常領域が改変された方法を挙げることができる。改変後の抗体定常領域の具体例としては、例えば配列番号:9、10、11、または12に記載の定常領域が好適に挙げられる。
(4)水素イオン濃度の条件によって抗原に対する抗原結合ドメインの結合活性を変化させるアミノ酸
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン又は抗体はどのように調製されてもよく、例えば、イオン濃度の条件が水素イオン濃度の条件もしくはpHの条件である場合には、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリに側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異を導入した抗体又はライブラリ(側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の含有率を高くしたライブラリや特定箇所に側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異を導入したライブラリ等)などを用いることが可能である。こうした電子供与性を有するアミノ酸としては、ヒスチジンまたはグルタミン酸等の天然のアミノ酸のほか、ヒスチジンアナログ(US20090035836)もしくはm-NO2-Tyr(pKa 7.45)、3,5-Br2-Tyr(pKa 7.21)または3,5-I2-Tyr(pKa 7.38)等の非天然のアミノ酸(Bioorg. Med. Chem. (2003) 11 (17), 3761-2768が好適に例示される。非天然アミノ酸は人為的にpKaをコントロールすることができることが知られている(Angew. Chem. Int. Ed. (2005) 44, 34、Chem Soc Rev. (2004) 33 (7), 422-430、Amino Acids. (1999) 16 (3-4), 345-379)。
本発明の非限定の一つの態様として、「水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによっても、本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。
当該アミノ酸残基の非限定な例として軽鎖のCDR1に含まれるアミノ酸残基が例示される。ほかにも、当該アミノ酸残基の非限定な例として軽鎖のCDR2に含まれるアミノ酸残基が例示される。また、当該アミノ酸残基の非限定な別の例として軽鎖のCDR3に含まれるアミノ酸残基もまた例示される。
前記のように、当該アミノ酸残基が軽鎖のCDR1に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR1中のKabatナンバリングで表される24位、27位、28位、31位、32位および/または34位のアミノ酸残基が挙げられる。また、当該アミノ酸残基が軽鎖のCDR2に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR2中のKabatナンバリングで表される50位、51位、52位、53位、54位、55位および/または56位のアミノ酸残基が挙げられる。さらに、当該アミノ酸残基が軽鎖のCDR3に含まれアミノ酸残基の非限定な例として、軽鎖可変領域のCDR3中のKabatナンバリングで表される89位、90位、91位、92位、93位、94位および/または95A位のアミノ酸残基が挙げられる。また、これらのアミノ酸残基が、水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。
本発明においてヒスチジン又は非天然アミノ酸に置換される個所の非限定な例として、例えば下記で示されるWO2009/125825に記載の個所が挙げられ得る。なお、アミノ酸位置はKabatナンバリングで示されている。
重鎖:H27、H31、H32、H33、H35、H50、H58、H59、H61、H62、H63、H64、H65、H99、H100b、H102
軽鎖:L24、L27、L28、L32、L53、L54、L56、L90、L92、L94
これらの改変個所のうち、H32、H61、L53、L90、L94は普遍性の高い改変個所と考えられるが、これに特定されるものではなく目的に応じて適宜設計され得る。
また特に限定されないが、抗原がIL-6受容体(例えば、ヒトIL-6受容体)の場合の好ましい改変個所として以下の箇所を挙げることができる。
重鎖:H27、H31、H32、H35、H50、H58、H61、H62、H63、H64、H65、H100b、H102
軽鎖:L24、L27、L28、L32、L53、L56、L90、L92、L94
複数の個所を組み合わせてヒスチジン又は非天然アミノ酸に置換する場合の好ましい組合せの具体例としては、例えば、H27、H31、H35の組合せ、H27、H31、H32、H35、H58、H62、H102の組合せ、L32、L53の組合せ、L28、L32、L53の組合せ等が挙げられ得る。さらに、重鎖と軽鎖の置換個所の好ましい組み合わせの例としては、H27、H31、L32、L53の組合せが挙げられ得る。これらの個所は、1つの個所のみヒスチジン又は非天然アミノ酸で置換され得るし、複数の箇所がヒスチジン又は非天然アミノ酸で置換され得る。
また、抗原結合分子が、抗体定常領域を含む物質である場合、イオン濃度の条件によって抗原結合分子の抗原に対する結合を変化させる他の方法として、当該抗体定常領域中のアミノ酸を改変する方法も挙げられ得る。このような抗体定常領域の具体例としては、例えば、WO2009/125825の実施例に記載の抗体定常領域(配列番号:13、配列番号:14、配列番号:15、配列番号:16)に置換する方法が挙げられ得る。また、抗体定常領域の改変方法としては、例えば、定常領域のアイソタイプ(IgG1、IgG2、IgG3、IgG4)を複数検討し、pH酸性域における抗原結合活性が低下する(pH酸性域における解離速度が速くなる)アイソタイプを選択する方法が挙げられる。さらに野生型アイソタイプのアミノ酸配列(野生型IgG1、IgG2、IgG3、IgG4アミノ酸配列)にアミノ酸置換を導入することで、pH酸性域における抗原結合活性を低下させる(pH酸性域における解離速度が速くする)方法が挙げられる。アイソタイプ(IgG1、IgG2、IgG3、IgG4)によって抗体定常領域のヒンジ領域の配列が大きく異なり、ヒンジ領域のアミノ酸配列の違いは抗原結合活性に大きく影響を与えるため、抗原やエピトープの種類によって適切なアイソタイプを選択することで、イオン濃度の条件、例えばpH酸性域における抗原結合活性が低下する(pH酸性域における解離速度が速くする)アイソタイプが選択され得る。また、ヒンジ領域のアミノ酸配列の違いは抗原結合活性に大きく影響を与えることから、野生型アイソタイプのアミノ酸配列のアミノ酸置換個所としては、ヒンジ領域が望ましいと考えられる。
イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合分子は、上述の方法を用いることによって、このような性質を有さない抗原結合分子にアミノ酸の置換や挿入を実施することによって作製することが可能であるが、それ以外の方法として、このような性質を有する抗原結合分子を直接取得する方法が挙げられる。例えば、動物(マウス、ラット、ハムスター、ウサギ、ヒト免疫グロブリントランスジェニックマウス、ヒト免疫グロブリントランスジェニックラット、ヒト免疫グロブリントランスジェニックウサギ、ラマ、ラクダ等)へ抗原を免疫して得られた抗体をイオン濃度依存的な抗原に対する結合を指標にスクリーニングを行うことによって、目的の性質を有する抗体が直接取得され得るし、また、in vitroで提示した抗体ライブラリーからイオン濃度依存的な抗原に対する結合を指標にスクリーニングを行い、目的の性質を有する抗体が直接取得され得るし、特に方法は限定されない。
アミノ酸の改変
抗原結合ドメインのアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法もまた採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。
中和活性
本発明の非限定の一態様では、FcRn結合ドメイン、抗原に対する結合活性がイオン濃度の条件によって変化する抗原結合ドメイン、および糖鎖受容体に対する結合活性がイオン濃度の条件によって変化するひとつ以上の糖鎖受容体結合ドメインを含む抗原結合分子を含む医薬組成物が提供される。一般的に、中和活性とは、ウイルスや毒素など、細胞に対して生物学的活性を有するリガンドの当該生物学的活性を阻害する活性をいう。即ち、中和活性を有する物質とは、当該リガンド又は当該リガンドが結合するレセプターに結合し、当該リガンドとレセプターの結合を阻害する物質をさす。中和活性によりリガンドとの結合を阻止されたレセプターは、当該レセプターを通じた生物学的活性を発揮することができなくなる。抗原結合分子が抗体である場合、このような中和活性を有する抗体は一般に中和抗体と呼ばれる。ある被検物質の中和活性は、リガンドの存在下における生物学的活性をその被検物質の存在又は非存在下の条件の間で比較することにより測定され得る。
例えば、IL-6Rの主要なリガンドとして考えられているものは配列番号:17で表されるIL-6が好適に挙げられる。そのアミノ末端が細胞外ドメインを形成するI型膜タンパク質であるIL-6Rは、IL-6によってニ量体化が誘導されたgp130レセプターとともにヘテロ四量体を形成する(HEINRICHら(Biochem. J. (1998) 334, 297-314))。当該ヘテロ四量体の形成によって、gp130レセプターに会合しているJakが活性化される。Jakは自己リン酸化とレセプターのリン酸化を行う。受容体及びJakのリン酸化部位は、Stat3のようなSH2を持つStatファミリーに属する分子や、MAPキナーゼ、PI3/Akt、そのほかのSH2を持つタンパク質やアダプターに対して、結合部位の役割を果たす。次に、gp130レセプターに結合したStatが、Jakによってリン酸化。リン酸化されたStatは二量体を形成して核内に移行し、標的遺伝子の転写を調節する。JakまたはStatは他のクラスのレセプターを介してシグナルカスケードに関与することもできる。脱制御されたIL-6のシグナルカスケードは、自己免疫疾患の病態や炎症、多発性骨髄腫や前立腺癌などの癌で観察される。癌遺伝子として作用し得るStat3は、多くの癌において恒常的に活性化している。前立腺癌と多発性骨髄腫では、IL-6Rからのシグナルカスケードと、上皮成長因子受容体 (EGFR) ファミリーメンバーからのシグナルカスケードとの間にクロストークがある(Ishikawaら(J. Clin. Exp. Hematopathol. (2006) 46 (2), 55-66))。
こうした細胞内のシグナルカスケードは細胞種毎に異なるため、目的とする標的細胞毎に適宜標的分子を設定することができ、上記の因子に限定されるものではない。生体内シグナルの活性化を測定することにより、中和活性を評価することができる。また、生体内シグナルカスケードの下流に存在する標的遺伝子に対する転写誘導作用を指標として、生体内シグナルの活性化を検出することもできる。標的遺伝子の転写活性の変化は、レポーターアッセイの原理によって検出することができる。具体的には、標的遺伝子の転写因子又はプロモーター領域の下流にGFP(Green Fluorescence Protein)やルシフェラーゼなどのレポーター遺伝子を配し、そのレポーター活性を測定することにより、転写活性の変化をレポーター活性として測定することができる。生体内シグナルの活性化の測定キットは市販のものを適宜使用することができる(例えば、Mercury Pathway Profiling Luciferase System(Clontech)等)。
更に、通常は細胞増殖を促進する方向に働くシグナルカスケードに作用するEGFレセプターファミリー等のレセプターリガンドの中和活性を測定する方法として、標的とする細胞の増殖活性を測定することによって、中和抗体の中和活性を評価することができる。例えば、例えばHB-EGF等その増殖がEGFファミリーの成長因子によって促進される細胞の増殖に対する、抗HB-EGF抗体の中和活性に基づく抑制効果を評価又は測定する方法として、以下の方法が好適に使用される。試験管内において該細胞増殖抑制活性を評価又は測定する方法としては、培地中に添加した[3H]ラベルしたチミジンの生細胞による取り込みをDNA複製能力の指標として測定する方法が用いられる。より簡便な方法としてトリパンブルー等の色素を細胞外に排除する能力を顕微鏡下で計測する色素排除法や、MTT法が用いられる。後者は、生細胞がテトラゾリウム塩であるMTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)を青色のホルマザン産物へ転換する能力を有することを利用している。より具体的には、被検細胞の培養液にリガンドと共に被検抗体を添加して一定時間を経過した後に、MTT溶液を培養液に加えて一定時間静置することによりMTTを細胞に取り込ませる。その結果、黄色の化合物であるMTTが細胞内のミトコンドリア内のコハク酸脱水素酵素により青色の化合物に変換される。この青色生成物を溶解し呈色させた後にその吸光度を測定することにより生細胞数の指標とするものである。MTT以外に、MTS、XTT、WST-1、WST-8等の試薬も市販されており(nacalai tesqueなど)好適に使用することができる。活性の測定に際しては、対照抗体として抗HB-EGF抗体と同一のアイソタイプを有する抗体で該細胞増殖抑制活性を有しない結合抗体を、抗HB-EGF抗体と同様に使用して、抗HB-EGF抗体が対照抗体よりも強い細胞増殖抑制活性を示すことにより活性を判定することができる。
活性を評価するための細胞として、例えば、その増殖がHB-EGFによって促進される細胞である、卵巣癌細胞であるRMG-1細胞株や、ヒトEGFRの細胞外ドメインとマウスGCSF受容体の細胞内ドメインをインフレームで融合した融合タンパク質であるhEGFR/mG-CSFRをコードする遺伝子を発現する様に結合したベクターによって形質転換されたマウスBa/F3細胞等も好適に使用され得る。このように、当業者は、活性を評価するための細胞を適宜選択することによって前記の細胞増殖活性の測定に使用することが可能である。
本発明が提供する抗原結合分子は、抗原を血漿中から消失させることができるため、抗原結合分子自体が中和活性を有することは必ずしも必要ではない。しかしながら、Fcγレセプターを介したエンドサイトーシスにより抗原が抗原結合分子とともにFcγレセプターを発現する細胞内に取り込まれるまでの間、抗原に対する中和活性を発揮することによって、血漿中に存在する抗原の機能を遮断することがさらに好ましい。
また、本発明が提供する抗原結合分子は、細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離を促進することができるため、細胞内で抗原結合分子から解離した抗原はライソソームにおいて分解される。よって、抗原結合分子自体が中和活性を有することは必ずしも必要ではない。しかしながら、糖鎖受容体を介したエンドサイトーシスにより抗原が抗原結合分子とともに糖鎖受容体を発現する細胞内に取り込まれるまでの間、抗原に対する中和活性を発揮することによって、血漿中に存在する抗原の機能を遮断することがさらに好ましい。
さらに、本発明が提供する抗原結合分子は、血漿中の総抗原濃度または遊離抗原濃度を減少させることができるため、抗原結合分子自体が中和活性を有することは必ずしも必要ではない。しかしながら、糖鎖受容体を介したエンドサイトーシスにより抗原が抗原結合分子とともに糖鎖受容体を発現する細胞内に取り込まれるまでの間、抗原に対する中和活性を発揮することによって、血漿中に存在する抗原の機能を遮断することがさらに好ましい。
糖鎖受容体
糖鎖とは、各種の糖がグリコシド結合によって連結された一群の化合物をいう。生体内の糖鎖の多くはタンパク質や脂質と結合した複合分子として存在しており、複合糖質の名で総称される。そのうち糖とタンパク質が結合した複合糖質は糖タンパク質である。
本発明において用いられる糖鎖受容体結合ドメインが結合する糖鎖受容体が認識する糖鎖の例としては、糖タンパク質を構成する糖鎖が挙げられる。糖タンパク質の糖鎖の例としてはO結合型糖鎖とN結合型糖鎖とが挙げられる。より好適には、糖タンパク質の糖鎖の例としてはN結合型糖鎖が挙げられる。
糖タンパク質のO結合型糖鎖はタンパク質のセリン又はスレオニン残基の水酸基とO-グリコシド結合する。セリン又はスレオニン残基に直接結合する糖はN-アセチルガラクトサミン(GalNAc)であることが多く、そのコア構造は(1)N-アセチルガラクトサミン(GalNAc)とβ1-3結合により結合したガラクトース(Gal)、(2)GalNAcとβ1-3結合により結合したGal及びβ1-6結合により結合したN-アセチルグルコサミン(GlcNAc)、(3)GalNAcとβ1-3結合により結合したGlcNAc、(4)GalNAcとβ1-3結合により結合したGlcNAc及びβ1-6結合により結合したGlcNAc、(5)GalNAcとβ1-6結合により結合したGlcNAc、(6)GalNAcとβ1-6結合により結合したGalNAc、(7)GalNAcとβ1-3結合により結合したGal、の8つから構成される。
糖タンパク質のN結合型糖鎖は全て共通母核構造としてMan 6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcを持ち、これはトリマンノシルコアと呼ばれる。トリマンノシルコアに付加した糖残基の構造と部位に基づいて、N-結合型糖鎖は3つのサブグループに分類される。
このうち複合型糖鎖はトリマンノシルコア以外にはマンノース残基を含まない。側鎖部分の還元末端にはGlcNAc残基が存在し、トリマンノシルコアの2つのα-マンノシル残基と結合している。
高マンノース型糖鎖はトリマンノシルコアに加え、α-マンノース残基のみを含む。このグループの糖鎖にはManα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcという七糖が共通の母核として含まれている。
複合型糖鎖は1つあるいは2つのα-マンノシル基が、高マンノース型の場合と同様にトリマンノシルコアのManα1-6腕と結合し、複合型糖鎖の側鎖と同じものがコアのManα1-3腕に結合している。トリマンノシルコアの還元末端に位置するGlcNAcのC-6位へのフコースの結合の有無、またβマンノシル残基のC-4位へのβ-GlcNAcの結合(バィセクテイングGlcNAcと呼ばれる)の有無は、複合型糖鎖の構造の多様性に寄与している。3つのN-結合型糖鎖サブグループの間で、複合型が最も多様な構造を含んでいる。
糖鎖受容体は上記の糖鎖を認識して結合する受容体をいう。その認識する糖鎖に結合する限りいかなる分子も糖鎖受容体として利用され得るが、好ましい受容体は細胞上に発現する受容体である。例えば、CD99上のO結合型糖鎖が、PILR(paired Ig様2型受容体)による結合に重要な役割を演じていることが示されている(The Journal of immunology (2008) vol.180 (3), 1686-1693)。また、その末端がガラクトースであるN結合型糖鎖に対して、アシアログリコプロテインレセプターが結合することが知られている。さらに、その末端がマンノースであるN結合型糖鎖に対して、マンノースレセプターが結合することが知られている。こうした受容体は糖鎖受容体として本発明において好適に利用される。すなわち、本発明における抗原結合分子はこうした受容体に結合するドメイン(糖鎖受容体結合ドメイン)を有する。よって、糖鎖受容体がアシアログリコプロテインレセプターである場合には、その末端がガラクトースであるN結合型糖鎖が、本発明における抗原結合分子が含む糖鎖受容体結合ドメインとして好適に使用され得る。また、糖鎖受容体がマンノースレセプターである場合には、その末端がマンノースであるN結合型糖鎖が、本発明における抗原結合分子が含む糖鎖受容体結合ドメインとして好適に使用され得る。
糖鎖受容体結合ドメイン
本発明の抗原結合分子は、糖鎖受容体、特にヒト糖鎖受容体に対する一またはそれ以上の結合ドメインを有する。糖鎖受容体、特にヒト糖鎖受容体に対する結合ドメインは、抗原結合分子がpH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有し、pH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性より低ければ特にその種類や数は限定されない。また、直接または間接的に糖鎖受容体、特にヒト糖鎖受容体に対して結合活性を有するドメインが使用され得る。そのようなドメインとしては、例えば、直接的に糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有する糖鎖;IgG型免疫グロブリンのFcドメイン;糖鎖受容体、特にヒト糖鎖受容体に対する抗体;抗糖鎖受容体、特にヒト糖鎖受容体に対する結合ペプチド;糖鎖受容体、特にヒト糖鎖受容体に対するScaffold分子等が例示され得る。本発明においては、pH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有し、pH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性より低い糖鎖受容体結合ドメインが好ましい。当該ドメインは、あらかじめpH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有しpH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性より低い糖鎖受容体結合ドメインであればそのまま用いられ得る。その末端がガラクトースであるN結合型糖鎖を有する糖鎖受容体結合ドメインと当該糖鎖に結合する糖鎖受容体であるアシアログリコプロテインレセプターとのpH酸性域における結合活性は、pH中性域における結合活性よりも低い例として好適に挙げられる。また、その末端がマンノースであるN結合型糖鎖を有する糖鎖受容体結合ドメインと当該糖鎖に結合する糖鎖受容体であるマンノースレセプターとのpH酸性域における結合活性も、pH中性域における結合活性よりも低い例として好適に挙げられる。
pH中性域における糖鎖受容体、特にヒト糖鎖受容体に対する糖鎖受容体結合ドメインの結合活性がない若しくは弱い場合には、抗原結合分子中のアミノ酸を改変することによって、糖鎖受容体、特にヒト糖鎖受容体に対する結合活性が獲得され得る。また、あらかじめpH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有しているドメイン中のアミノ酸を改変することによって、糖鎖受容体、特にヒト糖鎖受容体に対する結合活性が増強され得る。糖鎖受容体、特にヒト糖鎖受容体に対する結合ドメインのアミノ酸改変は、アミノ酸改変前と改変後のpH中性域における糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を比較することによって目的の改変が見出され得る。
糖鎖受容体結合ドメインのpH酸性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性がpH中性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性より低くない場合には、抗原結合分子中のアミノ酸を改変することによって、pH酸性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性がpH中性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性より低くなるような結合活性が獲得され得る。糖鎖受容体、特にヒト糖鎖受容体に対する結合ドメインのアミノ酸改変は、アミノ酸改変前と改変後のpH酸性域における糖鎖受容体、特にヒト糖鎖受容体に対する結合活性と中性域における糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を比較することによって目的の改変が見出され得る。
本発明において、糖鎖受容体結合ドメインは抗原結合分子を構成する抗原結合ドメインやFcRn結合ドメイン以外の部位にも導入され得る。また、抗原結合ドメインによる抗原への結合を阻害しない限り、糖鎖受容体結合ドメインは抗原結合分子の構造のいかなる部位にも導入され得る。当該部位は、抗原結合ドメインによる抗原への結合を阻害しない限り抗原結合ドメイン内にも導入され得るし、それ以外の部位にも導入され得る。また、別の態様では、糖鎖受容体結合ドメインは抗原結合分子のFcRn結合ドメインとFcRn特にヒトFcRnとの結合を阻害しない限り、抗原結合分子の構造のいかなる部位にも導入され得る。例えば、IgA抗体のヒンジ部は、O結合型糖鎖を結合するための糖鎖受容体結合ドメインのアミノ酸配列の候補となり得るし、XがPro以外のアミノ酸であるAsn-X-Ser/ThrというN結合型糖鎖を付加するモチーフ配列は、N結合型糖鎖を結合するための糖鎖受容体結合ドメインのアミノ酸配列の候補となり得る。こうしたアミノ酸配列を含む抗原結合分子をコードする遺伝子が導入された、後述するような宿主細胞の培養液から所望の糖鎖が結合される糖鎖受容体結合ドメインを含む本発明の抗原結合分子が産生され得る。
また本発明において、糖鎖受容体結合ドメインは化学的に作成されてもよい。例えば、ガラクトース末端を有するN型糖鎖を模倣したガラクトース誘導体やハイマンノース型糖鎖を模倣したマンノース誘導体、シアル酸を模倣したような誘導体等の化学リガンドを共有結合的に抗原結合分子にコンジュゲートしてもよい。そのような化学リガンドとして、Bioorg. Med. Chem. (2011) 19 (8), 2494-2500、Bioorg. Med. Chem. (2009) 17 (20), 7254-7264、Bioorg. Med. Chem. (2008) 16 (9), 5216-5231、J. Am. Chem. Soc. (2004) 126 (33), 10355-10363、J. Pept. Sci. (2003) 9 (6), 375-385、Methods Enzymol. (2010) 478, 343-363等に記載されているような分子が挙げられるがこれに限定されない。コンジュゲートされる抗原結合部位のアミノ酸としてはリジンやシステインが挙げられるが、これに限定しない。抗原結合分子の特定個所にコンジュゲートする方法としては、コンジュゲート部位のアミノ酸をシステインに置換する、あるいは、コンジュゲートを望まない部位のリジンを他のアミノ酸に置換する等の当業者公知の方法を取ることができる。コンジュゲートする方法としては、マレイイミドとシステインのチオールを反応させる方法や活性化エステルとリジンを反応させる方法等当業者公知の方法を用いることができる。
抗原やFcRn特にヒトFcRnに対する結合活性を測定する際のpH以外の条件は当業者によって適宜選択され得るため、特定の方法に限定されない。例えば、WO2009/125825に記載されるようにMESバッファー、37℃の条件において測定され得る。また、抗原結合分子の抗原結合活性およびFcRn特にヒトFcRnに対する結合活性の測定は、当業者にとって公知の方法によって実施され得る。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原が可溶型抗原である場合は、抗原結合分子と抗原の結合活性の測定は、抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことによって可溶型抗原への結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合分子をアナライトとして流すことで膜型抗原への結合活性を評価することが可能である。抗原結合分子とFcRn特にヒトFcRnに対する結合活性の測定は、抗原結合分子またはFcRn特にヒトFcRnを固定化したチップへ、それぞれFcRn特にヒトFcRnまたは抗原結合分子をアナライトとして流すことによって評価され得る。
本発明において、pH酸性域におけるFcRn特にヒトFcRnに対する結合活性とは、pH4.0~pH6.5でのFcRn特にヒトFcRnに対する結合活性を意味する。pH酸性域におけるFcRn特にヒトFcRnに対する結合活性とは、好ましくはpH5.5~pH6.5での任意のpH、たとえば、pH5.5、5.6、5.7、5.8、5.9、6.0、6.1、6.2、6.3、6.4、および6.5から選択されるpHにおける抗原に対する結合活性を意味し、特に好ましくは、生体内の早期エンドソーム内のpHに近いpH5.8~pH6.0での任意のpH、たとえば、pH5.80、5.81、5.82、5.83、5.84、5.85、5.86、5.87、5.88、5.89、5.90、5.91、5.92、5.93、5.94、5.95、5.96、5.97、5.98、5.99、および6.00から選択されるpHにおける抗原結合活性を意味する。
結合活性の測定に際して用いられる温度として、10℃から50℃までのいずれの温度においても、FcRn結合ドメインを含む本発明の抗原結合分子とFcRn特にヒトFcRnに対する結合活性が評価され得る。好ましくは、FcRn結合ドメインを含む本発明の抗原結合分子とFcRn特にヒトFcRnに対する結合活性を測定するために15℃から40℃までのいずれの温度も用いられ得る。より好ましくは、FcRn結合ドメインを含む本発明の抗原結合分子とFcRn特にヒトFcRnに対する結合活性を測定するために、例えば20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、および35℃のいずれかのような20℃から35℃までのいずれの温度も用いられ得る。
