JP7220627B2 - Damping structure of building and its construction method - Google Patents

Damping structure of building and its construction method Download PDF

Info

Publication number
JP7220627B2
JP7220627B2 JP2019114061A JP2019114061A JP7220627B2 JP 7220627 B2 JP7220627 B2 JP 7220627B2 JP 2019114061 A JP2019114061 A JP 2019114061A JP 2019114061 A JP2019114061 A JP 2019114061A JP 7220627 B2 JP7220627 B2 JP 7220627B2
Authority
JP
Japan
Prior art keywords
wall member
wall
pair
energy absorbing
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114061A
Other languages
Japanese (ja)
Other versions
JP2021001443A (en
Inventor
健太郎 松永
浩 新上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2019114061A priority Critical patent/JP7220627B2/en
Publication of JP2021001443A publication Critical patent/JP2021001443A/en
Application granted granted Critical
Publication of JP7220627B2 publication Critical patent/JP7220627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、建物の制振構造及びその構築方法に関し、特に板状マンションのような構造の建物に好適な制振構造及びその構築方法に関する。 TECHNICAL FIELD The present disclosure relates to a damping structure of a building and a method of constructing the same, and more particularly to a damping structure suitable for a building having a structure such as a plate-shaped condominium and a method of constructing the same.

建物の耐震性能を向上させるために耐震壁が建物に設けられることがある。板状マンションのような建物では、梁間方向に延在する戸境壁が耐震壁をなす。施工性を向上させるために、戸境壁をPCa化することが考えられる。しかしながら、その場合には、住戸の四隅に柱が設けられることが多いことから戸境壁の面積が大きくなり、PCa壁部材の重量が重くなる。また、鉄筋の数が多く、各階での縦筋の継手に重ね継手を採用することが難しい上、機械式継手を採用するとコストが高くなる。このような多くの問題点があるため、戸境壁は現場打ちで構築されるのが一般的である。 Seismic walls are sometimes installed in buildings to improve their seismic performance. In a building such as a plate-shaped apartment building, a partition wall extending in the direction between beams forms an earthquake-resistant wall. In order to improve workability, it is conceivable to use PCa for the partition walls. However, in that case, since pillars are often provided at the four corners of the dwelling unit, the area of the boundary wall becomes large, and the weight of the PCa wall member becomes heavy. In addition, because of the large number of reinforcing bars, it is difficult to use lap joints for vertical bar joints on each floor, and mechanical joints increase costs. Because of these many problems, door boundary walls are generally constructed by cast-in-place.

また、袖壁を耐震壁に用いた耐震補強構造として、建物の前記柱及び梁に囲まれた構面の一部に複数の開口部を備えた補強用袖壁が配置されると共に、地震などにより水平外力が柱に入力した際に、補強用袖壁が柱よりも先に破壊する構造とされたものが公知である(特許文献1)。 In addition, as an earthquake-resistant reinforcement structure using the wing wall as an earthquake-resistant wall, a reinforcing wing wall with a plurality of openings is arranged in a part of the structural surface surrounded by the above-mentioned pillars and beams of the building. A structure is known in which, when a horizontal external force is input to a pillar, the reinforcing wing wall breaks before the pillar (Patent Document 1).

一方、建物の制振性能を向上させるために制振ダンパーが建物に設けられることもある。制振ダンパーには、オイルダンパーや、粘弾性ダンパー等の粘性減衰型ダンパーや、鋼材ダンパー、鉛ダンパー等の履歴減衰型ダンパー等がある。制振ダンパーは、上下階の梁同士を接続するように上下階の層間に配置され、地震時に上下階の梁(梁から張り出したスタブ等の部分があればその部分)の変位に応じて変形し、これにより地震のエネルギーを吸収する「層間ダンパー」として用いられることが多い。層間ダンパー以外の例として、特許文献2には、1対の前記柱の間に各柱に対して一定の間隔を空けて耐震壁が配置され、耐震壁と両柱との間に粘弾性ダンパーが設けられた制振構造が開示されている。 On the other hand, in order to improve the damping performance of the building, a damper is sometimes installed in the building. Vibration control dampers include oil dampers, viscous dampers such as viscoelastic dampers, and hysteresis dampers such as steel dampers and lead dampers. Vibration control dampers are installed between the upper and lower floors so as to connect the beams of the upper and lower floors, and are deformed according to the displacement of the upper and lower beams (if there are any parts such as stubs that protrude from the beams) during an earthquake. It is often used as an "interlayer damper" to absorb seismic energy. As an example other than the inter-layer damper, Patent Document 2 discloses that a quake-resistant wall is arranged between the pair of pillars with a certain interval from each pillar, and a viscoelastic damper is provided between the quake-resistant wall and both pillars. is disclosed.

特開2001-020533号公報Japanese Patent Application Laid-Open No. 2001-020533 特開2011-256577号公報JP 2011-256577 A

しかしながら、特許文献1記載の耐震補強構造では、柱及び梁に囲まれた構面の一部にのみ袖壁が設けられるため、耐震性能の向上幅が小さい。特許文献2記載の層間ダンパーは壁を構築するものではなく、単なるエネルギー吸収装置であるため、板状マンションの戸境壁のような部分に適用する場合、両柱と装置との間の空間が大きくなりすぎる。また、戸境壁の長さ分全体をダンパーで埋めると莫大な費用がかかる。更には、地震時にダンパーが破損し、その改修工事が必要になった場合には、戸境壁全体を改修する必要があり、改修工事が大掛かりになる。一方、特許文献2記載の耐震壁と両柱との間にダンパーが設けられる構造では、耐震壁と柱との変位が微小であるため、期待する減衰力が発揮されない虞がある。また、いずれの構造においても、板状マンションの戸境壁のような壁に適用した上で、壁のPCa化が抱える上記多くの課題を解決することはできない。 However, in the earthquake-resistant reinforcement structure described in Patent Document 1, since the wing wall is provided only on a part of the structural surface surrounded by the columns and beams, the improvement in the earthquake-resistant performance is small. The interlayer damper described in Patent Document 2 does not construct a wall, but is simply an energy absorbing device. getting too big. Also, filling the entire length of the boundary wall with a damper would cost a huge amount of money. Furthermore, if the damper is damaged during an earthquake and repair work is required, the entire boundary wall must be repaired, and the repair work becomes large-scale. On the other hand, in the structure in which a damper is provided between the quake-resistant wall and both columns described in Patent Document 2, the displacement between the quake-resistant wall and the columns is very small, so there is a possibility that the expected damping force may not be exhibited. In addition, in any structure, it is not possible to solve the above-mentioned many problems of PCa walls after applying to a wall such as a partition wall of a plate-shaped apartment building.

本発明は、このような背景に鑑み、壁のPCa化に伴う問題を解消でき、且つ期待される減衰力を地震時に確実に発揮し得る建物の制振構造及び、その構築方法を提供することを課題とする。 In view of such a background, the present invention provides a vibration damping structure for a building that can solve the problems associated with PCa walls and that can reliably exert the expected damping force in the event of an earthquake, and a method for constructing the same. is the subject.

このような課題を解決するために、本発明のある実施形態は、建物の制振構造(1)であって、1対のRC造の柱(2)と、上下に異なる位置で左右に延在し、両端にて1対の前記柱に剛接合する1対のRC造の梁(3)と、1対の前記柱と1対の前記梁とによって囲まれる構面に設けられるRC造の壁(4)と、前記壁に設けられる制振ダンパー(5)とを備え、前記壁が、前記構面の左側に配置され、左側の前記柱に剛接合された基端及び1対の前記梁から離間する上端及び下端を有するPCaコンクリートからなる第1壁部材(6)と、前記構面の右側に前記第1壁部材に対して間隔を空けて配置され、右側の前記柱に剛接合された基端及び1対の前記梁から離間する上端及び下端を有するPCaコンクリートからなる第2壁部材(7)とを含み、前記制振ダンパーが、前記第1壁部材と前記第2壁部材との間に配置され、前記第1壁部材及び前記第2壁部材の遊端に接合されたエネルギー吸収部材(8)を含む。 In order to solve such problems, an embodiment of the present invention provides a vibration damping structure (1) for a building, which comprises a pair of RC columns (2) extending horizontally and vertically at different positions. A pair of RC beams (3) rigidly connected to the pair of columns at both ends, and an RC structure provided on a structural surface surrounded by the pair of columns and the pair of beams A wall (4) and a vibration control damper (5) provided on the wall, the wall being arranged on the left side of the structural surface and rigidly joined to the column on the left side and a pair of the A first wall member (6) of PCa concrete having upper and lower ends spaced from the beam and spaced from said first wall member on the right side of said structural surface and rigidly connected to said column on the right side. a second wall member (7) made of PCa concrete having a base end that is flattened and upper and lower ends spaced from a pair of said beams, wherein said vibration damper is connected to said first wall member and said second wall member; and an energy absorbing member (8) joined to the free ends of said first wall member and said second wall member.

