JP7248923B2 - anisotropic conductive film - Google Patents

anisotropic conductive film Download PDF

Info

Publication number
JP7248923B2
JP7248923B2 JP2021138219A JP2021138219A JP7248923B2 JP 7248923 B2 JP7248923 B2 JP 7248923B2 JP 2021138219 A JP2021138219 A JP 2021138219A JP 2021138219 A JP2021138219 A JP 2021138219A JP 7248923 B2 JP7248923 B2 JP 7248923B2
Authority
JP
Japan
Prior art keywords
particles
insulating
conductive particles
resin layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021138219A
Other languages
Japanese (ja)
Other versions
JP2021193670A (en
Inventor
健 三宅
怜司 塚尾
達朗 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017160657A external-priority patent/JP6935702B2/en
Application filed by Dexerials Corp filed Critical Dexerials Corp
Publication of JP2021193670A publication Critical patent/JP2021193670A/en
Application granted granted Critical
Publication of JP7248923B2 publication Critical patent/JP7248923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29286Material of the matrix with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive

Description

本発明は、異方性導電フィルムに関する。 The present invention relates to an anisotropic conductive film.

ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されている。異方性導電フィルムを高実装密度に対応させる観点から、異方性導電フィルムでは、その絶縁性樹脂層に導電粒子を高密度に分散させることが行われている。しかしながら、導電粒子の密度を高めることはショートの発生要因となる。 Anisotropic conductive films are widely used for mounting electronic components such as IC chips. From the viewpoint of adapting the anisotropic conductive film to a high mounting density, conductive particles are dispersed in the insulating resin layer of the anisotropic conductive film at a high density. However, increasing the density of the conductive particles causes short circuits.

これに対し、従前の導電粒子に代えて、導電粒子の表面に絶縁粒子を付着させた絶縁粒子付導電粒子を使用することが提案されている(特許文献1)。この絶縁粒子付導電粒子をバインダー樹脂にミキサーを用いて混練りし、フィルム化することにより異方性導電フィルムを得ることができる。 On the other hand, it has been proposed to use conductive particles with insulating particles, in which insulating particles are attached to the surfaces of conductive particles, instead of conventional conductive particles (Patent Document 1). An anisotropic conductive film can be obtained by kneading the conductive particles with insulating particles with a binder resin using a mixer to form a film.

特開2014-132567号公報JP 2014-132567 A

しかしながら、特許文献1に記載のように絶縁粒子付導電粒子をバインダー樹脂とミキサーを用いて混練りすると、絶縁粒子が導電粒子から単離してしまい、絶縁粒子付導電粒子の本来の絶縁性を得られない場合がある。そのため、絶縁粒子付導電粒子をバインダー樹脂に高密度に分散させた異方性導電フィルムを用いて異方性導電接続した電子部品の接続構造体ではショートが発生する虞がある。 However, when the conductive particles with insulating particles are kneaded using a binder resin and a mixer as described in Patent Document 1, the insulating particles are isolated from the conductive particles, and the original insulating properties of the conductive particles with insulating particles are obtained. may not be available. Therefore, there is a possibility that a short circuit may occur in a connected structure of an electronic component anisotropically conductively connected using an anisotropic conductive film in which conductive particles with insulating particles are dispersed in a binder resin at a high density.

また、この異方性導電フィルムを用いた異方性導電接続では、絶縁粒子付導電粒子が電子部品の端子に押し付けられるとき、導電粒子だけでなく、絶縁粒子が端子に押し付けられることになるので、接続構造体の導通抵抗が高くなり易いという問題もある。 In addition, in the anisotropic conductive connection using this anisotropic conductive film, when the conductive particles with insulating particles are pressed against the terminals of the electronic component, not only the conductive particles but also the insulating particles are pressed against the terminals. , there is also the problem that the conduction resistance of the connection structure tends to increase.

これに対し、本発明は、絶縁粒子付導電粒子を使用した異方性導電フィルムであって、異方性導電接続した接続構造体の導通抵抗を低減させ、かつショートの発生を確実に抑制することのできる異方性導電フィルムの提供を課題とする。 On the other hand, the present invention is an anisotropic conductive film using conductive particles with insulating particles, which reduces the conduction resistance of the connection structure anisotropically conductively connected and reliably suppresses the occurrence of short circuits. An object of the present invention is to provide an anisotropic conductive film capable of

本発明者は、絶縁粒子が導電粒子の全表面に略均等に付着している絶縁粒子付導電粒子を用いて異方性導電フィルムを製造するにあたり、絶縁粒子付導電粒子において導電粒子のフィルム面方向に付着している絶縁粒子は維持されるが、導電粒子のフィルム厚方向に付着している導電粒子の数は低減するようにすると、異方性導電フィルムを用いる異方性導電接続において、導電粒子が絶縁粒子を介さず直接的に端子面に押圧されやすくなるので接続構造体の導通抵抗を低減でき、また、隣接する端子間では絶縁粒子の存在によりショートが引き起こされにくいことを見出し、本発明を想到した。 In producing an anisotropic conductive film using conductive particles with insulating particles in which the insulating particles are substantially evenly attached to the entire surface of the conductive particles, the present inventors found that the film surface of the conductive particles in the conductive particles with insulating particles Insulating particles adhering in the direction are maintained, but if the number of conductive particles adhering in the film thickness direction of the conductive particles is reduced, in an anisotropic conductive connection using an anisotropic conductive film, Since the conductive particles can be easily pressed directly against the terminal surface without passing through the insulating particles, the conduction resistance of the connection structure can be reduced, and the presence of the insulating particles makes it difficult for short circuits to occur between adjacent terminals. The present invention was conceived.

即ち、本発明は、導電粒子の表面に絶縁粒子が付着している絶縁粒子付導電粒子が絶縁性樹脂層に分散している異方性導電フィルムであって、絶縁粒子付導電粒子において、導電粒子とフィルム厚方向で接する絶縁粒子数が、導電粒子とフィルム面方向で接する絶縁粒子数よりも少ない異方性導電フィルムを提供する。
また、本発明は、上述の異方性導電フィルムを用いて電子部品同士を異方性導電接続する接続構造体の製造方法や、それにより得られた接続構造体を提供する。
That is, the present invention provides an anisotropic conductive film in which conductive particles with insulating particles having insulating particles attached to the surface of the conductive particles are dispersed in an insulating resin layer, wherein the conductive particles with insulating particles are electrically conductive Provided is an anisotropic conductive film in which the number of insulating particles in contact with particles in the film thickness direction is less than the number of insulating particles in contact with conductive particles in the film surface direction.
Moreover, this invention provides the manufacturing method of the connection structure which anisotropically conductively connects electronic components using the above-mentioned anisotropic conductive film, and the connection structure obtained by it.

本発明の異方性導電フィルムによれば、導電粒子の全表面に絶縁粒子が均等に付着している当初の絶縁粒子付導電粒子に対し、導電粒子に対してフィルム厚方向で接している絶縁粒子数が、導電粒子に対してフィルム面方向で接している絶縁粒子数よりも少ない。したがって、この異方性導電フィルムを用いて電子部品の端子を異方性導電接続すると、当初の絶縁粒子付導電粒子の状態が維持されている場合に比して端子と導電粒子との直接的な接触面積が増加するので、接続構造体において導通抵抗を低減させることができる。また、この異方性導電フィルムによれば、フィルム面方向で導電粒子と接する絶縁粒子数については、当初の絶縁粒子付導電粒子の状態が維持されているので、接続構造体において、隣接する端子間のショートを抑制することができる。 According to the anisotropic conductive film of the present invention, the insulating particles in contact with the conductive particles in the film thickness direction are different from the original conductive particles with insulating particles in which the insulating particles are evenly attached to the entire surface of the conductive particles. The number of particles is less than the number of insulating particles in contact with the conductive particles in the film plane direction. Therefore, when the terminals of an electronic component are anisotropically conductively connected using this anisotropic conductive film, the direct contact between the terminals and the conductive particles is greater than in the case where the initial state of the conductive particles with insulating particles is maintained. Since the contact area is increased, it is possible to reduce the conduction resistance in the connection structure. In addition, according to this anisotropic conductive film, the number of insulating particles in contact with the conductive particles in the film plane direction is maintained in the initial state of the conductive particles with insulating particles, so that in the connection structure, the adjacent terminals It is possible to suppress the short between

図1Aは、実施例の異方性導電フィルム10Aの導電粒子の配置を示す平面図である。FIG. 1A is a plan view showing the arrangement of conductive particles in an anisotropic conductive film 10A of Example. 図1Bは、実施例の異方性導電フィルム10Aの断面図である。FIG. 1B is a cross-sectional view of an anisotropic conductive film 10A of Example. 図2は、導電粒子の表面にフィルム厚方向又はフィルム面方向で接している絶縁粒子の個数の計測方法の説明図である。FIG. 2 is an explanatory diagram of a method for measuring the number of insulating particles that are in contact with the surface of the conductive particles in the film thickness direction or the film surface direction. 図3Aは、絶縁粒子付導電粒子の周囲の絶縁性樹脂層の凹みの説明図である。FIG. 3A is an explanatory diagram of a dent in an insulating resin layer around conductive particles with insulating particles. 図3Bは、絶縁粒子付導電粒子上の絶縁性樹脂層の凹みの説明図である。FIG. 3B is an explanatory view of the recesses of the insulating resin layer on the conductive particles with insulating particles. 図4Aは、実施例の異方性導電フィルム10Aの製造方法を説明する断面図である。FIG. 4A is a cross-sectional view illustrating a method for manufacturing an anisotropic conductive film 10A of Example. 図4Bは、実施例の異方性導電フィルム10Aの製造方法を説明する断面図である。FIG. 4B is a cross-sectional view illustrating the method of manufacturing the anisotropic conductive film 10A of the example. 図4Cは、実施例の異方性導電フィルム10Aの製造方法を説明する断面図である。FIG. 4C is a cross-sectional view illustrating the method for manufacturing the anisotropic conductive film 10A of the example. 図4Dは、実施例の異方性導電フィルム10Aの製造方法を説明する断面図である。FIG. 4D is a cross-sectional view illustrating the method of manufacturing the anisotropic conductive film 10A of the example. 図4Eは、実施例の異方性導電フィルム10Aの製造方法を説明する断面図である。FIG. 4E is a cross-sectional view illustrating the method of manufacturing the anisotropic conductive film 10A of the example. 図4Fは、実施例の異方性導電フィルム10Aの製造方法を説明する断面図である。FIG. 4F is a cross-sectional view illustrating the method of manufacturing the anisotropic conductive film 10A of the example. 図5は、実施例の異方性導電フィルム10Bの断面図である。FIG. 5 is a cross-sectional view of an anisotropic conductive film 10B of an example. 図6は、実施例の異方性導電フィルム10Cの断面図である。FIG. 6 is a cross-sectional view of an anisotropic conductive film 10C of Example. 図7は、実施例の異方性導電フィルム10Dの断面図である。FIG. 7 is a cross-sectional view of an anisotropic conductive film 10D of Example.

以下、本発明の異方性導電フィルムの一例を、図面を参照しつつ詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。 An example of the anisotropic conductive film of the present invention will be described in detail below with reference to the drawings. In addition, in each figure, the same code|symbol represents the same or equivalent component.

<異方性導電フィルムの全体構成>
図1Aは、本発明の一実施例の異方性導電フィルム10Aの粒子配置を説明する平面図であり、図1BはそのX-X断面図である。
<Overall structure of anisotropic conductive film>
FIG. 1A is a plan view for explaining the particle arrangement of an anisotropic conductive film 10A of one example of the present invention, and FIG. 1B is its XX sectional view.

この異方性導電フィルム10Aでは、導電粒子1の表面に絶縁粒子2が接している又は付着している絶縁粒子付導電粒子3が絶縁性樹脂層5の片面に埋め込まれた構造を有している。フィルムの平面視にて絶縁粒子付導電粒子3は互いに接触することなく分散しており、フィルム厚方向にも絶縁粒子付導電粒子3は互いに重なることなく分散している。また、絶縁粒子付導電粒子3のフィルム厚方向(図1Bの紙面の縦方向)の位置が揃っており、絶縁粒子付導電粒子3はフィルム面方向(図1Bの紙面の横方向)に単層をなしている。 This anisotropic conductive film 10A has a structure in which conductive particles 3 with insulating particles, in which insulating particles 2 are in contact with or attached to the surfaces of conductive particles 1, are embedded in one side of an insulating resin layer 5. there is In a plan view of the film, the conductive particles 3 with insulating particles are dispersed without contacting each other, and the conductive particles 3 with insulating particles are dispersed without overlapping each other in the thickness direction of the film. In addition, the positions of the conductive particles 3 with insulating particles in the film thickness direction (longitudinal direction of the paper surface of FIG. 1B) are aligned, and the conductive particles 3 with insulating particles are monolayered in the film surface direction (horizontal direction of the paper surface of FIG. 1B). is making

本発明の異方性導電フィルム10Aでは、絶縁粒子付導電粒子3における絶縁粒子2の配置が特徴的となっており、以下に詳述するように、導電粒子1にフィルム厚方向で接している絶縁粒子2の個数が、導電粒子1にフィルム面方向で接している絶縁粒子2の個数よりも少なくなっている。 In the anisotropic conductive film 10A of the present invention, the arrangement of the insulating particles 2 in the insulating particle-attached conductive particles 3 is characteristic, and as described in detail below, the anisotropic conductive film 10A is in contact with the conductive particles 1 in the film thickness direction. The number of insulating particles 2 is smaller than the number of insulating particles 2 in contact with conductive particles 1 in the film surface direction.

<絶縁粒子付導電粒子>
本発明の異方性導電フィルム10Aにおいて、絶縁粒子付導電粒子3における絶縁粒子2は、導電粒子1のフィルム厚方向にあるものの個数が、導電粒子のフィルム面方向にあるものの個数よりも少なくなっているが、本発明の異方性導電フィルム10Aの製造原料として使用する絶縁粒子付導電粒子3としては、導電粒子1の全表面に絶縁粒子2が略均等に付着したものを使用することができる。
<Conductive particles with insulating particles>
In the anisotropic conductive film 10A of the present invention, the number of the insulating particles 2 in the insulating particle-attached conductive particles 3 in the film thickness direction of the conductive particles 1 is smaller than the number of conductive particles in the film surface direction. However, as the conductive particles 3 with insulating particles used as a raw material for producing the anisotropic conductive film 10A of the present invention, it is possible to use conductive particles 1 in which the insulating particles 2 are substantially evenly attached to the entire surface. can.

このような絶縁粒子付導電粒子としては、特開2009-280790号公報、特開2014-132567号公報等に記載されているものを使用することができる。 As such conductive particles with insulating particles, those described in JP-A-2009-280790, JP-A-2014-132567, etc. can be used.

導電粒子1の粒子径は、配線高さにばらつきがある場合の導通抵抗の上昇を抑制し、且つショートの発生を抑制する点から、好ましくは1μm以上30μm以下、より好ましくは2.5μm以上13μm以下、更に好ましくは3μm以上10μm以下である。 The particle diameter of the conductive particles 1 is preferably 1 μm or more and 30 μm or less, more preferably 2.5 μm or more and 13 μm, from the viewpoint of suppressing an increase in conduction resistance when there is a variation in wiring height and suppressing the occurrence of a short circuit. Below, it is more preferably 3 μm or more and 10 μm or less.

絶縁粒子2の粒子径は導電粒子1の粒子径よりも小さい。絶縁粒子2の具体的な粒子径は、導電粒子1の粒子径、異方性導電フィルムの用途等に応じて定めることができるが、通常は、0.005μm以上5μm以下が好ましく、0.01μm以上2.5μm以下がより好ましく、更に好ましくは1μm以下、特に0.5μm以下である。これにより異方性導電接続時に必要な圧力や温度を過度にあげることが不要となる。一例として、絶縁粒子の粒子径は導電粒子の粒子径に対して、小さすぎると絶縁性を付与することが困難になることから下限は0.4%以上とすることが好ましく、0.6%以上とすることがより好ましく、0.8%以上が更により好ましい。また上限は大きすぎると導電粒子への付着や必要な個数が不足する虞があることから、18%以下とすることが好ましく、12%以下がより好ましく、6%以下が更により好ましい。 The particle diameter of the insulating particles 2 is smaller than that of the conductive particles 1 . The specific particle size of the insulating particles 2 can be determined according to the particle size of the conductive particles 1, the application of the anisotropic conductive film, etc., but is usually preferably 0.005 μm or more and 5 μm or less, and 0.01 μm. It is more preferably 2.5 μm or less, more preferably 1 μm or less, particularly 0.5 μm or less. This eliminates the need to excessively raise the pressure and temperature required for anisotropic conductive connection. As an example, if the particle diameter of the insulating particles is too small with respect to the particle diameter of the conductive particles, it becomes difficult to impart insulation, so the lower limit is preferably 0.4% or more, and 0.6%. 0.8% or more is more preferable. If the upper limit is too high, there is a risk of adhesion to the conductive particles or a shortage of the required number, so it is preferably 18% or less, more preferably 12% or less, and even more preferably 6% or less.

導電粒子1、絶縁粒子2及び絶縁粒子付導電粒子3の粒子径の測定は、これらの粒子をガラス上に散布し、光学顕微鏡、金属顕微鏡、透過型電子顕微鏡(TEM)、又は走査型電子顕微鏡(SEM)などで観察することにより求めることができる。これらのフィルム中の粒子径も走査型電子顕微鏡等による観察から求めることができる。粒子径の計測では、測定するサンプル数を300以上とすることが望ましい。透過型電子顕微鏡では比較的小さい絶縁粒子単体の粒子径を正確に測定することができ、走査型電子顕微鏡は、特に絶縁粒子付導電粒子3の粒子径を求めるのに適している。 The particle diameters of the conductive particles 1, the insulating particles 2, and the conductive particles 3 with insulating particles are measured by scattering these particles on glass and using an optical microscope, a metallurgical microscope, a transmission electron microscope (TEM), or a scanning electron microscope. It can be obtained by observing with (SEM) or the like. The particle size in these films can also be obtained from observation with a scanning electron microscope or the like. In the measurement of particle diameter, it is desirable to set the number of samples to be measured to 300 or more. A transmission electron microscope can accurately measure the particle size of a relatively small single insulating particle, and a scanning electron microscope is particularly suitable for determining the particle size of the conductive particles 3 with insulating particles.

単体の導電粒子の平均粒子径は、一般的な粒度分布測定装置により測定することもできる。画像型でもレーザー型であってもよい。画像型の測定装置としては、一例として湿式フロー式粒子径・形状分析装置FPIA-3000(マルバーン社)を挙げることができる。絶縁粒子付導電粒子径Dを測定するサンプル数(導電粒子個数)は1000個以上が好ましい。異方性導電フィルムにおける絶縁粒子付導電粒子径Dは、SEMなどの電子顕微鏡観察から求めることができる。この場合、絶縁粒子付導電粒子径Dを測定するサンプル数(導電粒子個数)を300個以上とすることが望ましい。 The average particle size of the single conductive particles can also be measured by a general particle size distribution analyzer. It may be image type or laser type. As an example of the image-type measuring device, a wet flow type particle size/shape analyzer FPIA-3000 (Malvern) can be mentioned. The number of samples (the number of conductive particles) for measuring the diameter D of conductive particles with insulating particles is preferably 1000 or more. The diameter D of the conductive particles with insulating particles in the anisotropic conductive film can be determined by observation with an electron microscope such as SEM. In this case, the number of samples (the number of conductive particles) for measuring the diameter D of conductive particles with insulating particles is preferably 300 or more.