本発明において、抗原結合ドメインによる抗原に対する結合を阻害しないとは、糖鎖受容体結合ドメインの導入によって抗原結合分子の抗原結合活性が、糖鎖受容体結合ドメインの導入前の抗原結合分子が有する抗原結合活性の20%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上を維持していることをいう。糖鎖受容体結合ドメインの導入によって抗原結合分子の抗原結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などによって、糖鎖受容体結合ドメインの導入前の抗原結合活性と同等に変化させ得る。本発明においては、そのような糖鎖受容体結合ドメインの導入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことによって、結合活性が同等となった抗原結合分子も含まれる。また、糖鎖受容体結合ドメインによるFcRn特にヒトFcRnに対する結合を阻害しないとは、糖鎖受容体結合ドメインの導入によって抗原結合分子のFcRn特にヒトFcRnに対する結合活性が、糖鎖受容体結合ドメインの導入前の抗原結合分子が有するFcRn特にヒトFcRnに対する結合活性の20%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上を維持していることをいう。糖鎖受容体結合ドメインの導入によって抗原結合分子のFcRn特にヒトFcRnに対する結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などによって、糖鎖受容体結合ドメインの導入前のFcRn特にヒトFcRnに対する結合活性と同等に変化させ得る。本発明においては、そのような糖鎖受容体結合ドメインの導入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことによって、結合活性が同等となった抗原結合分子も含まれる。抗原またはFcRn特にヒトFcRnに対する結合活性の測定方法および決定方法は後述される。
糖鎖
本発明における抗原結合分子に含まれる糖鎖受容体結合ドメインの例として、所望の糖鎖が結合された糖鎖受容体結合ドメインが好適に挙げられる。所望の糖鎖としてはO結合型糖鎖またはN結合型糖鎖が好適に挙げられるが、糖鎖受容体結合ドメインに糖鎖を結合する方法は公知の方法が採用され得る。たとえば、タンパク質分泌能を有する不死化哺乳動物細胞株の培養細胞から細胞抽出液を調製し、前記抽出液に抗体をコードするmRNAを添加することを特徴とする無細胞タンパク質合成系における翻訳後修飾された抗体の製造方法(特開2006-141241)等のような無細胞系の一連の酵素方法が、所望の糖鎖が結合された糖鎖受容体結合ドメインの製造方法に採用され得る。また、そのような公知の方法の一つとして、組換え遺伝子手法等によって所望の糖鎖を付加するモチーフ配列が導入された、天然または人工的に作製された抗原結合分子に含まれる糖鎖受容体結合ドメインをコードする遺伝子を、宿主細胞に導入することによって、当該宿主細胞の培養液から所望の糖鎖が結合される糖鎖受容体結合ドメインを含む本発明の抗原結合分子が産生され得る。
糖鎖がO結合型糖鎖である場合、O結合型糖鎖を付加するモチーフ配列は公知のデータベース等を使用することによって、O結合型糖鎖の設計が可能であるだろう。IgA抗体のヒンジ部にはO結合型糖鎖が付加されており、こうした既に知られたO結合型糖鎖が付加された糖鎖受容体結合ドメインをコードする遺伝子配列等がモチーフ配列の候補となるであろう。糖鎖がN結合型糖鎖である場合、N結合型糖鎖を付加するモチーフ配列は、Asn-X-Ser/Thrという3つのアミノ酸が連続するモチーフであることが知られている。このため、組換え遺伝子手法等によってN結合型糖鎖を付加するモチーフ配列であるAsn-X-Ser/Thrをコードするように設計された糖鎖受容体結合ドメインを含む抗原結合分子をコードする遺伝子を、後述するような宿主細胞に導入することによって、当該宿主細胞の培養液から所望の糖鎖が結合される糖鎖受容体結合ドメインを含む本発明の抗原結合分子が産生され得る。
上記のように産生された抗原結合分子の糖鎖構造は単一である場合もあるが、複数の糖鎖が連結された混合物として産生されることもある。本発明において、こうした混合物も好適に使用され得る。また、特定の糖鎖がその糖鎖結合ドメインに連結された抗原結合分子も本発明において好適に使用され得る。
本発明における抗原結合分子に含まれる糖鎖受容体結合ドメインに特定の糖鎖を連結する方法として複数の公知の方法が採用され得る。そのような公知の方法の一つとして、天然または組換え遺伝子手法等によって人工的に作製された抗原結合分子が有する糖鎖の性質を利用することによって、特定の糖鎖を有する抗原結合分子を精製する方法が挙げられる。高マンノース型糖鎖を有する抗体がConA-sepharoseを用いたアフィニティクロマトグラフィを用いて精製されることが知られている(Millward(Biologicals (2008) 36, 49-60))。こうした精製法は、本発明において非還元末端がマンノースであるN結合型糖鎖を有する抗原結合分子を作製するために使用可能である。
また、別の態様では、特定の糖鎖を有する抗原結合分子を取得する目的で、酵素処理も適宜採用され得る。後に実施例で記載されるように、非還元末端がガラクトースであるN結合型糖鎖を有する抗原結合分子が、非還元末端がシアル酸である複合型糖鎖を有する抗原結合分子からシアリダーゼ処理によって作製され得る。また、高マンノース型糖鎖を有する抗体がシアリダーゼおよびβガラクトシダーゼ処理によりガラクトースがその糖鎖から除去された形で作製されることが知られている(Newkirk(Clin.Exp.Immunol. (1996) 106, 259-264))。こうしたシアリダーゼおよびβガラクトシダーゼ処理を含む作製法は、本発明において非還元末端がマンノースであるN結合型糖鎖を有する抗原結合分子を作製するために使用可能である。
異なる態様では、本発明の特定の糖鎖を有する抗原結合分子を取得する目的で、当該抗原結合分子をコードする組換え遺伝子が形質導入された、特定の糖鎖が蓄積するように(遺伝的または組換え遺伝子手法を含みこれらに限定されない)そのグリコシダーゼ活性が変化した宿主細胞の培養液から回収する方法も適宜採用され得る。高マンノース型のN結合型糖鎖を有する抗体が、当該抗体をコードする組換え遺伝子が形質導入されたN-アセチルグルコサミニルトランスフェラーゼI活性を欠失するCHO細胞由来のLec1変異株の培養液より回収されることが知られている(Wright and Morrison(J.Exp.Med. (1994) 180, 1087-1096))。本発明において非還元末端がマンノースであるN結合型糖鎖を有する抗原結合分子は、当該分子をコードする組換え遺伝子が形質導入されたLec1変異株の培養液から回収され得る。
さらに別の態様では、本発明の特定の糖鎖を有する抗原結合分子を取得する目的で、当該抗原結合分子を産生する細胞の培養に際して特定のグリコシダーゼ反応を阻害する阻害剤を添加することによって培養液に蓄積された特定の糖鎖を有する抗原結合分子を回収する方法も適宜採用され得る。フコースをその還元末端に有しない高マンノース型のN結合型糖鎖を有する抗体が、その抗体を産生するCHO細胞の培養に際してkifunesineを添加することによって当該細胞の培養液から回収されることが知られている(Zhou(Biotechnol. Bioeng. (2008) 99, 652-665))。本発明においてフコースをその還元末端に有せず、非還元末端がマンノースであるN結合型糖鎖を有する抗原結合分子は、たとえば当該分子をコードする組換え遺伝子が形質導入されたCHO細胞を、kifunesineを添加して培養することによってその培養液から回収され得る。また、たとえば上述したグリコシダーゼ活性が変化した宿主細胞の培養に際してこうした阻害剤を添加する方法を組み合わせることによっても、本発明の特定の糖鎖を有する抗原結合分子を取得することが可能である。このような組合せによって特定の糖鎖を有する抗体を回収することが公知であり(Kandaら(Glycobiology (2007) 17, 104-118))、本発明において特定の糖鎖を有する抗原結合分子を取得する目的で、同様の組合せが適宜採用され得る。
また、Pichia pastoris等の宿主を遺伝的に改変することにより特定の糖鎖構造有するタンパク質を発現させる方法は知られており(Biochemistry. 2008 Sep 30;47(39):10294-304.、J Biotechnol. 2009 Feb 23;139(4):318-25.、Nat Biotechnol. 2006 Feb;24(2):210-5.)、このような方法を用いることで、特定の糖鎖構造(例えば、ガラクトース末端を有するN型糖鎖)を均一にN型糖鎖付加配列に結合させた抗原結合分子を作製することができる。
本発明の糖鎖受容体結合ドメインを含む抗原結合分子、特にヒト由来の糖鎖受容体結合ドメインを含む抗原結合分子は、糖鎖受容体に対してpH依存的に結合し、且つ、あるいは、または、pH中性域において糖鎖受容体結合活性、特にヒト由来の糖鎖受容体結合活性を有し、pH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性よりも低くすることが出来れば、抗原結合分子による抗原の細胞内への取込を促進させ、抗原結合分子の投与により血漿中の抗原濃度の減少を促進させ、抗原結合分子の薬物動態を向上させ、1つの抗原結合分子が結合可能な抗原の数を増加させることが可能である。
糖鎖受容体に対する結合活性
本発明において、pH酸性域における糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性とは、pH4.0~pH6.5での糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を意味する。好ましくはpH5.5~pH6.5での任意のpH、たとえば、pH5.5、5.6、5.7、5.8、5.9、6.0、6.1、6.2、6.3、6.4、および6.5から選択されるpHにおける糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を意味し、特に好ましくは、生体内の早期エンドソーム内のpHに近いpH5.8~pH6.0での任意のpH、たとえば、pH5.80、5.81、5.82、5.83、5.84、5.85、5.86、5.87、5.88、5.89、5.90、5.91、5.92、5.93、5.94、5.95、5.96、5.97、5.98、5.99、および6.00から選択されるpHにおける糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を意味する。また、本発明において、pH中性域における糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性とは、pH6.7~pH10.0での糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を意味する。好ましくは、pH7.0~pH8.0での任意のpH、たとえば、pH7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、および8.0から選択されるpHにおける糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を意味し、特に好ましくは、生体内の血漿中のpHに近いpH7.4での糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を意味する。
糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を測定する際のpH以外の条件は当業者によって適宜選択され得るため、特に特定の条件には限定されない。例えば、WO2009/125825に記載されるようにMESバッファー、37℃の条件において測定され得る。又、抗原結合分子の糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性の測定は当業者に公知の方法により実施され得る。例えば、Biacore(GE Healthcare)などを用いて測定され得る。抗原結合分子と糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性の測定は、たとえば、糖鎖受容体、特にヒト由来の糖鎖受容体分子を固定化したチップへ、抗原結合分子をアナライトとして流すことによって、糖鎖受容体、特にヒト由来の糖鎖受容体に対する抗原結合分子の結合活性を評価することが可能である。また、その反対に、抗原結合分子を固定化したチップへ、可溶化された糖鎖受容体、特にヒト由来の糖鎖受容体をアナライトとして流すことによって、糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性が評価され得る。
本発明において、pH酸性域における糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性がpH中性域における抗原結合活性よりも弱い限り、pH酸性域における糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性とpH中性域における糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性の比は特に限定されない。好ましくは糖鎖受容体、特にヒト由来の糖鎖受容体に対するに対するpH5.8でのKD(Dissociation constant:解離定数)とpH7.4でのKDの比であるKD (pH5.8)/KD (pH7.4)の値が2以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が10以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が40以上である。KD (pH5.8)/KD (pH7.4)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性の値として、KD(解離定数)が用いられ得る。KD(解離定数)は、当業者において公知の方法によって測定され得る。例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等が好適に用いられ得る。
また本発明におけるpH酸性域における糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性とpH中性域における糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)も好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、糖鎖受容体、特にヒト由来の糖鎖受容体に対するpH酸性域でのkd(解離速度定数)とpH中性域でのkd(解離速度定数)の比であるkd(pH酸性域)/kd(pH中性域)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。kd(pH酸性域)/kd(pH中性域)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値にも設定され得る。
例えば、糖鎖受容体の一つであるアシアログライコプロテインレセプターとガラクトースの相互作用はpH依存的であり、pH中性域で高い結合活性を示し、pH酸性域で低い結合活性を示すことが知られている(J Biol Chem Vol. 274, No. 50, pp. 35400-35406, 1999)。同様に、糖鎖受容体の一つであるマンノースレセプターとマンノースの相互作用はpH依存的であり、pH中性域で高い結合活性を示し、pH酸性域で低い結合活性を示すことが知られている(J Biol Chem. 1994 Nov 11;269(45):28405-13.)。このことから、本発明において、糖鎖/糖鎖受容体としては、ガラクトース/アシアログライコプロテインレセプターおよびマンノース/マンノースレセプターは好適に用いられ得る。
また、ガラクトース/アシアログライコプロテインレセプターおよびマンノース/マンノースレセプターの結合活性は、pH依存性だけでなく、カルシウムイオン濃度依存性も有する。糖鎖受容体の多くはCタイプレクチンであることから、糖鎖受容体と糖鎖の結合はカルシウムイオン濃度依存性を有する。すなわち、抗原結合分子と抗原の結合と同様に、糖鎖受容体と糖鎖の結合はカルシウムイオン濃度依存性であってもよく、高カルシウムイオン濃度における結合が、低カルシウムイオン濃度における結合よりも高ければよい。
なお本発明において、異なるpHで抗原結合分子の糖鎖受容体、特にヒト由来の糖鎖受容体に対する結合活性を測定する際は、pH以外の条件は同一とすることが好ましい。
抗原結合分子
本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対するひとつ以上の結合ドメインを有する抗原結合分子であって、当該糖鎖受容体に対する結合ドメインの数が増加した抗原結合分子、および、pH酸性域における抗原に対する結合活性がpH中性域における抗原への結合活性よりも低い抗原結合ドメインをさらに含む当該抗原結合分子を提供する。また、本発明は前記の抗原結合分子の製造方法、当該抗原結合分子を含む医薬組成物を提供する。さらに、本発明は、当該抗原結合分子を、糖鎖受容体を発現する細胞と生体内または生体外において接触させることを含む、当該抗原結合分子および/または当該抗原結合分子が結合する抗原を細胞内へ取り込む方法、一分子当りの当該抗原結合分子が結合する抗原の数を増加させる方法、細胞外に存在する抗原を減少させる方法、当該抗原結合分子の薬物動態を向上させる方法、および、当該抗原結合分子からの抗原の解離を促進させる方法を提供する。また、本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを有する抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させることを含む、生体内または生体外における当該抗原結合分子および/または当該抗原結合分子が結合する抗原の細胞内へ取込を促進するための方法、生体内または生体外における一分子当りの当該抗原結合分子が結合する抗原の数を増加させる方法、当該抗原結合分子の生体内または生体外における抗原の消失能を増加させるための方法、当該抗原結合分子の薬物動態を向上させる方法、および、当該抗原結合分子からの抗原の解離を促進するための方法を提供する。
抗原結合分子の製造方法
本発明は、抗原結合ドメイン、FcRn特にヒトFcRn結合ドメインとひとつ以上の糖鎖受容体結合ドメインを有する抗原結合分子であって、pH中性域において糖鎖受容体に対する結合活性を有し、pH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体とノ結合活性より低く、pH酸性域における抗原結合活性がpH中性域における抗原結合活性よりも低い抗原結合分子の製造方法を提供する。又、本発明は抗原結合分子の投与による血漿中の抗原濃度の減少に優れた促進作用を有するとともに薬物動態に優れた抗原結合分子の製造方法を提供する。さらに、本発明は医薬組成物として用いる際に特に有用である抗原結合分子の製造方法を提供する。
具体的には、本発明は以下の工程を含む抗原結合分子の製造方法を提供する;
(a) 抗原結合ドメイン、FcRn結合ドメインを含む抗原結合分子のポリペプチド配列を提供する工程、
(b) 当該ポリペプチド配列中における糖鎖受容体結合ドメインのモチーフの候補となるアミノ酸配列を同定する工程、
(c) (b)で同定されたアミノ酸配列と少なくとも1つのアミノ酸が異なるアミノ酸配列を含む糖鎖受容体結合ドメインのモチーフを設計する工程、
(d) (c)で設計された糖鎖受容体結合ドメインのモチーフを含む抗原結合分子のポリペプチドをコードする遺伝子を作製する工程、
(e) (d)で得られた遺伝子によって形質転換された宿主細胞の培養液から抗原結合分子を回収する工程。
なお、(c)と(d)の工程は2回以上繰り返されてもよい。(c)と(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。また、後述されるように、(e)で得られた抗原結合分子に対してさらに酵素を用いて処理する工程も本発明の製造方法には含まれ得る。
本発明が提供する製造方法によって製造される抗原結合分子に含まれる抗原結合ドメインは、前記「抗原結合ドメイン」に記載された方法によって提供され得る。
また、本発明が提供する製造方法によって製造される抗原結合分子に含まれるFcRn特にヒトFcRnに対する結合活性を有するFcRn結合ドメインは、前記の「FcRn結合ドメイン」に記載された方法によって提供され得る。すなわち、FcRn結合ドメインがpH酸性域においてFcRn特にヒトFcRnに対する結合活性を有していれば特に限定されず、また、直接または間接的にFcRn特にヒトFcRnに対して結合活性を有するドメインが使用され得る。そのようなドメインとしては、例えば、直接的にFcRn特にヒトFcRnに対する結合活性を有するIgG型免疫グロブリンのFc領域、アルブミン、アルブミンdomain3、抗ヒトFcRn抗体、抗ヒトFcRnペプチド、抗ヒトFcRn Scaffold分子等、あるいは間接的にヒトFcRnに対する結合活性を有するIgGやアルブミンに結合する分子等が挙げられる。本発明においては、こうした直接または間接的にFcRn特にヒトFcRnに対して結合活性を有するドメインのポリペプチド配列が、抗原結合ドメインのポリペプチド配列として提供され得る。
本発明が提供する製造方法によって製造される抗原結合分子に含まれる糖鎖受容体結合ドメインの例として、所望の糖鎖が結合された糖鎖受容体結合ドメインが好適に挙げられる。所望の糖鎖としてはO結合型糖鎖またはN結合型糖鎖が好適に挙げられるが、糖鎖受容体結合ドメインに糖鎖を結合する方法は公知の方法が採用され得る。そのような公知の方法の一つとして、組換え遺伝子手法等によって所望の糖鎖を付加するモチーフ配列(すなわち、糖鎖受容体結合ドメインのモチーフ)が導入された、天然または人工的に作製された抗原結合分子に含まれる糖鎖受容体結合ドメインをコードする遺伝子を、宿主細胞に導入することによって、当該宿主細胞の培養液から所望の糖鎖が結合される糖鎖受容体結合ドメインを含む本発明の抗原結合分子が産生され得る。
前記のように提供されたポリペプチド配列中において、糖鎖受容体結合ドメインのモチーフの候補となるアミノ酸配列を同定する工程として、例えば下記のような方法が使用され得る。O結合型糖鎖を付加するモチーフ配列は公知のデータベース等を使用することによって、同定され得る。また、抗体のヒンジ部分が本発明の抗原結合分子が含まれる場合に、当該ヒンジ部分が抗体のいずれのアイソタイプの抗体に由来するかが同定される得る。そのようなヒンジ部分はO型糖鎖受容体結合ドメインのモチーフの候補として同定され得る。また、糖鎖がN結合型糖鎖である場合、N結合型糖鎖を付加するモチーフ配列(すなわちN型糖鎖受容体結合ドメインのモチーフ)は、Asn-X-Ser/Thrという3つのアミノ酸が連続するモチーフであることが知られている。このため、組換え遺伝子手法等によってN結合型糖鎖受容体結合ドメインのモチーフであるAsn-X-Ser/Thrをコードするように設計された糖鎖受容体結合ドメインを設計する目的で、提供されたポリペプチド配列中におけるAsn-X-Ser/Thrと同一または類似する配列の有無が同定され得る。
上記のように同定されたアミノ酸配列と少なくとも1つのアミノ酸が異なるアミノ酸配列を含む糖鎖受容体結合ドメインのモチーフが設計され得る。例えば、公知のデータベース等を使用することによって、上記で同定されたO結合型糖鎖を付加するモチーフ配列の候補となるポリペプチド配列中のアミノ酸を置換することによって。O結合型糖鎖モチーフ配列が設計され得る。また、抗体のヒンジ部分が本発明の抗原結合分子が含まれる場合に、当該ヒンジ部分がIgA抗体に由来するヒンジ部分を含んでいないときは、当該ヒンジ部分の配列をIgA抗体に由来するヒンジ部分の配列に置換することによってO結合型糖鎖モチーフ配列が設計され得る。一方、糖鎖がN結合型糖鎖である場合には、提供されたポリペプチド配列中におけるAsn-X-Ser/Thrと同一または類似する配列が同定されないときは、提供されたポリペプチド配列中の適切な個所にAsn-X-Ser/Thr配列を挿入することによって新たにN結合型糖鎖受容体結合ドメインのモチーフが付加され得る。また、提供されたポリペプチド配列中に見出されたAsn-X-Ser/Thr配列の類似配列のアミノ酸残基を置換することによってN結合型糖鎖受容体結合ドメインのモチーフであるAsn-X-Ser/Thr配列に当該類似配列が改変され得る。
本発明の抗原結合分子は、糖鎖受容体、特にヒト糖鎖受容体に対するひとつ以上の結合ドメインを有する。糖鎖受容体、特にヒト糖鎖受容体に対する結合ドメインは、抗原結合分子がpH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有し、pH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性より低ければ特にその種類や数は限定されない。また、直接または間接的に糖鎖受容体、特にヒト糖鎖受容体に対して結合活性を有するドメインが使用され得る。そのようなドメインとしては、例えば、直接的に糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有する糖鎖;IgG型免疫グロブリンのFcドメイン;糖鎖受容体、特にヒト糖鎖受容体に対する抗体;抗糖鎖受容体、特にヒト糖鎖受容体に対する結合ペプチド;糖鎖受容体、特にヒト糖鎖受容体に対するScaffold分子等が例示され得る。本発明においては、pH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有し、pH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性より低い糖鎖受容体結合ドメインが好ましい。当該ドメインは、あらかじめpH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有しpH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性より低い糖鎖受容体結合ドメインであればそのまま用いられ得る。末端がガラクトースであるN結合型糖鎖を有する糖鎖受容体結合ドメインと当該糖鎖に結合する糖鎖受容体であるアシアログリコプロテインレセプターとのpH酸性域における結合活性は、pH中性域における結合活性よりも低い例として好適に挙げられる。また、末端がマンノースであるN結合型糖鎖を有する糖鎖受容体結合ドメインと当該糖鎖に結合する糖鎖受容体であるマンノースレセプターとのpH酸性域における結合活性も、pH中性域における結合活性よりも低い例として好適に挙げられる。
pH中性域における糖鎖受容体、特にヒト糖鎖受容体に対する糖鎖受容体結合ドメインの結合活性がない若しくは弱い場合には、抗原結合分子中のアミノ酸を改変することによって、糖鎖受容体、特にヒト糖鎖受容体に対する結合活性が獲得され得る。また、あらかじめpH中性域において糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を有しているドメイン中のアミノ酸を改変することによって、糖鎖受容体、特にヒト糖鎖受容体に対する結合活性が増強され得る。糖鎖受容体、特にヒト糖鎖受容体に対する結合ドメインのアミノ酸改変は、アミノ酸改変前と改変後のpH中性域における糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を比較することによって目的の改変が見出され得る。
糖鎖受容体結合ドメインのpH酸性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性がpH中性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性より低くない場合には、抗原結合分子中のアミノ酸を改変することによって、pH酸性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性がpH中性域における糖鎖受容体、特にヒト糖鎖受容体との結合活性より低くなるような結合活性が獲得され得る。糖鎖受容体、特にヒト糖鎖受容体に対する結合ドメインのアミノ酸改変は、アミノ酸改変前と改変後のpH酸性域における糖鎖受容体、特にヒト糖鎖受容体に対する結合活性と中性域における糖鎖受容体、特にヒト糖鎖受容体に対する結合活性を比較することによって目的の改変が見出され得る。
本発明において、抗原結合ドメインによる抗原への結合を阻害しない限り、糖鎖受容体結合ドメインは抗原結合分子の構造のいかなる部位にも導入され得る。当該部位は、抗原結合ドメインによる抗原への結合を阻害しない限り抗原結合ドメイン内にも導入され得るし、それ以外の部位にも導入され得る。また、別の態様では、糖鎖受容体結合ドメインは抗原結合分子のFcRn結合ドメインとFcRn特にヒトFcRnとの結合を阻害しない限り、抗原結合分子の構造のいかなる部位にも導入され得る。例えば、IgA抗体のヒンジ部は、O結合型糖鎖を結合するための糖鎖受容体結合ドメインのアミノ酸配列の候補となり得るし、Asn-X-Ser/ThrというN結合型糖鎖を付加するモチーフ配列は、N結合型糖鎖を結合するための糖鎖受容体結合ドメインのアミノ酸配列の候補となり得る。こうしたアミノ酸配列を含む抗原結合分子をコードする遺伝子が導入された、後述するような宿主細胞の培養液から所望の糖鎖が結合される糖鎖受容体結合ドメインを含む本発明の抗原結合分子が産生され得る。
本発明において、抗原結合ドメインによる抗原に対する結合を阻害しないとは、糖鎖受容体結合ドメインの導入によって抗原結合分子の抗原結合活性が、糖鎖受容体結合ドメインの導入前の抗原結合分子が有する抗原結合活性の20%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上を維持していることをいう。糖鎖受容体結合ドメインの導入によって抗原結合分子の抗原結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などによって、糖鎖受容体結合ドメインの導入前の抗原結合活性と同等に変化させ得る。本発明においては、そのような糖鎖受容体結合ドメインの導入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことによって、結合活性が同等となった抗原結合分子も含まれる。また、糖鎖受容体結合ドメインによるFcRn特にヒトFcRnに対する結合を阻害しないとは、糖鎖受容体結合ドメインの導入によって抗原結合分子のFcRn特にヒトFcRnに対する結合活性が、糖鎖受容体結合ドメインの導入前の抗原結合分子が有するFcRn特にヒトFcRnに対する結合活性の20%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上を維持していることをいう。糖鎖受容体結合ドメインの導入によって抗原結合分子のFcRn特にヒトFcRnに対する結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などによって、糖鎖受容体結合ドメインの導入前のFcRn特にヒトFcRnに対する結合活性と同等に変化させ得る。本発明においては、そのような糖鎖受容体結合ドメインの導入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことによって、結合活性が同等となった抗原結合分子も含まれる。