この構成によれば、壁が第1壁部材と第2壁部材とに分割されるため、各壁部材の重量が軽くなる。したがって、揚重設備の大型化を回避することができる。また、エネルギー吸収部材が第1壁部材と第2壁部材との間に配置されるため、エネルギー吸収部材を上から(吊った状態で)或いは正面から第1壁部材と第2壁部材との間に配置でき、エネルギー吸収部材の設置や交換が容易である。更に、各壁部材の上端及び下端が梁から離間して設けられるため、鉄筋継手の数が少なくなり、施工の手間が減る。加えて、各壁部材の上端及び下端が梁から離間して設けられるため、地震時に両梁部材の遊端の上下方向の相対変位が大きくなる。したがって、エネルギー吸収部材が確実に振動エネルギーを吸収し、期待される減衰力が地震時に確実に発揮される。 With this configuration, the wall is divided into the first wall member and the second wall member, so the weight of each wall member is reduced. Therefore, it is possible to avoid an increase in the size of lifting equipment. In addition, since the energy absorbing member is arranged between the first wall member and the second wall member, the energy absorbing member is placed between the first wall member and the second wall member from above (in a suspended state) or from the front. It can be placed in between, and installation and replacement of the energy absorbing member are easy. Furthermore, since the upper and lower ends of each wall member are spaced apart from the beam, the number of reinforcing bar joints is reduced, and the labor for construction is reduced. In addition, since the upper and lower ends of each wall member are spaced apart from the beam, relative displacement of the free ends of both beam members in the vertical direction increases during an earthquake. Therefore, the energy absorbing member reliably absorbs the vibrational energy, and the expected damping force is reliably exerted during an earthquake.

上記構成において、前記エネルギー吸収部材(8)が、繊維補強セメント系複合材料からなり、前記第1壁部材(6)及び前記第2壁部材(7)の遊端に当接する1対のフランジ(9)と、1対の前記フランジに接合され、せん断変形によって振動エネルギーを吸収するウェブ(10)とを有し、1対の前記フランジが前記第1壁部材及び前記第2壁部材の遊端に締結されているとよい。 In the above configuration, the energy absorbing member (8) is made of a fiber-reinforced cement-based composite material, and has a pair of flanges ( 9) and a web (10) joined to said pair of said flanges and absorbing vibrational energy by shear deformation, said pair of flanges connecting the free ends of said first and second wall members. should be concluded with

この構成によれば、1対のフランジを両壁部材に締結することによってエネルギー吸収部材を確実に固定することができる。また、1対のフランジが締結されていない状態では、エネルギー吸収部材を構面に直交する方向に移動させることができるため、破損したエネルギー吸収部材の交換を容易に行うことができる。更に、フランジの厚さや長さ(鉛直方向の寸法)を調整することによってエネルギー吸収部材に期待する減衰力を容易に調整することができる。加えて、エネルギー吸収部材が繊維補強セメント系複合材料からなるため、鋼材を用いる場合に必要となる耐火被覆が不要になり、壁の一部が厚くなることや設置手間が増えることを抑制することができる。 According to this configuration, the energy absorbing member can be reliably fixed by fastening the pair of flanges to the both wall members. In addition, since the energy absorbing member can be moved in the direction perpendicular to the structural surface when the pair of flanges is not fastened, it is possible to easily replace the damaged energy absorbing member. Furthermore, by adjusting the thickness and length (dimension in the vertical direction) of the flange, the damping force expected of the energy absorbing member can be easily adjusted. In addition, since the energy absorbing member is made of a fiber-reinforced cement-based composite material, the fireproof coating that is required when steel is used is no longer necessary, and it is possible to prevent the wall from becoming thicker and the installation work from increasing. can be done.

上記構成において、建物の制振構造(1)は、前記第1壁部材(6)及び前記第2壁部材(7)の前記上端及び前記下端と1対の前記梁(3)との間に設けられた弾性部材(14)を更に備えるとよい。 In the above configuration, the damping structure (1) of the building is provided between the upper and lower ends of the first wall member (6) and the second wall member (7) and the pair of beams (3). It is preferable to further include an elastic member (14) provided.

この構成によれば、第1壁部材及び第2壁部材と1対の梁とが離間していても、この隙間が弾性部材によって塞がれるため、防音性能の低下を抑制することができる。 According to this configuration, even if the first wall member and the second wall member are separated from the pair of beams, the gap is closed by the elastic member, so it is possible to suppress the deterioration of the soundproofing performance.

上記構成において、前記第1壁部材(6)及び前記第2壁部材(7)の少なくとも一方が、基端側にて1対の前記梁(3)に剛接合される部分を含むとよい。 In the above configuration, at least one of the first wall member (6) and the second wall member (7) preferably includes a portion rigidly joined to the pair of beams (3) on the base end side.

この構成によれば、第1壁部材の一部及び/又は第2壁部材の一部が耐震壁として機能し、建物の制振性能だけでなく建物の耐震性能の向上も可能である。 According to this configuration, part of the first wall member and/or part of the second wall member functions as a seismic wall, and it is possible to improve not only the vibration damping performance of the building but also the seismic performance of the building.

上記構成において、前記壁(4)が、前記第1壁部材(6)と前記第2壁部材(7)との間に前記第1壁部材及び前記第2壁部材に対して間隔を空けて配置され、1対の前記梁(3)に剛接合されるPCaコンクリートからなる第3壁部材(28)を更に有し、前記制振ダンパー(5)が、前記第1壁部材と前記第3壁部材との間に配置され、前記第1壁部材及び前記第3壁部材に接合された第1エネルギー吸収部材(8A)と、前記第2壁部材と前記第3壁部材との間に配置され、前記第2壁部材及び前記第3壁部材に接合された第2エネルギー吸収部材(8B)とを含むとよい。 In the above configuration, the wall (4) is spaced between the first wall member (6) and the second wall member (7) with respect to the first wall member and the second wall member. It further has a third wall member (28) made of PCa concrete disposed and rigidly joined to the pair of beams (3), the vibration damper (5) connecting the first wall member and the third wall member (28). a first energy absorbing member (8A) arranged between the wall member and joined to the first wall member and the third wall member; and arranged between the second wall member and the third wall member. and a second energy absorbing member (8B) joined to the second wall member and the third wall member.

この構成によれば、第3壁部材が耐震壁として機能し、建物の制振性能だけでなく建物の耐震性能の向上も可能である。また、2つのエネルギー吸収部材が設けられるため、建物の制振性能の一層の向上が可能である。 According to this configuration, the third wall member functions as a seismic wall, and it is possible to improve not only the vibration damping performance of the building but also the seismic performance of the building. Also, since two energy absorbing members are provided, it is possible to further improve the damping performance of the building.

上記構成において、左側の前記柱(2)がPCaコンクリートによって前記第1壁部材(6)と一体に形成された第1柱壁部材(31)により構成され、右側の前記柱がPCaコンクリートによって前記第2壁部材(7)と一体に形成された第2柱壁部材(32)により構成されているとよい。 In the above configuration, the left pillar (2) is composed of a first pillar wall member (31) integrally formed with the first wall member (6) by PCa concrete, and the right pillar is made of PCa concrete. It is good to be comprised by the 2nd wall member (7) and the 2nd column wall member (32) integrally formed.

この構成によれば、第1壁部材及び第2壁部材だけでなく1対の柱もPCa化されるため、建物の構築速度速くなり、工期を短縮することができる。 According to this configuration, not only the first wall member and the second wall member but also the pair of pillars are made of PCa, so that the construction speed of the building can be increased and the construction period can be shortened.