異方性導電フィルム10Aの製造原料として使用する絶縁粒子付導電粒子3において、導電粒子1の全表面のうち絶縁粒子2で被覆されている割合(被覆率)が20~97%が好ましく、40~95%がより好ましい。被覆率が少なすぎるとショートが生じ易くなり、大きすぎるとバンプによる導電粒子の捕捉が阻害される懸念が生じる。 In the conductive particles 3 with insulating particles used as the raw material for producing the anisotropic conductive film 10A, the ratio (coverage) of the entire surface of the conductive particles 1 covered with the insulating particles 2 is preferably 20 to 97%, and 40 ~95% is more preferred. If the coverage is too small, a short circuit is likely to occur.

なお被覆率は、絶縁粒子付導電粒子の表面全体に占める絶縁粒子の被覆面積(投影面積)の割合である。この具体的な求め方としては、走査型電子顕微鏡を用いて100個の絶縁粒子付導電粒子3を観察し、各観察画像における被覆率を平均することにより得られる。被覆率の簡便な求め方としては、各観察画像において絶縁粒子付導電粒子1個あたりの絶縁粒子の個数を計測し、その数値と、絶縁粒子付導電粒子1個の投影面積と絶縁粒子1個の投影面積から被覆率を算出してもよい。ここで、導電粒子の円形の観察像に、絶縁粒子の観察像が部分的に重なっている場合、その部分的に重なっている絶縁粒子は0.5個として計算してもよい。 The coverage rate is the ratio of the area covered by the insulating particles (projected area) to the entire surface of the conductive particles with insulating particles. As a specific method of obtaining this, 100 conductive particles 3 with insulating particles are observed using a scanning electron microscope, and the coverage in each observed image is averaged. As a simple method for obtaining the coverage, the number of insulating particles per insulating particle-containing conductive particle is measured in each observation image, and the numerical value, the projected area of one insulating particle-containing conductive particle and one insulating particle. The coverage may be calculated from the projected area of . Here, when the observed image of the insulating particles partially overlaps the circular observed image of the conductive particles, the number of the partially overlapped insulating particles may be calculated as 0.5.

一方、異方性導電フィルム10Aを現に構成する絶縁粒子付導電粒子3においては、導電粒子1にフィルム厚方向で接する絶縁粒子2の個数が、導電粒子1にフィルム面方向で接する絶縁粒子2の個数よりも少ない。ここで、導電粒子1にフィルム厚方向で接する絶縁粒子2の個数とは、図2に示す、異方性導電フィルム10Aにおける絶縁粒子付導電粒子3のフィルム厚方向の断面において、絶縁粒子付導電粒子3を、導電粒子1の中心を通る、フィルム厚方向に対してプラス45°傾いた直線及びマイナス45°傾いた直線で4つの領域A1、A2、A3、A4に分割した場合に、導電粒子1の上下にある領域(フィルム面に沿った領域)A1、A2に存在する絶縁粒子2の個数をいう。また、導電粒子1にフィルム面方向で接する絶縁粒子2の個数とは、上述の4つの領域A1、A2、A3、A4のうち導電粒子1の左右にある領域(フィルム厚方向に沿った領域)A3、A4に存在する絶縁粒子2の個数をいう。したがって、領域A1、A2、A3、A4に存在する絶縁粒子2の個数をNA1、NA2、NA3、NA4とすると、本発明においては、(NA3+NA4)>(NA1+NA2)となる。なお、フィルム厚方向の断面は、同じフィルムで複数の異なる方向がある(異なる方向の断面視を確認する)ことが好ましく、90°になっている2つの断面が含まれていることがより好ましい。 On the other hand, in the conductive particles 3 with insulating particles that actually constitute the anisotropic conductive film 10A, the number of the insulating particles 2 in contact with the conductive particles 1 in the film thickness direction is the number of the insulating particles 2 in contact with the conductive particles 1 in the film plane direction. less than the number Here, the number of insulating particles 2 in contact with the conductive particles 1 in the film thickness direction means that in the cross section of the insulating particle-containing conductive particles 3 in the anisotropic conductive film 10A shown in FIG. When the particles 3 are divided into four regions A1, A2, A3, and A4 by a straight line inclined by +45° and a straight line inclined by −45° with respect to the film thickness direction passing through the center of the conductive particles 1, the conductive particles It refers to the number of insulating particles 2 present in areas A1 and A2 above and below 1 (areas along the film surface). In addition, the number of insulating particles 2 in contact with the conductive particles 1 in the film surface direction is the area on the left and right of the conductive particles 1 among the above-mentioned four areas A1, A2, A3, and A4 (areas along the film thickness direction) It refers to the number of insulating particles 2 present in A3 and A4. Therefore, if the numbers of insulating particles 2 existing in the regions A1, A2, A3, and A4 are N A1 , N A2 , N A3 , and N A4 , in the present invention, (N A3 +N A4 )>(N A1 +N A2 ). In addition, it is preferable that the cross section in the film thickness direction has a plurality of different directions in the same film (check cross-sectional views in different directions), and it is more preferable that two cross sections at 90 ° are included. .

なお、領域A1、A2、A3、A4に存在する絶縁粒子2の個数を求めるにあたり、導電粒子1の上下の領域A1、A2と左右の領域A3、A4の双方に跨がる絶縁粒子2は、いずれの領域に大きく属するかで帰属を決定する。 In determining the number of insulating particles 2 present in the areas A1, A2, A3, and A4, the insulating particles 2 straddling both the upper and lower areas A1 and A2 and the left and right areas A3 and A4 of the conductive particles 1 are Attribution is determined by which region it belongs to.

また、本発明において、全ての絶縁粒子付導電粒子3が上述の不等式を満たす必要はない。個々の絶縁粒子付導電粒子3において領域A1、A2、A3、A4に存在する絶縁粒子2の個数にはバラツキがあってよく、上述の不等式が成立しない絶縁粒子付導電粒子3が存在していてもよいが、異方性導電フィルムに含まれる全ての絶縁粒子付導電粒子3について平均すると上述の不等式が成立し、NA3、NA4がNA1、NA2より多くなる。 Moreover, in the present invention, it is not necessary for all the conductive particles 3 with insulating particles to satisfy the above inequality. The number of the insulating particles 2 present in the regions A1, A2, A3, and A4 of the individual conductive particles 3 with insulating particles may vary. However, when all the conductive particles 3 with insulating particles contained in the anisotropic conductive film are averaged, the above inequality holds, and N A3 and N A4 are greater than N A1 and N A2 .

なお、異方性導電フィルムに含まれる全ての絶縁粒子付導電粒子3について上述の不等式が成立することを確認することは現実的ではない。そこで、以下に示すように領域A1、A2、A3、A4に存在する絶縁粒子2の個数を計測して上述の不等式が成立する場合には、全ての絶縁粒子付導電粒子の平均において上述の不等式の関係が成立すると見なしてもよい。 In addition, it is not realistic to confirm that the above-described inequality holds for all the conductive particles 3 with insulating particles contained in the anisotropic conductive film. Therefore, as shown below, when the number of insulating particles 2 present in the regions A1, A2, A3, and A4 is measured and the above inequality is satisfied, the above inequality for the average of all the conductive particles with insulating particles It can be considered that the relationship of

即ち、個々の絶縁粒子付導電粒子3について、領域A1、A2、A3、A4に存在する絶縁粒子2の個数を、異方性導電フィルム10Aの断面を走査型電子顕微鏡を用いて観察することにより計測するにあたり、1辺が100μm以上の矩形の計測領域を互いに離間させて複数箇所(好ましくは5箇所以上、より好ましくは10箇所以上)設定して合計面積を1mm以上とし、各計測領域から抜き取った100個の絶縁粒子付導電粒子3を観察し、それぞれの絶縁粒子付導電粒子3について領域A1及びA2に存在する絶縁粒子2の個数と、領域A3及びA4に存在する絶縁粒子2の個数を求め、100個の絶縁粒子付導電粒子の平均として、導電粒子1にフィルム厚方向で接する絶縁粒子2の個数(NA1+NA2)と、導電粒子1にフィルム面方向で接する絶縁粒子2の個数(NA3+NA4)を求め、上述の不等式の成立の有無を調べる。計測領域は導電粒子の大きさによって、適宜調整すればよい。 That is, for each conductive particle 3 with insulating particles, the number of insulating particles 2 present in the regions A1, A2, A3, and A4 can be determined by observing the cross section of the anisotropic conductive film 10A using a scanning electron microscope. When measuring, a plurality of rectangular measurement areas with a side of 100 μm or more are set apart from each other (preferably 5 or more, more preferably 10 or more), and the total area is set to 1 mm 2 or more, From each measurement area 100 extracted conductive particles 3 with insulating particles were observed, and the number of insulating particles 2 present in regions A1 and A2 and the number of insulating particles 2 present in regions A3 and A4 for each conductive particle 3 with insulating particles. , and as an average of 100 conductive particles with insulating particles, the number of insulating particles 2 in contact with the conductive particles 1 in the film thickness direction (N A1 + N A2 ), and the number of insulating particles 2 in contact with the conductive particles 1 in the film plane direction. The number (N A3 +N A4 ) is obtained, and whether or not the above inequality holds is checked. The measurement area may be appropriately adjusted according to the size of the conductive particles.

また、導電粒子1にフィルム厚方向で接する絶縁粒子2の個数(NA1+NA2)が、導電粒子1にフィルム面方向で接する絶縁粒子2の個数(NA3+NA4)よりも少ないことを簡便に確認する方法としては、面積1mm以上の計測領域において、異方性導電フィルムの表裏のいずれか一方のフィルム面の平面視において導電粒子1と重なっている絶縁粒子2の個数が、表裏の他方のフィルム面の平面視において導電粒子1と重なっている絶縁粒子2の個数よりも少ないことを確認してもよい。後述するように本発明の異方性導電フィルムの製造工程において絶縁性樹脂層に絶縁粒子付導電粒子を押し込んだ場合にはNA3,NA4≧NA2>NA1
となるため、NA2>NA1を確認することにより、導電粒子1にフィルム厚方向で接する絶縁粒子2の個数(NA1+NA2)が、導電粒子1にフィルム面方向で接する絶縁粒子2の個数(NA3+NA4)よりも少ないことを確認することができる。
In addition, it is convenient that the number of insulating particles 2 in contact with the conductive particles 1 in the film thickness direction (N A1 +N A2 ) is less than the number of insulating particles 2 in contact with the conductive particles 1 in the film plane direction (N A3 +N A4 ). As a method for checking, in a measurement area having an area of 1 mm 2 or more, the number of insulating particles 2 overlapping the conductive particles 1 in plan view of either the front or back surface of the anisotropic conductive film is It may be confirmed that the number of the insulating particles 2 overlapping the conductive particles 1 in plan view of the other film surface is smaller than the number of the insulating particles 2 overlapping the conductive particles 1 . As will be described later, when the conductive particles with insulating particles are pressed into the insulating resin layer in the manufacturing process of the anisotropic conductive film of the present invention, N A3 , N A4 ≥ N A2 > N A1
Therefore, by confirming N A2 >N A1 , the number of insulating particles 2 in contact with the conductive particles 1 in the film thickness direction (N A1 +N A2 ) is the number of insulating particles 2 in contact with the conductive particles 1 in the film plane direction. It can be confirmed that the number is less than the number (NA3+NA4).

なお、このような領域A1、A2、A3、A4による絶縁粒子2の個数差は、後述するように、異方性導電フィルム10Aの製造方法において絶縁粒子付導電粒子3を所定の配列に配置するために転写型を使用した場合に生じる。即ち、絶縁粒子付導電粒子3を転写型から絶縁性樹脂層に転写した場合に、導電粒子1にフィルム厚方向で接する絶縁粒子2(領域A1の絶縁粒子2)が、転写型との摩擦により又は加圧部材との摩擦により、導電粒子1から脱離して該転写型に残り易く、また、導電粒子1にフィルム厚方向で接する絶縁粒子2は、導電粒子1にフィルム面方向で接する位置に移動する場合があるが、導電粒子1にフィルム面方向で接する絶縁粒子2は、絶縁粒子付導電粒子3を転写型から絶縁性樹脂層に転写させても導電粒子1からの脱離や、移動が生じにくいことにより生じる。 The difference in the number of the insulating particles 2 due to the regions A1, A2, A3, and A4 is determined by arranging the conductive particles 3 with insulating particles in a predetermined array in the method of manufacturing the anisotropic conductive film 10A, as will be described later. It occurs when using a transcription type for That is, when the conductive particles 3 with insulating particles are transferred from the transfer mold to the insulating resin layer, the insulating particles 2 (the insulating particles 2 in the region A1) in contact with the conductive particles 1 in the film thickness direction are displaced by friction with the transfer mold. Alternatively, due to friction with the pressing member, it is easy to detach from the conductive particles 1 and remain in the transfer mold, and the insulating particles 2 that are in contact with the conductive particles 1 in the film thickness direction are in contact with the conductive particles 1 in the film surface direction. Although it may move, the insulating particles 2 that are in contact with the conductive particles 1 in the film surface direction do not separate from the conductive particles 1 or move even if the conductive particles 3 with insulating particles are transferred from the transfer mold to the insulating resin layer. occurs because it is difficult to occur.

<絶縁粒子付導電粒子の分散状態>
本発明における絶縁粒子付導電粒子の分散状態には、絶縁粒子付導電粒子3がランダムに分散している状態も規則的な配置に分散している状態も含まれる。この分散状態において、絶縁粒子付導電粒子が互いに非接触で配置されていることが好ましく、その個数割合は好ましくは95%以上、より好ましくは98%以上、更に好ましくは99.5%以上である。この個数割合に関し、分散状態における規則的な配置において、意図的に接触させている絶縁粒子付導電粒子は、1個としてカウントする。後述するフィルム平面視における絶縁粒子付導電粒子の占有面積率の求め方と同様に、N=200以上で求めることができる。どちらの場合においても、フィルム厚方向の位置が揃っていることが捕捉安定性の点から好ましい。ここで、フィルム厚方向の導電粒子1の位置が揃っているとは、フィルム厚方向の単一の深さに揃っていることに限定されず、絶縁性樹脂層5の表裏の界面又はその近傍のそれぞれに導電粒子が存在している態様を含む。
<Dispersed State of Conductive Particles with Insulating Particles>
In the present invention, the dispersed state of the conductive particles with insulating particles includes a state in which the conductive particles with insulating particles 3 are randomly dispersed and a state in which the conductive particles with insulating particles 3 are dispersed in a regular arrangement. In this dispersed state, the conductive particles with insulating particles are preferably arranged without contact with each other, and the number ratio thereof is preferably 95% or more, more preferably 98% or more, and still more preferably 99.5% or more. . With respect to this number ratio, the conductive particles with insulating particles intentionally brought into contact with each other in a regular arrangement in the dispersed state are counted as one. It can be obtained with N=200 or more in the same manner as the method of obtaining the occupied area ratio of the conductive particles with insulating particles in the film plan view described later. In either case, it is preferable from the viewpoint of capture stability that the positions in the film thickness direction are uniform. Here, the position of the conductive particles 1 in the film thickness direction is not limited to being aligned at a single depth in the film thickness direction, and the front and back interfaces of the insulating resin layer 5 or the vicinity thereof includes an embodiment in which conductive particles are present in each of

本発明において、前述したように、絶縁粒子付導電粒子3はフィルムの平面視にて規則的に配列していることが好ましく、例えば、図1Aに示したように正方格子配列とすることができる。この他、絶縁粒子付導電粒子の規則的な配列態様としては、長方格子、斜方格子、6方格子等の格子配列をあげることができる。規則的な配列は格子配列に限定されるものではなく、例えば、絶縁粒子付導電粒子が所定間隔で直線状に並んだ粒子列を所定の間隔で並列させてもよい。絶縁粒子付導電粒子3を互いに非接触で配置し、格子状等の規則的な配列にすることにより、異方性導電接続時に各絶縁粒子付導電粒子3に圧力を均等に加え、導通抵抗のばらつきを低減させることができる。規則的な配列は、例えばフィルムの長手方向に所定の粒子配置が繰り替えされていることにより確認できる。 In the present invention, as described above, it is preferable that the conductive particles 3 with insulating particles are regularly arranged in a plan view of the film. For example, as shown in FIG. . In addition, as a regular arrangement mode of the conductive particles with insulating particles, a lattice arrangement such as a rectangular lattice, an orthorhombic lattice, and a hexagonal lattice can be mentioned. The regular arrangement is not limited to a lattice arrangement, and for example, particle rows in which conductive particles with insulating particles are arranged linearly at predetermined intervals may be arranged side by side at predetermined intervals. By arranging the conductive particles 3 with insulating particles in a non-contact manner with each other and arranging them in a regular arrangement such as a lattice, pressure is applied evenly to each conductive particle 3 with insulating particles at the time of anisotropic conductive connection, and the conduction resistance is reduced. Variation can be reduced. A regular arrangement can be confirmed, for example, by repeating a predetermined particle arrangement in the longitudinal direction of the film.

絶縁粒子付導電粒子の配列の格子軸又は配列軸は、異方性導電フィルムの長手方向に対して平行でもよく、異方性導電フィルムの長手方向と交叉してもよく、接続する端子幅、端子ピッチなどに応じて定めることができる。例えば、ファインピッチ用の異方性導電性フィルムとする場合、図1Aに示したように絶縁粒子付導電粒子3の格子軸Aを異方性導電フィルム10Aの長手方向に対して斜行させ、異方性導電フィルム10Aで接続する端子20の長手方向(フィルムの短手方向)と格子軸Aとのなす角度θを6°~84°、好ましくは11°~74°にすることが好ましい。 The lattice axis or arrangement axis of the arrangement of the conductive particles with insulating particles may be parallel to the longitudinal direction of the anisotropic conductive film, or may intersect the longitudinal direction of the anisotropic conductive film. It can be determined according to the terminal pitch or the like. For example, when making an anisotropic conductive film for fine pitch, the lattice axis A of the conductive particles 3 with insulating particles is oblique to the longitudinal direction of the anisotropic conductive film 10A as shown in FIG. 1A, The angle θ formed between the longitudinal direction of the terminals 20 connected by the anisotropic conductive film 10A (the lateral direction of the film) and the lattice axis A is preferably 6° to 84°, preferably 11° to 74°.

絶縁粒子付導電粒子3の粒子間距離は、異方性導電フィルムで接続する端子の大きさや端子ピッチに応じて適宜定める。例えば、異方性導電フィルムをファインピッチのCOG(Chip On Glass)に対応させる場合、ショートの発生を防止する点から最近接した絶縁粒子付導電粒子3の導電粒子1間距離を絶縁粒子付導電粒子径の0.5倍より大きくすることが好ましく、0.7倍より大きくすることがより好ましい。一方、絶縁粒子付導電粒子3の捕捉性の点から、最近接した絶縁粒子付導電粒子3の導電粒子1間距離を絶縁粒子付導電粒子径の4倍以下とすることが好ましく、3倍以下とすることがより好ましい。 The inter-particle distance of the conductive particles 3 with insulating particles is appropriately determined according to the size and terminal pitch of the terminals to be connected by the anisotropic conductive film. For example, when the anisotropic conductive film is adapted to fine-pitch COG (Chip On Glass), the distance between the conductive particles 1 of the closest conductive particles 3 with insulating particles is set to the distance between the conductive particles 1 with insulating particles from the viewpoint of preventing the occurrence of short circuits. It is preferably larger than 0.5 times the particle diameter, more preferably larger than 0.7 times. On the other hand, from the viewpoint of capturing the insulating particle-containing conductive particles 3, the distance between the conductive particles 1 of the closest insulating particle-containing conductive particles 3 is preferably 4 times or less the insulating particle-containing conductive particle diameter, and 3 times or less. is more preferable.