また、糖鎖受容体結合ドメインは抗原結合分子を構成する抗原結合ドメインやFcRn結合ドメイン以外の部位にも導入され得る。
本発明において対象となる抗原結合分子の構造は特に限定されず、いかなる構造の抗原結合分子も好適に使用され得るが、抗原結合ドメイン、FcRn特にヒトFcRnに対する結合ドメイン、および、二つ以上の糖鎖受容体ドメインを有する抗原結合分子の好適な例として、抗体が挙げられる。本発明の抗体の好適な例として、IgG抗体が挙げられる。抗体としてIgG抗体を用いる場合、その種類は限定されず、IgG1、IgG2、IgG3、IgG4などのアイソタイプ(サブクラス)のIgGが使用され得る。また、本発明の抗原結合分子には抗体の定常領域が含まれ得るし、その定常領域の部分にはアミノ酸変異が導入され得る。導入されるアミノ酸変異は、例えば、Fcγレセプターへの結合を増大あるいは低減させたもの(Proc Natl Acad Sci U S A. 1(2006) 103 (11), 4005-10)等が挙げられるが、これらに限定されるものではない。また、IgG2定常領域などの適切な定常領域を選択することによって、pH依存的な結合を変化させることも可能である。
本発明が対象とする抗原結合分子が抗体の場合、抗体はマウス抗体、ヒト抗体、ラット抗体、ウサギ抗体、ヤギ抗体、ラクダ抗体など、どのような動物由来の抗体も使用され得る。さらに、例えばキメラ抗体、中でもヒト化抗体などのアミノ酸配列を置換した改変抗体も好適に使用される。また、二種特異性抗体、各種分子を結合させた抗体修飾物、抗体断片を含むポリペプチドなども使用され得る。
「キメラ抗体」とは、異なる動物由来の配列を組み合わせて作製される抗体である。キメラ抗体の具体的な例としては、例えば、マウス抗体の重鎖、軽鎖の可変(V)領域とヒト抗体の重鎖、軽鎖の定常(C)領域からなる抗体を挙げることができる。
「ヒト化抗体」とは、再構成(reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由来の抗体、例えばマウス抗体の相補性決定領域(CDR(complementarity determining region))をヒト抗体のCDRへ移植したものである。CDRを同定するための方法は公知である(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.、Chothia et al., Nature (1989) 342, 877)。また、その一般的な遺伝子組換え手法も公知である(EP125023、WO1996/002576)。
二重特異性抗体は、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいう。二種特異性抗体は2つ以上の異なる抗原を認識する抗体であり得るし、同一抗原上の異なる2つ以上のエピトープを認識する抗体でもあり得る。
又、抗体断片を含むポリペプチドとしては、例えば、Fab断片、F(ab')2断片、scFv(Nat Biotechnol. (2005) 23 (9), 1126-36)domain antibody (dAb)(WO2004/058821、WO2003/002609)、scFv-Fc(WO2005/037989)、dAb-Fc、Fc融合タンパク質等が挙げられる。Fc領域を含んでいる分子はFc領域をFcRn特にヒトFcRnに対する結合ドメインとして使用され得る。また、これらの分子にヒトFcRn結合ドメインが融合された分子も使用され得る。
前記のように設計された抗原結合ドメイン、FcRn結合ドメイン、および、糖鎖受容体結合ドメインをコードする遺伝子が作製され得る。遺伝子の作製法は公知であり、化学合成によって作製され得るし、また、PCR法等のポリヌクレオチドを構成するヌクレオチドを鋳型となるプライマー等の存在下において酵素反応によって連結することによっても作製され得る。前記のように設計された抗原結合ドメイン、FcRn結合ドメイン、および、糖鎖受容体結合ドメインは、各ドメインを別々に後述される宿主細胞中で発現した後に培養液等から回収されたポリペプチドを架橋剤の存在下における化学反応によって連結させることが可能である。合成化学物リンカー(化学架橋剤)は、ペプチドの架橋に通常用いられている架橋剤、例えばN-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスベレート(DSS)、ビス(スルホスクシンイミジル)スベレート(BS3)、ジチオビス(スクシンイミジルプロピオネート)(DSP)、ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ-EGS)、ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ-DST)、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、ビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)などであり、これらの架橋剤は市販されている。
また、前記のように設計された抗原結合ドメイン、FcRn結合ドメイン、および、糖鎖受容体結合ドメインがペプチド結合によってインフレームで連結されるように設計された遺伝子を後述される宿主細胞中で発現した後に培養液等から回収することによっても取得され得る。ペプチド結合によってインフレームで連結する際に、各ドメインが直接連結され得るし、特定のペプチド配列を有するリンカーを介して連結され得る。各ドメインを結合するリンカーとしては、遺伝子工学により導入し得る任意のペプチドリンカー、又は合成化合物リンカー(例えば、Protein Engineering (1996) 9 (3), 299-305参照)に開示されるリンカー等を用いることができるが、本発明においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することが可能であるが、好ましい長さは5アミノ酸以上(上限は特に限定されないが、通常、30アミノ酸以下、好ましくは20アミノ酸以下)であり、特に好ましくは15アミノ酸である。
例えば、ペプチドリンカーの場合:
Ser
Gly・Ser
Gly・Gly・SerSer・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:18)
Ser・Gly・Gly・Gly(配列番号:19)
Gly・Gly・Gly・Gly・Ser(配列番号:20)
Ser・Gly・Gly・Gly・Gly(配列番号:21)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:22)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:23)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:24)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:25)
(Gly・Gly・Gly・Gly・Ser(配列番号:20))n
(Ser・Gly・Gly・Gly・Gly(配列番号:21))n
[nは1以上の整数である]等が挙げられる。ただし、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができるリンカーが本発明においても使用され得る。
本発明の製造方法において得られた遺伝子は、通常、適当なベクターへ担持(挿入)され、宿主細胞へ導入される。該ベクターとしては、挿入した核酸を安定に保持するものであれば特に制限されず、例えば宿主に大腸菌を用いるのであれば、クローニング用ベクターとしてはpBluescriptベクター(Stratagene社製)などが好ましいが、市販の種々のベクターを利用され得る。本発明の抗原結合分子を生産する目的においてベクターを用いる場合には、特に発現ベクターが有用である。発現ベクターとしては、試験管内、大腸菌内、培養細胞内、生物個体内で抗原結合分子を発現するベクターであれば特に制限されないが、例えば、試験管内発現であればpBESTベクター(プロメガ社製)、大腸菌であればpETベクター(Invitrogen社製)、培養細胞であればpME18S-FL3ベクター(GenBank Accession No. AB009864)、生物個体であればpME18Sベクター(Mol Cell Biol. 8:466-472(1988))などが好適に用いられるが、これらに限定されるものではない。ベクターへの本発明の遺伝子の挿入は、常法により、例えば、制限酵素サイトを用いたリガーゼ反応により実施され得る(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 11.4-11.11)。
上記宿主細胞としては特に制限はなく、目的に応じて種々の宿主細胞が用いられる。抗原結合分子を発現させるための細胞としては、例えば、細菌細胞(例:ストレプトコッカス、スタフィロコッカス、大腸菌、ストレプトミセス、枯草菌)、真菌細胞(例:酵母、アスペルギルス)、昆虫細胞(例:ドロソフィラS2、スポドプテラSF9)、動物細胞(例:CHO、COS、HeLa、C127、3T3、BHK、HEK293、Bowes メラノーマ細胞)および植物細胞が例示され得る。宿主細胞へのベクター導入は、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 9.1-9.9)、リポフェクション法、マイクロインジェクション法などの公知の方法で行うことが可能である。
宿主細胞の培養は、公知の方法に従って実施され得る。例えば、動物細胞を宿主とした場合、培養液として、例えば、DMEM、MEM、RPMI1640、IMDMが使用され得る。その際、FBS、牛胎児血清(FCS)等の血清補液が併用された培地が用いられた培養によっても、または、無血清培地が用いられた培養によっても細胞は培養され得る。培養時のpHは、約6~8の間から適宜選択され得るが、これに限定されず培養ごとに、または、培養の期間中培養時期に応じて適宜異なるpHが選択され得る。培養は、通常、約30~40℃で約15~200時間行い、必要に応じて培地の交換、通気、攪拌が実施される。
宿主細胞において発現した抗原結合分子を小胞体の内腔に、細胞周辺腔に、または細胞外の環境に分泌させるために、適当な分泌シグナルが所望のポリペプチドに組み込まれ得る。これらのシグナルは目的の抗原結合分子に対して内因性シグナルであり得るし、異種シグナルでもあり得る。
一方、in vivoでポリペプチドを産生させる系としては、例えば、動物を使用する産生系や植物を使用する産生系が挙げられる。目的とする遺伝子が挿入されたベクターが導入された動物又は植物の細胞内において産生された当該遺伝子がコードするポリペプチドが、その体液や生体から回収される。本発明における「宿主」とは、これらの動物、植物を包含する。
動物が宿主として使用される産生系の場合、哺乳類動物、昆虫が用いられる。哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシ等が用いられ得る(Vicki Glaser, SPECTRUM Biotechnology Applications (1993))。また、哺乳類動物が用いられる場合、トランスジェニック動物が適宜使用され得る。
例えば、本発明の抗原結合分子をコードするポリヌクレオチドが、ヤギβカゼインのような乳汁中に固有に産生されるポリペプチドをコードする遺伝子との融合遺伝子として調製される。次いで、この融合遺伝子を含むポリヌクレオチド断片がヤギの胚へ注入され、この胚が雌のヤギへ移植される。胚を受容したヤギから生まれるトランスジェニックヤギ又はその子孫が産生する乳汁から、目的の抗原結合分子が回収され得る。トランスジェニックヤギから産生される抗原結合分子を含む乳汁量を増加させるために、適宜ホルモンがトランスジェニックヤギに投与され得る(Ebert et al., Bio/Technology (1994) 12, 699-702)。
また、本発明の抗原結合分子を産生させる昆虫として、例えばカイコが用いられ得る。カイコが用いられる場合、目的の抗原結合分子をコードするポリヌクレオチドを挿入したバキュロウィルスをカイコに感染させることによって、このカイコの体液から目的の抗原結合分子が回収され得る。
さらに、植物を本発明の抗原結合分子の産生に使用する場合、例えばタバコが用いられ得る。タバコを用いる場合、目的とする抗原結合分子をコードするポリヌクレオチドが挿入された植物発現用ベクター、例えばpMON 530、がアグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)のようなバクテリアに導入される。このバクテリアを感染させたタバコ、例えば、ニコチアナ・タバカム(Nicotiana tabacum)の葉から、所望の抗原結合分子が回収され得る(Ma et al., Eur. J. Immunol. (1994) 24, 131-8)。また、同様のバクテリアを感染させたウキクサ(Lemna minor)のクローン細胞より、所望の抗原結合分子が回収され得る(Cox KM et al. Nat. Biotechnol. (2006) (12), 1591-1597)。
本発明における抗原結合分子に含まれる糖鎖受容体結合ドメインの例として、所望の糖鎖が結合された糖鎖受容体結合ドメインが用いられる場合、糖鎖受容体結合ドメインに糖鎖を結合する方法は公知の方法が採用され得る。たとえば、タンパク質分泌能を有する不死化哺乳動物細胞株の培養細胞から細胞抽出液を調製し、前記抽出液に抗体をコードするmRNAを添加することを特徴とする無細胞タンパク質合成系における翻訳後修飾された抗体の製造方法(特開2006-141241)等のような無細胞系の一連の酵素方法が、所望の糖鎖が結合された糖鎖受容体結合ドメインの製造方法に採用され得る。このような抗原結合分子に対してさらに酵素を用いて処理する工程も本発明の製造方法には含まれ得る。
上記のように産生された抗原結合分子の糖鎖構造は単一である場合もあるが、複数の糖鎖が連結された混合物として産生されることもある。本発明において、こうした混合物も好適に使用され得る。また、特定の糖鎖がその糖鎖結合ドメインに連結された抗原結合分子も本発明において好適に使用され得る。
本発明における抗原結合分子に含まれる糖鎖受容体結合ドメインに特定の糖鎖を連結する方法として複数の公知の方法が採用され得るが、そのような公知の方法の一つとして、天然または組換え遺伝子手法等によって人工的に作製された抗原結合分子が有する糖鎖の性質を利用することによって、特定の糖鎖を有する抗原結合分子を精製する方法が挙げられる。高マンノース型糖鎖を有する抗体がConA-sepharoseを用いたアフィニティクロマトグラフィを用いて精製されることが知られている(Millward(Biologicals (2008) 36, 49-60))。こうした精製法は、本発明において非還元末端がマンノースであるN結合型糖鎖を有する抗原結合分子を作製するために使用可能である。
必要に応じ、抗原結合分子の精製前又は精製後に適当なタンパク質修飾酵素を作用させることにより、任意に修飾が加えられ、部分的にまたは包括的にペプチド等の修飾分子が除去され得る。タンパク質修飾酵素としては、例えば、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられ得る。このような抗原結合分子に対してさらに酵素を用いて処理する工程も本発明の製造方法には含まれ得る。
本発明における抗原結合分子に含まれる糖鎖受容体結合ドメインに特定の糖鎖を連結する方法として複数の公知の方法が採用され得るが、特定の糖鎖を有する抗原結合分子を取得する目的で、酵素処理も適宜採用され得る。後に実施例で記載されるように、末端がガラクトースであるN結合型糖鎖を有する抗原結合分子が、末端がシアル酸である複合型糖鎖を有する抗原結合分子からシアリダーゼ処理によって作製され得る。また、高マンノース型糖鎖を有する抗体がシアリダーゼおよびβガラクトシダーゼ処理によりガラクトースがその糖鎖から除去された形で作製されることが知られている(Newkirk(Clin.Exp.Immunol. (1996) 106, 259-264))。こうしたシアリダーゼおよびβガラクトシダーゼ処理を含む作製法は、本発明において末端がマンノースであるN結合型糖鎖を有する抗原結合分子を作製するために使用可能である。このような抗原結合分子に対してさらに酵素を用いて処理する工程も本発明の製造方法には含まれ得る。
後述するような宿主細胞に導入することによって、当該宿主細胞の培養液から所望の糖鎖が結合される糖鎖受容体結合ドメインを含む本発明の抗原結合分子が産生され得る。
異なる態様では、本発明の特定の糖鎖を有する抗原結合分子を取得する目的で、当該抗原結合分子をコードする組換え遺伝子が形質導入された、特定の糖鎖が蓄積するように(遺伝的または組換え遺伝子手法を含みこれらに限定されない)そのグリコシダーゼ活性が変化した宿主細胞の培養液から回収する方法も適宜採用され得る。高マンノース型のN結合型糖鎖を有する抗体が、当該抗体をコードする組換え遺伝子が形質導入されたN-アセチルグルコサミニルトランスフェラーゼI活性を欠失するCHO細胞由来のLec1変異株の培養液より回収されることが知られている(Wright and Morrison(J.Exp.Med. (1994) 180, 1087-1096))。本発明において非還元末端がマンノースであるN結合型糖鎖を有する抗原結合分子は、当該分子をコードする組換え遺伝子が形質導入されたLec1変異株の培養液から回収され得る。
さらに別の態様では、本発明の特定の糖鎖を有する抗原結合分子を取得する目的で、当該抗原結合分子を産生する細胞の培養に際して特定のグリコシダーゼ反応を阻害する阻害剤を添加することによって培養液に蓄積された特定の糖鎖を有する抗原結合分子を回収する方法も適宜採用され得る。フコースを有しない高マンノース型のN結合型糖鎖を有する抗体が、その抗体を産生するCHO細胞の培養に際してkifunesineを添加することによって当該細胞の培養液から回収されることが知られている(Zhou(Biotechnol. Bioeng. (2008) 99, 652-665))。本発明においてフコースを有せず、末端がマンノースであるN結合型糖鎖を有する抗原結合分子は、たとえば当該分子をコードする組換え遺伝子が形質導入されたCHO細胞を、kifunesineを添加して培養することによってその培養液から回収され得る。また、たとえば上述したグリコシダーゼ活性が変化した宿主細胞の培養に際してこうした阻害剤を添加する方法を組み合わせることによっても、本発明の特定の糖鎖を有する抗原結合分子を取得することが可能である。このような組合せによって特定の糖鎖を有する抗体を回収することが公知であり(Kandaら(Glycobiology (2007) 17, 104-118))、本発明において特定の糖鎖を有する抗原結合分子を取得する目的で、同様の組合せが適宜採用され得る。
上記のように産生された抗原結合分子の糖鎖構造は単一である場合もあるが、複数の糖鎖が連結された混合物として産生されることもある。本発明において、こうした混合物も好適に使用され得る。また、特定の糖鎖がその糖鎖結合ドメインに連結された抗原結合分子も本発明において好適に使用され得る。
このようにして得られた抗原結合分子は、宿主細胞内または細胞外(培地、乳汁など)から単離され、実質的に純粋で均一な抗原結合分子として精製され得る。抗原結合分子の分離、精製に際して使用される分離、精製のための方法は、通常のポリペプチドの精製で使用されている分離、精製のための方法の中から目的に応じて組み合わされて適宜選択されるが、特定の方法に限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等が適宜選択、組み合わせて抗原結合分子が分離、精製され得る。
クロマトグラフィーとしては、例えばアフィニティクロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al.(1996) Cold Spring Harbor Laboratory Press)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えばHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。アフィニティクロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムが挙げられる。例えば、プロテインAを用いたカラムとして、Hyper D, POROS, Sepharose F. F. (Pharmacia製)等が挙げられる。
前記のように作製された抗原結合分子が、抗原結合活性、FcRn特にヒトFcRnに対する結合活性、糖鎖受容体結合活性等の点において所望の性質を有しているか否かが、前記で述べられた抗原結合活性、FcRn結合活性、または、糖鎖受容体結合活性の測定法を用いて評価される。このような評価の結果、糖鎖受容体結合ドメインのモチーフを設計する工程、および、糖鎖受容体結合ドメインのモチーフを含む抗原結合分子のポリペプチドをコードする遺伝子を作製する工程、がさらに一回以上繰り返されることによって所望の性質を有している抗原結合分子が作製される。
本発明の糖鎖受容体結合ドメインを含む抗原結合分子、特にヒト由来の糖鎖受容体結合ドメインを含む抗原結合分子は、糖鎖受容体に対してpH依存的に結合し、且つ、あるいは、または、pH中性域において糖鎖受容体結合活性、特にヒト由来の糖鎖受容体結合活性を有し、pH酸性域における糖鎖受容体との結合活性がpH中性域における糖鎖受容体との結合活性よりも低くすることが出来れば、抗原結合分子による抗原の細胞内への取込を促進させ、抗原結合分子の投与により血漿中の抗原濃度の減少を促進させ、抗原結合分子の薬物動態を向上させ、1つの抗原結合分子が結合可能な抗原の数を増加させることが可能である。
本発明の製造方法により製造される抗原結合分子は、その投与により血漿中の抗原濃度の減少を促進させる抗原結合分子である。従って、本発明の製造方法は、その投与により血漿中の抗原濃度の減少を促進させる抗原結合分子の製造方法として利用され得る。
又、本発明の製造方法により製造される抗原結合分子は、薬物動態が向上した抗原結合分子である。従って、本発明の製造方法は、薬物動態が向上した抗原結合分子の製造方法として利用され得る。
又、製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、1つの抗原結合分子により結合可能な抗原の数を増加させることが可能であると考えられる。従って、本発明の製造方法は、1つの抗原結合分子により結合可能な抗原の数を増加した抗原結合分子の製造方法として利用され得る。
さらに、本発明の製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させることが可能であると考えられる。従って、本発明の製造方法は、細胞外で結合した抗原を細胞内で解離することが可能である抗原結合分子の製造方法として利用され得る。
さらに、本発明の製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させることが可能であると考えられる。従って、本発明の製造方法は、抗原と結合した状態で細胞内に取り込まれ、抗原と結合していない状態で細胞外に放出される抗原結合分子の製造方法として利用することができる。
又、これらの抗原結合分子は、通常の抗原結合分子と比較して、その投与により血漿中の抗原濃度を低下させる作用が高いことから、医薬品として特に優れていると考えられる。従って、本発明の製造方法は、医薬組成物として用いる為の抗原結合分子の製造方法として利用することが可能である。
医薬組成物
また本発明は、本発明の抗原結合分子、または本発明の製造方法により製造された抗原結合分子を含む医薬組成物に関する。本発明の抗原結合分子または本発明の製造方法により製造された抗原結合分子はその投与により通常の抗原結合分子と比較して血漿中の抗原濃度を低下させる作用が高いことから医薬組成物として有用である。本発明の医薬組成物は医薬的に許容される担体を含むことができる。
本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査・診断のための薬剤をいう。
本発明の医薬組成物は、当業者に公知の方法で製剤化され得る。例えば、本発明の医薬組成物は、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用され得る。例えば、本発明の医薬組成物は、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化される。これら製剤における有効成分量は、指示された範囲の適当な容量が得られるように設定される。
注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)を含む等張液が挙げられる。適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソルベート80(TM)、HCO-50等)も併用され得る。
油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル及び/またはベンジルアルコールが併用され得る。また、緩衝剤(例えば、リン酸塩緩衝液及び酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸プロカイン)、安定剤(例えば、ベンジルアルコール及びフェノール)、酸化防止剤と配合され得る。調製された注射液は通常、適当なアンプルに充填される。
本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、本発明の医薬組成物は、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物として調製され得る。例えば、本発明の医薬組成物は、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与され得る。
本発明の医薬組成物の投与方法は、患者の年齢、症状により適宜好適な投与方法が選択され得る。抗原結合分子を含有する医薬組成物の投与量は、例えば、一回につき体重1 kgあたり0.0001 mgから1000 mgの範囲に設定され得る。また、例えば、患者あたり0.001~100000 mgの範囲の投与量に設定され得るが、本発明の医薬組成物の投与量はこれらの数値に必ずしも制限されるものではない。投与量及び投与方法は、患者の体重、年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投与量及び投与方法が設定され得る。
なお、本発明で記載されているアミノ酸配列に含まれるアミノ酸は翻訳後に修飾(例えば、N末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である)を受ける場合もあるが、そのようにアミノ酸が翻訳後修飾された抗原結合分子も本発明で記載されているアミノ酸配列によって特定される抗原結合分子の範囲に含まれる。
糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込を促進させる方法
本発明はさらに、抗原結合分子および当該抗原結合分子に結合する抗原を、当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、抗原結合分子または当該抗原結合分子に結合する抗原の当該細胞の細胞内への取込を促進させる方法を提供する。
本発明において「細胞内への取込」とは、抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれることを意味する。また本発明において「細胞内への取込を促進させる」とは、細胞外において抗原と結合する抗原結合分子が細胞内に取り込まれる速度が促進されることを意味する。したがって、本発明において、抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込が促進されたかどうかは、抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込速度が増大したかどうかで判断され得る。抗原の細胞内への取り込み速度は、例えば、糖鎖受容体発現細胞を含む培養液に抗原結合分子と抗原を添加し、抗原結合分子または当該抗原結合分子に結合する抗原の培養液中濃度の減少を経時的に測定すること、あるいは、糖鎖受容体発現細胞内に取り込まれた抗原結合分子または当該抗原結合分子に結合する抗原の量を経時的に測定すること、により算出することができる。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は前記のように生体外でも行われ得るし、抗原結合分子を投与することによって生体内でも行われ得る。
本発明が提供する、抗原結合分子および当該抗原結合分子に結合する抗原を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込速度を促進させる方法、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって血漿中の抗原の消失速度を促進させることができる。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。したがって、抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込が促進されたかどうかは、例えば、血漿中に存在する抗原の消失速度が、当該抗原結合分子を投与しない場合と比べて加速されているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。
また、取込が促進されているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