上記課題を解決するために、本発明のある実施形態は、建物の制振構造(1)の構築方法であって、左端面から突出する複数の第1継手鉄筋(17)を有し、1対の柱(2)と1対の梁(3)とによって囲まれる構面の左側に配置されるべきPCaコンクリートからなる第1壁部材(6)、及び、右端面から突出する複数の第2継手鉄筋(19)を有し、前記構面の右側に配置されるべきPCaコンクリートからなる第2壁部材(7)を用意するステップと、前記構面の左側にて、下側の前記梁の上に当該梁に対して下端が離間するように前記第1壁部材を配置するステップ(図6(A)、(B))と、前記構面の右側にて、下側の前記梁の上に当該梁に対して下端が離間するように且つ前記第1壁部材に対して間隔を空けて前記第2壁部材を配置するステップ(図6(C)、図7(D))と、前記第1壁部材と前記第2壁部材との間にエネルギー吸収部材(8)を配置するステップ(図7(E)、(F))と、前記エネルギー吸収部材を前記第1壁部材及び前記第2壁部材に接合するステップ(図8(G))と、前記第1継手鉄筋及び前記第2継手鉄筋を埋設するようにコンクリートを打設し、前記第1壁部材及び前記第2壁部材が剛接合する1対の前記柱を構築するステップ(図8(H)、(I))と、前記第1壁部材の上端及び前記第2壁部材の上端から離間するようにコンクリートを打設し、両端が1対の前記柱に剛接合する上側の梁を構築するステップ(図8(H)、(I))とを含む。 In order to solve the above problems, an embodiment of the present invention is a method for constructing a damping structure (1) for a building, which has a plurality of first joint reinforcing bars (17) protruding from the left end surface, 1 A first wall member (6) made of PCa concrete to be placed on the left side of the structure surrounded by a pair of pillars (2) and a pair of beams (3), and a plurality of second wall members protruding from the right end face Preparing a second wall member (7) of PCa concrete to be placed on the right side of said framing surface with joint rebars (19); a step of arranging the first wall member so that the lower end is spaced from the beam above (FIGS. 6A and 6B); arranging the second wall member so that the lower end is spaced from the beam and with a space from the first wall member (FIGS. 6(C) and 7(D)); placing an energy absorbing member (8) between the first wall member and the second wall member (FIGS. 7(E) and (F)); joining the two wall members (FIG. 8(G)); placing concrete so as to bury the first joint reinforcing bar and the second joint reinforcing bar; constructing a pair of rigidly joined pillars (FIGS. 8(H) and (I)); and placing concrete away from the upper ends of the first and second wall members , constructing an upper beam (FIGS. 8(H), (I)) whose ends are rigidly connected to a pair of said columns.

この構成によれば、壁が第1壁部材と第2壁部材とに分割されるため、各壁部材の重量が軽くなる。したがって、揚重設備の大型化を回避することができる。また、各壁部材の上端及び下端が梁から離間して設けられるため、鉄筋継手の数が少なくなり、施工の手間が減る。更に、エネルギー吸収部材を吊った状態で上から第1壁部材と第2壁部材との間に配置することができるため、エネルギー吸収部材の設置が容易である。 With this configuration, the wall is divided into the first wall member and the second wall member, so the weight of each wall member is reduced. Therefore, it is possible to avoid an increase in the size of lifting equipment. In addition, since the upper and lower ends of each wall member are spaced apart from the beam, the number of reinforcing bar joints is reduced and the labor for construction is reduced. Furthermore, since the energy absorbing member can be arranged in a suspended state between the first wall member and the second wall member from above, installation of the energy absorbing member is easy.

上記課題を解決するために、本発明のある実施形態は、建物の制振構造(1)の構築方法であって、1対の柱(2)と1対の梁(3)とによって囲まれる構面の左側に配置されるべき第1壁部材(6)と柱とが一体に形成されたPCaコンクリートからなる第1柱壁部材(31)、前記構面の右側に配置されるべき第2壁部材(7)と柱とが一体に形成されたPCaコンクリートからなる第2柱壁部材(32)、及び、前記構面の幅方向の中間部に配置されるべきPCaコンクリートからなる第3壁部材(28)を用意するステップと、前記第1壁部材の下端が下側の前記梁から離間するように前記第1柱壁部材を所定の位置に配置して柱の下端を下方の柱に剛接合すると共に、前記第2壁部材の下端が下側の前記梁から離間するように前記第2柱壁部材を所定の位置に配置して柱の下端を下方の柱に剛接合するステップ(図14(A))と、前記第1壁部材の遊端に第1エネルギー吸収部材(8A)を接合すると共に、前記第2壁部材の遊端に第2エネルギー吸収部材(8B)を接合するステップ(図14(B)~図15(D))と、前記第1エネルギー吸収部材と前記第2エネルギー吸収部材との間に前記第3壁部材を配置し、前記第3壁部材の下端を下側の梁に剛接合するステップ(図15(E)~図15(F))と、前記第3壁部材を前記第1エネルギー吸収部材及び前記第2エネルギー吸収部材に接合するステップ(図16(G))と、前記第1壁部材の上端及び前記第2壁部材の上端が離間するように且つ前記第3壁部材の上端が剛接合するように上側の前記梁を構築するステップ(図16(H)、(I))とを含む。 In order to solve the above problems, an embodiment of the present invention is a construction method of a damping structure (1) for a building, which is surrounded by a pair of columns (2) and a pair of beams (3) A first wall member (6) to be arranged on the left side of the structural surface and a column are formed integrally with a first column wall member (31) made of PCa concrete, and a second wall member (31) to be arranged on the right side of the structural surface. A second column wall member (32) made of PCa concrete in which the wall member (7) and the column are integrally formed, and a third wall made of PCa concrete to be arranged in the middle part in the width direction of the structural surface. providing a member (28); placing the first column wall member in position so that the lower end of the first wall member is spaced from the lower beam and the lower end of the column to the lower column; rigidly joining the lower end of the column to the lower column by placing the second column wall member in a predetermined position so that the lower end of the second wall member is spaced apart from the lower beam ( 14(A)), a first energy absorbing member (8A) is joined to the free end of the first wall member, and a second energy absorbing member (8B) is joined to the free end of the second wall member. The third wall member is arranged between the step (FIGS. 14(B) to 15(D)) and the first energy absorbing member and the second energy absorbing member, and the lower end of the third wall member is The step of rigidly joining to the lower beam (FIGS. 15(E) to 15(F)) and the step of joining the third wall member to the first energy absorbing member and the second energy absorbing member (FIG. 16) (G)) and constructing the upper beam such that the upper ends of the first and second wall members are spaced apart and the upper ends of the third wall member are rigidly connected (Fig. 16(H), (I)).

この構成によれば、壁が第1壁部材と第2壁部材と第3部材とに分割されるため、第3壁部材の重量が軽くなる。また、各壁部材だけでなく1対の柱もPCa化されるため、建物の構築速度を速くすることができ、工期が短縮される。更に、第1壁部材及び第2壁部材の上端及び下端が梁から離間して設けられるため、鉄筋継手の数が少なくなり、施工の手間が減る。加えて、各エネルギー吸収部材や第3壁部材を吊った状態で上から所定の位置に配置することができるため、これらの部材の設置が容易である。 With this configuration, the wall is divided into the first wall member, the second wall member, and the third member, so the weight of the third wall member is reduced. In addition, since not only each wall member but also a pair of pillars are made of PCa, the construction speed of the building can be increased and the construction period can be shortened. Furthermore, since the upper and lower ends of the first wall member and the second wall member are spaced apart from the beam, the number of reinforcing bar joints is reduced, and the labor for construction is reduced. In addition, since each energy absorbing member and the third wall member can be arranged in a predetermined position from above in a suspended state, installation of these members is easy.

このように本発明によれば、壁のPCa化に伴う問題を解消でき、且つ期待される減衰力を地震時に確実に発揮し得る建物の制振構造及び、この建物の構築方法を提供することができる。 Thus, according to the present invention, it is possible to provide a damping structure for a building that can solve the problems associated with the use of PCa walls and that can reliably exert the expected damping force in the event of an earthquake, and a construction method for this building. can be done.

第1実施形態に係る建物の制振構造の正面図The front view of the damping structure of the building which concerns on 1st Embodiment 図1中のII-II断面図II-II sectional view in Fig. 1 図1に示すエネルギー吸収部材の断面の例を示す図A diagram showing an example of a cross section of the energy absorbing member shown in FIG. 図1に示す制振構造の地震時における挙動を模式的に示す正面図Front view schematically showing the behavior of the damping structure shown in Fig. 1 during an earthquake 図1に示すエネルギー吸収部材の締結部の変形例を示す図The figure which shows the modification of the fastening part of the energy absorption member shown in FIG. 図1に示す制振構造の構築手順の説明図Explanatory drawing of the construction procedure of the damping structure shown in Fig. 1 図1に示す制振構造の構築手順の説明図Explanatory drawing of the construction procedure of the damping structure shown in Fig. 1 図1に示す制振構造の構築手順の説明図Explanatory drawing of the construction procedure of the damping structure shown in Fig. 1 第2実施形態に係る建物の制振構造の正面図Front view of damping structure for building according to second embodiment 第3実施形態に係る建物の制振構造の正面図Front view of damping structure for building according to third embodiment 第4実施形態に係る建物の制振構造の正面図Front view of damping structure for building according to fourth embodiment 図11中のXII-XII断面図XII-XII sectional view in FIG. 図11に示す制振構造の地震時における挙動を模式的に示す正面図Front view schematically showing the behavior of the damping structure shown in FIG. 11 during an earthquake 図11に示す制振構造の構築手順の説明図Explanatory drawing of the construction procedure of the damping structure shown in FIG. 図11に示す制振構造の構築手順の説明図Explanatory drawing of the construction procedure of the damping structure shown in FIG. 図11に示す制振構造の構築手順の説明図Explanatory drawing of the construction procedure of the damping structure shown in FIG.