また、絶縁粒子付導電粒子の面積占有率が35%以下、好ましくは0.3~30%となるように定める。ここで、面積占有率は、
[平面視における絶縁粒子付導電粒子の個数密度]×[絶縁粒子付導電粒子の1個の平面視面積の平均]×100
により算出される。
Also, the area occupation ratio of the conductive particles with insulating particles is determined to be 35% or less, preferably 0.3 to 30%. Here, the area occupation ratio is
[Number density of conductive particles with insulating particles in plan view] x [Average area of one conductive particle with insulating particles] x 100
Calculated by

式中、絶縁粒子付導電粒子の個数密度の測定領域は、異方性導電フィルム10Aにおいて1辺が100μm以上の矩形領域を任意に複数箇所(好ましくは5箇所以上、より好ましくは10箇所以上)設定し、測定領域の合計面積を2mm2以上とすることが好ましい。個々の領域の大きさや数は、個数密度の状態によって適宜調整すればよい。ファインピッチ用途の比較的個数密度が大きい場合の一例として、異方性導電フィルム10Aから任意に選択した面積100μm×100μmの領域の200箇所(2mm)について、金属顕微鏡などによる観測画像を用いて個数密度を測定し、それを平均することにより上述の式の「平面視における絶縁粒子付導電粒子の個数密度」を得ることができる。面積100μm×100μmの領域は、バンプ間スペース50μ以下の接続対象物において1個以上のバンプが存在する領域になる。 In the formula, the area for measuring the number density of the conductive particles with insulating particles is an arbitrary plurality of rectangular areas (preferably 5 or more, more preferably 10 or more) each side of which is 100 μm or more in the anisotropic conductive film 10A. It is preferable to set the total area of the measurement regions to 2 mm 2 or more. The size and number of individual regions may be appropriately adjusted according to the state of the number density. As an example of a case where the number density is relatively high for fine-pitch applications, 200 locations (2 mm 2 ) in a region with an area of 100 μm×100 μm arbitrarily selected from the anisotropic conductive film 10A are observed using a metallographic microscope or the like. By measuring the number density and averaging it, it is possible to obtain the "number density of the conductive particles with insulating particles in plan view" in the above formula. A region with an area of 100 μm×100 μm is a region in which one or more bumps exist in a connection object with an inter-bump space of 50 μm or less.

個数密度は、好ましくは150~70000個/mmであり、特にファインピッチ用途の場合には好ましくは6000~42000個/mm、より好ましくは10000~40000個/mm、更に好ましくは15000~35000個/mmである。なお、150個/mm未満を除外するものではない。 The number density is preferably 150 to 70,000/mm 2 , particularly for fine pitch applications, preferably 6,000 to 42,000/mm 2 , more preferably 10,000 to 40,000/mm 2 , still more preferably 15,000 to 15,000. 35000/mm 2 . In addition, less than 150/mm 2 is not excluded.

絶縁粒子付導電粒子の個数密度は、上述のように金属顕微鏡を用いて求める他、絶縁粒子付導電粒子の顕微鏡画像に対して画像解析ソフト(例えば、WinROOF、三谷商事株式会社等)用いて計測してもよい。 The number density of the conductive particles with insulating particles is obtained using a metallurgical microscope as described above, and is also measured using image analysis software (e.g., WinROOF, Mitani Shoji Co., Ltd.) for the microscope image of the conductive particles with insulating particles. You may

また、絶縁粒子付導電粒子1個当りのフィルム平面視面積の平均は、フィルム面の金属顕微鏡などによる観測画像から計測により求められる。上述のように画像解析ソフトを用いてもよい。N=300以上であることが好ましい。 The average planar view area of the film per insulating particle-attached conductive particle can be obtained by measurement from an image of the film surface observed by a metallurgical microscope or the like. Image analysis software may be used as described above. It is preferable that N=300 or more.

絶縁粒子付導電粒子のフィルム平面視における面積占有率は、異方性導電フィルムを電子部品に熱圧着するために押圧治具に必要とされる推力の指標となる。従来、異方性導電フィルムをファインピッチに対応させるために、ショートを発生させない限りで導電粒子の粒子間距離を狭め、個数密度が高められてきたが、そのように個数密度を高めると、異方性導電フィルムを電子部品に熱圧着するために押圧治具に必要とされる推力が過度に大きくなり、従前の押圧治具では押圧が不十分になるという問題が起こる。これに対し、面積占有率を上述の範囲とすることにより、異方性導電フィルムを電子部品に熱圧着するために押圧治具に必要とされる推力を低く抑えることができる。 The area occupancy of the conductive particles with insulating particles in the film plan view is an index of the thrust force required for the pressing jig for thermocompression bonding the anisotropic conductive film to the electronic component. Conventionally, in order to adapt an anisotropic conductive film to a fine pitch, the distance between conductive particles has been narrowed and the number density has been increased as long as short circuits do not occur. A problem arises in that the thrust force required for the pressing jig to thermally press-bond the anisotropic conductive film to the electronic component becomes excessively large, and the conventional pressing jig does not provide sufficient pressing force. On the other hand, by setting the area occupancy within the above range, the thrust required for the pressing jig for thermocompression bonding the anisotropic conductive film to the electronic component can be kept low.

<絶縁性樹脂層>
(絶縁性樹脂層の最低溶融粘度)
本発明の異方性導電フィルムにおいて、絶縁性樹脂層5の最低溶融粘度は、特に制限はなく、異方性導電フィルムの使用対象や、異方性導電フィルムの製造方法等に応じて適宜定めることができる。例えば、後述の凹み5b(図3A)、5c(図3B)を形成できる限り、異方性導電フィルムの製造方法によっては1000Pa・s程度とすることもできる。一方、異方性導電フィルムの製造方法として、絶縁粒子付導電粒子を絶縁性樹脂層の表面に所定の配置で保持させ、その絶縁粒子付導電粒子を絶縁性樹脂層に押し込む方法を行うとき、絶縁性樹脂層がフィルム成形を可能とする点から絶縁性樹脂の最低溶融粘度を1100Pa・s以上とすることが好ましい。
<Insulating resin layer>
(Minimum melt viscosity of insulating resin layer)
In the anisotropic conductive film of the present invention, the minimum melt viscosity of the insulating resin layer 5 is not particularly limited, and is appropriately determined according to the use object of the anisotropic conductive film, the manufacturing method of the anisotropic conductive film, etc. be able to. For example, as long as depressions 5b (FIG. 3A) and 5c (FIG. 3B), which will be described later, can be formed, it can be about 1000 Pa·s depending on the method of manufacturing the anisotropic conductive film. On the other hand, as a method for producing an anisotropic conductive film, when conducting a method in which the conductive particles with insulating particles are held on the surface of the insulating resin layer in a predetermined arrangement and the conductive particles with insulating particles are pushed into the insulating resin layer, The insulating resin layer preferably has a minimum melt viscosity of 1100 Pa·s or more from the viewpoint that the insulating resin layer can be formed into a film.

また、後述の異方性導電フィルムの製造方法で説明するように、図3Aに示すように絶縁性樹脂層5に押し込んだ絶縁粒子付導電粒子3の露出部分の周りに凹み5bを形成したり、図3Bに示すように絶縁性樹脂層5に押し込んだ絶縁粒子付導電粒子3の直上に凹み5cを形成したりする点から、好ましくは1500Pa・s以上、より好ましくは2000Pa・s以上、さらに好ましくは3000~15000Pa・s、さらにより好ましくは3000~10000Pa・sである。この最低溶融粘度は、一例として回転式レオメータ(TA Instrument社製)を用い、測定圧力5gで一定に保持し、直径8mmの測定プレートを使用し求めることができ、より具体的には、温度範囲30~200℃において、昇温速度10℃/分、測定周波数10Hz、前記測定プレートに対する荷重変動5gとすることにより求めることができる。 Further, as will be described later in the manufacturing method of an anisotropic conductive film, recesses 5b are formed around the exposed portions of the conductive particles 3 with insulating particles pressed into the insulating resin layer 5 as shown in FIG. 3A. , from the point of forming recesses 5c directly above the conductive particles 3 with insulating particles pushed into the insulating resin layer 5 as shown in FIG. It is preferably 3,000 to 15,000 Pa·s, and more preferably 3,000 to 10,000 Pa·s. This minimum melt viscosity can be obtained by using a rotary rheometer (manufactured by TA Instruments) as an example, holding a measuring pressure of 5 g constant, and using a measuring plate with a diameter of 8 mm. More specifically, the temperature range At 30 to 200° C., it can be obtained by setting the temperature increase rate to 10° C./min, the measurement frequency to 10 Hz, and the load variation to the measurement plate to 5 g.

絶縁性樹脂層5の最低溶融粘度を1500Pa・s以上の高粘度とすることにより、異方性導電フィルムの物品への圧着にフィラーの不用な移動を抑制でき、特に、異方性導電接続時に端子間で挟持されるべき導電粒子が樹脂流動により流されてしまうことを防止できる。 By setting the minimum melt viscosity of the insulating resin layer 5 to a high viscosity of 1500 Pa s or more, it is possible to suppress unnecessary movement of the filler when the anisotropic conductive film is crimped to the article, especially at the time of anisotropic conductive connection. It is possible to prevent the conductive particles to be sandwiched between the terminals from flowing away due to the resin flow.

また、絶縁性樹脂層5に絶縁粒子付導電粒子3を押し込む場合において、絶縁粒子付導電粒子3を押し込むときの絶縁性樹脂層5は、絶縁粒子付導電粒子3が絶縁性樹脂層5から露出するように絶縁粒子付導電粒子3を絶縁性樹脂層5に押し込んだときに、絶縁性樹脂層5が塑性変形して絶縁粒子付導電粒子3の周囲の絶縁性樹脂層5に凹み5b(図3A)が形成されるような高粘度な粘性体とするか、あるいは、絶縁粒子付導電粒子3が絶縁性樹脂層5から露出することなく絶縁性樹脂層5に埋まるように絶縁粒子付導電粒子3を押し込んだときに、絶縁粒子付導電粒子3の直上の絶縁性樹脂層5の表面に凹み5c(図3B)が形成されるような高粘度な粘性体とする。そのため、絶縁性樹脂層5の60℃における粘度は、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。この測定は最低溶融粘度と同様の測定方法で行い、温度が60℃の値を抽出して求めることができる。 Further, when the conductive particles 3 with insulating particles are pushed into the insulating resin layer 5, the conductive particles 3 with insulating particles are exposed from the insulating resin layer 5 when the conductive particles 3 with insulating particles are pushed. When the conductive particles 3 with insulating particles are pushed into the insulating resin layer 5 in such a manner that the insulating resin layer 5 is plastically deformed, the insulating resin layer 5 around the conductive particles 3 with insulating particles has a dent 5b (Fig. 3A) is formed, or the conductive particles with insulating particles 3 are embedded in the insulating resin layer 5 without being exposed from the insulating resin layer 5. A viscous body having such a high viscosity as to form a dent 5c (FIG. 3B) on the surface of the insulating resin layer 5 directly above the conductive particles 3 with the insulating particles when the particles 3 are pushed. Therefore, the lower limit of the viscosity of the insulating resin layer 5 at 60° C. is preferably 3000 Pa·s or more, more preferably 4000 Pa·s or more, still more preferably 4500 Pa·s or more, and the upper limit is preferably 20000 Pa·s or less. , more preferably 15000 Pa·s or less, still more preferably 10000 Pa·s or less. This measurement is performed in the same manner as for the minimum melt viscosity, and can be obtained by extracting the value at a temperature of 60°C.

絶縁性樹脂層5に絶縁粒子付導電粒子3を押し込むときの該絶縁性樹脂層5の具体的な粘度は、形成する凹み5b、5cの形状や深さなどに応じて、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。また、このような粘度を好ましくは40~80℃、より好ましくは50~60℃で得られるようにする。 The specific viscosity of the insulating resin layer 5 when the conductive particles 3 with insulating particles are pushed into the insulating resin layer 5 depends on the shape and depth of the recesses 5b and 5c to be formed, and the lower limit is preferably 3000 Pa. ·s or more, more preferably 4000 Pa·s or more, still more preferably 4500 Pa·s or more, and the upper limit is preferably 20000 Pa·s or less, more preferably 15000 Pa·s or less, still more preferably 10000 Pa·s or less. Also, such a viscosity is preferably obtained at 40-80°C, more preferably 50-60°C.

上述したように、絶縁性樹脂層5から露出している絶縁粒子付導電粒子3の周囲に凹み5b(図3A)が形成されていることにより、異方性導電フィルムの物品への圧着時に生じる絶縁粒子付導電粒子3の扁平化に対して絶縁性樹脂から受ける抵抗が、凹み5bが無い場合に比して低減する。このため、異方性導電接続時に端子で導電粒子が挟持され易くなることで導通性能が向上し、また捕捉性が向上する。 As described above, since the recesses 5b (FIG. 3A) are formed around the conductive particles 3 with insulating particles exposed from the insulating resin layer 5, the anisotropic conductive film is crimped to the article. The resistance received from the insulating resin against the flattening of the conductive particles 3 with insulating particles is reduced as compared with the case without the recesses 5b. Therefore, the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, thereby improving the conduction performance and improving the trapping property.

また、絶縁性樹脂層5から露出することなく埋まっている絶縁粒子付導電粒子3の直上の絶縁性樹脂層5の表面に凹み5c(図3B)が形成されていることにより、凹み5cが無い場合に比して異方性導電フィルムの物品への圧着時の圧力が絶縁粒子付導電粒子3に集中し易くなる。このため、異方性導電接続時に端子で導電粒子が挟持され易くなることで捕捉性が向上し、また導通性能が向上する。 In addition, since the recesses 5c (FIG. 3B) are formed on the surface of the insulating resin layer 5 directly above the conductive particles 3 with insulating particles that are buried without being exposed from the insulating resin layer 5, there are no recesses 5c. Compared to the case, the pressure when the anisotropic conductive film is pressure-bonded to the article tends to be concentrated on the conductive particles 3 with insulating particles. Therefore, the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, thereby improving capture properties and conductive performance.

なお、後述する異方性導電フィルムの製造方法において、絶縁性樹脂層5に絶縁粒子付導電粒子3を押し込むときの埋込率を100%以下とし、絶縁粒子付導電粒子3が絶縁性樹脂層5から露出するようにする場合に、絶縁性樹脂層5の60℃の粘度が上述の範囲でると、絶縁粒子付導電粒子3が押し込まれた後の絶縁性樹脂層5には絶縁粒子付導電粒子3の周囲に凹み5b(図3A)が形成されることがある。この際、絶縁粒子のみが露出する場合もある。また、埋込率を100%超とし、絶縁粒子付導電粒子3が絶縁性樹脂層5から露出せず、絶縁性樹脂層5に埋まるようにした場合には、絶縁粒子付導電粒子3の直上の絶縁性樹脂層5の表面に凹み5c(図3B)が形成されることがある。なお、埋込率の意味については、後段の絶縁粒子付導電粒子の埋込状態の説明において詳述する。 In the method for manufacturing an anisotropic conductive film, which will be described later, the embedding ratio when the conductive particles 3 with insulating particles are pushed into the insulating resin layer 5 is set to 100% or less, and the conductive particles 3 with insulating particles are in the insulating resin layer. 5, if the viscosity of the insulating resin layer 5 at 60° C. is within the above range, the insulating resin layer 5 after the conductive particles 3 with insulating particles are pushed into the conductive particles with insulating particles. A depression 5b (FIG. 3A) may be formed around the particle 3 . At this time, only the insulating particles may be exposed. Further, when the embedding rate is set to more than 100% and the conductive particles 3 with insulating particles are not exposed from the insulating resin layer 5 and are embedded in the insulating resin layer 5, the conductive particles 3 with insulating particles A recess 5c (FIG. 3B) may be formed on the surface of the insulating resin layer 5 of . The meaning of the embedding rate will be described in detail in the description of the embedding state of the conductive particles with insulating particles later.

このような凹み5b、5cは、絶縁粒子付導電粒子3を絶縁性樹脂層5に押し込むときの絶縁性樹脂層5の粘度、押込速度、温度などに応じて形成される。凹み5b、5cの有無が本発明の効果に格別影響するものではないが、凹みの深さが大きい凹み5b、5c(例えば、凹みの最深部の深さが絶縁粒子付導電粒子径Dの10%以上)が局所的に集中した領域が存在する場合に、そのような領域を基板に向けて貼り合わせると、基板の材質や表面状態などによっては、その領域で異方性導電接続後に浮き等が生じ、実用上の問題はなくとも外観が劣る場合がある。これに対しては、そのような領域のある異方性導電フィルムの表面を、異方性導電接続に支障を来たさない程度に加熱押圧したり、樹脂を散布するなどして凹み5b、5cを浅くするか、又は平坦にすることが好ましい。この場合、散布する樹脂は、絶縁性樹脂層5を形成する樹脂よりも低粘度であることが好ましい。散布する樹脂の濃度は、散布後に絶縁性樹脂層5の凹みが確認できる程度に希釈されていてもよい。 Such depressions 5b and 5c are formed according to the viscosity, pushing speed, temperature, etc. of the insulating resin layer 5 when the conductive particles 3 with insulating particles are pushed into the insulating resin layer 5. As shown in FIG. The presence or absence of the recesses 5b and 5c does not particularly affect the effects of the present invention, but the depth of the recesses 5b and 5c is large (for example, the depth of the deepest part of the recess is 10 times the diameter D of the conductive particles with insulating particles). % or more) are locally concentrated, and if such an area is laminated facing the substrate, depending on the material and surface condition of the substrate, floating may occur after the anisotropic conductive connection in that area. may occur, and the appearance may be inferior even if there is no problem in practical use. To deal with this, the surface of the anisotropic conductive film having such a region is heated and pressed to such an extent that the anisotropic conductive connection is not hindered, or resin is sprayed to form the depressions 5b, It is preferable to make 5c shallow or flat. In this case, the sprayed resin preferably has a lower viscosity than the resin forming the insulating resin layer 5 . The concentration of the sprayed resin may be diluted to such an extent that the dents in the insulating resin layer 5 can be confirmed after spraying.

<凹みに代わる“傾斜”もしくは“起伏”>
図3A、3Bに示すような異方性導電フィルムの「凹み」5b、5cは、「傾斜」もしくは「起伏」という観点から説明することもできる。以下に、図面を参照しながら説明する。
<“Tilted” or “undulating” instead of dents>
The "dents" 5b, 5c of the anisotropic conductive film as shown in Figures 3A, 3B can also be described in terms of "tilts" or "undulations." Description will be made below with reference to the drawings.

異方性導電フィルム10Aは、導電粒子分散層、即ち、絶縁性樹脂層5の片面に絶縁粒子付導電粒子3が露出した状態で規則的に分散している層を有する(図3A、図3B)。フィルムの平面視にて絶縁粒子付導電粒子3は互いに接触しておらず、フィルム厚方向にも絶縁粒子付導電粒子3が互いに重なることなく規則的に分散し、絶縁粒子付導電粒子3のフィルム厚方向の位置が揃った単層の導電粒子層を構成している。 The anisotropic conductive film 10A has a conductive particle dispersed layer, that is, a layer in which the conductive particles 3 with insulating particles are regularly dispersed in an exposed state on one side of the insulating resin layer 5 (FIGS. 3A and 3B ). In the plan view of the film, the conductive particles 3 with insulating particles are not in contact with each other, and the conductive particles 3 with insulating particles are regularly dispersed without overlapping each other in the film thickness direction, and the film of the conductive particles 3 with insulating particles It constitutes a single-layer conductive particle layer that is evenly positioned in the thickness direction.