また、本発明は、さらに、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、抗原結合分子に結合する抗原の細胞内への取込を促進する方法を提供する。さらに本発明は、イオン濃度の条件によって抗原に対する結合活性が変化させた抗原結合ドメインを含む抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、抗原結合分子に結合する抗原の細胞内への取込を促進する方法を提供する。さらに本発明は、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する抗原結合ドメインの結合活性が変化するアミノ酸である抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、抗原結合分子に結合する抗原の細胞内への取込を促進する方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は生体外のほか、生体内でも行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することも含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む一分子当りの抗原結合分子が結合する抗原の数を増加させる方法
また本発明は、抗原結合ドメイン、FcRn結合ドメインとひとつ以上の糖鎖受容体結合ドメインを有する抗原結合分子を、当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、一分子当りの抗原結合分子が結合する抗原の数を増加させる方法を提供する。
本発明における「一分子当りの抗原結合分子が結合する抗原の数」とは、抗原結合分子が分解されて消失するまでの間に結合することができる抗原の数のことを意味する。本発明における「一分子当りの抗原結合分子により結合できる抗原の数を増加させる」とは、抗原結合分子に結合した抗原分子が解離して再度抗原分子に結合する回数を増加させることをいう。抗原結合分子に結合する抗原分子は、両分子が存在する反応系において存在する同一の抗原分子でもあり得るし、異なる分子でもあり得る。すなわち、いい換えれば、当該反応系において抗原結合分子が抗原に結合する延べ回数を表す。別の表現では、抗原に結合した抗原結合分子が、抗原が結合した抗原結合分子が細胞内に取り込まれエンドソーム内で抗原を解離した後に、抗原結合分子が細胞外に戻ることを1サイクルと仮定したときに、抗原結合分子が分解されて消失するまでの間に回すことができるこのサイクルの数が増加することである。pH中性域における糖鎖受容体への結合活性を有する本発明の抗原結合分子は糖鎖受容体に結合した後に、エンドサイトーシスによって当該糖鎖受容体を発現する細胞の細胞内に取り込まれる。酸性域において糖鎖受容体から遊離した本発明の抗原結合分子は酸性域においてFcRn特にヒトFcRnへ結合することによって、細胞外に再度リサイクルされる。酸性域において抗原結合分子から抗原が解離した上で、細胞外にリサイクルされる本発明の抗原結合分子は、抗原に再度結合することが可能となる。したがって、サイクル数が増えたかどうかは、前述の「細胞内への取込を促進」されているか否か、あるいは、後述の「薬物動態が向上」するか否かによって、判断され得る。
本発明が提供する、抗原結合分子および当該抗原結合分子に結合する抗原を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、一分子当りの抗原結合分子が結合する抗原の数を増加させる方法、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって血漿中の抗原の消失速度を促進させることができる。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。したがって、一分子当りの抗原結合分子が結合する抗原の数が増加されたかどうかは、例えば、血漿中に存在する抗原の消失速度が、当該抗原結合分子を投与しない場合と比べて加速されているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。
また、一分子当りの抗原結合分子が結合する抗原の数が増加されているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
また、本発明は、さらに、イオン濃度の条件によって抗原に対する結合活性が変化し、一分子の抗原結合分子が結合できる抗原の数が増えている抗原結合分子を当該抗原結合分子が含む糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、一分子の抗原結合分子により結合できる抗原の数を増やす方法を提供する。さらに本発明は、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む、一分子の抗原結合分子が結合できる抗原の数が増えている抗原結合分子を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、一分子の抗原結合分子により結合できる抗原の数を増やす方法を提供する。さらに本発明は、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する結合活性が変化するアミノ酸であり、一分子の抗原結合分子が結合できる抗原の数が増えている抗原結合分子を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、一分子の抗原結合分子により結合する抗原の数を増加させる方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は生体外のほか、生体内でも行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することも含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む細胞外に存在する抗原を減少させる方法
また本発明は、抗原結合ドメイン、FcRn結合ドメインとひとつ以上の糖鎖受容体結合ドメインを有する抗原結合分子を、当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、細胞外に存在する抗原を減少させる方法を提供する。
細胞外に存在する抗原とは、糖鎖受容体を発現する細胞の細胞外に存在する抗原を意味する。糖鎖受容体を発現する細胞が生体内に存在する場合は、血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等の細胞外に存在する抗原が細胞外に存在する抗原の一例として例示され得る。しかし、生体に投与された本発明の抗原結合分子が糖鎖受容体を発現する細胞の細胞外で結合することができる限り、これらの体液に存在する抗原に限定されるものではない。細胞外に存在する抗原の特に好ましい例としては、血漿に存在する抗原が好ましい。糖鎖受容体を発現する細胞が生体外に存在する場合は、生体から取り出された血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等のほか、当該細胞を培養する培養液に存在する抗原が細胞外に存在する抗原の一例として例示され得る。
pH中性域における糖鎖受容体への結合活性を有する本発明の抗原結合分子は糖鎖受容体に結合した後に、エンドサイトーシスによって当該糖鎖受容体を発現する細胞の細胞内に取り込まれる。酸性域において糖鎖受容体から遊離した本発明の抗原結合分子は酸性域においてFcRn特にヒトFcRnへ結合することによって、細胞外に再度リサイクルされる。酸性域において抗原結合分子から抗原が解離した上で、細胞外にリサイクルされる本発明の抗原結合分子は、抗原に再度結合することが可能となる。この場合において解離した抗原は細胞内のリソゾーム内で分解を受ける。したがって、抗原結合分子がリサイクルを繰り返すごとに本発明の抗原結合分子に結合した糖鎖受容体を発現する細胞の細胞外に存在する抗原が、糖鎖受容体を発現する細胞内のリソゾームで分解される。こうした抗原の分解の結果、細胞外に存在する抗原が減少するものと考えられる。細胞外に存在する抗原が減少したか否かは、糖鎖受容体を発現する細胞が生体内に存在する場合は、血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等の細胞外に存在する抗原の量を測定することによって、また、糖鎖受容体を発現する細胞が生体外に存在する場合は、生体から取り出された血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等のほか、当該細胞を培養する培養液に存在する抗原の量を測定することによって評価され得る。
本発明が提供する、抗原結合分子および当該抗原結合分子に結合する抗原を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、細胞外に存在する抗原を減少させる方法、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって細胞外に存在する抗原を減少させることができる。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。したがって、細胞外に存在する抗原が減少したかどうかは、例えば、血漿中に存在する抗原の量が、当該抗原結合分子を投与しない場合と比べて減少しているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。
また、血漿中の抗原の量が減少しているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
また、本発明は、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む本発明の抗原結合分子を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、当該細胞の細胞外に存在する抗原を減少させる方法を提供する。さらに本発明は、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む、本発明の抗原結合分子を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、当該細胞の細胞外に存在する抗原を減少させる方法を提供する。さらに本発明は、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する結合活性が変化するアミノ酸であり、本発明の抗原結合分子を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、当該細胞の細胞外に存在する抗原を減少させる方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は生体外のほか、生体内でも行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することも含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
糖鎖受容体を発現する細胞に生体内で接触させることを含む抗原結合分子の薬物動態を向上させる方法
また本発明は、抗原結合ドメイン、FcRn結合ドメインと二つ以上の糖鎖受容体結合ドメインを有する抗原結合分子を、当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内で接触させることを含む、抗原結合分子の薬物動態を向上させる方法を提供する。
本発明において、「薬物動態の向上」、「薬物動態の改善」または「優れた薬物動態」は、「血漿中(血中)滞留性の向上」、「血漿中(血中)滞留性の改善」、「優れた血漿中(血中)滞留性」、「血漿中(血中)滞留性を長くする」と言い換えることが可能であり、これらの語句は同じ意味で使用される。
本発明において「薬物動態が向上する」とは、抗原結合分子がヒト、マウス、ラット、サル、ウサギ、イヌなどの動物に投与されてから、血漿中から消失するまで(例えば、細胞内で分解される等して抗原結合分子が血漿中に戻ることが不可能な状態になるまで)の時間が長くなることのみならず、抗原結合分子が投与されてから分解されて消失するまでの間に抗原に結合可能な状態(例えば、抗原結合分子が抗原に結合していない状態)で血漿中に滞留する時間が長くなることも含む。すなわち抗原に結合していない抗原結合分子(抗原非結合型抗原結合分子)が分解されて消失するまでの時間が長くなることを含む。抗原結合分子が血漿中に存在していても、その抗原結合分子にすでに抗原が結合している場合は、その抗原結合分子は新たな抗原に結合できない。そのため抗原結合分子が抗原に結合していない時間が長くなれば、新たな抗原に結合できる時間が長くなり(新たな抗原に結合できる機会が多くなり)、生体内で抗原が抗原結合分子に結合していない時間を減少させることができ、抗原が抗原結合分子に結合している時間を長くすることができる。抗原結合分子の投与により血漿中からの抗原の消失を加速することができれば、抗原非結合型抗原結合分子の血漿中濃度は増加し、また、抗原が抗原結合分子に結合している時間が長くなる。つまり、本発明における「抗原結合分子の薬物動態の向上」とは、抗原非結合型抗原結合分子のいずれかの薬物動態パラメーターの改善(血漿中半減期の増加、平均血漿中滞留時間の増加、血漿中クリアランスの低下のいずれか)、あるいは、抗原結合分子投与後に抗原が抗原結合分子に結合している時間の延長、あるいは、抗原結合分子による血漿中からの抗原の消失が加速されること、を含む。抗原結合分子あるいは抗原非結合型抗原結合分子の血漿中半減期、平均血漿中滞留時間、血漿中クリアランス等のいずれかのパラメーター(ファーマコキネティクス 演習による理解(南山堂))を測定することにより判断することが可能である。例えば、抗原結合分子をマウス、ラット、サル、ウサギ、イヌ、ヒトなどに投与した場合、抗原結合分子あるいは抗原非結合型抗原結合分子の血漿中濃度を測定し、各パラメーターを算出し、血漿中半減期が長くなった又は平均血漿中滞留時間が長くなった場合等には、抗原結合分子の薬物動態が向上したと評価される。これらのパラメーターは当業者に公知の方法により測定することが可能であり、例えば、薬物動態解析ソフトWinNonlin(Pharsight)を用いて、付属の手順書に従いNoncompartmental解析することによって適宜評価され得る。抗原に結合していない抗原結合分子の血漿中濃度の測定は当業者公知の方法で実施することが可能であり、例えば、Clin Pharmacol. (2008) 48 (4) 406-17において測定されている方法を用いることができる。
本発明において「薬物動態が向上する」とは、抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたことも含む。抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたか否かは、抗原結合分子に結合していない抗原結合分子非結合型抗原の血漿中濃度を測定し、抗原結合分子非結合型抗原の血漿中濃度、あるいは、総抗原濃度に対する抗原結合分子非結合型抗原濃度の割合が上昇してくるまでの時間により判断することが可能である。
抗原結合分子非結合型抗原の血漿中濃度、あるいは、総抗原濃度に対する抗原結合分子非結合型抗原濃度の割合は当業者公知の方法で実施することが可能であり、例えば、Pharm Res. (2006) 23(1) 95-103において測定されている方法が使用され得る。また、抗原が何らかの機能を生体内で示す場合、抗原が抗原の機能を中和する抗原結合分子(アンタゴニスト分子)と結合しているかどうかは、その抗原の機能が中和されているかどうかで評価することも可能である。抗原の機能が中和されているかどうかは、抗原の機能を反映する何らかの生体内のマーカーを測定することで評価することが可能である。抗原が抗原の機能を活性化する抗原結合分子(アゴニスト分子)と結合しているかどうかは、抗原の機能を反映する何らかの生体内のマーカーを測定することで評価することが可能である。
非結合型の抗原の血漿中濃度の測定、総抗原量に対する非結合型の抗原量の割合の測定、生体内マーカーの測定などの測定は特に限定されないが、抗原結合分子が投与されてから一定時間が経過した後に行われることが好ましい。本発明において抗原結合分子が投与されてから一定時間が経過した後とは、特に限定されず、投与された抗原結合分子の性質等により当業者が適時決定することが可能であり、例えば抗原結合分子を投与してから1日経過後、抗原結合分子を投与してから3日経過後、抗原結合分子を投与してから7日経過後、抗原結合分子を投与してから14日経過後、抗原結合分子を投与してから28日経過後などが挙げられる。
本発明においては、ヒトにおける薬物動態が向上することが好ましい。ヒトでの血漿中滞留性を測定することが困難である場合には、マウス(例えば、正常マウス、ヒト抗原発現トランスジェニックマウス、ヒトFcRnを発現するトランスジェニックマウス32系統または276系統(Jackson Laboratories)(Methods Mol Biol. (2010) 602, 93-104)等のトランスジェニックマウス、等)やサル(例えば、カニクイザルなど)での血漿中滞留性にもとづいて、ヒトでの血漿中滞留性が予測され得る。
また、本発明は、さらにイオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む上記薬物動態が向上されている抗原結合分子を生体内に投与することを含む抗原結合分子の薬物動態を向上させる方法を提供する。さらに本発明は、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む、上記薬物動態が向上されている抗原結合分子を生体内に投与することを含む抗原結合分子の薬物動態を向上させる方法を提供する。さらに本発明は、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する結合活性が変化するアミノ酸であり、上記薬物動態が向上されている抗原結合分子を生体内に投与することを含む抗原結合分子の薬物動態を向上させる方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む抗原の細胞内での抗原結合分子からの解離を促進させる方法
さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと二つ以上の糖鎖受容体結合ドメインを有する抗原結合分子を、当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、当該細胞の細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離を促進させる方法を提供する。
本発明において抗原が抗原結合分子から解離する箇所は細胞内であればいかなる個所でもよいが、好ましくは早期エンドソーム内である。本発明において、「細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離」とは、細胞外で抗原結合分子に結合した抗原が、当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞と生体内または生体外で接触された結果、細胞内に取り込まれた抗原全てが当該細胞内で抗原結合分子から解離する必要はなく、当該細胞内において、抗原結合分子が解離した抗原(または、抗原が解離した抗原結合分子)の割合が高くなっていればよい。
pH中性域における糖鎖受容体への結合活性を有する本発明の抗原結合分子は糖鎖受容体に結合した後に、エンドサイトーシスによって当該糖鎖受容体を発現する細胞の細胞内に取り込まれる。酸性域において糖鎖受容体から遊離した本発明の抗原結合分子は酸性域においてFcRn特にヒトFcRnへ結合することによって、細胞外に再度リサイクルされる。酸性域において抗原結合分子から抗原が解離した上で、細胞外にリサイクルされる本発明の抗原結合分子は、抗原に再度結合することが可能となる。この場合において解離した抗原は細胞内のリソゾーム内で分解を受ける。したがって、抗原結合分子がリサイクルを繰り返すごとに本発明の抗原結合分子に結合した糖鎖受容体を発現する細胞の細胞外に存在する抗原が、糖鎖受容体を発現する細胞内のリソゾームで分解される。こうした抗原の分解の結果、細胞外に存在する抗原が減少するものと考えられる。細胞外に存在する抗原が減少したか否かは、糖鎖受容体を発現する細胞が生体内に存在する場合は、血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等の細胞外に存在する抗原の量を測定することによって、また、糖鎖受容体を発現する細胞が生体外に存在する場合は、生体から取り出された血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等のほか、当該細胞を培養する培養液に存在する抗原の量を測定することによって評価され得る。
本発明が提供する、抗原結合分子および当該抗原結合分子に結合する抗原を当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、当該細胞の細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離を促進させる方法、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって当該細胞の細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離を促進させることができる。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。したがって、細胞外に存在する抗原が減少したかどうかは、例えば、血漿中に存在する抗原の量が、当該抗原結合分子を投与しない場合と比べて減少しているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。
また、血漿中の抗原の量が減少しているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は、生体内で行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することを含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
さらに本発明は、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む本発明の抗原結合分子と当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に接触させることを含む、当該細胞外で当該抗原結合分子に結合した抗原の当該細胞内での当該抗原結合分子からの解離を促進させる方法を提供する。さらに本発明は、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む本発明の抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に接触させることを含む、当該細胞外で当該抗原結合分子に結合した抗原の当該細胞内での当該抗原結合分子からの解離を促進させる方法を提供する。さらに本発明は、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する抗原結合ドメインの結合活性が変化するアミノ酸である抗原結合ドメインを含む抗原結合分子と当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に接触させることを含む、当該細胞外で当該抗原結合分子に結合した当該抗原の当該細胞内での当該抗原結合分子からの解離を促進させる方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
抗原結合分子または抗原結合分子に結合した抗原の取込を促進するための方法
本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させることを含む、生体内または生体外における当該糖鎖受容体を発現する細胞の細胞内への抗原結合分子または抗原結合分子に結合した抗原の取込を促進するための方法を提供する。
本発明において「細胞内への取込」とは、抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれることを意味する。また本発明において「細胞内への取込を促進させる」とは、細胞外において抗原と結合する抗原結合分子(抗原結合分子と結合する抗原)が細胞内に取り込まれる速度が促進されることを意味する。したがって、本発明において、抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込が促進されたかどうかは、抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込速度が増大したかどうかで判断され得る。抗原の細胞内への取り込み速度は、例えば、糖鎖受容体発現細胞を含む培養液に抗原結合分子と抗原を添加し、抗原結合分子または当該抗原結合分子に結合する抗原の培養液中濃度の減少を経時的に測定すること、あるいは、糖鎖受容体発現細胞内に取り込まれた抗原結合分子または当該抗原結合分子に結合する抗原の量を経時的に測定すること、により算出することができる。
本発明において、「糖鎖受容体に対する結合ドメインの数を増加させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
糖鎖受容体を発現する細胞の細胞内への本発明の抗原結合分子の取込は生体外でも行われ得るし、抗原結合分子を投与することによって生体内でも行われ得る。すなわち、本発明において、抗原結合分子または当該抗原結合分子に結合する抗原の細胞内への取込が促進されたかどうかは、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって血漿中に存在する抗原の消失速度が促進されたか、当該抗原結合分子を投与しない場合と比べて加速されているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。
また、取込が促進されているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は、生体内で行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することを含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
また、本発明は、さらに、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子に含まれる当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む、抗原結合分子または抗原結合分子に結合する抗原の細胞内への取込を促進する方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子に含まれる当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原結合分子の抗原結合ドメインの少抗原に対する結合活性を変化させた抗原結合ドメインを含む、抗原結合分子または抗原結合分子に結合する抗原の細胞内への取込を促進する方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子に含まれる当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する抗原結合ドメインの結合活性が変化するアミノ酸である、抗原結合分子または抗原結合分子に結合する抗原の細胞内への取込を促進する方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
一分子当りの抗原結合分子が結合する抗原の数を増加させる方法
本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における、当該糖鎖受容体に対する結合ドメインの数を増加させることを含む、生体内または生体外において一分子当りの抗原結合分子が結合する抗原の数を増加させるための方法を提供する。
本発明における「一分子当りの抗原結合分子が結合する抗原の数」とは、抗原結合分子が分解されて消失するまでの間に結合することができる抗原の数のことを意味する。本発明における「一分子当りの抗原結合分子により結合できる抗原の数を増加させる」とは、抗原結合分子に結合した抗原分子が解離して再度抗原分子に結合する回数を増加させることをいう。抗原結合分子に結合する抗原分子は、両分子が存在する反応系において存在する同一の抗原分子でもあり得るし、異なる分子でもあり得る。すなわち、いい換えれば、当該反応系において抗原結合分子が抗原に結合する延べ回数を表す。別の表現では、抗原に結合した抗原結合分子が、抗原が結合した抗原結合分子が細胞内に取り込まれエンドソーム内で抗原を解離した後に、抗原結合分子が細胞外に戻ることを1サイクルと仮定したときに、抗原結合分子が分解されて消失するまでの間に回すことができるこのサイクルの数が増加することである。pH中性域における糖鎖受容体への結合活性を有する本発明の抗原結合分子は糖鎖受容体に結合した後に、エンドサイトーシスによって当該糖鎖受容体を発現する細胞の細胞内に取り込まれる。酸性域において糖鎖受容体から遊離した本発明の抗原結合分子は酸性域においてFcRn特にヒトFcRnへ結合することによって、細胞外に再度リサイクルされる。酸性域において抗原結合分子から抗原が解離した上で、細胞外にリサイクルされる本発明の抗原結合分子は、抗原に再度結合することが可能となる。したがって、サイクル数が増えたかどうかは、前述の「細胞内への取込を促進」されているか否か、あるいは、後述の「薬物動態が向上」するか否かによって、判断され得る。
本発明において、「糖鎖受容体に対する結合ドメインの数を増加させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
本発明の抗原結合分子の抗原に対する結合は生体外でも行われ得るし、一分子当りの抗原結合分子が結合する抗原の数が増加されたかどうかは、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって血漿中に存在する抗原の消失速度が促進されたか、当該抗原結合分子を投与しない場合と比べて加速されているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。
また、一分子当りの抗原結合分子が結合する抗原の数が増加されているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は、生体内で行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することを含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