以下、図面を参照して、本発明の実施形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

≪第1実施形態≫
まず、図1~図8を参照して本発明の第1実施形態について説明する。図1及び図2に示されるように、制振構造1を備えた建物は、ラーメン構造によって構成された鉄筋コンクリート造の多層建物であり、例えば、板状マンションとして利用される。建物は、梁間方向(図1の左右方向)に2列、桁行方向(図1の紙面に直交する方向)に複数列に並べられた複数の柱2と、各階にて梁間方向及び桁行方向に互いに隣接する1対の柱2に架け渡される複数の梁3とを備えている。以下、梁間方向を左右と称する。
<<First Embodiment>>
First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 8. FIG. As shown in FIGS. 1 and 2, the building provided with the damping structure 1 is a reinforced concrete multi-layered building constructed with a Rahmen structure, and is used, for example, as a plate-like condominium. The building consists of a plurality of pillars 2 arranged in two columns in the beam direction (horizontal direction in Fig. 1) and multiple columns in the girder direction (perpendicular to the paper surface of Fig. 1). and a plurality of beams 3 bridging a pair of pillars 2 adjacent to each other. Hereinafter, the inter-beam direction is referred to as left and right.

建物の制振構造1は、梁間方向に並ぶ左右1対のRC造の柱2と、上下に異なる位置で左右に延在し、両端にてこの1対の柱2に剛接合する上下1対のRC造の梁3とによって囲まれる構面に設けられている。この構面は、当該階において隣接する2つの住戸の戸境をなすものであり、戸境壁によって塞がれる。戸境壁は、RC造の壁4と、壁4の両面に設けられる図示しない内装材(ボードや壁紙等)によって構成される。この壁4には制振ダンパー5が設けられており、構面を画定する1対の柱2及び1対の梁3、壁4並びに制振ダンパー5によって制振構造1が構成される。 The damping structure 1 of the building consists of a pair of left and right reinforced concrete columns 2 arranged in the inter-beam direction, and a pair of upper and lower columns extending left and right at different positions vertically and rigidly joined to the pair of columns 2 at both ends. is provided on the structural surface surrounded by the RC beams 3. This structural surface forms a boundary between two adjacent dwelling units on the floor, and is closed by a boundary wall. The door boundary wall is composed of an RC wall 4 and interior materials (boards, wallpaper, etc.) (not shown) provided on both sides of the wall 4 . A vibration damper 5 is provided on the wall 4 , and a vibration damping structure 1 is composed of a pair of pillars 2 and a pair of beams 3 that define a structural surface, the wall 4 , and the vibration damper 5 .

壁4は、構面の左側に配置されたPCaコンクリートからなる第1壁部材6と、構面の右側に配置されたPCaコンクリートからなる第2壁部材7とを含んでいる。第1壁部材6及び第2壁部材7は、上下の梁間寸法よりも小さな高さを有し、互いに同じ長さ(幅)を有している。第1壁部材6及び第2壁部材7の合計長さは、左右の柱間寸法よりも所定寸法L1だけ小さい。第1壁部材6は左側の柱2に剛接合された基端(左端)と、1対の梁3から離間する上端及び下端と、第2壁部材7に対峙する遊端(右端)とを有している。第2壁部材7は右側の柱2に剛接合された基端(右端)と、1対の梁3から離間する上端及び下端と、第1壁部材6に対峙する遊端(左端)とを有している。 The wall 4 includes a first wall member 6 made of PCa concrete arranged on the left side of the structural surface and a second wall member 7 made of PCa concrete arranged on the right side of the structural surface. The first wall member 6 and the second wall member 7 have a height smaller than the vertical inter-beam dimension and have the same length (width). The total length of the first wall member 6 and the second wall member 7 is smaller than the distance between the left and right columns by a predetermined length L1. The first wall member 6 has a base end (left end) rigidly joined to the left column 2 , upper and lower ends separated from the pair of beams 3 , and a free end (right end) facing the second wall member 7 . have. The second wall member 7 has a base end (right end) rigidly joined to the right column 2 , upper and lower ends separated from the pair of beams 3 , and a free end (left end) facing the first wall member 6 . have.

制振ダンパー5は、第1壁部材6と第2壁部材7との間に配置され、第1壁部材6及び第2壁部材7の遊端に接合されたエネルギー吸収部材8を含んでいる。エネルギー吸収部材8は、繊維補強セメント系複合材料からなる上下方向に一定の断面形状を有する長尺部材であり、上下方向に延在している。エネルギー吸収部材8は、第1壁部材6と第2壁部材7の遊端間の所定寸法L1と同じ幅を有し、第1壁部材6及び第2壁部材7の遊端の高さと同じ高さ(延在方向長さ)を有している。 The vibration damper 5 is disposed between the first wall member 6 and the second wall member 7 and includes an energy absorbing member 8 joined to the free ends of the first wall member 6 and the second wall member 7. . The energy absorbing member 8 is an elongated member made of a fiber-reinforced cementitious composite material and having a uniform cross-sectional shape in the vertical direction, and extends in the vertical direction. The energy absorbing member 8 has the same width as the predetermined dimension L1 between the free ends of the first wall member 6 and the second wall member 7, and the same height as the free ends of the first wall member 6 and the second wall member 7. It has a height (extending direction length).

繊維補強セメント系複合材料は、例えば、炭素繊維、アラミド繊維、ガラス繊維、ビニロン繊維、ポリプロピレン繊維、鋼繊維などの短繊維を補強材としてコンクリートやモルタル等のセメント系材料に混入したものである。繊維補強セメント系複合材料は、繊維補強コンクリートであってもよく、繊維補強モルタルであってもよく、短繊維以外の補強材を更に含むものであってもよい。繊維補強セメント系複合材料は、従来の普通コンクリートに比べ、引張時のひび割れが分散される、繊維によってひび割れの開きが拘束されることにより、見かけの引張強度や引張靱性に優れるといった特徴を有している。 Fiber-reinforced cementitious composite materials are obtained by mixing short fibers such as carbon fibers, aramid fibers, glass fibers, vinylon fibers, polypropylene fibers and steel fibers as reinforcing materials into cementitious materials such as concrete and mortar. The fiber-reinforced cementitious composite material may be fiber-reinforced concrete, fiber-reinforced mortar, or may further contain a reinforcing material other than short fibers. Compared to conventional ordinary concrete, fiber-reinforced cement-based composite materials have the characteristics of superior apparent tensile strength and tensile toughness due to the dispersion of cracks during tension and the constraining of crack opening by fibers. ing.

図2に示されるように、エネルギー吸収部材8は、第1壁部材6及び第2壁部材7の遊端に当接する1対のフランジ9と、両端にて1対のフランジ9に接合されるウェブ10とを有している。1対のフランジ9は、対応する第1壁部材6及び第2壁部材7の遊端面に複数のボルト11によって締結されている。図示省略するが、第1壁部材6及び第2壁部材7の遊端には、ボルト11を螺合させるためのインサートナットが埋め込まれている。ウェブ10は、一定の幅を有し、構面に対して平行に延在しており、1対のフランジ9を連結している。1対のフランジ9が上下方向に相対変位することによってウェブ10がせん断変形し、ウェブ10のせん断変形によって振動エネルギーが吸収される。 As shown in FIG. 2, the energy absorbing member 8 is joined at both ends to a pair of flanges 9 abutting the free ends of the first wall member 6 and the second wall member 7. a web 10; A pair of flanges 9 are fastened by a plurality of bolts 11 to the free end surfaces of the corresponding first wall member 6 and second wall member 7 . Although not shown, insert nuts for screwing bolts 11 are embedded in the free ends of the first wall member 6 and the second wall member 7 . The web 10 has a constant width, extends parallel to the structural surface and connects a pair of flanges 9 . The shear deformation of the web 10 is caused by the relative displacement of the pair of flanges 9 in the vertical direction, and the vibration energy is absorbed by the shear deformation of the web 10 .