個々の絶縁粒子付導電粒子3の近傍の絶縁性樹脂層5の表面5aには、隣接する絶縁粒子付導電粒子間の中央部における絶縁性樹脂層5の接平面5pに対して傾斜5bが形成されている。なお後述するように、本発明の異方性導電フィルムでは、絶縁性樹脂層5に埋め込まれた絶縁粒子付導電粒子3の直上の絶縁性樹脂層5の表面に起伏5cが形成されていてもよい(図3B)。 On the surface 5a of the insulating resin layer 5 in the vicinity of each conductive particle 3 with insulating particles, an inclination 5b is formed with respect to the tangential plane 5p of the insulating resin layer 5 in the central portion between the adjacent conductive particles with insulating particles. It is As will be described later, in the anisotropic conductive film of the present invention, even if undulations 5c are formed on the surface of the insulating resin layer 5 directly above the conductive particles 3 with insulating particles embedded in the insulating resin layer 5, Good (Fig. 3B).

本発明において、「傾斜」とは、絶縁粒子付導電粒子3の近傍で絶縁性樹脂層の表面の平坦性が損なわれ、前記接平面5pに対して絶縁性樹脂層の一部が欠けて樹脂量が低減している状態を意味する。換言すれば、傾斜では、絶縁粒子付導電粒子の近傍の絶縁性樹脂層の表面が接平面に対して欠けていることになる。一方、「起伏」とは、絶縁粒子付導電粒子の直上の絶縁性樹脂層の表面にうねりがあり、うねりのように高低差がある部分が存在することで樹脂が低減している状態を意味する。換言すれば、絶縁粒子付導電粒子直上の絶縁性樹脂層の樹脂量が、絶縁粒子付導電粒子直上の絶縁性樹脂層の表面が接平面にあるとしたときに比して少なくなる。そのため、うねりにおいて絶縁粒子のみが露出する場合もある。これらは、絶縁粒子付導電粒子の直上に相当する部位と導電粒子間の平坦な表面部分(図3A、3B)とを対比して認識することができる。なお、起伏の開始点が傾斜として存在する場合もある。 In the present invention, the term “inclination” means that the flatness of the surface of the insulating resin layer is impaired in the vicinity of the conductive particles 3 with insulating particles, and a part of the insulating resin layer is missing with respect to the tangential plane 5p. It means that the amount is reduced. In other words, with the inclination, the surface of the insulating resin layer in the vicinity of the conductive particles with insulating particles is chipped with respect to the tangential plane. On the other hand, "undulation" means that the surface of the insulating resin layer directly above the conductive particles with insulating particles has undulations, and the resin is reduced due to the presence of portions with height differences such as undulations. do. In other words, the amount of resin in the insulating resin layer directly above the conductive particles with insulating particles is less than when the surface of the insulating resin layer directly above the conductive particles with insulating particles is on the tangential plane. Therefore, only the insulating particles may be exposed in the undulation. These can be recognized by comparing the portion corresponding to directly above the conductive particles with insulating particles and the flat surface portion between the conductive particles (FIGS. 3A and 3B). In some cases, the undulation starting point exists as an inclination.

上述したように、絶縁性樹脂層5から露出している絶縁粒子付導電粒子3の周囲に傾斜5b(図3A)が形成されていることにより、異方性導電接続時に絶縁粒子付導電粒子3が端子間で挟持される際に生じる絶縁粒子付導電粒子3の偏平化に対して絶縁性樹脂から受ける抵抗が、傾斜5bが無い場合に比して低減するため、端子における絶縁粒子付導電粒子の挟持がされ易くなることで導通性能が向上し、また捕捉性が向上する。この傾斜は、絶縁粒子付導電粒子の外形に沿っていることが好ましい。接続における効果がより発現しやすくなる以外に、絶縁粒子付導電粒子を認識し易くなることで、異方性導電フィルムの製造における検査などが行い易くなるからである。また、この傾斜および起伏は絶縁性樹脂層にヒートプレスするなどにより、その一部が消失してしまう場合があるが、本発明はこれを包含する。この場合、絶縁粒子付導電粒子は絶縁性樹脂層の表面に1点で露出する場合がある。なお、異方性導電フィルムは、接続する電子部品が多様であり、これらに合わせてチューニングする以上、種々の要件を満たせるように設計の自由度が高いことが望まれるので、傾斜もしくは起伏を低減させても部分的に消失させても用いることができる。 As described above, since the inclination 5b (FIG. 3A) is formed around the conductive particles 3 with insulating particles exposed from the insulating resin layer 5, the conductive particles 3 with insulating particles Since the resistance received from the insulating resin against the flattening of the conductive particles 3 with insulating particles that occurs when the is sandwiched between the terminals is reduced compared to the case where there is no inclination 5 b, the conductive particles with insulating particles at the terminals Since it becomes easier to hold the wire, the conduction performance is improved, and the trapping property is improved. This inclination is preferably along the outer shape of the conductive particles with insulating particles. This is because, in addition to the effect of connection becoming more likely to be exhibited, the conductive particles with insulating particles can be easily recognized, which makes it easier to perform inspections and the like in the production of the anisotropic conductive film. Also, the inclination and undulations may partially disappear when the insulating resin layer is heat-pressed, but the present invention encompasses this. In this case, the conductive particles with insulating particles may be exposed at one point on the surface of the insulating resin layer. The anisotropic conductive film is connected to a variety of electronic components, and as long as it is tuned to suit these, it is desirable to have a high degree of freedom in design so that various requirements can be met. It can be used even if it is made to disappear partially.

また、絶縁性樹脂層5から露出することなく埋まっている絶縁粒子付導電粒子3の直上の絶縁性樹脂層5の表面に起伏5c(図3B)が形成されていることにより、傾斜の場合と同様に、異方性接続時に端子からの押圧力が絶縁粒子付導電粒子にかかりやすくなる。また、起伏があることにより樹脂が平坦に堆積している場合よりも絶縁粒子付導電粒子の直上の樹脂量が低減しているため、接続時の絶縁粒子付導電粒子直上の樹脂の排除が生じやすくなり、端子と絶縁粒子付導電粒子とが接触し易くなることから、端子における絶縁粒子付導電粒子の捕捉性が向上し、導通信頼性が向上する。 In addition, undulations 5 c ( FIG. 3B ) are formed on the surface of the insulating resin layer 5 directly above the conductive particles 3 with insulating particles that are buried without being exposed from the insulating resin layer 5 . Similarly, the pressing force from the terminal is more likely to be applied to the conductive particles with insulating particles during anisotropic connection. In addition, since the amount of resin directly above the conductive particles with insulating particles is reduced due to the presence of undulations compared to the case where the resin is deposited flatly, the resin directly above the conductive particles with insulating particles is expelled during connection. Since the contact between the terminal and the conductive particles with insulating particles is facilitated, the ability of the terminals to capture the conductive particles with insulating particles is improved, and the reliability of conduction is improved.

(絶縁性樹脂層の厚さ方向における絶縁粒子付導電粒子の位置)
「傾斜」もしくは「起伏」という観点を考慮した場合の絶縁性樹脂層5の厚さ方向における絶縁粒子付導電粒子3の位置は、前述と同様に、絶縁粒子付導電粒子3が絶縁性樹脂層5から露出していてもよく、露出することなく、絶縁性樹脂層5内に埋め込まれていても良いが、隣接する絶縁粒子付導電粒子間の中央部における接平面5pからの絶縁粒子付導電粒子の最深部の距離(以下、埋込量という)Lbと、絶縁粒子付導電粒子径Dとの比(Lb/D)(以下、埋込率という)が30%以上105%以下であることが好ましく、60%以上105%以下とすることが発明の効果を得るためにはより好ましい。
(Position of conductive particles with insulating particles in the thickness direction of the insulating resin layer)
The position of the conductive particles 3 with insulating particles in the thickness direction of the insulating resin layer 5 when considering the viewpoint of "inclination" or "undulation" is the same as described above. 5, or may be embedded in the insulating resin layer 5 without being exposed, but the conductive particles with insulating particles from the tangential plane 5p in the central part between adjacent conductive particles with insulating particles The ratio (Lb/D) (hereinafter referred to as embedding rate) of the distance of the deepest part of the particles (hereinafter referred to as embedding amount) Lb to the diameter D of the conductive particles with insulating particles is 30% or more and 105% or less. is preferable, and 60% or more and 105% or less is more preferable in order to obtain the effects of the invention.

埋込率(Lb/D)を30%以上60%未満とすると、絶縁粒子付導電粒子を保持する比較的高粘度の樹脂から絶縁粒子付導電粒子が露出している比率が高くなることから、より低温低圧実装が容易になる。60%以上とすることにより、導電粒子1を絶縁性樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持し易くなる。また、製造(フィルムへの押し込み)時の絶縁粒子付導電粒子と樹脂との接触面積が大きくなることから、発明の効果が得られ易くなることが期待できる。また、105%以下とすることにより、異方性導電接続時に端子間の導電粒子を無用に流動させるように作用する絶縁性樹脂層の樹脂量を低減させることができる。 When the embedding ratio (Lb/D) is 30% or more and less than 60%, the proportion of the conductive particles with insulating particles exposed from the relatively high-viscosity resin that holds the conductive particles with insulating particles increases. Low temperature and low voltage mounting becomes easier. By making it 60% or more, it becomes easy to maintain the conductive particles 1 in a predetermined particle dispersion state or a predetermined arrangement by the insulating resin layer 2 . In addition, since the contact area between the conductive particles with insulating particles and the resin increases during production (pressing into the film), it can be expected that the effects of the invention can be easily obtained. Further, by setting the content to 105% or less, it is possible to reduce the amount of resin in the insulating resin layer that causes the conductive particles between terminals to unnecessarily flow during anisotropic conductive connection.

なお、埋込率(Lb/D)の数値は、異方性導電フィルムに含まれる全絶縁粒子付導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上が、当該埋込率(Lb/D)の数値になっていることをいう。したがって、埋込率が30%以上105%以下とは、異方性導電フィルムに含まれる全絶縁粒子付導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上の埋込率が30%以上105%以下であることをいう。このように全絶縁粒子付導電粒子の埋込率(Lb/D)が揃っていることにより、押圧の加重が絶縁粒子付導電粒子に均一にかかるので、端子における絶縁粒子付導電粒子の捕捉状態が良好になり、導通の安定性が向上する。 As for the embedding ratio (Lb/D), 80% or more, preferably 90% or more, more preferably 96% or more of the total number of conductive particles with insulating particles contained in the anisotropic conductive film It means that it is a numerical value of the load ratio (Lb/D). Therefore, the embedding rate of 30% or more and 105% or less means that the total number of conductive particles with insulating particles contained in the anisotropic conductive film is 80% or more, preferably 90% or more, and more preferably 96% or more. It means that the ratio is 30% or more and 105% or less. Since the embedding ratio (Lb/D) of all the conductive particles with insulating particles is uniform in this way, the pressing load is uniformly applied to the conductive particles with insulating particles, so that the state of capturing the conductive particles with insulating particles at the terminal is improved, and the stability of conduction is improved.

埋込率(Lb/D)は、異方性導電フィルムから面積30mm以上の領域を任意に10箇所以上抜き取り、そのフィルム断面の一部をSEM画像で観察し、合計50個以上の絶縁粒子付導電粒子を計測することにより求めることができる。より精度を上げるため、200個以上の絶縁粒子付導電粒子を計測して求めてもよい。 The embedding rate (Lb/D) is obtained by extracting arbitrarily 10 or more regions with an area of 30 mm 2 or more from the anisotropic conductive film, observing a part of the film cross section with an SEM image, and obtaining a total of 50 or more insulating particles. It can be determined by measuring the number of conductive particles attached. In order to further improve the accuracy, it may be obtained by measuring 200 or more conductive particles with insulating particles.

また、埋込率(Lb/D)の計測は、面視野画像において焦点調整することにより、ある程度の個数について一括して求めることができる。もしくは埋込率(Lb/D)の計測にレーザー式判別変位センサ(キーエンス製など)を用いてもよい。 Also, the embedding rate (Lb/D) can be obtained collectively for a certain number of objects by adjusting the focus in the plane view image. Alternatively, a laser discriminative displacement sensor (manufactured by Keyence, etc.) may be used to measure the embedding rate (Lb/D).

上述した絶縁粒子付導電粒子の露出部分の周りの絶縁性樹脂層5の傾斜5b(図3A)や、絶縁粒子付導電粒子の直上の絶縁性樹脂層の起伏5c(図3B)の効果を得易くする点から絶縁粒子付導電粒子3の露出部分の周りの傾斜5bの最大深さLeと絶縁粒子付導電粒子3の粒子径Dとの比(Le/D)は、好ましくは50%未満、より好ましくは30%未満、さらに好ましくは20~25%であり、絶縁粒子付導電粒子3の露出部分の周りの傾斜5bの最大径Ldと絶縁粒子付導電粒子3の粒子径Dとの比(Ld/D)は、好まくは100%以上、より好ましくは100~150%であり、絶縁粒子付導電粒子3の直上の樹脂における起伏5cの最大深さLfと絶縁粒子付導電粒子3の粒子径Dとの比(Lf/D)は、0より大きく、好ましくは10%未満、より好ましくは5%以下である。 The effects of the slope 5b (FIG. 3A) of the insulating resin layer 5 around the exposed portion of the conductive particles with insulating particles and the undulations 5c (FIG. 3B) of the insulating resin layer immediately above the conductive particles with insulating particles are obtained. From the point of view of facilitating the More preferably less than 30%, more preferably 20 to 25%, the ratio of the maximum diameter Ld of the slope 5b around the exposed portion of the conductive particles 3 with insulating particles to the particle size D of the conductive particles 3 with insulating particles ( Ld/D) is preferably 100% or more, more preferably 100 to 150%, and the maximum depth Lf of the undulations 5c in the resin directly above the conductive particles 3 with insulating particles and the particles of the conductive particles 3 with insulating particles The ratio (Lf/D) to the diameter D is greater than 0, preferably less than 10%, more preferably 5% or less.

なお、絶縁粒子付導電粒子3の露出部分の径Lcは、絶縁粒子付導電粒子3の粒子径D以下とすることができ、好ましくは粒子径Dの10~90%である。なお、絶縁粒子付導電粒子3の頂部の1点で露出するようにしてもよく、絶縁粒子付導電粒子3が絶縁性樹脂層5内に完全に埋まり、径Lcがゼロとなるようにしてもよい。 The diameter Lc of the exposed portion of the conductive particles 3 with insulating particles can be made equal to or less than the particle size D of the conductive particles 3 with insulating particles, preferably 10 to 90% of the particle size D. The conductive particles 3 with insulating particles may be exposed at one point at the top, or the conductive particles 3 with insulating particles may be completely buried in the insulating resin layer 5 so that the diameter Lc becomes zero. good.

このような本発明において、絶縁性樹脂層5の表面の傾斜5b、起伏5cの存在は、異方性導電フィルムの断面を走査型電子顕微鏡で観察することにより確認することができ、面視野観察においても確認できる。光学顕微鏡、金属顕微鏡でも傾斜5b、起伏5cの観察は可能である。また、傾斜5b、起伏5cの大きさは画像観察時の焦点調整などで確認することもできる。上述のようにヒートプレスにより傾斜もしくは起伏を減少させた後であっても、同様である。痕跡が残る場合があるからである。 In the present invention, the presence of the slopes 5b and the undulations 5c on the surface of the insulating resin layer 5 can be confirmed by observing the cross section of the anisotropic conductive film with a scanning electron microscope. can also be confirmed. Observation of the slope 5b and the undulation 5c is also possible with an optical microscope and a metallurgical microscope. Also, the magnitude of the slope 5b and the undulation 5c can be confirmed by adjusting the focus during image observation. The same is true even after reducing the slope or undulation by heat pressing as described above. This is because traces may remain.

(絶縁性樹脂層の組成)
絶縁性樹脂層5は、硬化性樹脂組成物から形成することが好ましく、例えば、熱重合性化合物と熱重合開始剤とを含有する熱重合性組成物から形成することができる。熱重合性組成物には必要に応じて光重合開始剤を含有させてもよい。
(Composition of insulating resin layer)
The insulating resin layer 5 is preferably formed from a curable resin composition, and can be formed from, for example, a thermally polymerizable composition containing a thermally polymerizable compound and a thermal polymerization initiator. The thermally polymerizable composition may contain a photopolymerization initiator, if necessary.

熱重合開始剤と光重合開始剤を併用する場合に、熱重合性化合物として光重合性化合物としても機能するものを使用してもよく、熱重合性化合物とは別に光重合性化合物を含有させてもよい。好ましくは、熱重合性化合物とは別に光重合性化合物を含有させる。例えば、熱重合開始剤としてカチオン系硬化開始剤、熱重合性化合物としてエポキシ樹脂を使用し、光重合開始剤として光ラジカル開始剤、光重合性化合物としてアクリレート化合物を使用する。 When a thermal polymerization initiator and a photopolymerization initiator are used together, a thermally polymerizable compound that also functions as a photopolymerizable compound may be used, and a photopolymerizable compound is contained separately from the thermally polymerizable compound. may Preferably, a photopolymerizable compound is contained separately from the thermally polymerizable compound. For example, a cationic curing initiator is used as the thermal polymerization initiator, an epoxy resin is used as the thermally polymerizable compound, a photoradical initiator is used as the photopolymerization initiator, and an acrylate compound is used as the photopolymerizable compound.

光重合開始剤として、波長の異なる光に反応する複数種類を含有させてもよい。これにより、異方性導電フィルムの製造時における、絶縁性樹脂層を構成する樹脂の光硬化と、異方性導電接続時に電子部品同士を接着するための樹脂の光硬化とで使用する波長を使い分けることができる。 A plurality of photopolymerization initiators that react to light with different wavelengths may be contained. As a result, the wavelengths used for photocuring of the resin constituting the insulating resin layer during the production of the anisotropic conductive film and for photocuring of the resin for bonding electronic parts together during anisotropic conductive connection can be changed. can be used properly.

異方性導電フィルムの製造時の光硬化では、絶縁性樹脂層に含まれる光重合性化合物の全部又は一部を光硬化させることができる。この光硬化により、絶縁性樹脂層5における絶縁粒子付導電粒子3の配置が保持乃至固定化され、ショートの抑制と捕捉の向上が見込まれる。また、この光硬化により、異方性導電フィルムの製造工程における絶縁性樹脂層の粘度を適宜調整してもよい。 In the photo-curing during the production of the anisotropic conductive film, all or part of the photopolymerizable compound contained in the insulating resin layer can be photo-cured. By this photocuring, the arrangement of the conductive particles 3 with insulating particles in the insulating resin layer 5 is maintained or fixed, and it is expected that short circuits are suppressed and trapping is improved. Moreover, the viscosity of the insulating resin layer in the manufacturing process of the anisotropic conductive film may be appropriately adjusted by this photocuring.

絶縁性樹脂層における光重合性化合物の配合量は30質量%以下が好ましく、10質量%以下がより好ましく、2質量%未満がより好ましい。光重合性化合物が多すぎると接続時の押し込みにかかる推力が増加するためである。 The amount of the photopolymerizable compound in the insulating resin layer is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably less than 2% by mass. This is because if the amount of the photopolymerizable compound is too large, the pushing force applied during connection increases.