また、本発明は、さらに、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子に含まれる当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む、抗原結合分子一分子が生体内または生体外において結合できる抗原の数を増やす方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む、抗原結合分子一分子が結合できる抗原の数が増えている抗原結合分子を当該抗原結合分子が含む糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞に生体内または生体外で接触させることを含む、生体内または生体外において一分子の抗原結合分子により結合できる抗原の数を増やす方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度またはpHの条件によって抗原に対する結合活性が変化するアミノ酸である抗原結合分子の一分子が生体内または生体外において結合する抗原の数を増加させる方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
抗原結合分子の生体内または生体外における抗原の消失能を増加させるための方法
本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における、当該糖鎖受容体に対する結合ドメインの数を増加させることを含む、抗原結合分子の生体内または生体外における抗原の消失能を増加させるための方法を提供する。
細胞外に存在する抗原とは、糖鎖受容体を発現する細胞の細胞外に存在する抗原を意味する。糖鎖受容体を発現する細胞が生体内に存在する場合は、血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等の細胞外に存在する抗原が細胞外に存在する抗原の一例として例示され得る。しかし、生体に投与された本発明の抗原結合分子が糖鎖受容体を発現する細胞の細胞外で結合することができる限り、これらの体液に存在する抗原に限定されるものではない。細胞外に存在する抗原の特に好ましい例としては、血漿に存在する抗原が好ましい。糖鎖受容体を発現する細胞が生体外に存在する場合は、生体から取り出された血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等のほか、当該細胞を培養する培養液に存在する抗原が細胞外に存在する抗原の一例として例示され得る。
pH中性域における糖鎖受容体への結合活性を有する本発明の抗原結合分子は糖鎖受容体に結合した後に、エンドサイトーシスによって当該糖鎖受容体を発現する細胞の細胞内に取り込まれる。酸性域において糖鎖受容体から遊離した本発明の抗原結合分子は酸性域においてFcRn特にヒトFcRnへ結合することによって、細胞外に再度リサイクルされる。酸性域において抗原結合分子から抗原が解離した上で、細胞外にリサイクルされる本発明の抗原結合分子は、抗原に再度結合することが可能となる。この場合において解離した抗原は細胞内のリソゾーム内で分解を受ける。したがって、抗原結合分子がリサイクルを繰り返すごとに本発明の抗原結合分子に結合した糖鎖受容体を発現する細胞の細胞外に存在する抗原が、糖鎖受容体を発現する細胞内のリソゾームで分解される。こうした抗原の分解の結果、細胞外に存在する抗原が減少するものと考えられる。細胞外に存在する抗原が減少したか否かは、糖鎖受容体を発現する細胞が生体内に存在する場合は、血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等の細胞外に存在する抗原の量を測定することによって、また、糖鎖受容体を発現する細胞が生体外に存在する場合は、生体から取り出された血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等のほか、当該細胞を培養する培養液に存在する抗原の量を測定することによって評価され得る。
本発明において、「糖鎖受容体に対する結合ドメインの数を増加させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
本発明が提供する、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における、当該糖鎖受容体に対する結合ドメインの数を増加させることを含む方法によって、抗原結合分子の生体内または生体外における抗原の消失能が増加したか否かは、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって当該細胞の細胞外における抗原が消失したか否かを判定することによって確認され得る。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。したがって、細胞外に存在する抗原が減少したかどうかは、例えば、血漿中に存在する抗原の量が、当該抗原結合分子を投与しない場合と比べて減少しているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。
また、血漿中の抗原の量が減少しているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は生体外のほか、生体内でも行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することも含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
また、本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子に含まれる当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む、抗原結合分子の生体内または生体外における抗原の消失能を増加させるための方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む、抗原結合分子の生体内または生体外における抗原の消失能を増加させるための方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する抗原結合ドメインの結合活性が変化するアミノ酸である、抗原結合分子の生体内または生体外における抗原の消失能を増加させるための方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
抗原結合分子の薬物動態を向上させるための方法
本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における、当該糖鎖受容体に対する結合ドメインの数を増加させることを含む、抗原結合分子の薬物動態を向上させるための方法を提供する。
本発明において、「薬物動態の向上」、「薬物動態の改善」または「優れた薬物動態」は、「血漿中(血中)滞留性の向上」、「血漿中(血中)滞留性の改善」、「優れた血漿中(血中)滞留性」、「血漿中(血中)滞留性を長くする」と言い換えることが可能であり、これらの語句は同じ意味で使用される。
本発明において「薬物動態が向上する」とは、抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたことも含む。抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたか否かは、抗原結合分子に結合していない抗原結合分子非結合型抗原の血漿中濃度を測定し、抗原結合分子非結合型抗原の血漿中濃度、あるいは、総抗原濃度に対する抗原結合分子非結合型抗原濃度の割合が上昇してくるまでの時間により判断することが可能である。
抗原結合分子非結合型抗原の血漿中濃度、あるいは、総抗原濃度に対する抗原結合分子非結合型抗原濃度の割合は当業者公知の方法で実施することが可能であり、例えば、Pharm Res. (2006) 23(1) 95-103において測定されている方法が使用され得る。また、抗原が何らかの機能を生体内で示す場合、抗原が抗原の機能を中和する抗原結合分子(アンタゴニスト分子)と結合しているかどうかは、その抗原の機能が中和されているかどうかで評価することも可能である。抗原の機能が中和されているかどうかは、抗原の機能を反映する何らかの生体内のマーカーを測定することで評価することが可能である。抗原が抗原の機能を活性化する抗原結合分子(アゴニスト分子)と結合しているかどうかは、抗原の機能を反映する何らかの生体内のマーカーを測定することで評価することが可能である。
非結合型の抗原の血漿中濃度の測定、総抗原量に対する非結合型の抗原量の割合の測定、生体内マーカーの測定などの測定は特に限定されないが、抗原結合分子が投与されてから一定時間が経過した後に行われることが好ましい。本発明において抗原結合分子が投与されてから一定時間が経過した後とは、特に限定されず、投与された抗原結合分子の性質等により当業者が適時決定することが可能であり、例えば抗原結合分子を投与してから1日経過後、抗原結合分子を投与してから3日経過後、抗原結合分子を投与してから7日経過後、抗原結合分子を投与してから14日経過後、抗原結合分子を投与してから28日経過後などが挙げられる。
本発明においては、ヒトにおける薬物動態が向上することが好ましい。ヒトでの血漿中滞留性を測定することが困難である場合には、マウス(例えば、正常マウス、ヒト抗原発現トランスジェニックマウス、ヒトFcRnを発現するトランスジェニックマウス32系統または276系統(Jackson Laboratories)(Methods Mol Biol. (2010) 602, 93-104)等のトランスジェニックマウス、等)やサル(例えば、カニクイザルなど)での血漿中滞留性にもとづいて、ヒトでの血漿中滞留性が予測され得る。
また、本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子に含まれる当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインが含まれる、抗原結合分子の薬物動態を向上させる方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む、抗原結合分子の薬物動態を向上させる方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度の条件またはpHの条件によって抗原に対する結合活性を変化させた抗原結合ドメインを含む、抗原結合分子の薬物動態を向上させる方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
抗原の抗原結合分子からの解離を促進させるための方法
本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを有する抗原結合分子における、当該糖鎖受容体に対する結合ドメインの数を増加させることを含む、細胞外で結合した抗原の抗原結合分子からの解離を促進させるための方法を提供する。
本発明において抗原が抗原結合分子から解離する箇所は細胞内であればいかなる個所でもよいが、好ましくは早期エンドソーム内である。本発明において、「細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離」とは、細胞外で抗原結合分子に結合した抗原が、当該抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞と生体内または生体外で接触された結果、細胞内に取り込まれた抗原全てが当該細胞内で抗原結合分子から解離する必要はなく、当該細胞内において、抗原結合分子が解離した抗原(または、抗原が解離した抗原結合分子)の割合が高くなっていればよい。
pH中性域における糖鎖受容体への結合活性を有する本発明の抗原結合分子は糖鎖受容体に結合した後に、エンドサイトーシスによって当該糖鎖受容体を発現する細胞の細胞内に取り込まれる。酸性域において糖鎖受容体から遊離した本発明の抗原結合分子は酸性域においてFcRn特にヒトFcRnへ結合することによって、細胞外に再度リサイクルされる。酸性域において抗原結合分子から抗原が解離した上で、細胞外にリサイクルされる本発明の抗原結合分子は、抗原に再度結合することが可能となる。この場合において解離した抗原は細胞内のリソゾーム内で分解を受ける。したがって、抗原結合分子がリサイクルを繰り返すごとに本発明の抗原結合分子に結合した糖鎖受容体を発現する細胞の細胞外に存在する抗原が、糖鎖受容体を発現する細胞内のリソゾームで分解される。こうした抗原の分解の結果、細胞外に存在する抗原が減少するものと考えられる。細胞外に存在する抗原が減少したか否かは、糖鎖受容体を発現する細胞が生体内に存在する場合は、血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等の細胞外に存在する抗原の量を測定することによって、また、糖鎖受容体を発現する細胞が生体外に存在する場合は、生体から取り出された血液、血漿、血清、尿、リンパ液、だ液、涙液等の体液等のほか、当該細胞を培養する培養液に存在する抗原の量を測定することによって評価され得る。
本発明が提供する、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを有する抗原結合分子における、当該糖鎖受容体に対する結合ドメインの数を増加させることを含む方法によって、細胞外で結合した抗原の抗原結合分子からの解離が促進されたか否かは、例えば、(1)抗原結合分子および抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、糖鎖受容体を発現する細胞と接触させ一定期間を経過して細胞外にリサイクル(再分泌または再循環ともいう)された、抗原を結合しない抗原結合分子を含む血漿を生体内に戻すいわゆるex vivoの方法、または、(2)抗原結合分子を生体内に投与する方法、によって当該細胞の細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離が促進されたか否かを判定することによって確認され得る。また(1)の方法では、抗原結合分子に結合する抗原を含む血漿を生体外にいったん取り出した後に、抗原結合分子および糖鎖受容体を発現する細胞と接触させ一定期間を経過した血漿を生体内に戻す方法も利用され得る。したがって、細胞外に存在する抗原が減少したかどうかは、例えば、血漿中に存在する抗原の量が、当該抗原結合分子を投与しない場合と比べて減少しているかどうか、あるいは、ex vivoの方法または抗原結合分子の投与によって血漿中の抗原濃度が低減されているかどうか、を測定することによっても確認され得る。
また、血漿中の抗原の量が減少しているか否かは、上記の(1)および(2)において確認される血漿中の抗原の消失速度が、抗原結合分子の代わりにヒト天然型IgG特にヒト天然型IgG1を用いる方法によって確認される血漿中の抗原の消失速度よりも促進されているか否かを確認することによっても確認され得る。
本発明において、抗原結合分子に含まれる糖鎖受容体結合ドメインに結合する糖鎖受容体を発現する細胞は、所望の糖鎖受容体が発現する細胞であればどのような細胞も使用され、特定の細胞に制限されない。所望の糖鎖受容体を発現する細胞を特定するために、Human Protein Atlas(http://www.proteinatlas.org/)等の公知のデータベースが用いられ得る。また、所望の糖鎖受容体をコードする遺伝子の発現を確認する手法により、また、所望の糖鎖受容体に結合する抗体を用いる免疫学的手法により、本発明の抗原結合分子と接触するために用いられる細胞が当受容体を発現しているか否かが確認され得る。こうした手法もまた公知である。糖鎖受容体を発現する細胞と、抗原結合分子および当該抗原結合分子に結合する抗原との接触は、生体内で行われるため、本発明において、糖鎖受容体を発現する細胞に抗原結合分子を接触させるとは、抗原結合分子を生体に投与することを含む。接触させる時間は、例えば、1分から数週間、30分から1週間、1時間から3日、2時間から1日の間で適切な時間、すなわち抗原結合分子または当該抗原結合分子に結合する抗原がエンドサイトーシスによって細胞内に取り込まれるために必要な時間が適宜採用される。
たとえば、糖鎖受容体としてアシアログリコプロテインレセプターを発現する細胞としては、肝細胞が使用され得る。また、糖鎖受容体としてマンノースレセプターを発現する細胞としては、血液細胞をはじめとする広範な細胞が使用され得る。
さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子に含まれる当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子に対して細胞外で結合した抗原の細胞内での当該抗原結合分子からの解離を促進させる方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、イオン濃度の条件によって抗原に対する結合活性を変化させた抗原結合ドメイン含む抗原結合分子に対して細胞外で結合した抗原の細胞内での当該抗原結合分子からの解離を促進させる方法を提供する。さらに本発明は、抗原結合ドメイン、FcRn結合ドメインと糖鎖受容体に対する二つ以上の結合ドメインを含む抗原結合分子における当該糖鎖受容体に対する結合ドメインの数を増加させるとともに、抗原結合ドメインの少なくとも1つのアミノ酸がカルシウムイオン濃度またはpHの条件によって抗原に対する結合活性が変化するアミノ酸である抗原結合分子に対して細胞外で結合した抗原の細胞内での当該抗原結合分子からの解離を促進させる方法を提供する。
本発明において、「イオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させる」方法としては、本明細書中の抗原結合分子の製造方法として記載された複数の方法のうちの一つまたは複数の方法の組合せが適宜使用され得る。
本明細書において用いる場合、「・・・を含む(comprising)」との表現により表される態様は、「本質的に・・・からなる(essentially consisting of)」との表現により表される態様、ならびに「・・・からなる(consisting of)」との表現により表される態様を包含する。
本明細書において明示的に引用される全ての特許および参考文献の内容は全て本明細書に参照として取り込まれる。
以下本発明を実施例により具体的に説明するが、本発明はこれら実施例に制限されるものではない。
〔実施例1〕糖鎖受容体を用いたpH依存的抗原結合抗体による抗原消失加速効果の向上 可溶型抗原に対する既存の中和抗体を投与すると、抗原が抗体に結合することで血漿中での持続性が高まることが予想される。抗体は一般的に長い半減期(1週間~3週間)を有するが、一方で抗原は一般的に短い半減期(1日以下)を有する。そのため、血漿中で抗体に結合した抗原は、抗原単独で存在する場合に比べて顕著に長い半減期を有するようになる。その結果として、既存の中和抗体を投与することにより、血漿中の抗原濃度の上昇が起こる。このような事例は様々な可溶型抗原を標的とした中和抗体において報告されており、一例を挙げるとIL-6 (J Immunotoxicol. 2005, 3, 131-9.)、amyloid beta (mAbs, 2010, 2:5, 1-13)、MCP-1 (ARTHRITIS & RHEUMATISM 2006, 54,2387-92)、hepcidin (AAPS J. 2010, 4, 646-57.) 、sIL-6 receptor (Blood. 2008 Nov 15;112(10):3959-64.)などがある。既存の中和抗体の投与により、ベースラインからおよそ10倍~1000倍程度(上昇の程度は、抗原によって異なる)の血漿中総抗原濃度の上昇が報告されている。ここで、血漿中総抗原濃度とは、血漿中に存在する抗原の総量としての濃度を意味しており、すなわち抗体結合型と抗体非結合型の抗原濃度の和として表される。このような可溶型抗原を標的とした抗体医薬にとっては、血漿中総抗原濃度の上昇が起こることは好ましくない。なぜなら、可溶型抗原を中和するためには、少なくとも血漿中総抗原濃度を上回る血漿中抗体濃度が必要なためである。つまり、血漿中総抗原濃度が10倍~1000倍上昇するということは、それを中和するための血漿中抗体濃度(すなわち抗体投与量)としても、血漿中総抗原濃度の上昇が起こらない場合に比べて10倍~1000倍が必要になることを意味する。一方で、既存の中和抗体に比較して血漿中総抗原濃度を10倍~1000倍低下することができれば、抗体の投与量を同じだけ減らすことが可能である。このように、血漿中から可溶型抗原を消失させて、血漿中総抗原濃度を低下させることができる抗体は、既存の中和抗体に比較して顕著に有用性が高い。
pH依存的ヒトIL-6レセプター結合抗体について
WO 2009/125825に記載されているH54(配列番号:26)とL28(配列番号:27)からなるH54/L28-IgG1はヒト化抗IL-6レセプター抗体であり、VH3-IgG1(配列番号:28)とVL3-CK(配列番号:29)からなるGL1-IgG1(WO 2009/125825においては、同分子はFv4-IgG1と記載されている)は、H54/L28-IgG1に対して可溶型ヒトIL-6レセプターへpH依存的に結合する特性(pH7.4において結合し、pH5.8において解離する)を付与したヒト化抗IL-6レセプター抗体である。WO 2009/125825に記載されているマウスのin vivo試験において、H54/L28-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群と比較して、GL1-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群において、可溶型ヒトIL-6レセプターの消失を大幅に加速できることが示された。
通常の可溶型ヒトIL-6レセプターに結合する抗体に結合した可溶型ヒトIL-6レセプターは、抗体とともにFcRnによって血漿中にリサイクルされるのに対して、pH依存的に可溶型ヒトIL-6レセプターに結合する抗体は、エンドソーム内の酸性条件下において抗体に結合した可溶型ヒトIL-6レセプターを解離する。解離した可溶型ヒトIL-6レセプターはライソソームによって分解されるため、可溶型ヒトIL-6レセプターの消失を大幅に加速することが可能となり、さらにpH依存的に可溶型ヒトIL-6レセプターに結合する抗体はFcRnによって血漿中にリサイクルされ、リサイクルされた抗体は再び可溶型ヒトIL-6レセプターに結合することができ、これが繰り返されることによってひとつの抗体分子が複数回繰り返し可溶型ヒトIL-6レセプターに結合することが可能となる(図1)。
IgG抗体のFcRnへの結合に関して
IgG抗体はFcRnに結合することで長い血漿中滞留性を有する。IgGとFcRnの結合は酸性条件下(pH6.0)においてのみ認められ、中性条件下(pH7.4)においてはほとんど結合は認められない。IgG抗体は非特異的に細胞に取り込まれるが、エンドソーム内の酸性条件下においてエンドソーム内のFcRnに結合することで細胞表面上に戻り、血漿中の中性条件下においてFcRnから解離する。IgGのFc領域に変異を導入し、酸性条件下におけるFcRnへの結合を失わすと、エンドソーム内から血漿中にリサイクルされなくなるため、抗体の血漿中滞留性は著しく損なわれる。IgG抗体の血漿中滞留性を向上させる方法として、酸性条件下におけるFcRnへの結合を向上させる方法が報告されている。IgG抗体のFc領域にアミノ酸置換を導入し、酸性条件下のFcRnへの結合を向上させることで、エンドソーム内から血漿中にリサイクル効率が上昇し、その結果、血漿中滞留性が向上する。
糖鎖受容体を用いたpH依存的抗原結合抗体による抗原消失加速効果の向上
pH依存的に抗原に結合する抗体は、可溶型の抗原の消失を加速させ血漿中総抗原濃度を低下させることができ、ひとつの抗体分子が複数回繰り返し可溶型の抗原に結合する効果を有することから、極めて有用である。この抗原消失加速効果をさらに向上させる方法として、pH依存的に抗原に結合する抗体に糖鎖を付加させ、抗体に付加した糖鎖と糖鎖受容体の結合が中性条件下(pH7.4))においてのみ認められ、酸性条件下(pH6.0)では解離することで、可溶型の抗原と結合した抗体を糖鎖受容体依存的に細胞内に取りこませ、エンドソーム内では抗体が糖鎖受容体から解離するとともに可溶型の抗原とも解離し、FcRnと結合して再び血漿中にリサイクルされる方法を検証した(図2)。
上記の方法が有効であるためには、糖鎖と糖鎖受容体の結合、および、抗原と抗体の結合にpH依存性があり、中性条件下において抗原結合分子は糖鎖受容体と抗原に結合し、抗体抗原複合体が糖鎖受容体を介して細胞内に取り込まれ、エンドソームの酸性条件下において抗原結合分子は糖鎖受容体と抗原から解離する必要があると考えられる。
このような特性を有する抗原と抗体としては、WO 2009/125825に記載されているIL-6レセプターに対する抗体であるFv4-IgG1(本発明ではGL1-IgG1と呼ぶ)が知られている。
また、このような特性を有する糖鎖と糖鎖受容体として、ガラクトースとアシアログライコプロテインレセプター、および、マンノースとマンノースレセプターが考えられた。糖鎖受容体の一つであるアシアログライコプロテインレセプターとガラクトースの相互作用はpH依存的であり、pH中性域で高い結合活性を示し、pH酸性域で低い結合活性を示すことが知られている(J. Biol. Chem. (1989) 274 (50), 35400-35406)。同様に、糖鎖受容体の一つであるマンノースレセプターとマンノースの相互作用はpH依存的であり、pH中性域で高い結合活性を示し、pH酸性域で低い結合活性を示すことが知られている(J. Biol. Chem. (1994) 269 (45), 28405-28413)。
〔実施例2〕可変領域にガラクトース末端複合型結合型糖鎖を導入したpH依存的結合抗ヒトIL-6レセプター抗体の作成
N結合型糖鎖付加配列を有するpH依存的ヒトIL-6レセプター結合抗体の調製
VH3-IgG1(配列番号:28)とVL3-CK(配列番号:29)からなるGL1-IgG1に対して、N結合型糖鎖付加配列であるAsn-X-Ser/Thrが含まれるよう変異を導入した。このとき、XはProを除くすべてのアミノ酸であればよく、Ser/ThrはSerまたはThrであることを示す。具体的にはIgG1の重鎖定常領域に対してEUナンバリングにおける297番目をAsnからAlaに置換した重鎖定常領域M111(配列番号:30)を有するVH3-M111(配列番号:31)を作製し、VH3-M111の重鎖可変領域に対して、kabatナンバリングにおける75番目をLysからAsnに置換したH01-M111(配列番号:32)を作製した。またVL3-CKの軽鎖可変領域に対して、kabatナンバリングにおける18番目をSerからAsnに置換したL02-CK(配列番号:33)、20番目をThrからAsnに置換したL03-CK(配列番号:34)、24番目をGlnからAsnに置換したL04-CK(配列番号:35)、20番目と24番目をそれぞれThrからAsn 、GlnからAsnにともに置換したL06-CK(配列番号:36)を作製した。アミノ酸置換の導入方法は参考例1の当業者公知の方法に従って実施した。
H54(配列番号:26)とL28(配列番号:27)からなるH54/L28-IgG1、VH3-IgG1(配列番号:28)とVL3-CK(配列番号:29)からなるGL1-IgG1、VH3-M111(配列番号:31)とVL3-CKからなるGL1-M111、VH3-M111とL02-CK(配列番号:33)からなるGL2-M111、VH3-M111とL03-CK(配列番号:34)からなるGL3-M111、VH3-M111とL04-CK(配列番号:35)からなるGL4-M111、VH3-M111とL06-CK(配列番号:36)からなるGL5-M111、H01-M111(配列番号:32)とVL3-CKからなるGL6-M111、H01-M111とL02-CKからなるGL7-M111、H01-M111とL03-CKからなるGL8-M111、H01-M111とL04-CKからなるGL9-M111、H01-M111とL06-CKからなるGL10-M111、VH3-IgG1とL06-CKからなるGL5-IgG1を発現し、精製を行った。発現と精製の方法は参考例2の当業者公知の方法に従って実施した。
ヒト天然型IgG1は、EUナンバリングにおける297残基目のAsnにN結合型糖鎖が付加している。本実施例は可変領域へのN結合型糖鎖の導入の評価を容易にするため、297番目のAsnをAlaに置換したM111という改変型定常領域を使用した。
還元SDS-PAGEによる糖鎖付加の評価
N結合型糖鎖付加配列を導入した抗体の糖鎖付加を還元SDS-PAGEにて評価した。6 μgずつ分注したGL1-M111~GL10-M111に、5% 2-mercaptoethanol (Wako) を含むTris-Glycine SDS Sample Buffer(2x) (TEFCO)を添加後、70℃で5分インキュベーションして泳動サンプルを調製した。Precision plus blue standard (Bio-Rad)を分子量マーカーとし、12% SDS-PAGE mini 15well (TEFCO)を用いて電気泳動後、CBB Stain One (Nacalai tesque) によりCBB染色を行った。得られた泳動パターンは図3に示した。
重鎖、軽差のいずれにも糖鎖が付加していないGL1-M111では、重鎖が50 kDaの分子量マーカーの下端に、軽鎖が25 kDaの分子量マーカーの上端に位置した。軽鎖に糖鎖付加部位を1箇所導入したGL2-M111~GL4-M111は、GL1-M111と比較して軽鎖のバンドが高分子量側にシフトした。軽鎖に糖鎖付加部位を2箇所導入したGL5-M111は、軽鎖のバンドがGL2-M111~GL4-M111と比較してより高分子量側にシフトした。また、重鎖に糖鎖付加部位を1箇所導入したGL6-M111は、GL1-M111と比較して重鎖のバンドが高分子量側にシフトした。
重鎖と軽鎖に1箇所ずつ、計2箇所の糖鎖付加部位を導入したGL7-M111~GL9-M111は、GL1-M111と比較して重鎖、軽鎖ともに高分子量側にバンドシフトが認められた。重鎖に1箇所と軽鎖に2箇所の計3箇所の糖鎖付加部位を導入したGL10-M111は、重鎖のバンドがGL1-M111より高分子量側に、軽鎖のバンドがGL7-M111~GL9-M111より高分子量側にシフトした。
これらの結果から、重鎖と軽鎖の両鎖に複数の糖鎖付加部位を同時に導入することが可能であることが示された。
陰イオン交換クロマトグラフィーによるN結合型糖鎖の評価