図3は図1に示すエネルギー吸収部材8の断面の例を示す図である。エネルギー吸収部材8は図3に示されるような様々な断面形状に形成されてよい。図3(A)は、図2に示されるエネルギー吸収部材8を示している。この例では、ウェブ10の両端が1対のフランジ9の中央に接合されている。図3(B)の例では、ウェブ10と各フランジ9との接合部の両側に1対のフィレット12(隅肉)が形成されている。図3(C)の例では、1対のフランジ9の内部に補強鉄筋13が埋設されている。図3(D)の例では、ウェブ10の両端が1対のフランジ9の一方側の端部に接合されている。図3(E)の例では、ウェブ10が1対のフランジ9に直交する線に対して傾斜して延在している。エネルギー吸収部材8の断面は、これらの特徴を組み合わせてもよい。更に、エネルギー吸収部材8の断面はここに示したものに限られず、他の特徴を持つ形態であってもよい。 FIG. 3 is a diagram showing an example of a cross section of the energy absorbing member 8 shown in FIG. The energy absorbing member 8 may be formed in various cross-sectional shapes as shown in FIG. FIG. 3(A) shows the energy absorbing member 8 shown in FIG. In this example, both ends of web 10 are joined to the center of a pair of flanges 9 . In the example of FIG. 3B, a pair of fillets 12 (fillets) are formed on both sides of the joint between the web 10 and each flange 9 . In the example of FIG. 3(C), reinforcing steel bars 13 are embedded inside the pair of flanges 9 . In the example of FIG. 3D, both ends of the web 10 are joined to the ends of the pair of flanges 9 on one side. In the example of FIG. 3(E), the web 10 extends obliquely with respect to a line perpendicular to the pair of flanges 9 . The cross section of the energy absorbing member 8 may combine these features. Furthermore, the cross-section of the energy absorbing member 8 is not limited to that shown here, and may have other features.

このように、エネルギー吸収部材8は、繊維補強セメント系複合材料からなることにより、形状を自由に決めることができる。また、フランジ9の厚さや長さ(鉛直方向の寸法)を調整することによってエネルギー吸収部材8に期待する減衰力を容易に調整することができる。 Thus, the shape of the energy absorbing member 8 can be freely determined by being made of the fiber-reinforced cement-based composite material. Further, by adjusting the thickness and length (dimension in the vertical direction) of the flange 9, the damping force expected of the energy absorbing member 8 can be easily adjusted.

図1に示すように、第1壁部材6及び第2壁部材7の上端と上側の梁3との間並びに、第1壁部材6及び第2壁部材7の下端と下側の梁3との間のそれぞれには、弾性部材14が配置されている。弾性部材14は壁4に形成された隙間を塞ぐように設けられ、地震時に第1壁部材6及び第2壁部材7の遊端が上下の梁3に対して上下に相対変位した時に、梁3への衝突を緩和するクッション材として機能する。また、弾性部材14は壁4の遮音性を高める遮音部材としても機能する。これにより、第1壁部材6及び第2壁部材7と1対の梁3とが離間していても、防音性能の低下が抑制される。弾性部材14は、図示の例ではエネルギー吸収部材8と上下の梁3との間に設けられていないが、他の例では、エネルギー吸収部材8の上下にも弾性部材14が設けられてよい。 As shown in FIG. 1, between the upper end of the first wall member 6 and the second wall member 7 and the upper beam 3 and between the lower end of the first wall member 6 and the second wall member 7 and the lower beam 3 An elastic member 14 is arranged between each. The elastic member 14 is provided so as to close the gap formed in the wall 4, and when the free ends of the first wall member 6 and the second wall member 7 are displaced vertically relative to the upper and lower beams 3 during an earthquake, the beams It functions as a cushioning material that mitigates the collision with 3. The elastic member 14 also functions as a sound insulation member that enhances the sound insulation of the wall 4 . Thereby, even if the 1st wall member 6 and the 2nd wall member 7, and one pair of beams 3 are spaced apart, the fall of soundproofing performance is suppressed. Although the elastic member 14 is not provided between the energy absorbing member 8 and the upper and lower beams 3 in the illustrated example, the elastic member 14 may also be provided above and below the energy absorbing member 8 in another example.

図4は図1に示す制振構造1の地震時における挙動を模式的に示す正面図である。地震や風によって建物が梁間方向に揺れると、1対の柱2が同方向に傾き、第1壁部材6が左側の柱2の変形に追随して剛体回転し、第2壁部材7が右側の柱2の変形に追随して剛体回転するように建物が変形する。これにより、エネルギー吸収部材8は、1対のフランジ9が上下方向に相対変位し、ウェブ10が変形する。つまり、ウェブ10は、延在方向(上下方向)に作用するせん断力によってひび割れを起こし、ウェブ10内の繊維に引張力が作用し、地震エネルギー(梁間方向の振動エネルギー)を吸収する、すなわち減衰力を発揮する。これにより建物の揺れが小さくなり、建物の制振性能が向上する。 FIG. 4 is a front view schematically showing the behavior of the damping structure 1 shown in FIG. 1 during an earthquake. When the building shakes in the direction between the beams due to an earthquake or wind, the pair of pillars 2 tilt in the same direction, the first wall member 6 follows the deformation of the left pillar 2 and rotates as a rigid body, and the second wall member 7 rotates to the right. The building is deformed so as to rotate as a rigid body following the deformation of the pillar 2. As a result, the pair of flanges 9 of the energy absorbing member 8 are relatively displaced in the vertical direction, and the web 10 is deformed. In other words, the web 10 cracks due to the shear force acting in the extension direction (vertical direction), the tensile force acts on the fibers in the web 10, and the seismic energy (vibration energy in the inter-beam direction) is absorbed, that is, damped. exert power. This reduces the shaking of the building and improves the damping performance of the building.

この際、第1壁部材6及び第2壁部材7の上端及び下端が梁3から離間して設けられるため、第1壁部材6及び第2壁部材7の上端及び下端が梁3に固定される場合に比べ、地震時に第1壁部材6及び第2壁部材7の遊端の上下方向の相対変位が大きくなる。したがって、エネルギー吸収部材8が確実に振動エネルギーを吸収し、期待される減衰力が地震時に確実に発揮される。 At this time, since the upper and lower ends of the first wall member 6 and the second wall member 7 are provided apart from the beam 3, the upper and lower ends of the first wall member 6 and the second wall member 7 are fixed to the beam 3. Relative displacement in the vertical direction of the free ends of the first wall member 6 and the second wall member 7 becomes greater during an earthquake than in the case where the wall members 7 and 7 are separated from each other. Therefore, the energy absorbing member 8 reliably absorbs the vibrational energy, and the expected damping force is reliably exerted in the event of an earthquake.

また、振動エネルギーの吸収によってエネルギー吸収部材8が破損した場合には、ボルト11による締結を解除した後にエネルギー吸収部材8を構面に直交する方向に移動させて撤去し、新しいエネルギー吸収部材8に容易に交換することができる。この際、エネルギー吸収部材8の幅が小さいため、内装材を撤去する範囲が小さく済む。そのため、エネルギー吸収部材8の交換作業が容易である。 Also, if the energy absorbing member 8 is damaged due to the absorption of vibration energy, after releasing the fastening with the bolt 11, the energy absorbing member 8 is moved in the direction orthogonal to the structure surface and removed, and replaced with a new energy absorbing member 8. can be easily replaced. At this time, since the width of the energy absorbing member 8 is small, the range in which the interior material is removed can be made small. Therefore, the replacement work of the energy absorbing member 8 is easy.

このようにエネルギー吸収部材8には、1対のフランジ9を上下に変位させる大きなせん断力が作用する。一方、第1壁部材6及び第2壁部材7の遊端間の寸法変化は小さく、エネルギー吸収部材8に対して1対のフランジ9の対向方向に作用する力は小さい。そのため、1対のフランジ9の第1壁部材6及び第2壁部材7に対する締結は、ボルト11によらず、図5に示すように両者の間に充填されたグラウト15(充填材)によって行われてもよい。この場合、第1壁部材6及び第2壁部材7の遊端面及び1対のフランジ9の外面に、シアキーとして複数の凹部16が形成されるとよい。 In this manner, a large shearing force acts on the energy absorbing member 8 to vertically displace the pair of flanges 9 . On the other hand, the dimensional change between the free ends of the first wall member 6 and the second wall member 7 is small, and the force acting on the energy absorbing member 8 in the opposing direction of the pair of flanges 9 is small. Therefore, the pair of flanges 9 are fastened to the first wall member 6 and the second wall member 7 not by bolts 11 but by grout 15 (filler) filled between them as shown in FIG. may be broken. In this case, the free end surfaces of the first wall member 6 and the second wall member 7 and the outer surfaces of the pair of flanges 9 are preferably formed with a plurality of recesses 16 as shear keys.