熱重合性組成物の例としては、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性アクリレート系組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性エポキシ系組成物等が挙げられる。熱カチオン重合開始剤を含む熱カチオン重合性エポキシ系組成物に代えて、熱アニオン重合開始剤を含む熱アニオン重合性エポキシ系組成物を使用してもよい。また、特に支障を来たさなければ、複数種の重合性組成物を併用してもよい。併用例としては、カチオン重合性化合物とラジカル重合性化合物の併用などが挙げられる。 Examples of the thermally polymerizable composition include a thermally radically polymerizable acrylate composition containing a (meth)acrylate compound and a thermally radical polymerization initiator, and a thermally cationic polymerizable epoxy system containing an epoxy compound and a thermally cationic polymerization initiator. composition and the like. A thermal anionically polymerizable epoxy composition containing a thermal anionic polymerization initiator may be used instead of the thermally cationic polymerizable epoxy composition containing a thermal cationic polymerization initiator. In addition, a plurality of types of polymerizable compositions may be used together as long as there is no particular problem. Examples of combined use include combined use of a cationically polymerizable compound and a radically polymerizable compound.

ここで、(メタ)アクリレート化合物としては、従来公知の熱重合型(メタ)アクリレートモノマーを使用することができる。例えば、単官能(メタ)アクリレート系モノマー、二官能以上の多官能(メタ)アクリレート系モノマーを使用することができる。 Here, as the (meth)acrylate compound, a conventionally known thermally polymerizable (meth)acrylate monomer can be used. For example, monofunctional (meth)acrylate monomers and bifunctional or higher polyfunctional (meth)acrylate monomers can be used.

熱ラジカル重合開始剤としては、例えば、有機過酸化物、アゾ系化合物等を挙げることができる。特に、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。 Examples of thermal radical polymerization initiators include organic peroxides and azo compounds. In particular, organic peroxides that do not generate nitrogen causing air bubbles can be preferably used.

熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、(メタ)アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。 If the amount of the thermal radical polymerization initiator used is too small, curing will be poor, and if it is too large, the product life will be shortened. 5 to 40 parts by mass.

エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。また、エポキシ化合物に加えてオキセタン化合物を併用してもよい。 Examples of epoxy compounds include bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac type epoxy resins, modified epoxy resins thereof, alicyclic epoxy resins, and the like, and two or more of these can be used in combination. can. Moreover, in addition to the epoxy compound, an oxetane compound may be used in combination.

熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により酸を発生するヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、特に、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。 As the thermal cationic polymerization initiator, those known as thermal cationic polymerization initiators for epoxy compounds can be employed. For example, iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, etc. that generate acid by heat can be used. and in particular aromatic sulfonium salts which exhibit good latency with respect to temperature can be preferably used.

熱カチオン重合開始剤の使用量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。 If the amount of the thermal cationic polymerization initiator used is too small, it tends to cause poor curing, and if it is too large, the product life tends to be shortened. parts, more preferably 5 to 40 parts by mass.

熱重合性組成物は、膜形成樹脂やシランカップリング剤を含有することが好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。重量平均分子量は10000以上であることが好ましい。また、シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。 The thermally polymerizable composition preferably contains a film-forming resin and a silane coupling agent. Examples of film-forming resins include phenoxy resins, epoxy resins, unsaturated polyester resins, saturated polyester resins, urethane resins, butadiene resins, polyimide resins, polyamide resins, and polyolefin resins. Two or more of these resins are used in combination. be able to. Among these, phenoxy resins can be preferably used from the viewpoint of film formability, workability, and connection reliability. The weight average molecular weight is preferably 10,000 or more. Examples of silane coupling agents include epoxy silane coupling agents and acrylic silane coupling agents. These silane coupling agents are mainly alkoxysilane derivatives.

熱重合性組成物には、溶融粘度調整のために、上述の絶縁粒子付導電粒子3とは別に絶縁性フィラーを含有させてもよい。これはシリカ粉やアルミナ粉などが挙げられる。絶縁性フィラー粒径20~1000nmの微小なフィラーが好ましく、また、配合量はエポキシ化合物等の熱重合性化合物(光重合性組成物)100質量部に対して5~50質量部とすることが好ましい。 In order to adjust the melt viscosity, the thermally polymerizable composition may contain an insulating filler separately from the above-described insulating particle-containing conductive particles 3 . Examples include silica powder and alumina powder. The insulating filler preferably has a fine filler with a particle size of 20 to 1000 nm, and the blending amount may be 5 to 50 parts by mass with respect to 100 parts by mass of a thermally polymerizable compound (photopolymerizable composition) such as an epoxy compound. preferable.

本発明の異方性導電フィルムには、上述の絶縁性のフィラーとは別に充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを含有させてもよい The anisotropic conductive film of the present invention contains fillers, softeners, accelerators, anti-aging agents, colorants (pigments, dyes), organic solvents, ion catchers, etc., in addition to the insulating fillers described above. may let

(絶縁性樹脂層の層厚)
本発明の異方性導電フィルムでは、絶縁性樹脂層5の層厚Laと絶縁粒子付導電粒子3の粒子径Dとの比(La/D)が後述の理由から下限を0.3以上とすることができ、上限を10以下することができる。従って、その比は0.3~10が好ましく、0.6~8がより好ましく、0.6~6が更に好ましい。ここで、絶縁粒子付導電粒子3の粒子径Dは、その平均粒子径を意味する。絶縁性樹脂層5の層厚Laが大き過ぎると異方性導電接続時に絶縁粒子付導電粒子3が樹脂流動により位置ズレしやすくなり、端子における絶縁粒子付導電粒子3の捕捉性が低下する。この傾向はこの比(La/D)が10を超えると顕著であるため、8以下がより好ましく、6以下が更に好ましい。反対に絶縁性樹脂層5の層厚Laが小さすぎてこの比(La/D)が0.3未満となると、絶縁粒子付導電粒子3を絶縁性樹脂層5によって所定の粒子分散状態あるいは所定の配列に維持することが困難となるので比(La/D)は0.3以上が好ましく、絶縁性樹脂層5によって所定の粒子分散状態あるいは所定の配列を確実に維持する点から0.6以上がより好ましい。また、接続する端子が高密度COGの場合、絶縁性樹脂層5の層厚Laと絶縁粒子付導電粒子3の粒子径Dとの比(La/D)は、好ましくは0.8~2である。
(Layer thickness of insulating resin layer)
In the anisotropic conductive film of the present invention, the ratio (La/D) between the layer thickness La of the insulating resin layer 5 and the particle diameter D of the conductive particles 3 with insulating particles (La/D) has a lower limit of 0.3 or more for the reasons described later. and the upper limit can be 10 or less. Therefore, the ratio is preferably 0.3-10, more preferably 0.6-8, and even more preferably 0.6-6. Here, the particle diameter D of the conductive particles 3 with insulating particles means the average particle diameter. If the layer thickness La of the insulating resin layer 5 is too large, the conductive particles 3 with insulating particles tend to be displaced due to resin flow during anisotropic conductive connection, and the ability to capture the conductive particles 3 with insulating particles at the terminal is reduced. Since this tendency is remarkable when this ratio (La/D) exceeds 10, it is more preferably 8 or less, and even more preferably 6 or less. On the other hand, if the layer thickness La of the insulating resin layer 5 is too small and the ratio (La/D) is less than 0.3, the insulating resin layer 5 causes the conductive particles 3 with insulating particles to be dispersed in a predetermined state or in a predetermined state. Therefore, the ratio (La/D) is preferably 0.3 or more, and the ratio (La/D) is preferably 0.3 or more. The above is more preferable. Further, when the terminal to be connected is high-density COG, the ratio (La/D) between the layer thickness La of the insulating resin layer 5 and the particle diameter D of the conductive particles 3 with insulating particles is preferably 0.8 to 2. be.

<絶縁性樹脂層における絶縁粒子付導電粒子の埋込状態>
絶縁性樹脂層5における絶縁粒子付導電粒子3の埋込状態は、埋込率を30%以上105%以下とすることが好ましい。埋込率30%以上、好ましくは60%以上とすることにより、絶縁粒子付導電粒子3を絶縁性樹脂層5によって所定の粒子分散状態あるいは所定の配列に維持させることができる。また、埋込率105%以下とすることにより、異方性導電接続時に絶縁粒子付導電粒子を無用に流動させるように作用する絶縁性樹脂層の樹脂量を低減させることができる。
<Embedded state of conductive particles with insulating particles in insulating resin layer>
As for the embedding state of the conductive particles 3 with insulating particles in the insulating resin layer 5, the embedding rate is preferably 30% or more and 105% or less. By setting the embedding rate to 30% or more, preferably 60% or more, the insulating resin layer 5 can maintain the conductive particles 3 with insulating particles in a predetermined particle dispersed state or in a predetermined arrangement. In addition, by setting the embedding rate to 105% or less, it is possible to reduce the amount of resin in the insulating resin layer that causes the conductive particles with insulating particles to unnecessarily flow during anisotropic conductive connection.

ここで、埋込率とは、絶縁粒子付導電粒子3が埋め込まれている絶縁性樹脂層5の表面5a(絶縁性樹脂層5において、絶縁粒子付導電粒子3が偏在している方の表面)と、絶縁性樹脂層5に埋め込まれている絶縁粒子付導電粒子3の前記表面5aに対する最深部との距離を埋込量Lbとした場合に、絶縁粒子付導電粒子3の粒子径Dに対する埋込量Lbの比率(Lb/D)である(図1B)。 Here, the embedding ratio means the surface 5a of the insulating resin layer 5 in which the conductive particles 3 with insulating particles are embedded (the surface of the insulating resin layer 5 on which the conductive particles 3 with insulating particles are unevenly distributed ) and the deepest part of the conductive particles 3 with insulating particles embedded in the insulating resin layer 5 with respect to the surface 5a is the embedding amount Lb. It is the ratio (Lb/D) of the embedding amount Lb (FIG. 1B).

なお、本発明において、埋込率(Lb/D)の数値は、異方性導電フィルムに含まれる全導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上が、当該埋込率(Lb/D)の数値になっていることをいう。したがって、埋込率が30%以上105%以下とは、異方性導電フィルムに含まれる全絶縁粒子付導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上の埋込率が30%以上105%以下であることをいう。このように全絶縁粒子付導電粒子の埋込率(Lb/D)が揃っていることにより、押圧の加重が導電粒子に均一にかかるので、端子における導電粒子の捕捉状態が良好になり、導通の安定性が向上する。 In the present invention, the value of the embedding rate (Lb/D) is 80% or more, preferably 90% or more, more preferably 96% or more of the total number of conductive particles contained in the anisotropic conductive film. It means that the numerical value of the embedding rate (Lb/D) is obtained. Therefore, the embedding rate of 30% or more and 105% or less means that the total number of conductive particles with insulating particles contained in the anisotropic conductive film is 80% or more, preferably 90% or more, and more preferably 96% or more. It means that the ratio is 30% or more and 105% or less. Since the embedding ratio (Lb/D) of the conductive particles with all the insulating particles is uniform in this way, the pressure load is uniformly applied to the conductive particles, so that the conductive particles are captured in a good state at the terminal, and the conduction is achieved. stability is improved.

埋込率(Lb/D)は、異方性導電フィルムから面積30mm2以上の領域を任意に10箇所以上抜き取り、そのフィルム断面の一部をSEM画像で観察し、合計50個以上の導電粒子を計測することにより求めることができる。より精度を上げるため、200個以上の導電粒子を計測して求めてもよい。 The embedding ratio (Lb/D) is determined by extracting 10 or more arbitrarily areas with an area of 30 mm or more from the anisotropic conductive film, observing a part of the cross section of the film with an SEM image, and detecting a total of 50 or more conductive particles. It can be obtained by measuring. In order to further improve the accuracy, it may be determined by measuring 200 or more conductive particles.

また、埋込率(Lb/D)の計測は、面視野画像において焦点調整することにより、ある程度の個数について一括して求めることもできる。もしくは埋込率(Lb/D)の計測にレーザー式判別変位センサ((株)キーエンス製など)を用いてもよい。 Also, the embedding ratio (Lb/D) can be obtained collectively for a certain number of objects by adjusting the focus in the plane view image. Alternatively, a laser discriminating displacement sensor (manufactured by KEYENCE CORPORATION, etc.) may be used to measure the embedding rate (Lb/D).

<異方性導電フィルムの製造方法>
図1A、図1Bに示した異方性導電フィルム10Aの製造方法の一例においては、転写型30の凹部31に絶縁粒子付導電粒子3を充填する(図4A)。この凹部31は、異方性導電フィルムにおける絶縁粒子付導電粒子3と同様の配列に形成されている。
<Method for producing anisotropic conductive film>
In one example of the method of manufacturing the anisotropic conductive film 10A shown in FIGS. 1A and 1B, the concave portions 31 of the transfer mold 30 are filled with the insulating particle-containing conductive particles 3 (FIG. 4A). The concave portions 31 are arranged in the same arrangement as the conductive particles 3 with insulating particles in the anisotropic conductive film.

このような転写型30としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料などに対し、フォトリソグラフ法等の公知の開口形成方法によって凹部31を形成したものを使用することができる。また、転写型は、板状、ロール状等の形状をとることができる。 As the transfer mold 30, for example, inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, etc., and organic materials such as various resins are processed by a known opening forming method such as photolithography. It is possible to use one in which the recess 31 is formed. Further, the transfer mold can have a shape such as a plate shape or a roll shape.

一方、剥離フィルム7上に絶縁性樹脂層5をフィルム状に形成しておき、転写型30に充填した絶縁粒子付導電粒子3上に絶縁性樹脂層5を被せる(図4C)。あるいは、絶縁粒子付導電粒子3上に絶縁性樹脂層5を被せる前に、転写型30に充填した絶縁粒子付導電粒子3に平板32を接触させるなどにより、絶縁粒子2を導電粒子1から脱離させ(図4B)、その後、絶縁性樹脂層5を被せてもよい(図4C)。次に、転写型30から絶縁性樹脂層5を剥離し、絶縁粒子付導電粒子3が転写した絶縁性樹脂層5を得る(図4D)。この絶縁粒子付導電粒子3の転写工程では、転写型30と絶縁粒子2が擦れるために、転写型30の凹部31の底面と接していた絶縁粒子2(領域A1の絶縁粒子2となるもの)が絶縁粒子付導電粒子3から脱離しやすい。また、転写型30内の絶縁粒子付導電粒子3に絶縁性樹脂層5を被せたときに、絶縁性樹脂層5と最初に接触する絶縁粒子2には大きな力がかかるため、この領域の絶縁粒子2(領域A2の絶縁粒子2となるもの)も脱離することがある。このため、フィルム上に絶縁粒子2が存在(点在)していることがある。 On the other hand, the insulating resin layer 5 is formed in a film shape on the release film 7, and the insulating resin layer 5 is put on the conductive particles 3 with insulating particles filled in the transfer mold 30 (FIG. 4C). Alternatively, before covering the conductive particles 3 with insulating particles with the insulating resin layer 5, the insulating particles 2 are separated from the conductive particles 1 by bringing a flat plate 32 into contact with the conductive particles 3 with insulating particles filled in the transfer mold 30. It may be separated (FIG. 4B) and then covered with an insulating resin layer 5 (FIG. 4C). Next, the insulating resin layer 5 is separated from the transfer mold 30 to obtain the insulating resin layer 5 onto which the conductive particles 3 with insulating particles have been transferred (FIG. 4D). In the step of transferring the insulating particle-attached conductive particles 3, since the transfer mold 30 and the insulating particles 2 rub against each other, the insulating particles 2 that are in contact with the bottom surface of the concave portion 31 of the transfer mold 30 (the insulating particles 2 of the region A1) is likely to detach from the conductive particles 3 with insulating particles. In addition, when the insulating resin layer 5 is placed on the insulating resin layer 5 on the conductive particles 3 with insulating particles in the transfer mold 30, a large force is applied to the insulating particles 2 that first come into contact with the insulating resin layer 5. Particles 2 (which will become insulating particles 2 in region A2) may also detach. For this reason, the insulating particles 2 may be present (spotted) on the film.

一方、フィルム面方向の絶縁粒子2は、絶縁性樹脂層5を転写型30から剥離した後も絶縁性樹脂層5から脱離することなく、絶縁性樹脂層5に維持されている。 On the other hand, the insulating particles 2 in the film surface direction are maintained in the insulating resin layer 5 without being detached from the insulating resin layer 5 even after the insulating resin layer 5 is separated from the transfer mold 30 .

したがって、絶縁性樹脂層5に転写した後の絶縁粒子付導電粒子3では、転写前に比して、絶縁粒子付導電粒子3を構成する絶縁粒子2のうち導電粒子1とフィルム厚方向で接する絶縁粒子2の個数が、導電粒子1とフィルム面方向で接する絶縁粒子2の個数に比して低減する。 Therefore, in the conductive particles 3 with insulating particles after being transferred to the insulating resin layer 5, the conductive particles 1 among the insulating particles 2 constituting the conductive particles 3 with insulating particles are in contact with each other in the film thickness direction compared to before the transfer. The number of insulating particles 2 is reduced compared to the number of insulating particles 2 in contact with conductive particles 1 in the film surface direction.

次に、必要に応じて、絶縁性樹脂層5に転写した絶縁粒子付導電粒子3を平板又はローラー33で押し込む(図4E)。この押し込み時に、絶縁粒子付導電粒子3を形成していた絶縁粒子2であって、平板又はローラー33側にあった絶縁粒子2(領域A1となる絶縁粒子2)は平板又はローラー33との接触により導電粒子1から比較的脱離する。 Next, if necessary, the conductive particles 3 with insulating particles transferred to the insulating resin layer 5 are pressed by a flat plate or a roller 33 (FIG. 4E). At the time of this pressing, the insulating particles 2 forming the insulating particle-attached conductive particles 3, and the insulating particles 2 that were on the flat plate or roller 33 side (the insulating particles 2 that will be the region A1) come into contact with the flat plate or roller 33. relatively detached from the conductive particles 1 by

絶縁性樹脂層5に転写した絶縁粒子付導電粒子3を平板又はローラー33で押し込むときの押込量Lbは、埋込率(Lb/D)が好ましくは30%以上105%以下、より好ましくは60%以上105%以下となるように調整することが好ましく、また押し込みに押圧治具に必要とされる推力等に応じて定めることが好ましい。 The pressing amount Lb when pressing the conductive particles 3 with insulating particles transferred to the insulating resin layer 5 with a flat plate or roller 33 is such that the embedding ratio (Lb/D) is preferably 30% or more and 105% or less, more preferably 60%. % or more and 105% or less.

こうして、絶縁粒子付導電粒子3における絶縁粒子2の個数のうち、異方性導電フィルムのフィルム厚方向で導電粒子1と接する絶縁粒子2の個数が低減した異方性導電フィルム10Aを得ることができる(図4F)。 In this way, it is possible to obtain an anisotropic conductive film 10A in which the number of insulating particles 2 in contact with the conductive particles 1 in the film thickness direction of the anisotropic conductive film is reduced among the number of insulating particles 2 in the conductive particles 3 with insulating particles. (Fig. 4F).

また、上述した異方性導電フィルム10Aの製造方法において、当初の絶縁粒子付導電
粒子3から脱離する絶縁粒子2の個数は、絶縁性樹脂層5の温度及び粘度、並びに埋込率
(Lb/D)等により調整することができる。
Further, in the method for manufacturing the anisotropic conductive film 10A described above, the number of the insulating particles 2 detached from the initial conductive particles 3 with insulating particles depends on the temperature and viscosity of the insulating resin layer 5 and the embedding rate (Lb /D) or the like.