Neuraminidaseによるシアル酸除去の前後で陰イオン交換クロマトグラフィーのクロマトグラムの形状変化を評価することで、結合しているN型糖鎖がハイマンノース型糖鎖であるかとうか、および、複合型糖鎖の末端へのシアル酸の結合の有無を評価した。50 mmol/L Acetate pH5.0で調製したGL1~GL10にneuraminidase(Roche)を添加し、37℃で一晩静置した。移動相Aとして10 mmol/L Tris-HCl, pH7.5、移動相Bとして10 mmo/L Tris-HCl/150 mmol/L NaCl, pH7.5を用いた2液グラジエント法により、TSK-gel DEAE-NPR(Tosoh)を用いて陰イオン交換クロマトグラフィーを実施した。クロマトグラムは図4に示した。
糖鎖未付加のGL1-M111はneuraminidase処理前にシングルピークであり、neuraminidase処理に伴うクロマトグラムの変化は認められなかった。一方、糖鎖が付加したGL2-M111~GL10-M111は、neuraminidase処理前にヘテロピークが観察された。neuraminidase処理に伴い検出されるピーク数の減少が観察された。このことは、GL2-M111~GL10-M111の糖鎖末端にはシアル酸が付加していたこと、つまり、GL2-M111~GL10-M111に付加されたN型糖鎖は、高マンノース型ではなくシアル酸が複数結合した複合型糖鎖であることが示された。また、これより、neuraminidase処理をすることで、複合型糖鎖の末端のガラクトースを露出させた分子を調製できることが確認された。
GL5-M111の質量分析
GL5-M111に付加したN結合型糖鎖を質量から推定するため、質量分析を実施した。Neuraminidase処理後のGL5-M11をDTT (Wako)を用いて還元処理し、Ultimate3000 (Dionex)とLTQ VELOS (Thermo scientific)を用いてRP-LC/ESI-MSを実施した。表1に示した二分岐型N結合型糖鎖のいずれが付加したかを質量から推定し、得られたマスクロマトグラムを図5に示した。
N結合型糖鎖末端に露出するガラクトース数の増加に伴い、糖鎖受容体を介した認識効率が向上すると考えられる。そこで、二分岐型N結合型糖鎖のうち、G2、G3、G4の付加を観察した。図5に示したように、軽鎖に付加した2箇所の糖鎖がいずれもG2のもの、G2とG3が付加したもの、G3が2個および/またはG2とG4が付加したものが存在した。
neuraminidaseの不活化処理
N結合型糖鎖末端のシアル酸除去のためにneuraminidase処理をおこなったGL5-M111に含まれるneuraminidaseの不活化を実施した。neuraminidase処理後のGL5-M111(GL5-M111-SA(-))をProtein Aにより精製後、60℃で10分のインキュベーションをおこなった(熱処理品)。
陰イオン交換クロマトグラフィーによるneuraminidase活性の評価
GL5-M111-SA(-)(SA(-)はシアル酸が除去されていることを意味する)ならびに熱処理品にneuraminidase未処理のGL5-M111(GL5-M111-SA(+))(SA(+)はシアル酸がそのまま残されていることを意味する)を添加して37℃で6時間静置した。N結合型糖鎖の観察時に用いたのと同様の陰イオン交換クロマトグラフィー法により、これらのサンプルを分析した。得られたクロマトグラムは図6に示した。
図6に示すとおり、GL5-M111-SA(-)にGL5-M111-SA(+)を添加した場合、GL5-M111-SA(+)に由来するヘテロピークに収束が認められた。一方、熱処理品にGL5-M111-SA(+)を添加しても、ピークの収束は認められなかった。このことから、Protein Aを用いて再精製を行ったのちに熱処理を実施することで、サンプル中に残存するneuraminidaseを不活化することが可能であった。
定常領域をIgG1に変更したサンプルの調製
GL5に導入した改変により、軽鎖可変領域に二分岐型N結合型糖鎖の付加が可能であることが示された。そこで、定常領域をM111からIgG1に変更したGL1-IgG1ならびにGL5-IgG1を調製した。
還元SDS-PAGEによるIgG1型検体の糖鎖付加の評価
M111を組み合わせた検体と同様に、GL1-IgG1ならびにGL5-IgG1の還元SDS-PAGEを実施した。得られた泳動パターンは図7に示した。
図7に示したとおり、GL5-IgG1の軽鎖はGL1-IgG1の軽鎖と比較して高分子量側に大きくシフトしていた。このことから、定常領域の糖鎖は可変領域への糖鎖付加に影響を与えず、GL5-IgG1においても、軽鎖の2箇所にN結合型糖鎖が付加したと考えられた。GL5-M111とGL5-IgG1では軽鎖に同様のN結合型糖鎖が付加したことが陰イオン交換クロマトグラフィーならびに質量分析により観察された(データは示さない)。
ヒトIL-6レセプター(hIL6R)に対する結合評価
調製したGL1-IgG1-SA、GL1-M111-SA、GL2-M111-SA、GL3-M111-SA、GL4-M111-SA、GL5-M111-SA 、GL6-M111-SA、GL7-M111-SA、GL8-M111-SA、GL9-M111-SA、GL10-M111-SAに対して上述の方法により、neuraminidase処理することで、末端シアル酸を除去し、ガラクトースを末端に露出させたGL1-IgG1-SA (-)、GL1-M111-SA (-)、GL2-M111-SA (-)、GL3-M111-SA (-)、GL4-M111-SA (-)、GL5-M111-SA (-)、GL6-M111-SA (-)、GL7-M111-SA (-)、GL8-M111-SA (-)、GL9-M111-SA (-)、GL10-M111-SA (-)を調製した。
Biacore T100 (GE Healthcare) を用いて、GL1-IgG1-SA (-)、GL1-M111-SA (-)、GL2-M111-SA (-)、GL3-M111-SA (-)、GL4-M111-SA (-)、GL5-M111-SA (-)、GL6-M111-SA (-)、GL7-M111-SA (-)、GL8-M111-SA (-)、GL9-M111-SA (-)、GL10-M111-SA (-)、のヒトIL-6レセプターとの抗原抗体反応の速度論的解析を行った。Sensor chip CM5 (GE Healthcare) 上にアミンカップリング法でprotein A (Invitrogen) を適当量固定化し、そこへ目的の抗体をキャプチャーさせた。次に、ヒトIL-6レセプター希釈液とブランクであるランニングバッファーを流速20 μL/minで3分間インジェクトし、センサーチップ上にキャプチャーさせた抗体にヒトIL-6レセプターを相互作用させた。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4もしくはpH6.0の2 種類を用い、IL-6Rの希釈にもそれぞれのバッファーを使用した。その後流速20 μL/minで5分間ランニングバッファーを流しIL-6レセプターの解離を観察した後、10 mmol/L Glycine-HCl,pH1.5を流速30 μL/minで30秒間インジェクトし、センサーチップを再生した。測定は全て37 ℃で実施した。測定で得られたセンサーグラムから、カイネティクスパラメーターである結合速度定数 ka (1/Ms)、および解離速度定数 kd (1/s) を算出し、その値をもとに各抗体のヒトIL-6レセプターに対する KD (M) を算出した。各パラメーターの算出にはBiacore T100 Evaluation Software (GE Healthcare)を用いた。その結果決定されたpH 7.4またはpH 6.0における各抗体のKD値を以下の表2に示した。pH7.4およびpH6.0の両条件において、いずれの抗体もGL1-IgG1-SA (-)と比べてKD値に大きな差異は認められなかった。
これらの結果から、効率的にガラクトースを末端に有する複合型糖鎖が導入され、且つ、ヒトIL-6レセプターに対する結合活性およびpH依存性を維持している改変抗体として、軽鎖のKabatナンバリング18番目および24番目にN型糖鎖糖鎖付加部位を導入したGL5-M111が選択させた。
そこで、Biacore T100 (GE Healthcare) を用いて、GL1-M111-SA (-)、GL5-M111-SA (-)のヒトIL-6レセプターとの抗原抗体反応の速度論的解析を行った。いずれもシアリダーゼによる処理を行った抗体をサンプルとして測定に用いた。Sensor chip CM5 (GE Healthcare) 上にアミンカップリング法でAnti-Human IgG (γ-chain specific), F(ab′)2 fragment antibody produced in goat (Sigma) を適当量固定化し、そこへ目的の抗体をキャプチャーさせた。次に、ヒトIL-6レセプター希釈液とブランクであるランニングバッファーを流速20 μL/minで3分間インジェクトし、センサーチップ上にキャプチャーさせた抗体にヒトIL-6レセプターを相互作用させた。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4もしくはpH6.0の2 種類を用い、IL-6Rの希釈にもそれぞれのバッファーを使用した。その後流速20 μL/minで5分間ランニングバッファーを流しIL-6レセプターの解離を観察した後、10 mmol/L Glycine-HCl, pH1.5を流速30 μL/minで5 秒間インジェクトし、それを5回繰り返すことで、センサーチップを再生した。測定は全て37 ℃で実施した。測定で得られたセンサーグラムから、カイネティクスパラメーターである結合速度定数 ka (1/Ms)、および解離速度定数kd (1/s) を算出し、その値をもとに各抗体のヒトIL-6レセプターに対する KD(M) を算出した。各パラメーターの算出には Biacore T100 Evaluation Software (GE Healthcare)を用いた。その結果決定されたpH 7.4またはpH 6.0における各抗体のKD値を以下の表3に示す。pH7.4およびpH6.0の両条件において、両抗体のKD値に大きな差異は認められなかった。
続いて、Biacore T100 (GE Healthcare) を用いて、GL1-IgG1-SA (+)、H54L28-IgG1-SA(+)、GL1-IgG1-SA (-)、GL5-IgG1-SA (-)のヒトIL-6レセプターとの抗原抗体反応の速度論的解析を行った。GL1-IgG1-SA (-)およびGL5-IgG1-SA (-)はシアリダーゼによる処理を行ったサンプルを測定に用いた。Sensor chip CM5 (GE Healthcare) 上にアミンカップリング法でAnti-Human IgG (γ-chain specific), F(ab′)2 fragment antibody produced in goat (Sigma) を適当量固定化し、そこへ目的の抗体をキャプチャーさせた。次に、ヒトIL-6レセプター希釈液とブランクであるランニングバッファーを流速20 μL/minで3分間インジェクトし、センサーチップ上にキャプチャーさせた抗体にヒトIL-6レセプターを相互作用させた。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4もしくはpH6.0の2 種類を用い、IL-6Rの希釈にもそれぞれのバッファーを使用した。その後流速20 μL/minで5分間ランニングバッファーを流しIL-6レセプターの解離を観察した後、10 mmol/L Glycine-HCl, pH1.5を流速30 μL/minで5 秒間インジェクトし、それを5回繰り返すことで、センサーチップを再生した。測定は全て37 ℃で実施した。測定で得られたセンサーグラムから、カイネティクスパラメーターである結合速度定数 ka (1/Ms)、および解離速度定数kd (1/s) を算出し、その値をもとに各抗体のヒトIL-6レセプターに対する KD(M) を算出した。各パラメーターの算出には Biacore T100 Evaluation Software (GE Healthcare)を用いた。その結果決定されたpH 7.4、pH 6.0における各抗体のKD値を以下の表4に示した。
〔実施例3〕ノーマルマウスを用いた可変領域にガラクトース末端N結合型糖鎖を導入したpH依存的結合抗ヒトIL-6レセプター抗体による抗原消失加速効果の検証
ノーマルマウスを用いたin vivo試験
ノーマルマウス(C57BL/6J mouse、Charles River Japan)にhsIL-6R(可溶型ヒトIL-6レセプター:参考例3にて作製)を単独投与もしくはhsIL-6Rおよび抗ヒトIL-6レセプター抗体を同時投与した後のhsIL-6Rおよび抗ヒトIL-6レセプター抗体の体内動態を評価した。hsIL-6R溶液(5μg/mL)もしくはhsIL-6Rおよび抗ヒトIL-6レセプター抗体の混合溶液(それぞれ5μg/mL、0.1 mg/mL)を尾静脈に10 mL/kgで単回投与した。このとき、hsIL-6Rに対して抗ヒトIL-6レセプター抗体は十分量過剰に存在することから、hsIL-6Rはほぼ全て抗体に結合していると考えられる。投与後15分間、7時間、1日間、2日間、3日間、4日間、7日間、14日間、21日間、28日間で採血を行った。採取した血液は直ちに4℃、15,000rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。抗ヒトIL-6レセプター抗体としては、前述のGL1-M111、GL5-M111、H54/L28-IgG1、GL1-IgG1および、GL5-IgG1を使用した。
ELISA法による血漿中抗ヒトIL-6レセプター抗体濃度測定
マウス血漿中の抗ヒトIL-6レセプター抗体濃度はELISA法にて測定した。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) をNunc-Immuno Plate, MaxiSoup (Nalge nunc International)に分注し、4℃で1晩静置しAnti-Human IgG固相化プレートを作成した。血漿中濃度として0.8、0.4、0.2、0.1、0.05、0.025、0.0125μg/mLの検量線試料と100倍以上希釈したマウス血漿測定試料を調製し、これら検量線試料および血漿測定試料100μLに20 ng/mLのhsIL-6Rを200μL加え、室温で1時間静置した。その後Anti-Human IgG固相化プレートに分注しさらに室温で1時間静置した。その後Biotinylated Anti-human IL-6 R Antibody(R&D)を室温で1時間反応させ、さらにStreptavidin-PolyHRP80 (Stereospecific Detection Technologies)を室温で1時間反応させ、TMB One Component HRP Microwell Substrate (BioFX Laboratories)を基質として用い発色反応を行い、1N-Sulfuric acid(Showa Chemical)で反応停止後、マイクロプレートリーダーにて450 nmの吸光度を測定した。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後のノーマルマウスにおける血漿中抗体濃度推移を図8あるいは図10に示した。
電気化学発光法による血漿中hsIL-6R濃度測定
マウスの血漿中hsIL-6R濃度は電気化学発光法にて測定した。2000、1000、500、250、125、62.5、31.25 pg/mLに調整したhsIL-6R検量線試料および50倍以上希釈したマウス血漿測定試料を調製し、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D)およびBiotinylated Anti-human IL-6 R Antibody (R&D)およびWT-IgG1溶液を混合し37℃で1晩反応させた。その際の抗ヒトIL-6レセプター抗体として、H(WT)(配列番号:37)とL(WT)(配列番号:38)からなるWT-IgG1の終濃度はサンプルに含まれる抗ヒトIL-6レセプター抗体濃度より過剰の333μg/mLであり、サンプル中のほぼ全てのhsIL-6RをWT-IgG1と結合した状態にすることを目的とした。その後、MA400 PR Streptavidin Plate(Meso Scale Discovery)に分注した。さらに室温で1時間反応させ洗浄後、Read Buffer T(×4)(Meso Scale Discovery)を分注し、ただちにSECTOR PR 400 reader(Meso Scale Discovery)で測定を行った。hSIL-6R濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後のノーマルマウスにおける血漿中hsIL-6R濃度推移を図9あるいは図11に示した。
pH依存的ヒトIL-6レセプター結合の効果
H54/L28-IgG1とpH依存的ヒトIL-6レセプター結合を有するGL1-IgG1のin vivo試験の結果を比較した。図8に示したとおり、両者の抗体血漿中滞留性はほぼ同等であったが、図9に示したとおり、pH依存的ヒトIL-6レセプター結合を有するGL1-IgG1と同時に投与したhsIL-6Rのほうが、H54/L28-IgG1と同時に投与したhsIL-6Rと比較して、hsIL-6Rの消失が早くなっていることが確認され、pH依存的ヒトIL-6レセプター結合能を付与することによって4日後の血漿中hsIL-6R濃度はそれぞれ約17倍および約34倍低減できることが見出された。
N結合型糖鎖付加の効果
GL1-M111あるいはGL1-IgG1とN結合型糖鎖を付加したGL5-M111あるいはGL5-IgG1のin vivo試験結果を比較した。図8あるいは図10に示したとおり、N結合型糖鎖を付加したGL5-M111あるいはGL5-IgG1の血漿中抗体濃度は、それぞれGL1-M111あるいはGL1-IgG1に比較して、若干低く推移することが分かった。しかしながら、抗体の血漿中半減期は両者に差がないことから、この血漿中抗体濃度推移の差はN結合型糖鎖を付加した抗体において組織への分布容積が大きくなっているためであり、抗体の消失には差がないと考えられた。次に、図9あるいは図11に示したとおり、N結合型糖鎖を付加したGL5-M111-SA(-)あるいはGL5-IgG1-SA(-)と同時に投与したhsIL-6Rのほうが、N結合型糖鎖が付加されていないGL1-M111-SA(-)あるいはGL1-IgG1-SA(-)と同時に投与したhsIL-6Rと比較して、hsIL-6Rの消失が著しく早くなっていることが確認された。N結合型糖鎖を付与することによって、GL5-M111-SA(-)とGL5-IgG1-SA(-)では2日後の血漿中hsIL-6R濃度をそれぞれ約6倍および約27倍低減できることが見出された。N結合型糖鎖を付与することによって、前述のように抗体の血漿中濃度推移は若干低下したが、それを大幅に上回る血漿中hsIL-6R濃度低減効果を示すことが見出された。これはすなわち、pH依存的に可溶型IL-6レセプターに結合し、さらにN結合型糖鎖を付加した抗体の投与では、N結合型糖鎖が付加されていない抗体に比べ可溶型IL-6レセプターの消失がより加速できたことを意味する。すなわち、このような抗体を生体内に投与することによって、生体内の血漿中の抗原濃度を低減することが可能となる。また、図10あるいは図11に示したとおり、GL1-IgG1-SA(+)とGL1-IgG1-SA(-)の血漿中抗体濃度推移が等しく、また、GL1-IgG1-SA(+)と同時に投与したhIL-6Rの消失が、GL1-IgG1-SA(-)と同時に投与したhIL-6Rの消失と同等であることから、重鎖定常領域のEUナンバリングにおいて297番目に付加するN結合型糖鎖に対するシアル酸の除去は、抗体の血漿中濃度推移あるいは可溶型IL-6レセプターの消失に影響を与えないことが示された。
H54/L28-IgG1-SA(+)のような通常の中和抗体は、抗体を投与すると結合する抗原のクリアランスを低下させ、抗原はより血漿中に長く滞留する。抗体投与によってその作用を中和したい抗原の血漿中滞留性が長くなることは好ましくない。抗原に対する結合にpH依存性(中性条件下で結合し、酸性条件下で解離する)を付与することで、抗原の血漿中滞留性を短くすることが出来る。今回、さらにN結合型糖鎖を付与することで、抗原の血漿中滞留性をさらに短くすることができた。さらに、pH依存的に抗原に結合し中性条件下(pH7.4)におけるFcRnに対する結合を付与した抗体を投与することによって、抗原単独のクリアランスと同等のクリアランスを達成することが可能であることが示された。これまでに抗体投与により抗原単独のクリアランスと同等のクリアランスを達成する方法は知られておらず、本検討で見出された方法は、抗体投与によってその作用を中和したい抗原の血漿中滞留性が長くなることを抑制する方法として極めて有用である。また、本検討により、抗体に抗原との結合に関与しないN結合型糖鎖を付加することに関して、抗原に対してpH依存的に結合する抗体と組み合わせることで、抗原の消失を加速するという利点が初めて見出された。また、抗原との結合に関与しないN結合型糖鎖を付加する残基の箇所はGL5-M111あるいはGL5-IgG1の軽鎖可変領域のkabatナンバリングにおける20番目と24番目に限られないことから、アミノ酸置換の箇所によらず、抗原との結合に関与せずN結合型糖鎖を付加できる箇所であれば、抗原の消失を加速する効果があると考えられる。
〔実施例4〕可変領域にハイマンノース型糖鎖を導入したpH依存的結合抗ヒトIL-6レセプター抗体の作成
ハイマンノース型糖鎖を有するpH依存的ヒトIL-6レセプター結合抗体の調製
VH3-IgG1(配列番号:28)とVL3-CK(配列番号:29)からなるGL1-IgG1、ならびにVH3-IgG1(配列番号:28)とL06-CK(配列番号:36)からなるGL5-IgG1を発現し、精製を行った。発現と精製の方法は参考例2の当業者公知の方法に従って実施した。発現ベクターを一過的に導入する際は細胞培養液中に10 μg/mLとなるようキフネンシン(SIGMA)を加え、ハイマンノース型糖鎖を有するGL1-IgG1_kif+、GL5-IgG1_kif+を取得した。
還元SDS-PAGEによるIgG1型検体の糖鎖付加の観察
N結合型糖鎖付加配列を導入した抗体の糖鎖付加を還元SDS-PAGEにて観察した。5 μgずつ分注したGL1-G1_kif+ならびにGL5-G1_kif+に、5%2-mercaptoethanol (Wako) を含むTris-Glycine SDS Sample Buffer(2x) (TEFCO)を添加後、70℃で5分インキュベーションして泳動サンプルを調製した。Precision plus blue standard (Bio-Rad)を分子量マーカーとし、12% SDS-PAGE mini 15well (TEFCO)を用いて電気泳動後、CBB Stain One (Nacalaitesque) によりCBB染色を行った。得られた泳動パターンは図12に示した。
図に示したとおり、GL5-IgG1_kif+の軽鎖はGL1-IgG1_kif+の軽鎖と比較して高分子量側に大きくシフトしていた。このことから、kifnensien存在下においても、軽鎖の2箇所にN結合型糖鎖が付加したと考えられた。
GL5-G1_kif+の質量分析
GL5-G1_kif+に付加したN結合型糖鎖を質量から推定するため、質量分析を実施した。Neuraminidase処理後のGL5-M11をDTT (Wako)を用いて還元処理し、Ultimate3000 (Dionex)とLTQ VELOS (Thermo scientific)を用いてRP-LC/ESI-MSを実施した。表5に示した高マンノースN結合型糖鎖のいずれが付加したかを質量から推定し、得られたマスクロマトグラムを図13に示した。図13に示したように、軽鎖に付加した2箇所の糖鎖がMan6とMan9のもの、Man7とMan9のもの、Man8とMan9のもの、ならびにいずれもMan9のものが存在した。
ヒトIL-6レセプター(hIL6R)に対する結合評価
Biacore T100 (GE Healthcare) を用いて、GL1-IgG1_kif+、GL5-IgG1_kif+のヒトIL-6レセプターとの抗原抗体反応の速度論的解析を行った。Sensor chip CM5 (GE Healthcare) 上にアミンカップリング法でAnti-Human IgG (γ-chain specific), F(ab′)2 fragment antibody produced in goat (Sigma) を適当量固定化し、そこへ目的の抗体をキャプチャーさせた。次に、ヒトIL-6レセプター希釈液とブランクであるランニングバッファーを流速20 μL/minで3分間インジェクトし、センサーチップ上にキャプチャーさせた抗体にヒトIL-6レセプターを相互作用させた。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4もしくはpH6.0の2 種類を用い、IL-6Rの希釈にもそれぞれのバッファーを使用した。その後流速20 μL/minで5分間ランニングバッファーを流しIL-6レセプターの解離を観察した後、10 mmol/L Glycine-HCl, pH1.5を流速30 μL/minで5 秒間インジェクトし、それを5回繰り返すことで、センサーチップを再生した。測定は全て37 ℃で実施した。測定で得られたセンサーグラムから、カイネティクスパラメーターである結合速度定数 ka (1/Ms)、および解離速度定数kd (1/s) を算出し、その値をもとに各抗体のヒトIL-6レセプターに対する KD(M) を算出した。各パラメーターの算出には Biacore T100 Evaluation Software (GE Healthcare)を用いた。その結果決定されたpH 7.4またはpH 6.0における各抗体のKD値を以下の表6に示した。pH7.4およびpH6.0の両条件において、両抗体のKD値に大きな差異は認められなかった。
〔実施例4〕ノーマルマウスを用いた可変領域にハイマンノース型糖鎖を導入したpH依存的結合抗ヒトIL-6レセプター抗体による抗原消失加速効果の検証
ノーマルマウスを用いたin vivo試験
ノーマルマウス(C57BL/6J mouse、Charles River Japan)にhsIL-6R(可溶型ヒトIL-6レセプター:参考例3にて作製)を単独投与もしくはhsIL-6Rおよび抗ヒトIL-6レセプター抗体を同時投与した後のhsIL-6Rおよび抗ヒトIL-6レセプター抗体の体内動態を評価した。hsIL-6R溶液(5μg/mL)もしくはhsIL-6Rおよび抗ヒトIL-6レセプター抗体の混合溶液(それぞれ5μg/mL、0.1 mg/mL)を尾静脈に10 mL/kgで単回投与した。このとき、hsIL-6Rに対して抗ヒトIL-6レセプター抗体は十分量過剰に存在することから、hsIL-6Rはほぼ全て抗体に結合していると考えられる。投与後15分間、7時間、1日間、2日間、3日間、4日間、7日間で採血を行った。採取した血液は直ちに4℃、15,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。抗ヒトIL-6レセプター抗体としては、前述のGL1-IgG1_kif+、GL5-IgG1_kif+を使用した。
ELISA法による血漿中抗ヒトIL-6レセプター抗体濃度測定
マウス血漿中の抗ヒトIL-6レセプター抗体濃度はELISA法にて測定した。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) をNunc-Immuno Plate, MaxiSoup (Nalge nunc International)に分注し、4℃で1晩静置しAnti-Human IgG固相化プレートを作成した。血漿中濃度として0.8、0.4、0.2、0.1、0.05、0.025、0.0125μg/mLの検量線試料と100倍以上希釈したマウス血漿測定試料を調製し、これら検量線試料および血漿測定試料100μLに20 ng/mLのhsIL-6Rを200μL加え、室温で1時間静置した。その後Anti-Human IgG固相化プレートに分注しさらに室温で1時間静置した。その後Biotinylated Anti-human IL-6 R Antibody(R&D)を室温で1時間反応させ、さらにStreptavidin-PolyHRP80 (Stereospecific Detection Technologies)を室温で1時間反応させ、TMB One Component HRP Microwell Substrate (BioFX Laboratories)を基質として用い発色反応を行い、1N-Sulfuric acid(Showa Chemical)で反応停止後、マイクロプレートリーダーにて450 nmの吸光度を測定した。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後のノーマルマウスにおける血漿中抗体濃度推移を図14に示した。
電気化学発光法による血漿中hsIL-6R濃度測定
マウスの血漿中hsIL-6R濃度は電気化学発光法にて測定した。2000、1000、500、250、125、62.5、31.25 pg/mLに調整したhsIL-6R検量線試料および50倍以上希釈したマウス血漿測定試料を調製し、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D)およびBiotinylated Anti-human IL-6 R Antibody (R&D)およびWT-IgG1溶液を混合し37℃で1晩反応させた。その際の抗ヒトIL-6レセプター抗体として、H(WT)(配列番号:37)とL(WT)(配列番号:38)からなるWT-IgG1の終濃度はサンプルに含まれる抗ヒトIL-6レセプター抗体濃度より過剰の333μg/mLであり、サンプル中のほぼ全てのhsIL-6RをWT-IgG1と結合した状態にすることを目的とした。その後、MA400 PR Streptavidin Plate(Meso Scale Discovery)に分注した。さらに室温で1時間反応させ洗浄後、Read Buffer T(×4)(Meso Scale Discovery)を分注し、ただちにSECTOR PR 400 reader(Meso Scale Discovery)で測定を行った。hSIL-6R濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後のノーマルマウスにおける血漿中hsIL-6R濃度推移を図15に示した。