次に、このように構成された建物の制振構造1の構築方法について説明する。構築にあたり、PCaコンクリートによって製作された第1壁部材6及び第2壁部材7が予め用意される。図6(A)に示すように、第1壁部材6は、柱2に接合される基端側の左端面から突出する複数の第1継手鉄筋17を有している。第1壁部材6の上端及び下端には弾性部材14が予め取り付けられている。構面の周囲では、下側の梁3が既に構築されており、1対の柱2は未だ構築されていないが、柱鉄筋18は組み立てられている。第1壁部材6は、クレーンによって吊り上げられ、構面の上方から構面の幅方向中間位置にて吊り下ろされた後、左側にスライドされることにより、図6(B)に示す所定の位置に配置される。 Next, a method for constructing the damping structure 1 for a building configured in this manner will be described. For construction, a first wall member 6 and a second wall member 7 made of PCa concrete are prepared in advance. As shown in FIG. 6A, the first wall member 6 has a plurality of first joint reinforcing bars 17 protruding from the left end face on the base end side joined to the column 2 . Elastic members 14 are attached in advance to the upper and lower ends of the first wall member 6 . Around the framing plane, the lower beams 3 have already been constructed and the pair of columns 2 have not yet been constructed, but the column rebars 18 have been erected. The first wall member 6 is lifted by a crane, suspended from above the structure surface at an intermediate position in the width direction of the structure surface, and then slid to the left to reach a predetermined position shown in FIG. 6(B). placed in

図6(C)に示すように、第2壁部材7は、柱2に接合される基端側の右端面から突出する複数の第2継手鉄筋19を有している。第2壁部材7の上端及び下端にも弾性部材14が予め取り付けられている。第2壁部材7は、クレーンによって吊り上げられ、構面の上方から構面の幅方向中間位置にて吊り下ろされる。この時、第1壁部材6と第2壁部材7との合計長さが左右の柱間寸法よりも所定寸法L1だけ小さいため、第2継手鉄筋19を右側の柱鉄筋18に干渉させずに第2壁部材7を吊り下ろすことができる。その後、第2壁部材7は右側にスライドされることにより、図7(D)に示す所定の位置に配置される。第1壁部材6と第2壁部材7との間には所定寸法L1の隙間が形成される。 As shown in FIG. 6C, the second wall member 7 has a plurality of second joint reinforcing bars 19 protruding from the right end surface on the base end side joined to the column 2 . Elastic members 14 are also attached in advance to the upper and lower ends of the second wall member 7 . The second wall member 7 is lifted by a crane and suspended from above the structural surface at an intermediate position in the width direction of the structural surface. At this time, since the total length of the first wall member 6 and the second wall member 7 is smaller than the distance between the left and right columns by the predetermined length L1, the second joint reinforcing bar 19 does not interfere with the right column reinforcing bar 18. The second wall member 7 can be suspended. After that, the second wall member 7 is slid to the right to be arranged at a predetermined position shown in FIG. 7(D). A gap having a predetermined dimension L1 is formed between the first wall member 6 and the second wall member 7 .

このように壁4がPCa部材である第1壁部材6及び第2壁部材7に左右に分割されているため、一体に形成される場合に比べ、第1壁部材6及び第2壁部材7の重量が軽くなっている。これにより揚重設備を大型化する必要性が回避されている。 In this way, the wall 4 is divided into the first wall member 6 and the second wall member 7, which are PCa members. is lighter in weight. This avoids the need for oversized lifting equipment.

続いて、図7(E)に示すように、エネルギー吸収部材8がクレーンによって吊り上げられ、構面の上方から第1壁部材6と第2壁部材7との間に吊り下ろされ、図7(F)に示す所定の位置に配置される。エネルギー吸収部材8の1対のフランジ9は、第1壁部材6及び第2壁部材7の遊端に実質的に隙間なく対峙し、第1壁部材6及び第2壁部材7の遊端に当接する。図8(G)に示すように、エネルギー吸収部材8は、複数のボルト11によって1対のフランジ9を第1壁部材6及び第2壁部材7の遊端に締結されることによって固定される。 Subsequently, as shown in FIG. 7(E), the energy absorbing member 8 is lifted by a crane and suspended between the first wall member 6 and the second wall member 7 from above the structural surface, F) is placed at a predetermined position. A pair of flanges 9 of the energy absorbing member 8 face the free ends of the first wall member 6 and the second wall member 7 substantially without gaps, and the free ends of the first wall member 6 and the second wall member 7 abut. As shown in FIG. 8G, the energy absorbing member 8 is fixed by fastening a pair of flanges 9 to the free ends of the first wall member 6 and the second wall member 7 with a plurality of bolts 11. .

このようにエネルギー吸収部材8が第1壁部材6と第2壁部材7との間に配置されるため、エネルギー吸収部材8を吊った状態で上から第1壁部材6と第2壁部材7との間に配置でき、エネルギー吸収部材8の設置が容易である。また、エネルギー吸収部材8が第1壁部材6及び第2壁部材7の遊端に当接する1対のフランジ9を有するため、1対のフランジ9を第1壁部材6及び第2壁部材7に締結することによってエネルギー吸収部材8を確実に固定することができる。また、1対のフランジ9によってエネルギー吸収部材8を確実に第1壁部材6及び第2壁部材7に締結することができる。 Since the energy absorbing member 8 is arranged between the first wall member 6 and the second wall member 7 in this way, the first wall member 6 and the second wall member 7 are arranged from above while the energy absorbing member 8 is suspended. and the energy absorbing member 8 can be easily installed. Also, since the energy absorbing member 8 has a pair of flanges 9 that contact the free ends of the first wall member 6 and the second wall member 7 , the pair of flanges 9 are arranged between the first wall member 6 and the second wall member 7 . The energy absorbing member 8 can be securely fixed by fastening to. Also, the energy absorbing member 8 can be securely fastened to the first wall member 6 and the second wall member 7 by the pair of flanges 9 .

続いて図8(H)に示すように、上側の梁鉄筋20が組み立てられ、1対の柱2及び上側の梁3の型枠(図示省略)が組み立てられる。型枠内にコンクリートが打設されることにより、1対の柱2及び上側の梁3が構築される。また、第1壁部材6は左側の柱2に剛接合され、第2壁部材7は右側の柱2に剛接合される。第1壁部材6及び第2壁部材7の上端は上側の梁3から離間している。これにより上記構成の制振構造1が構築される。なお、型枠はコンクリートの強度が発現した後に解体、撤去される。 Subsequently, as shown in FIG. 8(H), the upper beam reinforcing bars 20 are assembled, and the formwork (not shown) for the pair of columns 2 and the upper beam 3 is assembled. A pair of columns 2 and an upper beam 3 are constructed by pouring concrete into the formwork. The first wall member 6 is rigidly joined to the left column 2, and the second wall member 7 is rigidly joined to the right column 2. As shown in FIG. The upper ends of the first wall member 6 and the second wall member 7 are separated from the beam 3 on the upper side. As a result, the damping structure 1 having the configuration described above is constructed. The formwork will be dismantled and removed after the strength of the concrete is developed.

このように、第1壁部材6及び第2壁部材7が上下の梁3から離間する上端及び下端を有するため、第1壁部材6及び第2壁部材7の縦筋を上下の梁3に接続する必要がなく、鉄筋継手を介して上下の梁3に接続する場合に比べて鉄筋継手の数が少なくなる。よって施工の手間が減り、構築作業が簡単である。 In this way, since the first wall member 6 and the second wall member 7 have upper and lower ends separated from the upper and lower beams 3, the vertical bars of the first wall member 6 and the second wall member 7 are attached to the upper and lower beams 3. There is no need to connect, and the number of reinforcing bar joints is reduced compared to the case of connecting to the upper and lower beams 3 via reinforcing bar joints. Therefore, the labor for construction is reduced, and the construction work is simple.

また、エネルギー吸収部材8が繊維補強セメント系複合材料からなるため、鋼材を用いる場合に必要となる耐火被覆が不要になり、壁4の一部が厚くなることや設置手間が増えることが抑制されている。 In addition, since the energy absorbing member 8 is made of a fiber-reinforced cement-based composite material, a fireproof coating that is required when steel is used is not necessary, and it is possible to suppress the wall 4 from becoming thicker and the installation labor from increasing. ing.

≪第2実施形態≫
次に、図9を参照して本発明の第2実施形態について説明する。なお、第1実施形態と形態又は機能が同一又は同様の要素には同一の符号を付し、重複する説明は省略する。
<<Second embodiment>>
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code|symbol is attached|subjected to 1st Embodiment and the same or the element with the same form or a function, and the overlapping description is abbreviate|omitted.

本実施形態では、鉛直方向に並べられた複数のエネルギー吸収部材8によって制振ダンパー5が構成されている。各エネルギー吸収部材8は、高さ(延在方向長さ)が第1実施形態のものに比べて短い点で異なり、他の点は第1実施形態と同様である。複数のエネルギー吸収部材8は、互いに離間して配置されている。他の実施形態では、複数のエネルギー吸収部材8が実質的に接触し、連続するように配置されてもよい。 In this embodiment, the vibration control damper 5 is composed of a plurality of energy absorbing members 8 arranged in the vertical direction. Each energy absorbing member 8 is different in that its height (extending direction length) is shorter than that of the first embodiment, and other points are the same as those of the first embodiment. The plurality of energy absorbing members 8 are arranged apart from each other. In other embodiments, multiple energy absorbing members 8 may be arranged substantially contiguous and continuous.