<異方性導電フィルムの変形態様>
本発明の異方性導電フィルムは、図5に示す異方性導電フィルム10Bのように、絶縁
粒子付導電粒子3が埋め込まれている絶縁性樹脂層5に、該絶縁性樹脂層5よりも最低溶
融粘度が低い低粘度絶縁性樹脂層6を積層してもよい。低粘度絶縁性樹脂層6の積層によ
り、異方性導電フィルムを用いて電子部品を異方性導電接続するときに、電子部品の電極
やバンプによって形成される空間を充填し、接着性を向上させることができる。
<Deformation mode of anisotropic conductive film>
In the anisotropic conductive film of the present invention, like the anisotropic conductive film 10B shown in FIG. A low-viscosity insulating resin layer 6 having a low minimum melt viscosity may be laminated. Lamination of the low-viscosity insulating resin layer 6 fills the space formed by the electrodes and bumps of the electronic parts when anisotropically conductively connecting the electronic parts using the anisotropic conductive film, improving adhesion. can be made

絶縁性樹脂層5と低粘度絶縁性樹脂層6との最低溶融粘度比は、好ましくは2以上、より好ましくは5以上、さらに好ましくは8以上、実用上15以下である。低粘度絶縁性樹脂層6のより具体的な最低溶融粘度は3000Pa・s以下、より好ましくは2000Pa・s以下であり、特に1000~2000Pa・sであることが好ましい。このように低粘度絶縁性樹脂層6を低粘度とすることにより、電子部品の電極やバンプによって形成される空間が低粘度絶縁性樹脂で充填されやすくなるので、絶縁性樹脂層5の移動量が相対的に少なくなり、端子間の絶縁粒子付導電粒子3が樹脂流動により流されにくくなる。よって、異方性導電接続時に絶縁粒子付導電粒子3の捕捉性を損なうことなく、電子部品同士の接着性を向上させることができる。 The minimum melt viscosity ratio between the insulating resin layer 5 and the low-viscosity insulating resin layer 6 is preferably 2 or more, more preferably 5 or more, still more preferably 8 or more, and practically 15 or less. More specifically, the minimum melt viscosity of the low-viscosity insulating resin layer 6 is 3000 Pa·s or less, more preferably 2000 Pa·s or less, and particularly preferably 1000 to 2000 Pa·s. By making the low-viscosity insulating resin layer 6 low in viscosity in this way, the space formed by the electrodes and bumps of the electronic component can be easily filled with the low-viscosity insulating resin. becomes relatively small, and the conductive particles 3 with insulating particles between the terminals are less likely to flow due to the resin flow. Therefore, the adhesiveness between the electronic components can be improved without impairing the ability to capture the insulating particle-attached conductive particles 3 at the time of anisotropic conductive connection.

また、絶縁性樹脂層5と低粘度絶縁性樹脂層6を合わせた異方性導電フィルム10B全体の最低溶融粘度は、好ましくは、200~4000Pa・sである。 The minimum melt viscosity of the entire anisotropic conductive film 10B including the insulating resin layer 5 and the low-viscosity insulating resin layer 6 is preferably 200 to 4000 Pa·s.

なお、低粘度絶縁性樹脂層6は、絶縁性樹脂層5と同様の樹脂組成物において、粘度を調整することにより形成することができる。 The low-viscosity insulating resin layer 6 can be formed by adjusting the viscosity of the resin composition similar to that of the insulating resin layer 5 .

また、異方性導電フィルム10Bにおいて、低粘度絶縁性樹脂層6の層厚は、好ましくは4~20μmである。もしくは、絶縁粒子付導電粒子径に対して、好ましくは1~8倍である。 Moreover, in the anisotropic conductive film 10B, the layer thickness of the low-viscosity insulating resin layer 6 is preferably 4 to 20 μm. Alternatively, it is preferably 1 to 8 times the diameter of the conductive particles with insulating particles.

本発明においては、転写型30から絶縁性樹脂層5を剥離した後、絶縁粒子付導電粒子3を押し込む前のものを異方性導電フィルム10C(図6)としてもよく、これに低粘度絶縁性樹脂層6を積層したものを異方性導電フィルム10Dとしてもよい(図7)。この場合、絶縁粒子付導電粒子が、絶縁性樹脂層と低粘度絶縁性樹脂層の間に存在させてもよい。また、低粘度絶縁性樹脂層側フィルム面の平面視における導電粒子上の絶縁粒子数が、絶縁性樹脂層側フィルム面の平面視における導電粒子上の絶縁粒子数よりも少なくすることが好ましい。さらに、必要に応じて、低粘度絶縁性樹脂層6の反対側の絶縁性樹脂層5上にさらに低粘度絶縁性樹脂層を積層してもよい。 In the present invention, the anisotropic conductive film 10C (FIG. 6) may be formed after peeling the insulating resin layer 5 from the transfer mold 30 and before pressing the conductive particles 3 with insulating particles. An anisotropic conductive film 10D may be formed by laminating a flexible resin layer 6 (FIG. 7). In this case, the conductive particles with insulating particles may be present between the insulating resin layer and the low-viscosity insulating resin layer. In addition, it is preferable that the number of insulating particles on the conductive particles in plan view of the low-viscosity insulating resin layer-side film surface is smaller than the number of insulating particles on the conductive particles in plan view of the insulating resin layer-side film surface. Furthermore, if necessary, a low-viscosity insulating resin layer may be further laminated on the insulating resin layer 5 on the opposite side of the low-viscosity insulating resin layer 6 .

また、絶縁粒子付導電粒子3を、フィルム厚方向の異なる位置に複数層設けてもよい。これらの変形態様は、適宜組み合わせることができる。 Moreover, a plurality of layers of the conductive particles 3 with insulating particles may be provided at different positions in the film thickness direction. These modified modes can be combined as appropriate.

<異方性導電フィルムで接続する電子部品>
本発明の異方性導電フィルムは、ICチップ、ICモジュール、FPCなどの第1電子部品と、FPC、ガラス基板、プラスチック基板、リジッド基板、セラミック基板などの第2電子部品とを異方性導電接続する際に好ましく使用することができる。ICチップやウェーハーをスタックして多層化させてもよい。なお、本発明の異方性導電フィルムで接続する電子部品は、上述の電子部品に限定されるものではない。近年、多様化している種々の電子部品に使用することができる。
<Electronic components connected with anisotropic conductive film>
The anisotropic conductive film of the present invention is capable of anisotropically conducting first electronic components such as IC chips, IC modules and FPCs and second electronic components such as FPCs, glass substrates, plastic substrates, rigid substrates and ceramic substrates. It can be preferably used when connecting. IC chips or wafers may be stacked to form multiple layers. In addition, the electronic components to be connected by the anisotropic conductive film of the present invention are not limited to the electronic components described above. It can be used for various electronic parts that have been diversifying in recent years.

<異方性導電フィルムを用いた接続方法及び接続構造体>
本発明は、本発明の異方性導電フィルムを用いて電子部品同士を異方性導電接続する接続構造体の製造方法を提供し、この製造方法により得られた接続構造体、即ち、対向する電子部品の端子同士が、絶縁粒子付導電粒子と絶縁性樹脂層により異方性導電接続されている接続構造体であって、対向する端子に挟持されていない絶縁粒子付導電粒子に、端子同士の対向方向を向いた絶縁粒子欠落領域を有する絶縁粒子付導電粒子が含まれている接続構造体を提供する。
<Connection method and connection structure using anisotropic conductive film>
The present invention provides a method for manufacturing a connection structure for anisotropically conductively connecting electronic components using the anisotropic conductive film of the present invention, and provides a connection structure obtained by this manufacturing method, that is, facing The terminals of the electronic component are anisotropically conductively connected by the conductive particles with insulating particles and the insulating resin layer, and the conductive particles with insulating particles that are not sandwiched between the opposing terminals are connected to the terminals. Provided is a connection structure containing conductive particles with insulating particles having insulating particle-missing regions facing in opposite directions.

この接続構造体には、対向する端子に挟持されている絶縁粒子付導電粒子にも、端子同士の対向方向を向いた絶縁粒子欠落領域を有する絶縁粒子付導電粒子が含まれている。この接続構造体において、端子同士の対向方向は、接続構造体の製造に使用した本発明の異方性導電フィルムのフィルム厚方向に対応し、端子の接続面方向は、異方性導電フィルムのフィルム面方向に対応する。また、絶縁粒子欠落領域とは、絶縁粒子付導電粒子の表面の一部分が、その外側の環状部分に比して絶縁粒子の面密度が低くなっている領域をいう。したがって、この接続構造体において、対向する端子に挟持されている絶縁粒子付導電粒子は、前述した異方性導電フィルムにおいて絶縁粒子数が低減している領域A1又はA2に対応しており、端子同士の対向方向で導電粒子と接する絶縁粒子数が、端子の接続面方向(端子同士の対向方向と直交する方向)で導電粒子と接する絶縁粒子数よりも少ない絶縁粒子付導電粒子と言える。このような絶縁粒子付導電粒子は、上述の対向する端子に挟持されていない絶縁粒子付導電粒子の絶縁粒子欠落領域の向きが、端子に挟持される直前まで絶縁性樹脂によって保持され、端子に挟持された後もその向きが保持されたものと推察される。対向する端子に挟持されている絶縁粒子付導電粒子は、絶縁粒子欠落領域が対向する端子の少なくとも一方と接触しているため、導通安定性の上では好ましく、絶縁粒子欠落領域が対向する端子の双方と接触していることがより好ましい。 In this connection structure, the conductive particles with insulating particles sandwiched between the terminals facing each other also contain the conductive particles with insulating particles having insulating particle-missing regions facing the opposing direction of the terminals. In this connection structure, the facing direction of the terminals corresponds to the film thickness direction of the anisotropic conductive film of the present invention used for manufacturing the connection structure, and the connection surface direction of the terminals corresponds to the anisotropic conductive film. Corresponds to the film plane direction. The region lacking insulating particles refers to a region where a portion of the surface of the conductive particles with insulating particles has a lower surface density of the insulating particles than the outer annular portion. Therefore, in this connection structure, the conductive particles with insulating particles sandwiched between the opposing terminals correspond to the regions A1 or A2 in which the number of insulating particles is reduced in the anisotropic conductive film described above, and the terminals It can be said that the number of insulating particles in contact with the conductive particles in the facing direction is less than the number of insulating particles in contact with the conductive particles in the terminal connection surface direction (direction perpendicular to the facing direction of the terminals). In such conductive particles with insulating particles, the direction of the insulating particle missing region of the conductive particles with insulating particles that are not sandwiched between the terminals facing each other is held by the insulating resin until immediately before the terminals are sandwiched. It is presumed that the orientation was maintained even after being clamped. The conductive particles with insulating particles sandwiched between the opposing terminals are preferable in terms of conduction stability because the insulating particle missing regions are in contact with at least one of the opposing terminals. It is more preferable to be in contact with both sides.

また、この接続構造体において絶縁粒子欠落領域が端子同士の対向方向を向いた絶縁粒子付導電粒子は、上述のように、異方性導電フィルムにおいて絶縁粒子数が低減している領域A1又はA2を有する絶縁粒子付導電粒子に対応するから、異方性導電フィルムにおける前述の(NA3+NA4)>(NA1+NA2)の関係を満たしている。 In addition, in this connection structure, the conductive particles with insulating particles in which the insulating particle-missing regions are oriented in the direction in which the terminals are opposed to each other are the regions A1 or A2 in which the number of insulating particles is reduced in the anisotropic conductive film, as described above. Since it corresponds to the conductive particles with insulating particles having the above-described relationship of (N A3 +N A4 )>(N A1 +N A2 ) in the anisotropic conductive film.

接続構造体における絶縁粒子欠落領域の絶縁粒子付導電粒子を概念的に説明すると、絶縁粒子付導電粒子を球とした場合に、中心角45°に対応する球の表面の一部領域が、その外側の中心角45°~135°に対応する環状領域よりも絶縁粒子の面密度が低くなっている場合の当該中心角45°に対応する球の表面の一部領域といえる。 To conceptually explain the conductive particles with insulating particles in the region lacking insulating particles in the connection structure, when the conductive particles with insulating particles are a sphere, a partial region of the surface of the sphere corresponding to the central angle of 45° It can be said that this is a partial surface area of the sphere corresponding to the central angle of 45° when the surface density of the insulating particles is lower than that of the annular area corresponding to the outer central angle of 45° to 135°.

この接続構造体において、対向する端子に挟持されていない絶縁粒子付導電粒子は、対向する電子部品の接続面のうち、電子部品における端子列の非形成領域で挟まれている、対向する電子部品間の絶縁粒子付導電粒子を含む。この場合の絶縁粒子付導電粒子は、例えば、対向する電子部品を第1電子部品と第2電子部品とした場合に、第1電子部品における端子列の非形成領域と第2電子部品における端子列の非形成領域により電子部品の対向方向で挟まれている絶縁粒子付導電粒子のことである。 In this connection structure, the conductive particles with insulating particles that are not sandwiched between the opposing terminals are sandwiched between the non-formed regions of the terminal row in the electronic component, among the connecting surfaces of the opposing electronic component. Contains conductive particles with insulating particles in between. In this case, the conductive particles with insulating particles are, for example, when the facing electronic components are the first electronic component and the second electronic component, the terminal row non-formation region in the first electronic component and the terminal row in the second electronic component It is the conductive particles with insulating particles sandwiched in the facing direction of the electronic component by the non-formation regions.

また、この接続構造体において、対向する端子に挟持されていない絶縁粒子付導電粒子は、電子部品に端子列が所定の端子間スペースで形成されている場合の、対向する電子部品の端子間スペース同士の間にある絶縁粒子付導電粒子を含む。 Further, in this connection structure, the conductive particles with insulating particles that are not sandwiched between the opposing terminals are in the space between the terminals of the opposing electronic component when the terminal rows are formed in the electronic component with a predetermined inter-terminal space. Including conductive particles with insulating particles between them.

言い換えると、対向する端子に挟持されていない絶縁粒子付導電粒子とは、接続構造体において、接続に寄与していない大多数の絶縁粒子付導電粒子を意味する。 In other words, the conductive particles with insulating particles that are not sandwiched between the opposing terminals mean the majority of the conductive particles with insulating particles that do not contribute to the connection in the connection structure.

一般に、接続構造体において、対向する端子に挟持されていない絶縁粒子付導電粒子には、異方性導電接続時の加熱加圧により、加熱加圧前の状態に対して移動しているものが含まれ、向きが変わっているものもある。向きの変わる程度は、当該絶縁粒子付導電粒子の端子に対する位置、絶縁粒子層の粘度、加熱加圧条件等によって異なるが、接続構造体の絶縁粒子付導電粒子には、加熱加圧前の向きを維持しているものも含まれる。したがって、接続構造体の製造に使用した異方性導電フィルムが本発明の異方性導電フィルムであると、対向する端子に挟持されていない絶縁粒子付導電粒子の少なくとも一部には、絶縁粒子欠落領域が、対向する端子の対向方向を向いたものが含まれることとなり、本発明の接続構造体であることがわかる。特に、接続構造体において導電粒子欠落領域が、対向する端子の対向方向を向いた絶縁粒子付導電粒子が、ある領域に塊まって存在していると、その接続構造体は本発明の接続構造体であることが容易にわかる。 Generally, in the connection structure, among the conductive particles with insulating particles that are not sandwiched between opposing terminals, there are those that have moved relative to the state before heating and pressurization due to heating and pressurization during anisotropic conductive connection. Some are included and are oriented differently. The extent to which the direction changes depends on the position of the conductive particles with insulating particles with respect to the terminal, the viscosity of the insulating particle layer, the conditions for heating and pressing, etc. It also includes those that maintain Therefore, when the anisotropic conductive film used in the production of the connection structure is the anisotropic conductive film of the present invention, at least a part of the conductive particles with insulating particles that are not sandwiched between the opposing terminals include the insulating particles Since the lacking region is oriented in the facing direction of the facing terminals, it can be seen that this is the connection structure of the present invention. In particular, when conductive particles lacking regions in a connection structure contain conductive particles with insulating particles directed in the facing direction of opposing terminals in a lump in a certain region, the connection structure is the connection structure of the present invention. It is easy to see that it is a body.

異方性導電フィルムは電子部品の一方の外形にほぼ同じ大きさに裁断されて使用されることもあるが、一般には電子部品の一方の外形よりも大きく裁断されて使用される。つまり、接続に寄与しない(ツールから十分に離れている)領域を含む場合がある。そのため、対向した電子部品間の外側の異方性導電フィルムに端子同士の対向方向を向いた絶縁粒子欠落領域が存在する場合もあり、ここからも本発明の接続構造体の特徴を確認することができる。 The anisotropic conductive film is sometimes cut into a size approximately equal to one of the outer shapes of the electronic component and used, but is generally cut to be larger than one of the outer shapes of the electronic component. That is, it may contain areas (far enough from the tool) that do not contribute to the connection. Therefore, there may be a region lacking insulating particles facing the direction in which the terminals face each other in the anisotropic conductive film on the outer side between the electronic components facing each other. can be done.

また、接続構造体の製造に用いた異方性導電フィルムにおいて絶縁粒子付導電粒子が規則配列している場合、接続構造体において、対向する端子に挟持されていない絶縁粒子付導電粒子にも配列の規則性の維持が見出されることもある。この場合には、この配列の規則性が見出された絶縁粒子付導電粒子において、絶縁粒子欠落領域が端子同士の対向方向を向いていることを容易に確認することができる。また、その製造に使用した異方性導電フィルムについて、容易に(NA3+NA4)>(NA1+NA2)を確認することができる。 In addition, when the conductive particles with insulating particles are regularly arranged in the anisotropic conductive film used for manufacturing the connection structure, the conductive particles with insulating particles that are not sandwiched between the opposing terminals are also arranged in the connection structure. may also be found to maintain the regularity of In this case, it can be easily confirmed that the insulating particle-missing region is oriented in the direction in which the terminals face each other in the conductive particles with insulating particles in which the regularity of arrangement is found. Moreover, (N A3 +N A4 )>(N A1 +N A2 ) can be easily confirmed for the anisotropic conductive film used for its production.

なお、本発明の接続構造体の製造過程の構造体であって、本発明の異方性導電フィルムが一方の電子部品に貼着されているが、他方の電子部品はまだ接続されていない状態の構造体(接続工程における中間品であり、換言すれば異方性導電フィルム貼着電子部品)でも、その異方性導電フィルム中の絶縁粒子付導電粒子は、上述の接続構造体における絶縁粒子付導電粒子と同様の特徴を有する。 Note that the structure in the manufacturing process of the bonded structure of the present invention, in which the anisotropic conductive film of the present invention is attached to one electronic component, but the other electronic component is not yet connected. structure (an intermediate product in the connection process, in other words, an anisotropic conductive film-attached electronic component), the conductive particles with insulating particles in the anisotropic conductive film are the insulating particles in the above-described connection structure It has the same features as the conductive particles.