マンノース型糖鎖付加の効果
GL1-IgG1_kif+とマンノース型糖鎖を付加したGL5-IgG1_kif+のin vivo試験結果を比較した。図14に示したとおり、マンノース型糖鎖を付加したGL5-IgG1_kif+の血漿中抗体濃度は、GL1-IgG1_kif+に比べ投与後7時間において約3.7倍低下したが、図15に示すとおり、マンノース型糖鎖を付加したGL5-IgG1_kif+と同時に投与したhsIL-6Rのほうが、マンノース型糖鎖が付加されていないGL1-IgG1_kif+と同時に投与したhsIL-6Rと比較して、投与後7時間においての血漿中hsIL-6R濃度を約12.9倍低減できることが見出された。マンノース型糖鎖を付与することによって、前述のように抗体の血漿中濃度は低下したが、それを大幅に上回る血漿中hsIL-6R濃度低減効果を示すことが見出された。これはすなわち、pH依存的に可溶型IL-6レセプターに結合し、さらにマンノース型糖鎖を付加した抗体の投与では、マンノース型糖鎖が付加されていない抗体に比べ可溶型IL-6レセプターの消失がより加速できたことを意味する。すなわち、このような抗体を生体内に投与することによって、生体内の血漿中の抗原濃度を低減することが可能となる。また、図15に示すとおり、GL5-IgG1_kif+と同時に投与したhIL-6Rの消失が、hIL-6Rのみを投与したときのhIL-6Rの消失より大きいことから、pH依存的に抗原と結合し、さらにマンノース型糖鎖を付加した抗体の投与により、抗原の血中濃度を、当該抗体投与前の血中濃度より低減できることが示唆された。
〔参考例1〕IgG抗体のアミノ酸置換した発現ベクターの構築
QuikChange Site-Directed Mutagenesis Kit(Stratagene)を用いて、添付説明書記載の方法で変異体を作製し、得られたプラスミド断片を動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。
〔参考例2〕IgG抗体の発現と精製
作製した発現ベクターをヒト胎児腎癌細胞由来HEK293H株(Invitrogen)、またはFreeStyle293細胞(Invitrogen社)に、一過性に導入し、抗体の発現を行った。得られた培養上清を回収した後、0.22 μmまたはフィルターMILLEX(R)-GV(Millipore)、または0.45 μmフィルターMILLEX(R)-GV(Millipore)を通して培養上清を得た。得られた培養上清から、rProtein A Sepharos Fast Flow(GEヘルスケア)またはProtein G Sepharose 4 Fast Flow(GEヘルスケア)を用いて当業者公知の方法で、抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science (1995) 4, 2411-2423)。
〔参考例3〕可溶型ヒトIL-6レセプター(hsIL-6R)の調製
抗原であるヒトIL-6レセプターの組み換えヒトIL-6レセプターは以下のように調製した。J. Immunol. 152, 4958-4968 (1994)で報告されているN末端側1番目から357番目のアミノ酸配列からなる可溶型ヒトIL-6レセプター(以下、hsIL-6R)のCHO定常発現株を当業者公知の方法で構築し、培養し、hsIL-6Rを発現させた。得られた培養上清から、Blue Sepharose 6 FFカラムクロマトグラフィー、ゲルろ過カラムクロマトグラフィーの2工程によりhsIL-6Rを精製した。最終工程においてメインピークとして溶出した画分を最終精製品とした。
〔参考例4〕ファージディスプレイ技術を用いたヒト抗体ライブラリからのCa依存的結合抗体の取得
naiveヒト抗体ファージディスプレイライブラリーの作製
ヒトPBMCから作成したpolyA RNAや、市販ヒトpolyA RNAなどをtemplateとして、(Methods Mol. Biol. (2002) 178, 87-100)に習い、ヒト抗体配列からなるFabドメインを提示する複数のヒト抗体ファージディスプレイライブラリーを構築した。
ビーズパンニングによるライブラリからのCa依存的結合抗体断片の取得
構築したヒト抗体ファージディスプレイライブラリーからの最初の選抜は、抗原への結合能をもつ抗体断片のみを濃縮、もしくはCa依存的結合能を指標に濃縮させた。Ca依存的結合能をもつ抗体断片を濃縮させる場合には、Caイオン存在下で抗原と結合させた後、EDTAによりCaイオンをキレートすることによりファージの溶出を行った。抗原として、ビオチン標識したヒトIL-6レセプターを用いた。
上記のように構築したファージディスプレイ用phagemidを保持した大腸菌からファージ産生を行い、得られた培養液を2.5 M NaCl/10%PEGにより沈殿させた後TBSにて希釈しファージライブラリ液とした。ファージライブラリ液にBSA, CaCl2を添加し、終濃度4% BSA, イオン化カルシウム濃度1.2 mMとなるよう調製した。パンニングは、一般的な方法である磁気ビーズに固定化した抗原を用いたパンニング方法を参考とした(J Immunol. Methods. (2008) 332 (1-2), 2-9、J Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2), 212-220、Mol. Cell. Proteomics. (2003) 2 (2), 61-69)。磁気ビーズにはNeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用いた。
具体的には、調製したファージライブラリ液に250 pmolのビオチン標識抗原を加え、室温で60分間抗原と接触させた。BSAでブロッキングした磁気ビーズを加え、室温で15分間結合させた。ビーズを1 mLの1.2 mM CaCl2/TBS(1.2 mM CaCl2を含むTBS)にて1回洗浄した。その後、結合能を持つ抗体断片を濃縮する場合には、一般的な方法で溶出を行い、Ca依存的結合能を持つ抗体断片を濃縮する場合には、2 mM EDTA/TBS(2mM EDTAを含むTBS)にビーズを懸濁し、ファージを回収した。回収したファージ溶液に、対数増殖期(OD600 0.4-0.7)となった大腸菌株TG1 10 mLを添加し、37℃、1 hr, 緩やかに攪拌培養を行うことにより感染させた。感染させた大腸菌を、225 mm x 225 mmのプレートへプレーティングした。再度この大腸菌から培養を開始し、ファージの培養を行った。
2回目以降のパンニングでは、Ca依存的結合能を指標に濃縮を行った。具体的には、調製したファージライブラリー液に40 pmolのビオチン標識抗原を加え、室温で60分間抗原と接触させた。BSAでブロッキングした磁気ビーズを加え、室温で15分間結合させた。ビーズを1 mLの1.2 mM CaCl2/TBST(1.2 mM CaCl2, 0.1% Tween-20を含むTBS)と1.2 mM CaCl2/TBSにて1回ずつ洗浄した。その後0.1 mLの2 mM EDTA/TBS(2mM EDTAを含むTBS)を加えビーズを室温で懸濁し、即座にMagnet Standを用いビーズを分離し、ファージ溶液を回収した。回収したファージ溶液を、対数増殖期(OD600 0.4-0.7) となった大腸菌株TG1 10 mLに添加、37℃、1 hr, 緩やかに攪拌培養を行うことにより感染させた。感染させた大腸菌を225 mm x 225 mmのプレートへプレーティングした。再度この大腸菌から培養を開始し、上記と同様にファージの培養を行い、パンニングを2回繰り返した。
ファージELISAによる評価
上記の方法により得られた大腸菌シングルコロニーから、(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清を回収した。ファージ含有培養上清に終濃度4%BSA, カルシウムイオン濃度1.2 mMとなるようBSA、 CaCl2を加え、ELISAに供した。ビオチン標識抗原を含むPBS 100μLにてStreptaWell 96マイクロタイタープレート(Roche)を一晩コートした。PBST(0.1%Tween20を含むPBS)にて洗浄し、抗原を除いた後、4% BSA-TBS 250μLにて1時間以上ブロッキングした。4% BSA-TBSを除き、ここに調製した培養上清を加え37℃で1時間静置しファージ提示抗体を結合させた。1.2 mM CaCl2/TBST (1.2 mM CaCl2, 0.1% Tween20を含むTBS)にて洗浄後、1.2 mM CaCl2/TBSもしくは1 mM EDTA/TBSを加え37℃で30分間静置しインキュベートした。1.2 mM CaCl2/TBSTにて洗浄後、4% BSA, イオン化カルシウム濃度1.2 mMとしたTBSにて希釈したHRP結合抗M13抗体(Amersham Parmacia Biotech)を1時間インキュベートさせた。1.2 mM CaCl2/TBSTにて洗浄後、TMB single solution(ZYMED)で検出し、硫酸の添加により反応を停止した後、450 nmの吸光度を測定した。Ca依存的結合能があると判断した抗体断片に対し、特異的なプライマーを用いて塩基配列解析を行った。
抗体の発現と精製
ファージELISAにより、Ca依存的結合能があると判断されたクローンについて、動物細胞発現用プラスミドへの導入を行った。抗体の発現は以下の方法を用いて行った。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)をFreeStyle 293 Expression Medium培地(Invitrogen)へ懸濁し、1.33 × 106個 /mLの細胞密度で6well plateの各ウェルへ3 mLずつ蒔きこみ、リポフェクション法により調製したプラスミドを細胞へ導入した。CO2インキュベーター(37度、8%CO2, 90 rpm)で4日間培養を行い、得られた培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定した。得られた値からPACE法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science (1995) 4, 2411-2423)。
〔参考例5〕取得された抗体のヒトIL-6レセプターに対するCa依存的結合能の評価
参考例4で取得された抗体6RL#9-IgG1(重鎖配列番号:7、軽鎖配列番号:39)、及び、FH4-IgG1(重鎖配列番号:40、軽鎖配列番号:41)についてCa依存的結合能があるかどうかを判断するため、Biacore T100 (GE Healthcare) を用いて抗原抗体反応の速度論的解析を行った。上記の重鎖可変領域と(配列番号:9のC末端の2アミノ酸が欠失した)IgG1の定常領域とが融合された重鎖配列が作製された。また、配列番号:41の軽鎖可変領域と軽鎖κ鎖(配列番号:42)の定常領域とが融合された軽鎖配列が作製された。Ca依存性を有さない抗体として、WO 2009/125825に記載されているH54/L28-IgG1(重鎖配列番号:26、軽鎖配列番号:27)を用いた。高カルシウムイオン濃度として、2 mMを使用し、低カルシウムイオン濃度の条件として3μMを使用した。抗原はヒトIL-6レセプター(IL-6R)を用いた。Sensor chip CM4 (GE Healthcare) 上にアミンカップリング法でprotein A (Invitrogen) を適当量固定化し、そこへ目的の抗体をキャプチャーさせた。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、2 mmol/L CaCl2、pH7.4もしくは10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v)Tween20、3 μmol/L CaCl2、pH7.4の2種類を用いた。測定は全て37℃で実施し、IL-6Rの希釈にもそれぞれのバッファーを使用した。
H54L28-IgG1に関しては、IL-6R希釈液とブランクであるランニングバッファーを流速20μL/minで3分間インジェクトし、センサーチップ上にキャプチャーさせた抗体にIL-6Rを相互作用させた。その後流速20μL/minで10分間ランニングバッファーを流しIL-6Rの解離を観察した後、10 mmol/L Glycine-HCl, pH1.5を流速30μL/minで30秒間インジェクトし、センサーチップを再生した。測定で得られたセンサーグラムから、カイネティクスパラメーターである結合速度定数 ka (1/Ms)、および解離速度定数 kd (1/s) を算出し、その値をもとに各抗体のヒトIL-6レセプターに対する解離定数KD (M) を算出した。各パラメーターの算出にはBiacore T100 Evaluation Software (GE Healthcare)を用いた。
FH4-IgG1、6RL#9-IgG1に関しては、IL-6R希釈液とブランクであるランニングバッファーを流速5μL/minで15分間インジェクトし、センサーチップ上にキャプチャーさせた抗体にIL-6Rを相互作用させた。その後、10 mmol/L Glycine-HCl, pH1.5を流速30μL/minで30秒間インジェクトし、センサーチップを再生した。測定で得られたセンサーグラムに対してsteady state affinity modelを使って解離定数KD (M) を算出した。各パラメーターの算出には Biacore T100 Evaluation Software (GE Healthcare)を用いた。
この方法により求めた2 mM CaCl2存在下における各抗体とIL-6Rとの解離定数KDを表7に示す。H54/L28-IgG1ではCa濃度の違いによるIL-6Rに対する結合の違いは観察されなかったが、FH4-IgG1、6RL#9-IgG1では低濃度のCa条件下では結合の著しい減弱が観察された(図16、17、18)。
H54/L28-IgG1については2 mM Ca濃度存在下と同様の方法で、Ca濃度が3μMの条件下でのKDを算出することができる。FH4-IgG1、6RL#9-IgG1についてはCa濃度が3μMの場合は、ほぼIL-6Rに対する結合が観察されなかったため、上記の方法によるKDの算出は困難であるが、下記の式1を用いることでKDを予測することが可能である (Biacore T100 Software Handbook, BR-1006-48, AE 01/2007)。
〔式1〕
Req=C・Rmax/(KD+C)+RI
上記式1中の各項目の意味を示す;
Req (RU): 定常状態結合レベル(Steady state binding levels)
Rmax (RU):アナライトの表面結合能(Analyte binding capacity of the surface)
RI (RU): 試料中の容積屈折率寄与(Bulk refractive index contribution in the sample)
C (M): アナライト濃度(Analyte concentration)
KD(M): 平衡解離定数(Equilibrium dissociation constant)
この式1を用いて、Ca濃度が3 μmol/Lの場合の予測される各抗体とIL-6Rとの解離定数KDを概算した結果を表8に示す。
上記表8中、Req、Rmax、RI、Cは測定結果を基に仮定された値である。
この結果から、FH4-IgG1、6RL#9-IgG1は、2 mM CaCl2から3μM CaCl2にすることで、IL-6Rに対するKDがそれぞれ約60倍、約120倍上昇(60倍、120倍以上アフィニティーが低減)すると予測された。表9にH54/L28-IgG1、FH4-IgG1、6RL#9-IgG1の3種類の抗体の2 mMCaCl2存在下および3 μM CaCl2存在下におけるKD値、および、KD値のCa依存性についてまとめた。
〔参考例6〕取得された抗体へのカルシウムイオン結合評価
次に、抗体へのカルシウムイオンの結合の評価を行うために、示差走査型熱量測定(DSC)による熱変性中間温度(Tm値)の評価を行った(MicroCal VP-Capillary DSC、MicroCal製)。熱変性中間温度(Tm値)は安定性の指標であり、カルシウムイオンが結合してタンパク質が安定化すると、熱変性中間温度(Tm値)はカルシウムイオンが結合していない場合に比べて高くなる(J. Biol. Chem. (2008) 283 (37) 25140 - 25149)ことを利用して、抗体へのカルシウムイオンの結合の評価を行った。精製した抗体を20 mM Tris-HCl, 150 mM NaCl, 2 mM CaCl2, pH7.4、または20 mM Tris-HCl, 150 mM NaCl, 3μM CaCl2, pH7.4の溶液に対して透析(EasySEP, TOMY)を行った。タンパク質溶液を透析に用いた溶液で0.1 mg/mLに調製し、20℃から115℃まで240℃/hrの昇温速度でDSC測定を行った。得られたDSCの変性曲線を元に各抗体のFabドメインの熱変性中間温度(Tm値)を算出し表10に示した。
表10の結果からカルシウム依存的結合能を示すFH4および6RL#9はカルシウムイオンの濃度によりFabのTm値が変動し、カルシウム依存的結合能を示さないH54/L28はTm値が変動しないことが示された。FH4および6RL#9で示されたFabのTm値の変動は、これらの抗体にカルシウムイオンが結合し、Fab部分が安定化したことを示している。これにより、FH4および6RL#9はカルシウムイオンが結合し、一方でH54/L28はカルシウムイオンが結合していないことが示された。
〔参考例7〕ノーマルマウスを用いたCa依存性結合抗体の抗原の血漿中滞留性への影響の評価
ノーマルマウスを用いたin vivo試験
ノーマルマウス(C57BL/6J mouse、Charles River Japan)にhsIL-6R(可溶型ヒトIL-6レセプター:参考例3にて作製)を単独投与もしくはhsIL-6Rおよび抗ヒトIL-6レセプター抗体を同時投与した後のhsIL-6Rおよび抗ヒトIL-6レセプター抗体の体内動態を評価した。hsIL-6R溶液(5μg/mL)、もしくは、hsIL-6Rと抗ヒトIL-6レセプター抗体の混合溶液を尾静脈に10 mL/kgで単回投与した。抗ヒトIL-6レセプター抗体としては、上述のH54/L28-IgG1、6RL#9-IgG1、FH4-IgG1を使用した。
混合溶液中のhsIL-6R濃度は全て5μg/mLであるが、抗ヒトIL-6レセプター抗体濃度は抗体毎に異なり、H54/L28-IgG1は0.1 mg/mL、6RL#9-IgG1およびFH4-IgG1は10 mg/mL、このとき、hsIL-6Rに対して抗ヒトIL-6レセプター抗体は十分量過剰に存在することから、hsIL-6Rは大部分が抗体に結合していると考えられる。投与後15分間、7時間、1日間、2日間、4日間、7日間、14日間、21日間、28日間で採血を行った。採取した血液は直ちに4℃、12,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。
ELISA法によるノーマルマウス血漿中の抗ヒトIL-6レセプター抗体濃度測定
マウス血漿中の抗ヒトIL-6レセプター抗体濃度はELISA法にて測定した。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) をNunc-Immuno Plate, MaxiSoup (Nalge nunc International)に分注し、4℃で1晩静置しAnti-Human IgG固相化プレートを作成した。血漿中濃度として0.64、0.32、0.16、0.08、0.04、0.02、0.01μg/mLの検量線試料と100倍以上希釈したマウス血漿測定試料を調製し、Anti-Human IgG固相化プレートに分注して25℃で1時間インキュベーションした。その後Biotinylated Anti-human IL-6 R Antibody(R&D)を25℃で1時間反応させ、さらにStreptavidin-PolyHRP80 (Stereospecific Detection Technologies)を25℃で0.5時間反応させ、TMB One Component HRP Microwell Substrate (BioFX Laboratories)を基質として用い発色反応を行い、1N-Sulfuric acid(Showa Chemical)で反応停止後、マイクロプレートリーダーにて450 nmの吸光度を測定した。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後のノーマルマウスにおけるH54/L28-IgG1、6RL#9-IgG1、FH4-IgG1の血漿中抗体濃度推移を図19に示した。
電気化学発光法による血漿中hsIL-6R濃度測定
マウスの血漿中hsIL-6R濃度は電気化学発光法にて測定した。2000、1000、500、250、125、62.5、31.25 pg/mLに調整したhsIL-6R検量線試料および50倍以上希釈したマウス血漿測定試料を調製し、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D)およびBiotinylated Anti-human IL-6 R Antibody (R&D)およびトシリズマブ(重鎖配列番号:37、軽鎖配列番号:38)溶液を混合し4℃で1晩反応させた。その際のAssay bufferには10 mM EDTAが含まれており、サンプル中のFree Ca濃度を低下させ、サンプル中のほぼ全てのhsIL-6Rが6RL#9-IgG1もしくはFH4-IgG1から解離し、添加したトシリズマブと結合した状態とすることを目的とした。その後、MA400 PR Streptavidin Plate(Meso Scale Discovery)に分注した。さらに25℃で1時間反応させ洗浄後、Read Buffer T(×4)(Meso Scale Discovery)を分注し、ただちにSECTOR PR 400 reader(Meso Scale Discovery)で測定を行った。hSIL-6R濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後のノーマルマウスにおける血漿中hsIL-6R濃度推移を図20に示した。
結果、hsIL-6R単独は非常に早い消失を示したのに対して、hsIL-6RとCa依存的な結合が無い通常の抗体であるH54/L28-IgG1を同時に投与した場合は、hsIL-6Rの消失を大幅に遅くした。それに対して、hsIL-6Rと100倍以上のCa依存的な結合を有する6RL#9-IgG1あるいはFH4-IgG1を同時に投与した場合は、hsIL-6Rの消失を大幅に加速した。H54/L28-IgG1を同時に投与した場合と比較して、6RL#9-IgG1およびFH4-IgG1を同時に投与した場合は、Day1における血漿中のhsIL-6R濃度をそれぞれ39倍および2倍低減することが出来た。これよりカルシウム依存的結合抗体が血漿中からの抗原の消失を加速可能であることが確認された。
〔参考例8〕6RL#9抗体のカルシウムイオン結合部位のX線結晶構造解析による同定X線結晶構造解析
参考例6に示されたように、6RL#9抗体はカルシウムイオンと結合することが熱変性温度Tm値の測定から示唆された。しかし、6RL#9抗体のどの部位がカルシウムイオンと結合しているか予想できなかったため、X線結晶構造解析の手法を用いることによって、カルシウムイオンが相互作用する6RL#9抗体の配列中の残基が特定された。
6RL#9抗体の発現および精製
X線結晶構造解析に用いるために発現させた6RL#9抗体が精製された。具体的には、参考例5に示されたように6RL#9抗体の重鎖と軽鎖をそれぞれ発現させることが出来るように調製された動物発現用プラスミドが動物細胞に一過的に導入された。最終細胞密度1 x 106細胞/mLとなるようにFreeStyle 293 Expression Medium培地(Invitrogen)へ懸濁された800 mLのヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に、リポフェクション法により調製されたプラスミドが導入された。プラスミドが導入された細胞はCO2インキュベーター(37℃、8%CO2、90 rpm)中で5日間培養された。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いた当業者公知の方法にしたがって、上記のように得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いて測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
6RL#9抗体からのFabフラグメントの精製
分子量分画サイズ10000MWCOの限外ろ過膜 を用いて6RL#9抗体が21 mg/mLまで濃縮された。L-Cystein 4 mM、EDTA 5 mM、20 mMリン酸ナトリウム緩衝液(pH 6.5)を用いて5 mg/mLによって希釈された2.5 mLの当該抗体の試料が調製された。0.125 mgのPapain(RocheApplied Science)を加えて攪拌された当該試料が35℃にて2時間静置された。静置後、プロテアーゼインヒビターカクテルミニ、EDTAフリー(Roche Applied Science)1錠を溶かした10 mLの25 mM MES 緩衝液(pH6)をさらに当該試料に加え、氷中に静置することによって、Papainによるプロテアーゼ反応が停止された。次に、当該試料が、下流に1 mLサイズのProteinA担体カラムHiTrap MabSelect Sure(GE Healthcare)がタンデムにつながれた25 mM MES 緩衝液pH6で平衡化された1 mLサイズの陽イオン交換カラムHiTrap SP HP(GE Healthcare)に添加された。同緩衝液中NaCl濃度を300 mMまで直線的に上げて溶出をおこなうことで6RL#9抗体のFabフラグメントの精製画分が得られた。次に、得られた精製画分が5000MWCOの限外ろ過膜 により0.8 mL程度まで濃縮された。50 mM NaCl を含む100 mM HEPES緩衝液(pH 8)で平衡化されたゲルろ過カラムSuperdex 200 10/300 GL(GE Healthcare)に濃縮液が添加された。結晶化用の精製6RL#9抗体のFabフラグメントが同緩衝液を用いてカラムから溶出された。なお、上記のすべてのカラム操作は6から7.5℃の低温下にて実施された。
6RL#9抗体のFabフラグメントのCa存在下での結晶化
予め一般的な条件設定で6RL#9 Fabフラグメントの種結晶が得られた。つぎに5 mM となるようにCaCl2が加えられた精製6RL#9抗体のFabフラグメントが5000MWCOの限外ろ過膜を用いて12 mg/mLに濃縮された。つぎに、ハンギングドロップ蒸気拡散法によって、前記のように濃縮された試料の結晶化が実施された。リザーバー溶液として20-29%のPEG4000を含む100 mM HEPES緩衝液(pH7.5)が用いられた。カバーグラス上で0.8μlのリザーバー溶液および0.8μlの前記濃縮試料の混合液に対して、29% PEG4000および5 mM CaCl2を含む100 mM HEPES緩衝液(pH7.5)中で破砕された前記種結晶が100-10000倍に希釈された希釈系列の溶液0.2μlを加えることによって結晶化ドロップが調製された。当該結晶化ドロップを20℃に2日から3日静置することによって得られた薄い板状の結晶のX線回折データが測定された。
6RL#9抗体のFabフラグメントのCa非存在下での結晶化
精製6RL#9抗体のFabフラグメントが5000MWCOの限外ろ過膜 を用いて15 mg/mlに濃縮された。つぎに、ハンギングドロップ蒸気拡散法によって、前記のように濃縮された試料の結晶化が実施された。リザーバー溶液として18-25%のPEG4000を含む100 mM HEPES緩衝液(pH7.5)が用いられた。カバーグラス上で0.8μlのリザーバー溶液および0.8μlの前記濃縮試料の混合液に対して、25% PEG4000を含む100 mM HEPES緩衝液(pH7.5)中で破砕されたCa存在下で得られた6RL#9抗体のFabフラグメントの結晶が100-10000倍に希釈された希釈系列の溶液0.2μlを加えることによって結晶化ドロップが調製された。当該結晶化ドロップを20℃に2日から3日静置することによって得られた薄い板状の結晶のX線回折データが測定された。
6RL#9抗体のFabフラグメントのCa存在下での結晶のX線回折データの測定
35% PEG4000および5 mM CaCl2を含む100mM HEPES緩衝液(pH7.5)の溶液に浸された6RL#9抗体のFabフラグメントのCa存在下で得られた単結晶一つを、微小なナイロンループ付きのピンを用いて外液ごとすくいとることによって、当該単結晶が液体窒素中で凍結された。高エネルギー加速器研究機構の放射光施設フォトンファクトリーのビームラインBL-17Aを用いて、前記の凍結結晶のX線回折データが測定された。なお、測定中は常に-178℃の窒素気流中に凍結結晶を置くことで凍結状態が維持された。ビームラインに備え付けられたCCDディテクタQuantum315r(ADSC)を用い、結晶を1°ずつ回転させながらトータル180枚の回折画像が収集された。格子定数の決定、回折斑点の指数付け、および回折データの処理がプログラムXia2(CCP4 Software Suite)、XDS Package(Walfgang Kabsch)ならびにScala(CCP4 Software Suite)によって行われた。最終的に分解能2.2Åまでの回折強度データが得られた。本結晶は、空間群P212121に属し、格子定数a=45.47Å、b=79.86Å、c=116.25Å、α=90°、β=90°、γ=90°であった。
6RL#9抗体のFabフラグメントのCa非存在下での結晶のX線回折データの測定
35% PEG4000を含む100 mM HEPES緩衝液(pH7.5)の溶液に浸された6RL#9抗体のFabフラグメントのCa非存在下で得られた単結晶一つを、微小なナイロンループ付きのピンを用いて外液ごとすくいとることによって、当該単結晶が液体窒素中で凍結された。高エネルギー加速器研究機構の放射光施設フォトンファクトリーのビームラインBL-5Aを用いて、前記の凍結結晶のX線回折データが測定された。なお、測定中は常に-178℃の窒素気流中に凍結結晶を置くことで凍結状態が維持された。ビームラインに備え付けられたCCDディテクタQuantum210r(ADSC)を用い、結晶を1°ずつ回転させながらトータル180枚の回折画像が収集された。格子定数の決定、回折斑点の指数付け、および回折データの処理がプログラムXia2(CCP4 Software Suite)、XDS Package(Walfgang Kabsch)ならびにScala(CCP4 Software Suite)によって行われた。最終的に分解能2.3Åまでの回折強度データが得られた。本結晶は、空間群P212121に属し、格子定数a=45.40Å、b=79.63Å、c=116.07Å、α=90°、β=90°、γ=90°であり、Ca存在下の結晶と同型であった。