制振ダンパー5がこのような構成とされることにより、各エネルギー吸収部材8の重量が軽くなり、設置や撤去、運搬等の取り扱いが容易になる。 By configuring the vibration control damper 5 in such a manner, the weight of each energy absorbing member 8 is reduced, and handling such as installation, removal, and transportation is facilitated.

≪第3実施形態≫
次に、図10を参照して本発明の第3実施形態について説明する。なお、第1実施形態と形態又は機能が同一又は同様の要素には同一の符号を付し、重複する説明は省略する。
<<Third Embodiment>>
Next, a third embodiment of the present invention will be described with reference to FIG. In addition, the same code|symbol is attached|subjected to 1st Embodiment and the same or the element with the same form or a function, and the overlapping description is abbreviate|omitted.

本実施形態では、第1壁部材6及び第2壁部材7の構成が第1実施形態と異なっている。第1壁部材6は、基端側である柱2の近傍(すなわち、左側)にて上下の梁3に剛接合される部分を含むように、上端及び下端が段形状とされている。第2壁部材7は、基端側(すなわち、右側の柱2の近傍)にて1対の梁3に剛接合される部分を含むように、上端及び下端が段形状とされている。第1壁部材6及び第2壁部材7と上下の梁3との剛接合部分には、壁縦筋の上側継手鉄筋21及び下側継手鉄筋22が設けられている。 In this embodiment, the configurations of the first wall member 6 and the second wall member 7 are different from those in the first embodiment. The first wall member 6 has a stepped upper end and a lower end so as to include a portion rigidly joined to the upper and lower beams 3 in the vicinity of the pillar 2 on the base end side (that is, on the left side). The second wall member 7 has stepped upper and lower ends so as to include a portion rigidly joined to the pair of beams 3 on the base end side (that is, near the right column 2). Upper joint reinforcing bars 21 and lower joint reinforcing bars 22 of vertical wall reinforcement are provided at rigid joints between the first wall member 6 and the second wall member 7 and the upper and lower beams 3 .

下側継手鉄筋22は、例えば、第1壁部材6又は第2壁部材7に下方へ延出するように一体に設けられる。この場合、下側継手鉄筋22は、下側の梁3のコンクリートの一部が未打設とされた状態で所定位置に配置され、この部分に後から打設されたコンクリートによって梁3に一体にされる。或いは、下側継手鉄筋22が第1壁部材6又は第2壁部材7と梁3との一方に一体に設けられ、他方に機械継手が設けられてこれらが互いに継ぎ合わされてもよい。上側継手鉄筋21は、例えば、第1壁部材6又は第2壁部材7に上方へ延出するように一体に設けられ、上側の梁3のコンクリートが打設されることによって梁3に一体にされてよい。 The lower joint reinforcing bar 22 is provided integrally with, for example, the first wall member 6 or the second wall member 7 so as to extend downward. In this case, the lower joint reinforcing bar 22 is placed at a predetermined position with part of the concrete of the lower beam 3 left unplaced, and is integrated with the beam 3 by placing concrete in this portion later. be made. Alternatively, the lower joint reinforcing bar 22 may be provided integrally with one of the first wall member 6 or the second wall member 7 and the beam 3, and the other may be provided with a mechanical joint to join them together. For example, the upper joint reinforcing bar 21 is provided integrally with the first wall member 6 or the second wall member 7 so as to extend upward, and is integrally formed with the beam 3 by pouring the concrete of the upper beam 3. may be

本実施形態では、第1壁部材6及び第2壁部材7が、基端側にて1対の梁3に剛接合される部分を含んでおり、これにより、第1壁部材6の一部及び第2壁部材7の一部が耐震壁として機能する。したがって、建物の制振性能だけでなく建物の耐震性能も向上する。なお、梁3に剛接合される部分が第1壁部材6及び第2壁部材7の少なくとも一方に設けられていればこの効果は奏される。 In this embodiment, the first wall member 6 and the second wall member 7 include portions that are rigidly joined to the pair of beams 3 on the proximal side, whereby the first wall member 6 is partly And part of the second wall member 7 functions as a seismic wall. Therefore, not only the damping performance of the building but also the seismic performance of the building is improved. This effect can be obtained if at least one of the first wall member 6 and the second wall member 7 is provided with a portion rigidly joined to the beam 3 .

≪第4実施形態≫
次に、図11~図16を参照して本発明の第4実施形態について説明する。なお、第1実施形態と形態又は機能が同一又は同様の要素には同一の符号を付し、重複する説明は省略する。
<<Fourth Embodiment>>
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 11 to 16. FIG. In addition, the same code|symbol is attached|subjected to 1st Embodiment and the same or the element with the same form or a function, and the overlapping description is abbreviate|omitted.

図11及び図12に示すように、本実施形態の壁4は、構面の左側に配置された第1壁部材6及び、構面の右側に配置された第2壁部材7に加え、構面の幅方向の中間部に配置されたPCaコンクリートからなる第3壁部材28を含んでいる。第1壁部材6及び第2壁部材7は、長さ(幅)が第1実施形態のものよりも小さい点で異なり、他の点は第1実施形態と同様である。ただし、第1壁部材6はPCaコンクリートによって左側の柱2と一体に形成されている。以下、これを第1柱壁部材31という。また、第2壁部材7はPCaコンクリートによって右側の柱2と一体に形成されている。以下、これを第2柱壁部材32という。第3壁部材28は、第1壁部材6と第2壁部材7との間に第1壁部材6及び第2壁部材7に対してそれぞれ所定寸法L1の間隔を空けて配置され、上下の梁3に剛接合されている。第3壁部材28と上下の梁3との剛接合部分には、第3実施形態と同様に壁縦筋の上側継手鉄筋21及び下側継手鉄筋22が設けられる。 As shown in FIGS. 11 and 12, the wall 4 of this embodiment includes a first wall member 6 arranged on the left side of the structural surface and a second wall member 7 arranged on the right side of the structural surface. It includes a third wall member 28 of PCa concrete located midway across the width of the face. The first wall member 6 and the second wall member 7 are different in length (width) from those of the first embodiment, and other points are the same as those of the first embodiment. However, the first wall member 6 is formed integrally with the left pillar 2 from PCa concrete. Hereinafter, this is referred to as the first column wall member 31 . The second wall member 7 is formed integrally with the right pillar 2 with PCa concrete. Hereinafter, this is referred to as a second column wall member 32 . The third wall member 28 is arranged between the first wall member 6 and the second wall member 7 with a predetermined distance L1 from each of the first wall member 6 and the second wall member 7. It is rigidly connected to the beam 3. At rigid joints between the third wall member 28 and the upper and lower beams 3, the upper joint reinforcing bars 21 and the lower joint reinforcing bars 22 of the wall vertical bars are provided, as in the third embodiment.

制振ダンパー5は、第1壁部材6と第3壁部材28との間に配置されてこれらに接合された第1エネルギー吸収部材8Aと、第2壁部材7と第3壁部材28との間に配置されてこれらに接合された第2エネルギー吸収部材8Bとを含んでいる。第1エネルギー吸収部材8A及び第2エネルギー吸収部材8Bは、第1実施形態のエネルギー吸収部材8と同様のものである。 The vibration control damper 5 is composed of a first energy absorbing member 8A disposed between and joined to the first wall member 6 and the third wall member 28, and the second wall member 7 and the third wall member 28. and a second energy absorbing member 8B disposed therebetween and joined thereto. The first energy absorbing member 8A and the second energy absorbing member 8B are similar to the energy absorbing member 8 of the first embodiment.