異方性導電フィルムを用いた電子部品の接続方法としては、異方性導電フィルムの樹脂層が絶縁性樹脂層5の単層からなる場合、各種基板などの第2電子部品に対し、異方性導電フィルムの絶縁粒子付導電粒子3が表面に埋め込まれている側から仮圧着し、仮圧着した異方性導電フィルムの絶縁粒子付導電粒子3が表面に埋め込まれていない側にICチップ等の第1電子部品を合わせ、熱圧着することにより製造することができる。異方性導電フィルムの絶縁性樹脂層に熱重合開始剤と熱重合性化合物だけでなく、光重合開始剤と光重合性化合物(熱重合性化合物と同一でもよい)が含まれている場合、光と熱を併用した圧着方法でもよい。このようにすれば、絶縁粒子付導電粒子の不用な移動を最小限に抑えることができる。また、絶縁粒子付導電粒子3が埋め込まれていない側を第2電子部品に仮貼りして使用してもよい。尚、第2電子部品ではなく、第1電子部品に異方性導電フィルムを仮貼りして使用することもできる。 As a method for connecting electronic components using an anisotropic conductive film, when the resin layer of the anisotropic conductive film is composed of a single layer of the insulating resin layer 5, the anisotropic The side of the anisotropic conductive film where the conductive particles 3 with insulating particles are embedded in the surface is temporarily pressure-bonded, and the side of the temporarily pressure-bonded anisotropic conductive film on which the conductive particles 3 with insulating particles 3 are not embedded in the surface is covered with an IC chip or the like. can be manufactured by combining the first electronic components of and thermocompression bonding. When the insulating resin layer of the anisotropic conductive film contains not only a thermal polymerization initiator and a thermally polymerizable compound, but also a photopolymerization initiator and a photopolymerizable compound (which may be the same as the thermally polymerizable compound), A crimping method using both light and heat may be used. In this way, unnecessary movement of the conductive particles with insulating particles can be minimized. Alternatively, the side where the conductive particles 3 with insulating particles are not embedded may be temporarily attached to the second electronic component for use. Note that the anisotropic conductive film may be temporarily attached to the first electronic component instead of the second electronic component.

また、異方性導電フィルムの樹脂層が、絶縁性樹脂層5と低粘度絶縁性樹脂層6の積層体から形成されている場合、絶縁性樹脂層5を各種基板などの第2電子部品に仮貼りして仮圧着し、仮圧着した異方性導電フィルムの低粘度絶縁性樹脂層6にICチップ等の第1電子部品をアライメントして載置し、熱圧着する。異方性導電フィルムの低粘度絶縁性樹脂層6側を第1電子部品に仮貼りして使用してもよい。 Further, when the resin layer of the anisotropic conductive film is formed of a laminate of the insulating resin layer 5 and the low-viscosity insulating resin layer 6, the insulating resin layer 5 is applied to the second electronic component such as various substrates. The first electronic component such as an IC chip is aligned and mounted on the low-viscosity insulating resin layer 6 of the anisotropic conductive film temporarily bonded and temporarily pressed, and then thermally pressed. The low-viscosity insulating resin layer 6 side of the anisotropic conductive film may be temporarily attached to the first electronic component for use.

以下、本発明を実施例により具体的に説明する。
実施例1~10
(1)異方性導電フィルムの製造
表1に示した配合で、絶縁性樹脂層及び低粘度絶縁性樹脂層を形成する樹脂組成物をそれぞれ調製した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples.
Examples 1-10
(1) Production of anisotropic conductive film Resin compositions for forming an insulating resin layer and a low-viscosity insulating resin layer were prepared according to the formulations shown in Table 1, respectively.

絶縁性樹脂層を形成する樹脂組成物をバーコータ-でフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に表2に示す厚さの絶縁性樹脂層を形成した。同様にして、低粘度絶縁性樹脂層を、それぞれ表2に示す厚さでPETフィルム上に形成した。 A resin composition that forms an insulating resin layer is applied on a PET film having a film thickness of 50 μm with a bar coater, dried in an oven at 80 ° C. for 5 minutes, and the insulating thickness shown in Table 2 is applied to the PET film. A resin layer was formed. Similarly, a low-viscosity insulating resin layer was formed on the PET film with the thickness shown in Table 2.

一方、絶縁粒子付導電粒子が平面視で図1Aに示す正方格子配列で、粒子間距離が絶縁粒子付導電粒子の粒子径と等しくなり、個数密度28000個/mmとなるように金型を作製した。即ち、金型の凸部パターン(個数密度28000個/mm)が正方格子配列で、格子軸における凸部のピッチが平均粒子径の2倍であり、格子軸と異方性導電フィルムの短手方向とのなす角度θが15°となる金型を作製し、公知の透明性樹脂のペレットを溶融させた状態で該金型に流し込み、冷やして固めることで、凹部が図1Aに示す配列パターンの樹脂型を形成した。 On the other hand , the conductive particles with insulating particles are arranged in a square lattice as shown in FIG. made. That is, the convex pattern of the mold (number density: 28000 pieces/mm 2 ) is a square lattice arrangement, the pitch of the convexes on the lattice axis is twice the average particle diameter, and the lattice axis and the anisotropic conductive film are short. A mold having an angle θ with the hand direction of 15° is prepared, and molten pellets of a known transparent resin are poured into the mold and cooled to solidify, so that the recesses are arranged as shown in FIG. 1A. A resin mold of the pattern was formed.

また、金型の凸部パターン(個数密度28000個/mm)をランダムにしたものを作成し、その金型を用いて凹部がランダムパターンとなる樹脂型を形成した。このとき、隣接する絶縁粒子付導電粒子の導電粒子間の距離が導電粒子の平均径の0.5倍以上になるように設定した。 In addition, a mold with a random convex pattern (number density: 28000 pieces/mm 2 ) was prepared, and a resin mold having concave portions in a random pattern was formed using the mold. At this time, the distance between adjacent conductive particles with insulating particles was set to be 0.5 times or more the average diameter of the conductive particles.

絶縁粒子付導電粒子として、金属被覆樹脂粒子(積水化学工業(株)、AUL703、平均粒子径3μm)の表面に、特開2014-132567号公報の記載に準じて絶縁性微粒子(平均粒子径0.3μm)を付着させたものを用意し、この絶縁粒子付導電粒子を樹脂型の凹部に充填し、その上に上述の絶縁性樹脂層を被せた。 As the conductive particles with insulating particles, insulating fine particles (average particle size 0 0.3 μm) was prepared, and the recesses of the resin mold were filled with the conductive particles with insulating particles, and the insulating resin layer was covered thereon.

実施例1~6では、この絶縁性樹脂層を60℃、0.5MPaで押圧し、樹脂型から絶縁性樹脂層を剥離することで絶縁粒子付導電粒子を絶縁性樹脂層に転着させた。この時の絶縁粒子付導電粒子の絶縁性樹脂層への埋込率(Lb/D)は、SEMによる断面観察で30%であった。また、絶縁粒子付導電粒子が転着した絶縁性樹脂層の表面の該絶縁粒子付導電粒子の周囲に凹みはなかった(図2参照)。実施例7~10では、実施例1~6と同様に絶縁粒子付導電粒子を絶縁性樹脂層に転着させたが、転着後の絶縁粒子付導電粒子の周囲の絶縁性樹脂層に凹みができるように、絶縁粒子付導電粒子を絶縁性樹脂層に押圧するときの温度を60℃よりも低くした。 In Examples 1 to 6, the insulating resin layer was pressed at 60° C. and 0.5 MPa, and the insulating resin layer was peeled off from the resin mold, thereby transferring the conductive particles with insulating particles to the insulating resin layer. . At this time, the embedding rate (Lb/D) of the conductive particles with insulating particles in the insulating resin layer was 30% by cross-sectional observation by SEM. Moreover, there were no depressions around the conductive particles with insulating particles on the surface of the insulating resin layer to which the conductive particles with insulating particles were transferred (see FIG. 2). In Examples 7 to 10, the conductive particles with insulating particles were transferred to the insulating resin layer in the same manner as in Examples 1 to 6, but there were dents in the insulating resin layer around the conductive particles with insulating particles after transfer. The temperature at which the conductive particles with insulating particles are pressed against the insulating resin layer is set lower than 60° C. so that this can be achieved.

次に、実施例3~10では、絶縁性樹脂層上の絶縁粒子付導電粒子を押圧することで絶縁粒子付導電粒子を絶縁性樹脂層に押込率(Lb/D)100%で押し込んだ。この押し込み時の温度及び圧力は、絶縁粒子付導電粒子を樹脂型から絶縁性樹脂層へ転着させるときの前述の温度及び圧力と同様とした。その結果、実施例3~6では押し込み後の絶縁粒子付導電粒子の周囲の絶縁性樹脂層に凹みはなく、実施例7~10では押し込み後の絶縁粒子付導電粒子の周囲の絶縁性樹脂層に凹みが形成されていた(図3A参照)。 Next, in Examples 3 to 10, the conductive particles with insulating particles on the insulating resin layer were pressed to push the conductive particles with insulating particles into the insulating resin layer at a pressing ratio (Lb/D) of 100%. The temperature and pressure at the time of pressing were the same as the temperature and pressure at the time of transferring the conductive particles with insulating particles from the resin mold to the insulating resin layer. As a result, in Examples 3 to 6, there was no dent in the insulating resin layer around the conductive particles with insulating particles after pressing, and in Examples 7 to 10, the insulating resin layer around the conductive particles with insulating particles after pressing. A dent was formed in the (see FIG. 3A).

実施例1、2(埋込率30%)、及び実施例3、4(埋込率100%)では、絶縁性樹脂層の、絶縁粒子付導電粒子の転着面に低粘度絶縁性樹脂層を積層し、これを異方性導電フィルムとした(図5参照)。 In Examples 1 and 2 (embedding rate of 30%) and Examples 3 and 4 (embedding rate of 100%), a low-viscosity insulating resin layer was formed on the surface of the insulating resin layer on which the conductive particles with insulating particles were transferred. was laminated to form an anisotropic conductive film (see FIG. 5).

一方、実施例5~10(埋込率100%)では低粘度絶縁性樹脂層を積層しなかった。このうち、実施例7~10では絶縁粒子付導電粒子を絶縁性樹脂層に押し込んだ状態で、絶縁粒子付導電粒子の周囲の絶縁性樹脂層に凹みが形成されていたが、実施例9、10は凹みのある絶縁性樹脂層を、異方性導電接続に支障をきたさない条件で加熱押圧することにより凹みをなくした。 On the other hand, in Examples 5 to 10 (embedding rate 100%), no low-viscosity insulating resin layer was laminated. Of these, in Examples 7 to 10, the conductive particles with insulating particles were pressed into the insulating resin layer, and recesses were formed in the insulating resin layer around the conductive particles with insulating particles. In No. 10, the insulating resin layer having the dents was heat-pressed under conditions that did not interfere with the anisotropic conductive connection to eliminate the dents.

比較例1~4
比較例1~4では、金属被覆樹脂粒子(積水化学工業(株)、AUL703、平均粒子径3μm)の全面に絶縁コートを施した絶縁コート導電粒子(コート膜厚0.1~0.5μm)を上述の実施例の絶縁粒子付導電粒子に代えて使用し、絶縁コート導電粒子が表2に示した配列又は配置となるように上述の樹脂型に充填し、絶縁性樹脂層に絶縁コート導電粒子を転着し(押込率30%)、さらに、比較例3、4では絶縁性樹脂層に転着した絶縁コート導電粒子を押込率100%となるように絶縁性樹脂層に押し込んだ。そして、絶縁コート導電粒子の転着面又は押し込み面に低粘度絶縁性樹脂層を積層した。
Comparative Examples 1-4
In Comparative Examples 1 to 4, insulating coated conductive particles (coat thickness 0.1 to 0.5 μm) obtained by applying an insulating coat to the entire surface of metal-coated resin particles (AUL703, average particle size 3 μm, manufactured by Sekisui Chemical Co., Ltd.). is used instead of the conductive particles with insulating particles in the above-described example, and the resin mold is filled so that the insulating coated conductive particles have the arrangement or arrangement shown in Table 2, and the insulating resin layer is coated with the insulating coated conductive particles. The particles were transferred (30% pushing ratio), and in Comparative Examples 3 and 4, the insulating coated conductive particles transferred to the insulating resin layer were pushed into the insulating resin layer at a pushing ratio of 100%. Then, a low-viscosity insulating resin layer was laminated on the transfer-adhering surface or pressing surface of the insulating-coated conductive particles.

Figure 0007248923000001
Figure 0007248923000001

Figure 0007248923000002
Figure 0007248923000002

(2)粒子の配置状態
(2-1)独立粒子個数割合
走査型電子顕微鏡(SEM)を用いて、各実施例及び比較例の異方性導電フィルムの表裏のフィルム面(低粘度絶縁性樹脂層を積層したものについては、低粘度絶縁性樹脂層側表面とその反対面)のそれぞれについて100個の絶縁粒子付導電粒子又は絶縁コート導電粒子を観察し、互いに接触していない絶縁粒子付導電粒子又は絶縁コート導電粒子の個数を計測し、その個数の全数に対する割合(即ち、独立粒子個数割合)を求めた。その結果、各実施例及び比較例において、独立粒子個数割合は99%を上回っていた。
(2) Particle arrangement state (2-1) Independent particle number ratio Using a scanning electron microscope (SEM), the front and back film surfaces (low-viscosity insulating resin For laminated layers, 100 insulating particle-containing conductive particles or insulating coated conductive particles are observed for each of the low-viscosity insulating resin layer side surface and the opposite surface), and the insulating particle-containing conductive particles that are not in contact with each other are observed. The number of particles or insulation-coated conductive particles was counted, and the ratio of the number to the total number (that is, independent particle number ratio) was determined. As a result, in each example and comparative example, the independent particle number ratio exceeded 99%.

(2-2)絶縁粒子被覆率
実施例の異方性導電フィルムの製造に使用した絶縁粒子付導電粒子(絶縁性樹脂層に埋め込む前の絶縁粒子付導電粒子)における絶縁粒子被覆率を求めた。絶縁粒子被覆率は、走査型電子顕微鏡(SEM)を用いて、絶縁粒子付導電粒子100個を観察し、各絶縁粒子付導電粒子について導電粒子1個当たりの絶縁粒子の個数を計測し、計測された個数と、絶縁粒子付導電粒子1個の平面視における面積と、絶縁粒子1個の平面視における面積から算出した。その結果、異方性導電フィルムの製造に使用した絶縁粒子付導電粒子における絶縁粒子被覆率は67%であった。
(2-2) Insulating Particle Coverage The insulating particle coverage of the electrically insulating particle-attached electrically conductive particles (the electrically insulating particle-attached electrically conductive particles before being embedded in the insulating resin layer) used in the production of the anisotropic conductive film of the example was determined. . The insulating particle coverage rate is measured by observing 100 conductive particles with insulating particles using a scanning electron microscope (SEM), and measuring the number of insulating particles per conductive particle for each conductive particle with insulating particles. It was calculated from the number of particles, the area of one insulating particle-attached conductive particle in plan view, and the area of one insulating particle in plan view. As a result, the insulating particle coverage of the conductive particles with insulating particles used in the production of the anisotropic conductive film was 67%.

(2-3)異方性導電フィルム作製後の絶縁粒子の被覆状態
実施例の異方性導電フィルムに分散している絶縁粒子付導電粒子における絶縁粒子の被覆状態を走査型電子顕微鏡(SEM)による断面観察により求めた。この断面観察で、絶縁粒子付導電粒子100個を計測し、図2に示した領域A1、A2、A3、A4における絶縁粒子の個数、NA1、NA2、NA3、NA4の大小関係を調べた。その結果、各実施例において領域A3と領域A4における絶縁粒子の個数に格別の差異はなかった。また、実施例3~10では実施例1に比して、領域A1にある絶縁粒子の個数が、領域A2にある絶縁粒子の個数に比して著しく低減していた。
(2-3) Coating State of Insulating Particles after Production of Anisotropic Conductive Film The coating state of the insulating particles in the conductive particles with insulating particles dispersed in the anisotropic conductive film of the example was examined with a scanning electron microscope (SEM). It was obtained by cross-sectional observation by In this cross-sectional observation, 100 conductive particles with insulating particles were measured, and the number of insulating particles in the regions A1 , A2 , A3 , and A4 shown in FIG. Examined. As a result, there was no particular difference in the number of insulating particles between the region A3 and the region A4 in each example. Moreover, in Examples 3 to 10, the number of insulating particles in the region A1 was significantly reduced compared to the number of insulating particles in the region A2 compared to the first example.

(3)評価
各実施例及び比較例の異方性導電フィルムを、接続および評価に十分な面積で裁断した後、裁断した異方性導電フィルムを使用し、以下に説明するように、(a)初期導通抵抗、(b)導通信頼性、(c)ショート発生率、(d)導電粒子捕捉性、を測定ないし評価した。結果を表2に示す。
(3) Evaluation After cutting the anisotropic conductive film of each example and comparative example in an area sufficient for connection and evaluation, using the cut anisotropic conductive film, as described below, (a ) initial conduction resistance, (b) conduction reliability, (c) short-circuit occurrence rate, and (d) conductive particle trapping ability were measured or evaluated. Table 2 shows the results.

(a)初期導通抵抗
各実施例及び比較例の異方性導電フィルムを、導通特性の評価用ICとガラス基板との間に挟み、加熱加圧(180℃、60MPa、5秒)して各評価用接続物を得、得られた評価用接続物の導通抵抗を測定し、測定された初期導通抵抗を次の基準で評価した。
A:0.3Ω以下
B:0.3Ω超、0.4Ω以下
C:0.4Ω超
B評価であれば実用上問題はない。A評価であれば、より好ましい。
(a) Initial conduction resistance The anisotropic conductive film of each example and comparative example was sandwiched between an IC for evaluating conduction characteristics and a glass substrate, and heated and pressed (180 ° C., 60 MPa, 5 seconds). A connection for evaluation was obtained, the conduction resistance of the obtained connection for evaluation was measured, and the measured initial conduction resistance was evaluated according to the following criteria.
A: 0.3 Ω or less B: More than 0.3 Ω, 0.4 Ω or less C: More than 0.4 Ω If the evaluation is B, there is no practical problem. If it is A evaluation, it is more preferable.

ここで、評価用ICとガラス基板は、それらの端子パターンが対応しており、サイズは次の通りである。また、評価用ICとガラス基板を接続する際には、異方性導電フィルムの長手方向とバンプの短手方向を合わせた。 Here, the terminal patterns of the evaluation IC and the glass substrate correspond to each other, and the sizes are as follows. Further, when connecting the evaluation IC and the glass substrate, the longitudinal direction of the anisotropic conductive film was aligned with the lateral direction of the bumps.

導通特性の評価用IC
外形 1.8×20.0mm
厚み 0.5mm
バンプ仕様 サイズ30×85μm、バンプ間距離50μm、バンプ高さ15μm
IC for evaluating conduction characteristics
Outline 1.8×20.0mm
thickness 0.5mm
Bump specifications Size 30×85 μm, distance between bumps 50 μm, bump height 15 μm

ガラス基板
ガラス材質 コーニング社製1737F
外径 30×50mm
厚み 0.5mm
電極 ITO配線
Glass substrate Glass material Corning 1737F
Outer diameter 30×50mm
thickness 0.5mm
Electrode ITO wiring

(b)導通信頼性
(a)で作製した評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おいた後の導通抵抗を、初期導通抵抗と同様に測定し、測定された導通抵抗を次の基準で評価した。
(b) Conduction reliability The connection for evaluation prepared in (a) is placed in a constant temperature bath at a temperature of 85 ° C and a humidity of 85% RH for 500 hours. The conduction resistance was evaluated according to the following criteria.

S:3.0Ω以下
A:3.0Ω超、4.0Ω以下
B:4.0Ω超、6.0Ω以下
C:6.0Ω超
B評価であれば実用上問題はない。A評価以上であれば、より好ましい。
S: 3.0 Ω or less A: More than 3.0 Ω, 4.0 Ω or less B: More than 4.0 Ω, 6.0 Ω or less C: More than 6.0 Ω If the evaluation is B, there is no practical problem. A rating or higher is more preferable.