6RL#9抗体のFabフラグメントのCa存在下での結晶の構造解析
プログラムPhaser(CCP4 Software Suite)を用いた分子置換法によって、6RL#9抗体のFabフラグメントのCa存在下での結晶の構造が決定された。得られた結晶格子の大きさと6RL#9抗体のFabフラグメントの分子量から、非対称単位中の分子数が一個であると予想された。一次配列上の相同性をもとにPDB code: 1ZA6の構造座標から取り出されたA鎖112-220番およびB鎖116-218番のアミノ酸残基部分が、CLおよびCH1領域の探索用モデル分子とされた。次にPDB code: 1ZA6の構造座標から取り出されたB鎖1-115番のアミノ酸残基部分が、VH領域の探索用モデル分子とされた。最後にPDB code 2A9Mの構造座標から取り出された軽鎖3-147番のアミノ酸残基が、VL領域の探索用モデル分子とされた。この順番にしたがい各探索用モデル分子の結晶格子内での向きと位置を回転関数および並進関数から決定することによって、6RL#9抗体のFabフラグメントの初期構造モデルが得られた。当該初期構造モデルに対してVH、VL、CH1、CLの各ドメインを動かす剛体精密化をおこなうことにより、25-3.0Åの反射データに対する結晶学的信頼度因子R値は46.9%、Free R値は48.6%となった。さらにプログラムRefmac5(CCP4 Software Suite)を用いた構造精密化と、実験的に決定された構造因子Foとモデルから計算された構造因子Fcおよび位相を用い計算された2Fo-Fc、Fo-Fcを係数とする電子密度マップを参照しながらモデル修正を繰り返しプログラムCoot(Paul Emsley)上でおこなうことによってモデルの精密化がおこなわれた。最後に2Fo-Fc、Fo-Fcを係数とする電子密度マップをもとにCaイオンおよび水分子をモデルに組み込むことによって、プログラムRefmac5(CCP4 Software Suite)を用いて精密化がおこなわれた。分解能25-2.2Åの21020個の反射データを用いることによって、最終的に3440原子のモデルに対する結晶学的信頼度因子R値は20.0%、Free R値は27.9%となった。
6RL#9抗体のFabフラグメントのCa非存在下での結晶のX線回折データの測定
6RL#9抗体のFabフラグメントのCa非存在下での結晶の構造は、同型であるCa存在下結晶の構造を使って決定された。6RL#9抗体のFabフラグメントのCa存在下での結晶の構造座標から水分子とCaイオン分子がのぞかれ、VH、VL、CH1、CLの各ドメインを動かす剛体精密化がおこなわれた。25-3.0Åの反射データに対する結晶学的信頼度因子R値は30.3%、FreeR値は31.7%となった。さらにプログラムRefmac5(CCP4 Software Suite)を用いた構造精密化と、実験的に決定された構造因子Foとモデルから計算された構造因子Fcおよび位相を用い計算された2Fo-Fc、Fo-Fcを係数とする電子密度マップを参照しながらモデル修正を繰り返しプログラムCoot(Paul Emsley)上でおこなうことによってモデルの精密化がおこなわれた。最後に2Fo-Fc、Fo-Fcを係数とする電子密度マップをもとに水分子をモデルに組み込むことによって、プログラムRefmac5(CCP4 Software Suite)を用いて精密化がおこなわれた。分解能25-2.3Åの18357個の反射データを用いることによって、最終的に3351原子のモデルに対する結晶学的信頼度因子R値は20.9%、Free R値は27.7%となった。
6RL#9抗体のFabフラグメントのCa存在または非存在下での結晶のX線回析データの比較
6RL#9抗体のFabフラグメントのCa存在下での結晶およびCa非存在下での結晶の構造を比較すると、重鎖CDR3に大きな変化がみられた。X線結晶構造解析で決定された6RL#9抗体のFabフラグメントの重鎖CDR3の構造を図21に示した。具体的には、Ca存在下での6RL#9抗体のFabフラグメントの結晶では、重鎖CDR3ループ部分の中心部分にカルシウムイオンが存在していた。カルシウムイオンは、重鎖CDR3の95位、96位および100a位(Kabatナンバリング)と相互作用していると考えられた。Ca存在下では、抗原との結合に重要である重鎖CDR3ループがカルシウムと結合することによって安定化し、抗原との結合に最適な構造となっていることが考えられた。抗体の重鎖CDR3にカルシウムが結合する例は今までに報告されておらず、抗体の重鎖CDR3にカルシウムが結合した構造は新規な構造である。
〔参考例9〕ファージディスプレイ技術を用いたヒト抗体ライブラリからのCa依存的にIL-6に結合する抗体の取得
ナイーブヒト抗体ファージディスプレイライブラリの作製
ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型として当業者に公知な方法にしたがい、互いに異なるヒト抗体配列のFabドメインを提示する複数のファージからなるヒト抗体ファージディスプレイライブラリが構築された。
ビーズパンニングによるライブラリからのCa依存的に抗原に結合する抗体断片の取得
構築されたナイーブヒト抗体ファージディスプレイライブラリからの最初の選抜は、抗原(IL-6)への結合能をもつ抗体断片のみの濃縮によって実施された。抗原としてビオチン標識されたIL-6が用いられた。構築されたファージディスプレイ用ファージミドを保持した大腸菌からファージ産生が行われた。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%BSAおよび1.2mMカルシウムイオン濃度となるようにBSAおよびCaCl2が添加された。パンニング方法として、一般的な方法である磁気ビーズに固定化した抗原を用いたパンニング方法が参照された(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原を加えることによって、当該ファージライブラリ液を室温にて60分間抗原と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズは1.2 mM CaCl2/TBST(1.2 mM CaCl2を含むTBST)にて3回洗浄された後、1 mLの1.2 mM CaCl2/TBS(1.2 mM CaCl2を含むTBS)にてさらに2回洗浄された。その後、0.5 mLの1 mg/mLのトリプシンが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いてビーズが分離され、ファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株TG1に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
2回目以降のパンニングでは、Ca依存的結合能を指標にファージの濃縮が行われた。具体的には、調製したファージライブラリ液に40 pmolのビオチン標識抗原を加えることによって、ファージライブラリを室温で60分間抗原と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温で15分間結合させた。ビーズは1 mLの1.2 mM CaCl2/TBSTと1.2 mM CaCl2/TBSにて洗浄された。その後0.1mLの2 mM EDTA/TBSが加えられたビーズは室温で懸濁された後、即座に磁気スタンドを用いてビーズが分離され、ファージ溶液が回収された。回収されたファージ溶液に100 mg/mLのトリプシン5μLを加えることによって、Fabを提示しないファージのpIIIタンパク質(ヘルパーファージ由来のpIIIタンパク質)が切断され、Fabを提示しないファージの大腸菌に対する感染能を失わせた。トリプシン処理されたファージ溶液から回収されたファージが、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株TG1に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによってファージライブラリ液が回収された。Ca依存的結合能を指標とするパンニングが3回繰り返された。
ファージELISAによる評価
上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。終濃度4%BSAおよび1.2 mMカルシウムイオン濃度となるようにBSAおよびCaCl2が加えられたファージを含有する培養上清が以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのPBSにて一晩コートされた。当該プレートの各ウェルをPBSTにて洗浄することによって抗原が除かれた後、当該ウェルが1時間以上250μLの4%BSA-TBSにてブロッキングされた。4%BSA-TBSが除かれた各ウェルに調製された培養上清が加えられた当該プレートを37℃で1時間静置することによって、ファージを提示する抗体を各ウェルに存在する抗原に結合させた。1.2 mM CaCl2/TBSTにて洗浄された各ウェルに、1.2 mM CaCl2/TBSもしくは1 mM EDTA/TBSが加えられ、当該プレートは37℃で30分間静置しインキュベートされた。1.2 mM CaCl2/TBSTにて洗浄された後に、終濃度4%のBSAおよび1.2 mMのイオン化カルシウム濃度としたTBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が各ウェルに添加されたプレートを1時間インキュベートさせた。1.2 mM CaCl2/TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
単離された96クローンを用いてファージELISAを行うことによって、IL-6に対するCa依存的な結合能を有する6KC4-1#85抗体が得られた。上記のファージELISAの結果、Ca依存的な抗原に対する結合能があると判断される抗体断片を鋳型として特異的なプライマーによって増幅された遺伝子の塩基配列解析が行われた。6KC4-1#85抗体の重鎖可変領域の配列を配列番号:8に、および軽鎖可変領域の配列を配列番号:43に記載した。6KC4-1#85抗体の重鎖可変領域(配列番号:8)をコードするポリヌクレオチドが、PCR法によってIgG1由来配列をコードするポリヌクレオチドと連結されたDNA断片が、動物細胞発現用ベクターに組み込まれ、配列番号:44で表される重鎖を発現するベクターが構築された。6KC4-1#85抗体の軽鎖可変領域(配列番号:43)をコードするポリヌクレオチドが、PCR法によって天然型Kappa鎖の定常領域(配列番号:42)をコードするポリヌクレオチドと連結された配列番号:45で表された配列をコードするDNA断片が、動物細胞発現用ベクターに組み込まれた。作製された改変体の配列は当業者公知の方法で確認された。作製された改変体の配列は当業者公知の方法で確認された。
抗体の発現と精製
ファージELISAの結果、Ca依存的な抗原に対する結合能があると判断されたクローン6KC4-1#85が、動物細胞発現用プラスミドへ導入された。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ蒔きこま播種された。調製されたプラスミドは、リポフェクション法によって細胞へ導入された。CO2インキュベーター(37度、8%CO2、90 rpm)中で4日間培養が行われるた。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
〔参考例10〕6KC4-1#85抗体のカルシウムイオン結合評価6KC4-1#85抗体のカルシウムイオン結合評価
ヒト抗体ライブラリから取得されたカルシウム依存的抗原結合抗体6KC4-1#85抗体がカルシウムと結合するか評価された。イオン化カルシウム濃度が異なる条件で、測定されるTm値が変動するか否かが参考例6に記載された方法で評価された。
6KC4-1#85抗体のFabドメインのTm値を表11に示した。表11に示されているように、6KC4-1#85抗体のFabドメインのTm値はカルシウムイオンの濃度によって変動していることから、6KC4-1#85抗体がカルシウムと結合することが明らかになった。
6KC4-1#85抗体のカルシウムイオン結合部位の同定
実施例10で6KC4-1#85抗体はカルシウムイオンと結合することが示されたが、6KC4-1#85は後述されるhVk5-2配列のようなカルシウム結合モチーフを持たない。そこで、カルシウムイオンが6KC4-1#85抗体のどの残基とカルシウムイオンが結合しているか同定するために、6KC4-1#85抗体のCDRに存在するAsp(D)残基をカルシウムイオンの結合もしくはキレートに関与できないAla(A)残基に置換した改変重鎖(6_H1-11(配列番号:46)、6_H1-12(配列番号:47)、6_H1-13(配列番号:48)、6_H1-14(配列番号:49)、6_H1-15(配列番号:50))および改変軽鎖(6_L1-5(配列番号:51)および6_L1-6(配列番号:52))が作製された。改変抗体遺伝子を含む発現ベクターが導入された動物細胞の培養液から、改変抗体が実施例4に記載された方法にしたがって精製された。精製された改変抗体のカルシウム結合が、実施例6に記載された方法にしたがって測定された。測定された結果を表12に示した。
表12に示されているように、6KC4-1#85抗体の重鎖CDR3の95位または101位(Kabatナンバリング)をAla残基に置換することによって6KC4-1#85抗体のカルシウム結合能が失われることから、この残基がカルシウムとの結合に重要であると考えられる。6KC4-1#85抗体の改変抗体のカルシウム結合性から明らかになった6KC4-1#85抗体の重鎖CDR3のループ付け根付近に存在するカルシウム結合モチーフも、本発明の抗原結合分子に含まれる抗原結合ドメインにおけるカルシウム結合モチーフとして使用され得ることが明らかとなった。
〔参考例11〕カルシウムイオンに結合するヒト生殖細胞系列配列の探索
ヒト生殖細胞系列配列の取得
ヒト生殖細胞系列配列を含む抗体でカルシウムイオンが結合するものはこれまで報告されていない。そこで、ヒト生殖細胞系列配列を含む抗体がカルシウムイオンと結合するか否かを判定するため、Human Fetal Spreen Poly RNA(Clontech)から調製されたcDNAを鋳型としてヒト生殖細胞系列配列を含む抗体の生殖細胞系列の配列がクローニングされた。クローニングされたDNA断片は動物細胞発現ベクターに挿入された。得られた発現ベクターの塩基配列が、を当業者公知の方法で決定されし、その配列番号を表13に示した。配列番号:53(Vk1)、配列番号:54(Vk2)、配列番号:55(Vk3)、配列番号:56(Vk4)ならびに配列番号:6(Vk5-2)をコードするポリヌクレオチドが、PCR法によって天然型Kappa鎖の定常領域(配列番号:42)をコードするポリヌクレオチドと連結されたDNA断片が、動物細胞発現用ベクターに組み込まれた。また、配列番号:57(Vk1)、配列番号:58(Vk2)、配列番号:59(Vk3)、配列番号:60(Vk4)ならびに配列番号:61(Vk5)をコードするポリヌクレオチドが、PCR法によってIgG1(配列番号:9)のC末端2アミノ酸が欠失したポリペプチドをコードするポリヌクレオチドと連結されたDNA断片が、動物細胞発現用ベクターに組み込まれた。作製された改変体の配列は当業者公知の方法で確認された。
抗体の発現と精製
取得された5種類のヒト生殖細胞系列配列を含むDNA断片が挿入された動物細胞発現ベクターが動物細胞へ導入された。抗体の発現は以下の方法を用いて行われた。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)がFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁され、1.33 x 106細胞/mLの細胞密度で6ウェルプレートの各ウェルへ3 mLずつ蒔きこまれる播種された。調製されたプラスミドは、リポフェクション法によって細胞へ導入された。CO2インキュベーター(37度、8%CO2、90 rpm)中で4日間培養が行われた。rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法を用いて、上記で得られた培養上清から抗体が精製された。分光光度計を用いて精製された抗体溶液の280 nmでの吸光度が測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
ヒト生殖細胞系列配列を含む抗体のカルシウムイオン結合活性の評価
精製された抗体のカルシウムイオン結合活性が評価された。精製された抗体が20 mM Tris-HCl、150 mM NaCl、2 mM CaCl2(pH7.4)または20 mM Tris-HCl、150 mM NaCl, 3μMCaCl2(pH7.4)の溶液を外液とする透析(EasySEP、TOMY)処理に供された。透析に用いられた溶液を用いておよそ0.1 mg/mLに調製された抗体溶液を被験物質として、20℃から115℃まで240℃/hrの昇温速度でDSC測定が行われた。得られたDSCの変性曲線にもとづいて算出された各抗体のFabドメインの熱変性中間温度(Tm値)を表14に示した。
その結果、hVk1、hVk2、hVk3、hVk4配列を含む抗体のFabドメインのTm値は、当該Fabドメインを含む溶液中のカルシウムイオンの濃度によらず変動しなかった。一方で、hVk5配列を含む抗体のFabドメインのTm値は、当該Fabドメインを含む抗体溶液中のカルシウムイオンの濃度によって変動したことから、hVk5配列がカルシウムイオンと結合することが示された。
〔参考例12〕ヒトVk5(hVk5)配列の評価
hVk5配列
Kabatデータベース中には、hVk5配列としてhVk5-2配列のみが登録されている。以下では、hVk5とhVk5-2は同義で扱われる。
糖鎖非付加型hVk5-2配列の構築、発現および精製
hVk5-2配列は20位(Kabatナンバリング)のアミノ酸にN型糖鎖が付加する配列を有する。タンパク質に付加する糖鎖にはヘテロジェニティーが存在するため、物質の均一性の観点から糖鎖は付加されないほうが望ましい。そこで、20位(Kabatナンバリング)のAsn(N)残基がThr(T)残基に置換された改変体hVk5-2_L65(配列番号:62)が作製された。アミノ酸の置換はQuikChange Site-Directed Mutagenesis Kit(Stratagene)を用いる当業者公知の方法で行われた。改変体hVk5-2_L65をコードするDNAが動物発現用ベクターに組み込まれた。作製された改変体hVk5-2_L65のDNAが組み込まれた動物発現用ベクターは、重鎖としてCIM_H(配列番号:63)が発現するように組み込まれた動物発現用のベクターと、参考例4で記載した方法で共に動物細胞中に導入された。導入された動物細胞中で発現したhVk5-2_L65 およびCIM_Hを含む抗体が、参考例4で記載した方法で精製された。
糖鎖非付加型hVk5-2配列を含む抗体の物性評価
取得された改変配列hVk5-2_L65を含む抗体が、改変に供されたもとのhVk5-2配列を含む抗体よりも、そのヘテロジェニティーが減少しているか否かが、イオン交換クロマトグラフィーを用いて分析された。イオン交換クロマトグラフィーの方法を表15に示した。分析の結果、図22に示したように糖鎖付加部位が改変されたhVk5-2_L65は、元のhVk5-2配列よりもヘテロジェニティーが減少していることが示された。
次に、ヘテロジェニティーが減少したhVk5-2_L65配列を含む抗体がカルシウムイオンと結合するか否かが、参考例6に記載された方法を用いて評価された。その結果、表16に示したように、糖鎖付加部位が改変されたhVk5-2_L65を含む抗体のFabドメインのTm値も、抗体溶液中のカルシウムイオンの濃度の変化によって変動した。すなわち、糖鎖付加部位が改変されたhVk5-2_L65を含む抗体のFabドメインにカルシウムイオンが結合することが示された。
〔参考例13〕hVk5-2配列のCDR配列を含む抗体分子に対するカルシウムイオンの結合活性の評価
hVk5-2配列のCDR配列を含む改変抗体の作製、発現および精製
hVk5-2_L65配列はヒトVk5-2配列のフレームワークに存在する糖鎖付加部位のアミノ酸が改変された配列である。参考例12で糖鎖付加部位を改変してもカルシウムイオンが結合することが示されたが、フレームワーク配列は生殖細胞系列の配列であることが免疫原性の観点から一般的には望ましい。そこで、抗体のフレームワーク配列を、当該抗体に対するカルシウムイオンの結合活性を維持しながら、糖鎖が付加されない生殖細胞系列配列のフレームワーク配列に置換することが可能であるか否かが検討された。
化学合成されたhVk5-2配列のフレームワーク配列がhVk1、hVk2、hVk3および hVk4配列に改変された配列(それぞれCaVk1(配列番号:64)、CaVk2(配列番号:65)、CaVk3(配列番号:66)、CaVk4(配列番号:67)をコードするポリヌクレオチドが、PCR法によって天然型Kappa鎖の定常領域(配列番号:42)をコードするポリヌクレオチドと連結されたDNA断片が、動物細胞発現用ベクターに組み込まれた。作製された改変体の配列は当業者公知の方法で確認された。上記のように作製された各プラスミドは、CIM_H(配列番号:63)をコードするポリヌクレオチドが組み込まれたプラスミドと共に参考例4で記載された方法で動物細胞に導入された。上記のように導入された動物細胞の培養液から、発現した所望の抗体分子が精製された。
hVk5-2配列のCDR配列を含む改変抗体のカルシウムイオン結合活性の評価
hVk5-2配列以外の生殖細胞系列配列(hVk1、hVk2、hVk3、hVk4)のフレームワーク配列およびhVK5-2配列のCDR配列を含む改変抗体に、カルシウムイオンが結合するか否かが参考例6に記載された方法によって評価された。評価された結果を表17に示した。各改変抗体のFabドメインのTm値は、抗体溶液中のカルシウムイオン濃度の変化によって変動することが示された。よって、hVk5-2配列のフレームワーク配列以外のフレームワーク配列を含む抗体もカルシウムイオンと結合することが示された。
さらに、hVk5-2配列以外の生殖細胞系列配列(hVk1、hVk2、hVk3、hVk4)のフレームワーク配列およびhVK5-2配列のCDR配列を含むように改変された各抗体のFabドメインの熱安定性の指標である熱変性温度(Tm値)は、改変に供されたもとのhVk5-2配列を含む抗体のFabドメインのTm値よりも増加することが明らかになった。この結果から、hVk1、hVk2、hVk3、hVk4のフレームワーク配列およびhVk5-2配列のCDR配列を含む抗体はカルシウムイオンと結合する性質を有する上に、熱安定性の観点でも優れた分子であることが見出された。
〔参考例14〕ヒト生殖細胞系列hVk5-2配列に存在するカルシウムイオン結合部位の同定hVk5-2配列のCDR配列中の変異部位の設計
参考例13に記載されているように、hVk5-2配列のCDR部分が他の生殖細胞系列のフレームワーク配列に導入された軽鎖を含む抗体もカルシウムイオンと結合することが示された。この結果からhVk5-2に存在するカルシウムイオン結合部位はCDRの中に存在することが示唆された。カルシウムイオンと結合する、すなわち、カルシウムイオンをキレートするアミノ酸として、負電荷のアミノ酸もしくは水素結合のアクセプターとなりうるアミノ酸が挙げられる。そこで、hVk5-2配列のCDR配列中に存在するAsp(D)残基またはGlu(E)残基がAla(A)残基に置換された変異hVk5-2配列を含む抗体がカルシウムイオンと結合するか否かが評価された。
hVk5-2配列のAla置換体の作製ならびに抗体の発現および精製
hVk5-2配列のCDR配列中に存在するAspおよび/ またはGlu残基がAla残基に改変された軽鎖を含む抗体分子が作製された。参考例12で記載されるように、糖鎖が付加されない改変体hVk5-2_L65はカルシウムイオン結合を維持していたことから、カルシウムイオン結合性という観点ではhVk5-2配列と同等と考えられる。本参考例ではhVk5-2_L65をテンプレート配列としてアミノ酸置換が行われた。作製された改変体を表18に示した。アミノ酸の置換はQuikChange Site-Directed Mutagenesis Kit(Stratagene)、PCRまたはIn fusionAdvantage PCR cloning kit(TAKARA)等の当業者公知の方法によって行われ、アミノ酸が置換された改変軽鎖の発現ベクターが構築された。
得られた発現ベクターの塩基配列は当業者公知の方法で決定された。作製された改変軽鎖の発現ベクターを重鎖CIM_H(配列番号:63)の発現ベクターと共に、ヒト胎児腎癌細胞由来HEK293H株(Invitrogen)、またはFreeStyle293細胞(Invitrogen)に一過性に導入することによって、抗体を発現させた。得られた培養上清から、rProtein A SepharoseTM Fast Flow(GEヘルスケア)を用いて当業者公知の方法で、抗体が精製された。精製された抗体溶液の280 nmでの吸光度が、分光光度計を用いて測定された。PACE法により算出された吸光係数を用いることによって、得られた測定値から抗体濃度が算出された(Protein Science (1995) 4, 2411-2423)。
hVk5-2配列のAla置換体を含む抗体のカルシウムイオン結合活性評価
得られた精製抗体がカルシウムイオンと結合するか否かが参考例16に記載された方法によって判定された。その結果を表19に示した。hVk5-2配列のCDR配列中に存在するAspまたはGlu残基をカルシウムイオンの結合もしくはキレートに関与できないAla残基に置換することによって、抗体溶液のカルシウムイオン濃度の変化によってそのFabドメインのTm値が変動しない抗体が存在した。Ala置換によってTm値が変動しない置換部位(32位および92位(Kabatナンバリング))はカルシウムイオンと抗体の結合に特に重要であることが示された。
〔参考例15〕カルシウムイオン結合モチーフを有するhVk1配列を含む抗体のカルシウムイオン結合活性の評価
カルシウムイオン結合モチーフを有するhVk1配列の作製ならびに抗体の発現および精製
参考例14で記載されたAla置換体のカルシウムの結合活性の結果から、hVk5-2配列のCDR配列の中でAspやGlu残基がカルシウム結合に重要であることが示された。そこで、30位、31位、32位、50位および92位(Kabatナンバリング)の残基のみを他の生殖細胞系列の可変領域配列に導入してもカルシウムイオンと結合できるか否かが評価された。具体的には、ヒト生殖細胞系配列であるhVk1配列の30位、31位、32位、50位および92位(Kabatナンバリング)の残基がhVk5-2配列の30位、31位、32位、50位および92位(Kabatナンバリング)の残基に置換された改変体LfVk1_Ca(配列番号:76)が作製された。すなわち、hVk5-2配列中のこれらの5残基のみが導入されたhVk1配列を含む抗体がカルシウムと結合できるか否かが判定された。改変体の作製は参考例4と同様に行われた。得られた軽鎖改変体LfVk1_Caおよび軽鎖hVk1配列を含むLfVk1(配列番号:77)を、重鎖CIM_H(配列番号:63)と共に発現させた。抗体の発現および精製は実施例14と同様の方法で実施された。
カルシウムイオン結合モチーフを有するヒトhVk1配列を含む抗体のカルシウムイオン結合活性の評価
上記のように得られた精製抗体がカルシウムイオンと結合するか否かが参考例6に記載された方法で判定された。その結果を表20に示した。hVk1配列を有するLfVk1を含む抗体のFabドメインのTm値は抗体溶液中のカルシウムの濃度の変化によっては変動しない一方で、LfVk1_Caを含む抗体配列の、Tm値は、抗体溶液中のカルシウムの濃度の変化によって1℃以上変化したことから、LfVk1_Caを含む抗体がカルシウムと結合することが示された。上記の結果から、カルシウムイオンの結合には、hVk5-2のCDR配列がすべて必要ではなく、LfVk1_Ca配列を構築する際に導入された残基のみでも十分であることが示された。
〔参考例16〕hVk5-2バリアント配列のカルシウム結合評価
Vk5-2(配列番号:6)のほかにVk5-2に分類されるVk5-2バリアント1(配列番号:78)およびVk5-2バリアント2(配列番号:79)が得られた。これらのバリアントについてもカルシウム結合評価が行われた。Vk5-2、Vk5-2バリアント1およびVk5-2バリアント2のDNA断片がそれぞれ動物細胞用発現ベクターに組み込まれた。得られた発現ベクターの塩基配列は当業者公知の方法で決定された。Vk5-2、Vk5-2バリアント1およびVk5-2バリアント2のDNA断片がそれぞれ組み込まれた動物細胞用発現ベクターは、重鎖としてCIM_H(配列番号:63)が発現するように組み込まれた動物発現用のベクターと、参考例13で記載された方法で共に動物細胞中に導入され、抗体が精製された。精製された抗体のカルシウムイオン結合活性が評価された。精製された抗体が20 mM Tris-HCl、150 mMNaCl、2 mM CaCl2(pH7.5)または20 mM Tris-HCl、150 mM NaCl(pH7.5)の溶液(表21ではカルシウムイオン濃度0mMと表記)を外液とする透析(EasySEP、TOMY)処理に供された。透析に用いられた溶液を用いておよそ0.1 mg/mLに調製された抗体溶液を被験物質として、20℃から115℃まで240℃/hrの昇温速度でDSC測定が行われた。得られたDSCの変性曲線にもとづいて算出された各抗体のFabドメインの熱変性中間温度(Tm値)を表21に示した。
その結果、Vk5-2、Vk5-2バリアント1およびVk5-2バリアント2の配列を含む抗体のFabドメインのTm値は、当該Fabドメインを含む抗体溶液中のカルシウムイオンの濃度によって変動したことから、Vk5-2に分類される配列を持つ抗体はカルシウムイオンと結合することが示された。Vk5-2バリアント1およびVk5-2バリアント2の配列中に存在するカルシウム結合モチーフも本発明のイオン濃度の条件によって抗原結合ドメインの抗原に対する結合活性を変化させるカルシウム結合モチーフとして好適に使用され得ることが明らかとなった。