(c)ショート発生率
各実施例及び比較例の異方性導電フィルムを、絶縁性試験評価用IC(7.5μmスペースの櫛歯TEG(test element group))と、端子パターンが対応するガラス基板との間に挟み、初期導通抵抗と同様に加熱加圧して評価用接続物を得、得られた評価用接続物におけるショート発生率をデジタルマルチメータ(デジタルマルチメーター7561、横河電機(株))で測定した。この絶縁性試験評価用ICの仕様を以下に示す。
(c) Short-circuit occurrence rate The anisotropic conductive film of each example and comparative example was used as an IC for insulation test evaluation (comb-teeth TEG (test element group) with a 7.5 μm space) and a glass substrate with a corresponding terminal pattern. and a connection object for evaluation is obtained by heating and pressurizing in the same manner as the initial conduction resistance, and the short occurrence rate in the obtained connection object for evaluation is measured with a digital multimeter (digital multimeter 7561, Yokogawa Electric Corporation) ). The specifications of this insulation test evaluation IC are shown below.

絶縁性試験評価用IC
外形 1.5×13mm
厚み 0.5mm
バンプ仕様 金メッキ、サイズ25×140μm、バンプ間距離7.5μm、バンプ高さ15μm
IC for insulation test evaluation
Outline 1.5×13mm
thickness 0.5mm
Bump specifications Gold plating, size 25×140 μm, distance between bumps 7.5 μm, bump height 15 μm

測定されたショート発生率を次の基準で評価した。
A:50ppm未満
B:50ppm以上200ppm以下
C:200ppm超
B評価であれば実用上問題はない。
The measured short occurrence rate was evaluated according to the following criteria.
A: less than 50 ppm
B: 50 ppm or more and 200 ppm or less C: More than 200 ppm If the evaluation is B, there is no practical problem.

(d)導電粒子捕捉性
導電粒子捕捉性の評価用ICを使用し、この評価用ICと、端子パターンが対応するITOコーティング基板とを、アライメントを6μmずらして加熱加圧(180℃、60MPa、5秒)し、評価用ICのバンプと基板の端子とが重なる6μm×66.6μmの領域の100個について導電粒子の捕捉数を計測し、最低捕捉数を求め、次の基準で評価した。
(d) Conductive particle trapping property An IC for evaluating conductive particle trapping property is used, and the IC for evaluation and the ITO coated substrate corresponding to the terminal pattern are shifted by 6 μm in alignment and heated and pressurized (180 ° C., 60 MPa, 5 seconds), the number of trapped conductive particles was measured for 100 particles in a region of 6 μm×66.6 μm where the bumps of the IC for evaluation and the terminals of the substrate overlapped, and the minimum number of trapped particles was obtained and evaluated according to the following criteria.

導電粒子捕捉性の評価用IC
外形 1.6×29.8mm
厚み 0.3mm
バンプ仕様 サイズ12×66.6μm、バンプピッチ22μm(L/S=12μm/10μm)、バンプ高さ12μm
IC for evaluating conductive particle trapping properties
Outline 1.6×29.8mm
thickness 0.3mm
Bump specifications Size 12×66.6 μm, bump pitch 22 μm (L/S=12 μm/10 μm), bump height 12 μm

導電粒子捕捉性評価基準
OK:3個以上
NG:3個未満
Conductive particle trapping evaluation criteria OK: 3 or more NG: less than 3

表2から、実施例1~10の異方性導電フィルムでは、絶縁粒子付導電粒子における絶縁粒子の個数密度が領域A3、A4よりも領域A2、A1が低く、特に、異方性導電フィルムの製造時に絶縁粒子付導電粒子を絶縁性樹脂層に押し込んだ実施例3~10では、絶縁粒子の個数密度が領域A2よりも領域A1で顕著に低かった。その結果、導電粒子にフィルム厚方向で接する領域A2、A1の絶縁粒子2の個数密度が、導電粒子1にフィルム面方向で接する領域A3、A4の絶縁粒子2の個数よりもさらに少なくなり、実施例3、4は、実施例1、2に比して導通信頼性が優れていることがわかる。これに対し、樹脂コート導電粒子を用いた比較例1~4では導通信頼性が劣っていた。 From Table 2, in the anisotropic conductive films of Examples 1 to 10, the number density of the insulating particles in the conductive particles with insulating particles is lower in the regions A2 and A1 than in the regions A3 and A4. In Examples 3 to 10 in which the conductive particles with insulating particles were pressed into the insulating resin layer during manufacture, the number density of the insulating particles was significantly lower in the region A1 than in the region A2. As a result, the number density of the insulating particles 2 in the regions A2 and A1 contacting the conductive particles in the film thickness direction becomes even smaller than the number density of the insulating particles 2 in the regions A3 and A4 contacting the conductive particles 1 in the film surface direction. It can be seen that Examples 3 and 4 are superior to Examples 1 and 2 in reliability of conduction. On the other hand, in Comparative Examples 1 to 4 using resin-coated conductive particles, the conduction reliability was inferior.

また、表2の結果では、実施例1と2の対比、実施例3と4の対比、実施例5と6の対比、実施例7と8の対比、実施例9と10の対比、比較例1と2の対比、比較例3と4の対比により、絶縁粒子付導電粒子を正方格子に配列させた場合とランダムに配置した場合や、絶縁コート導電粒子を正方格子に配列させた場合とランダムに配置した場合とで導通抵抗、ショート発生率、導電粒子捕捉性について差異が見られないが、捕捉性の評価において、絶縁粒子付導電粒子又は絶縁コート導電粒子を正方格子に配列させた方がランダムに配置した場合より圧痕を確認しやすかった。 In addition, in the results of Table 2, a comparison between Examples 1 and 2, a comparison between Examples 3 and 4, a comparison between Examples 5 and 6, a comparison between Examples 7 and 8, a comparison between Examples 9 and 10, and a comparison example By comparing 1 and 2 and comparing Comparative Examples 3 and 4, the case where the conductive particles with insulating particles are arranged in a square lattice and the case where they are randomly arranged, and the case where the insulating coated conductive particles are arranged in a square lattice and random Although there is no difference in conduction resistance, short-circuit occurrence rate, and conductive particle trapping property between the case of arranging in It was easier to confirm the indentation than in the case of random arrangement.

なお、絶縁粒子付導電粒子の周囲の絶縁性樹脂層に凹みが無い実施例5、6も、絶縁粒子付導電粒子の周囲の絶縁性樹脂層に凹みがある実施例7、8も、その凹みを加熱押圧して解消した実施例9、10も、初期導通抵抗、導通信頼性、ショート発生率及び導電粒子捕捉性の評価は良好であった。このことから、本実施例では、凹みの有無によらず、絶縁粒子付導電粒子が樹脂流動によって無用に移動しなかったことがわかる。 In addition, in Examples 5 and 6 in which there is no dent in the insulating resin layer around the conductive particles with insulating particles, and in Examples 7 and 8 in which the insulating resin layer around the conductive particles with insulating particles has dents, the dents In Examples 9 and 10, in which the problem was solved by hot pressing, the initial conduction resistance, conduction reliability, short-circuit occurrence rate, and conductive particle trapping property were evaluated as good. From this, it can be seen that the electrically conductive particles with insulating particles did not unnecessarily move due to the resin flow in this example regardless of the presence or absence of the recesses.

1 導電粒子
2 絶縁粒子
3 絶縁粒子付導電粒子
5 絶縁性樹脂層
5a 絶縁性樹脂層の表面
5b 凹み
5c 凹み
6 低粘度絶縁性樹脂層
7 剥離フィルム
10A、10B、10C、10D 異方性導電フィルム
30 転写型
31 凹部
32 平板
33 平板又はローラー
A1、A2、A3、A4 領域
D 絶縁粒子付導電粒子の粒子径
La 絶縁性樹脂層の層厚
Lb 絶縁粒子付導電粒子と近接している面から絶縁粒子付導電粒子の最深部までの距離
Lc 絶縁粒子付導電粒子の露出部分の径
Ld 絶縁粒子付導電粒子の露出部分の周りの傾斜の最大径
Le 絶縁粒子付導電粒子の露出部分の周りの傾斜の最大深さ
Lf 絶縁粒子付導電粒子の直上の樹脂における起伏の最大深さ
REFERENCE SIGNS LIST 1 conductive particles 2 insulating particles 3 conductive particles with insulating particles 5 insulating resin layer 5a surface of insulating resin layer 5b recess 5c recess 6 low-viscosity insulating resin layer 7 release films 10A, 10B, 10C, 10D anisotropic conductive film 30 Transfer mold 31 Concave portion 32 Flat plate 33 Flat plate or roller A1, A2, A3, A4 Region D Particle diameter of conductive particles with insulating particles La Layer thickness of insulating resin layer Lb Insulated from the surface adjacent to conductive particles with insulating particles Distance to deepest part of conductive particles with particles Lc Diameter of exposed portion of conductive particles with insulating particles Ld Maximum diameter of inclination around exposed portion of conductive particles with insulating particles Le Angle around exposed portion of conductive particles with insulating particles Maximum depth of Lf Maximum depth of undulations in the resin directly above the conductive particles with insulating particles

Claims (9)

導電粒子の表面に絶縁粒子が付着している絶縁粒子付導電粒子が絶縁性樹脂層に分散している異方性導電フィルムの製造方法であって、絶縁粒子付導電粒子において、導電粒子とフィルム厚方向で接する絶縁粒子数が、導電粒子とフィルム面方向で接する絶縁粒子数よりも少なくなっている異方性導電フィルムの製造方法において、
凹部が形成された転写型の当該凹部に絶縁粒子付導電粒子を充填し、
絶縁粒子付導電粒子が充填された凹部が形成された転写型の当該凹部側表面に、剥離フィルム上に形成されている絶縁性樹脂層を、当該絶縁性樹脂層側から被せ、
凹部に充填されている絶縁粒子付導電粒子を絶縁性樹脂層に転写させ、
絶縁性樹脂層を転写型から剥離し、それにより絶縁粒子付導電粒子が転写した絶縁性樹脂層からなる異方性導電フィルムを得る製造方法。
A method for producing an anisotropic conductive film in which conductive particles with insulating particles having insulating particles attached to the surface of the conductive particles are dispersed in an insulating resin layer, wherein the conductive particles with insulating particles include the conductive particles and the film In a method for producing an anisotropic conductive film in which the number of insulating particles in contact in the thickness direction is less than the number of insulating particles in contact with the conductive particles in the film surface direction,
filling conductive particles with insulating particles into the recesses of the transfer mold in which the recesses are formed;
The insulating resin layer formed on the release film is covered from the insulating resin layer side on the surface of the transfer mold on which the concave portions filled with the conductive particles with insulating particles are formed, and
Transferring the conductive particles with insulating particles filled in the recesses to the insulating resin layer,
A manufacturing method for obtaining an anisotropic conductive film comprising an insulating resin layer to which conductive particles with insulating particles have been transferred by separating the insulating resin layer from a transfer mold.
異方性導電フィルムの絶縁粒子付導電粒子が転写した側の面に、絶縁性樹脂層よりも最低溶融粘度が低い低粘度絶縁性樹脂層を積層する請求項1記載の製造方法。 2. The manufacturing method according to claim 1, wherein a low-viscosity insulating resin layer having a lower minimum melt viscosity than the insulating resin layer is laminated on the surface of the anisotropic conductive film on which the conductive particles with insulating particles have been transferred. 絶縁粒子付導電粒子が、絶縁性樹脂層と低粘度絶縁性樹脂層の間に存在するように転写させる請求項2記載の製造方法。 3. The manufacturing method according to claim 2, wherein the conductive particles with insulating particles are transferred so as to exist between the insulating resin layer and the low-viscosity insulating resin layer. 転写型の凹部に絶縁粒子付導電粒子を充填した後に、凹部に充填された絶縁粒子付導電粒子に平板を接触させて絶縁粒子を絶縁粒子付導電粒子から離脱させ、その後に絶縁性樹脂層を被せる請求項1~3のいずれかに記載の製造方法。 After filling the conductive particles with insulating particles in the recesses of the transfer mold, a flat plate is brought into contact with the conductive particles with insulating particles filled in the recesses to separate the insulating particles from the conductive particles with insulating particles, and then the insulating resin layer is formed. The manufacturing method according to any one of claims 1 to 3, which is covered. 絶縁粒子付導電粒子を絶縁性樹脂層に転写した後に、当該絶縁粒子付導電粒子を絶縁性樹脂層に平板またはローラーで押し込み、平板またはローラーに接触した絶縁粒子を絶縁粒子付導電粒子から離脱させる請求項1~4のいずれかに記載の製造方法。 After transferring the conductive particles with insulating particles to the insulating resin layer, the conductive particles with insulating particles are pushed into the insulating resin layer with a flat plate or a roller, and the insulating particles in contact with the flat plate or roller are separated from the conductive particles with insulating particles. The manufacturing method according to any one of claims 1 to 4. 絶縁性樹脂層の表裏の面のうち、絶縁粒子付導電粒子が近接している面から絶縁粒子付導電粒子の最深部までの距離Lbと絶縁粒子付導電粒子の粒子径Dとの比率(Lb/D)が30~105%となるように、平板又はローラーで押し込む請求項5記載の製造方法。 Among the front and back surfaces of the insulating resin layer, the ratio of the distance Lb from the surface where the conductive particles with insulating particles are adjacent to the deepest part of the conductive particles with insulating particles to the particle diameter D of the conductive particles with insulating particles (Lb The manufacturing method according to claim 5, wherein the pressing is performed with a flat plate or a roller so that /D) is 30 to 105%. 異方性導電フィルムの表裏の一方のフィルム面の平面視において、導電粒子と重なっている絶縁粒子の個数を、他方のフィルム面の平面視において導電粒子と重なっている絶縁粒子の個数よりも少なくする請求項1~6のいずれかに記載の製造方法。 The number of insulating particles overlapping the conductive particles in plan view of one of the front and back film surfaces of the anisotropic conductive film is less than the number of insulating particles overlapping the conductive particles in plan view of the other film surface. The manufacturing method according to any one of claims 1 to 6. 絶縁粒子付導電粒子が互いに非接触で配列されるように、凹部を転写型に形成する請求項1~7のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein the recesses are formed in the transfer mold so that the conductive particles with insulating particles are arranged without contact with each other. 低粘度絶縁性樹脂層側フィルム面の平面視における導電粒子上の絶縁粒子数を、絶縁性樹脂層側フィルム面の平面視における導電粒子上の絶縁粒子数よりも少なくする請求項7記載の製造方法。 8. The production according to claim 7, wherein the number of insulating particles on the conductive particles in plan view of the film surface on the low-viscosity insulating resin layer side is smaller than the number of insulating particles on the conductive particles in plan view on the film surface on the insulating resin layer side. Method.
JP2021138219A 2016-10-24 2021-08-26 anisotropic conductive film Active JP7248923B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016208086 2016-10-24
JP2016208086 2016-10-24
JP2017160657A JP6935702B2 (en) 2016-10-24 2017-08-23 Anisotropic conductive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017160657A Division JP6935702B2 (en) 2016-10-24 2017-08-23 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2021193670A JP2021193670A (en) 2021-12-23
JP7248923B2 true JP7248923B2 (en) 2023-03-30

Family

ID=62023498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021138219A Active JP7248923B2 (en) 2016-10-24 2021-08-26 anisotropic conductive film

Country Status (3)

Country Link
JP (1) JP7248923B2 (en)
CN (1) CN113078486B (en)
WO (1) WO2018079365A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155958A (en) 2011-01-25 2012-08-16 Hitachi Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material and connection structure
JP2015195198A (en) 2014-03-20 2015-11-05 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999460A (en) * 1989-08-10 1991-03-12 Casio Computer Co., Ltd. Conductive connecting structure
JPH0371570A (en) * 1989-08-10 1991-03-27 Casio Comput Co Ltd Binder for conduction and conductive connection structure
JP2895872B2 (en) * 1989-09-26 1999-05-24 触媒化成工業株式会社 Anisotropic conductive material, anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JPH0613432A (en) * 1992-06-26 1994-01-21 Citizen Watch Co Ltd Connecting method for semiconductor integrated circuit device
KR100597391B1 (en) * 2004-05-12 2006-07-06 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film containing the Particles
JP5388572B2 (en) * 2006-04-27 2014-01-15 デクセリアルズ株式会社 Conductive particle arrangement sheet and anisotropic conductive film
KR100861010B1 (en) * 2006-12-22 2008-09-30 제일모직주식회사 Insulated Conductive Particles for Anisotropic Conduction and Anisotropic Conductive Film Using Same
JP2008186761A (en) * 2007-01-31 2008-08-14 Tokai Rubber Ind Ltd Method for manufacturing particle transfer film and particle retention film, and anisotropic conductive film
WO2010001900A1 (en) * 2008-07-01 2010-01-07 日立化成工業株式会社 Circuit connection material and circuit connection structure
JP2010033793A (en) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd Method for manufacturing particle transfer film
JP5476168B2 (en) * 2010-03-09 2014-04-23 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5484265B2 (en) * 2010-09-02 2014-05-07 積水化学工業株式会社 Conductive particles, conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP2012160546A (en) * 2011-01-31 2012-08-23 Hitachi Chem Co Ltd Adhesive film for circuit connection and circuit connection structure
JP6079425B2 (en) * 2012-05-16 2017-02-15 日立化成株式会社 Conductive particles, anisotropic conductive adhesive film, and connection structure
KR102259384B1 (en) * 2012-08-24 2021-06-02 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
CN104541417B (en) * 2012-08-29 2017-09-26 迪睿合电子材料有限公司 Anisotropic conductive film and preparation method thereof
KR101987917B1 (en) * 2013-07-31 2019-06-11 데쿠세리아루즈 가부시키가이샤 Anisotropically conductive film and manufacturing method therefor
KR102430609B1 (en) * 2014-03-31 2022-08-08 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and production method therefor
JP6458503B2 (en) * 2015-01-13 2019-01-30 デクセリアルズ株式会社 Anisotropic conductive film, method for producing the same, and connection structure
JP6935702B2 (en) * 2016-10-24 2021-09-15 デクセリアルズ株式会社 Anisotropic conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155958A (en) 2011-01-25 2012-08-16 Hitachi Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material and connection structure
JP2015195198A (en) 2014-03-20 2015-11-05 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof

Also Published As

Publication number Publication date
WO2018079365A1 (en) 2018-05-03
CN113078486A (en) 2021-07-06
JP2021193670A (en) 2021-12-23
CN113078486B (en) 2023-10-20

Similar Documents

Publication Publication Date Title
JP7307377B2 (en) Filler containing film
JP6935702B2 (en) Anisotropic conductive film
JP6187665B1 (en) Anisotropic conductive film
KR102524169B1 (en) Filler-containing film
KR102048695B1 (en) Anisotropic conductive film and bonded structure
JP2022075779A (en) Anisotropic electroconductive film
TWI760393B (en) Anisotropic conductive film, connection structure and method for producing the connection structure
TWI790007B (en) Film containing filler, a method for producing film containing filler, film adhesive body, connection structure, and a method for producing connection structure
JP7081097B2 (en) Filler-containing film
KR20210158875A (en) Filler-containing film
JP7352114B2 (en) Filler-containing film
JP7274815B2 (en) anisotropic conductive film
JP7332956B2 (en) Filler containing film
JP7248923B2 (en) anisotropic conductive film
JP7087305B2 (en) Filler-containing film
KR102478199B1 (en) film with filler
JP7319578B2 (en) Filler containing film
TWI835252B (en) Film containing filler
JP2022176967A (en) anisotropic conductive film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7248923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150