図13は図11に示す制振構造1の地震時における挙動を模式的に示す正面図である。地震や風によって建物が梁間方向に揺れると、1対の柱2が同方向に傾き、第1壁部材6が左側の柱2の変形に追随して剛体回転し、第2壁部材7が右側の柱2の変形に追随して剛体回転するように建物が変形する。第3壁部材28は上下の梁3に剛接合されているため、耐震壁として機能し、左右の柱2と同方向に同様に傾く。これにより、2つのエネルギー吸収部材8は、1対のフランジ9が上下方向に相対変位し、ウェブ10が変形し、地震エネルギー(梁間方向の振動エネルギー)を吸収する。これにより建物の揺れが小さくなり、建物の制振性能が向上する。また、第3壁部材28が耐震壁として機能するため、建物の制振性能だけでなく建物の耐震性能も向上する。更に、2つのエネルギー吸収部材8が設けられるため、建物の制振性能が一層向上する。 FIG. 13 is a front view schematically showing the behavior of the damping structure 1 shown in FIG. 11 during an earthquake. When the building shakes in the direction between the beams due to an earthquake or wind, the pair of pillars 2 tilt in the same direction, the first wall member 6 follows the deformation of the left pillar 2 and rotates as a rigid body, and the second wall member 7 rotates to the right. The building is deformed so as to rotate as a rigid body following the deformation of the pillar 2. Since the third wall member 28 is rigidly joined to the upper and lower beams 3, it functions as a seismic wall and inclines in the same direction as the left and right columns 2. As a result, the pair of flanges 9 of the two energy absorbing members 8 are relatively displaced in the vertical direction, the web 10 is deformed, and the seismic energy (vibrational energy in the inter-beam direction) is absorbed. This reduces the shaking of the building and improves the damping performance of the building. Moreover, since the third wall member 28 functions as an earthquake-resistant wall, not only the vibration damping performance of the building but also the earthquake-resistant performance of the building is improved. Furthermore, since two energy absorbing members 8 are provided, the damping performance of the building is further improved.

また本実施形態においても、第1壁部材6及び第2壁部材7の上端及び下端が梁3から離間して設けられるため、これらが梁3に固定される場合に比べ、地震時に第1壁部材6及び第2壁部材7の遊端の上下方向の相対変位が大きくなる。したがって、エネルギー吸収部材8が確実に振動エネルギーを吸収し、期待される減衰力が地震時に確実に発揮される。 Also in this embodiment, since the upper end and the lower end of the first wall member 6 and the second wall member 7 are provided apart from the beam 3, the first wall member 6 and the second wall member 7 are more likely to be damaged during an earthquake than when they are fixed to the beam 3. The vertical relative displacement of the free ends of the member 6 and the second wall member 7 increases. Therefore, the energy absorbing member 8 reliably absorbs the vibrational energy, and the expected damping force is reliably exerted in the event of an earthquake.

次に、このように構成された建物の制振構造1の構築方法について説明する。構築にあたり、PCaコンクリートによって製作された第1柱壁部材31、第2柱壁部材32及び第3壁部材28が予め用意される。図14(A)に示すように、構面の周囲では、下側の梁3が既に構築されており、1対の柱2は未だ構築されていない。本実施形態では柱2がPCa化されているため、柱主筋33の継手には機械式継手が用いられる。すなわち、第1柱壁部材31及び第2柱壁部材32の柱2の下端及び下階の柱2の上端の一方に機械継手が埋設され、他方にこれに継ぎ合わされる柱主筋33が突出するように設けられる。第1柱壁部材31及び第2柱壁部材32は、クレーンによって吊り上げられ、図14(A)に示す所定の位置に配置され、柱2が下階の柱2に剛接合される。第1壁部材6及び第2壁部材7の下端は下側の梁3から離間している。 Next, a method for constructing the damping structure 1 for a building configured in this manner will be described. In construction, the first column wall member 31, the second column wall member 32 and the third wall member 28 made of PCa concrete are prepared in advance. As shown in FIG. 14(A), the lower beam 3 has already been constructed around the structural surface, and the pair of pillars 2 has not yet been constructed. Since the column 2 is made of PCa in this embodiment, a mechanical joint is used for the joint of the column main reinforcement 33 . That is, a mechanical joint is embedded in one of the lower end of the column 2 of the first column wall member 31 and the second column wall member 32 and the upper end of the column 2 of the lower floor, and the column main reinforcement 33 joined to this protrudes in the other. is provided as follows. The first column wall member 31 and the second column wall member 32 are lifted by a crane, placed at the predetermined position shown in FIG. 14(A), and the column 2 is rigidly joined to the column 2 on the lower floor. The lower ends of the first wall member 6 and the second wall member 7 are separated from the lower beam 3 .

続いて図14(B)に示すように、第1エネルギー吸収部材8Aがクレーンによって吊り上げられ、所定の位置の上方から吊り下ろされる。また、第2エネルギー吸収部材8Bがクレーンによって吊り上げられ、所定の位置の上方から吊り下ろされる。第1エネルギー吸収部材8A及び第2エネルギー吸収部材8Bは、図14(C)に示すように所定の位置に配置される。その後、図15(D)に示すように、第1壁部材6の遊端に第1エネルギー吸収部材8Aの一方(左)のフランジ9がボルト11によって締結され、第2壁部材7の遊端に第2エネルギー吸収部材8Bの一方(右)のフランジ9が締結される。第1エネルギー吸収部材8Aと第2エネルギー吸収部材8Bとの間には、第3壁部材28の長さと略同一寸法の隙間が形成される。 Subsequently, as shown in FIG. 14B, the first energy absorbing member 8A is lifted by a crane and suspended from above a predetermined position. Also, the second energy absorbing member 8B is lifted by a crane and suspended from above a predetermined position. The first energy absorbing member 8A and the second energy absorbing member 8B are arranged at predetermined positions as shown in FIG. 14(C). 15(D), one (left) flange 9 of the first energy absorbing member 8A is fastened to the free end of the first wall member 6 with a bolt 11, and the free end of the second wall member 7 is , one (right) flange 9 of the second energy absorbing member 8B is fastened. A gap having substantially the same size as the length of the third wall member 28 is formed between the first energy absorbing member 8A and the second energy absorbing member 8B.

続いて図15(E)に示すように、第3壁部材28がクレーンによって吊り上げられ、所定位置の上方から吊り下ろされる。第3壁部材28は、図15(F)に示すように、第1エネルギー吸収部材8Aと第2エネルギー吸収部材8Bとの間の所定位置に配置され、その下端が下側の梁3に剛接合される。第3壁部材28は、図16(G)に示すように、第1エネルギー吸収部材8Aの他方(右)のフランジ9及び第2エネルギー吸収部材8Bの他方(左)のフランジ9にボルト11によって締結される。 Subsequently, as shown in FIG. 15(E), the third wall member 28 is lifted by a crane and suspended from above a predetermined position. The third wall member 28 is arranged at a predetermined position between the first energy absorbing member 8A and the second energy absorbing member 8B, as shown in FIG. spliced. The third wall member 28 is attached to the other (right) flange 9 of the first energy absorption member 8A and the other (left) flange 9 of the second energy absorption member 8B by bolts 11, as shown in FIG. 16(G). be concluded.

続いて図16(H)に示すように、上側の梁鉄筋20が組み立てられ、上側の梁3の型枠(図示省略)が組み立てられる。型枠内にコンクリートが打設されることにより、上側の梁3が構築される。第1壁部材6及び第2壁部材7の上端は上側の梁3から離間している。一方、第3壁部材28の上端は上側の梁3に剛接合される。これにより上記構成の制振構造1が構築される。 Subsequently, as shown in FIG. 16(H), the upper beam reinforcing bars 20 are assembled, and the formwork (not shown) for the upper beam 3 is assembled. The upper beam 3 is constructed by placing concrete in the formwork. The upper ends of the first wall member 6 and the second wall member 7 are separated from the beam 3 on the upper side. On the other hand, the upper end of the third wall member 28 is rigidly joined to the beam 3 on the upper side. As a result, the damping structure 1 having the configuration described above is constructed.

このように、各壁部材だけでなく1対の柱2もPCa化されるため、建物の構築速度を速くすることができ、工期が短縮される。また、第1壁部材6及び第2壁部材7が上下の梁3から離間する上端及び下端を有するため、第3壁部材28の縦筋のみを上下の梁3に接続すればよく、鉄筋継手の数が少なくなる。よって施工の手間が減り、構築作業が簡単である。更に、エネルギー吸収部材8や第3壁部材28を吊った状態で上から所定の位置に配置することができるため、これらの部材の設置が容易である。 In this way, not only each wall member but also a pair of pillars 2 are made of PCa, so that the construction speed of the building can be increased and the construction period can be shortened. In addition, since the first wall member 6 and the second wall member 7 have upper and lower ends separated from the upper and lower beams 3, only the vertical bars of the third wall member 28 need to be connected to the upper and lower beams 3, and the reinforcing bar joints decrease in the number of Therefore, the labor for construction is reduced, and the construction work is simple. Furthermore, since the energy absorbing member 8 and the third wall member 28 can be placed at predetermined positions from above in a suspended state, these members can be easily installed.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、第3実施形態では、第1壁部材6が左側の柱2と一体に、第2壁部材7が右側の柱2と一体に形成されたPCaコンクリートによって構成されているが、第1壁部材6及び第2壁部材7と柱2とが別部材として構成されてもよい。この場合、柱2は現場打ちコンクリートにより構築するとよく、これにより、壁4と柱2との接続に機械式継手が不要になる。この他、各部材や部位の具体的構成や配置、数量、素材、角度、構築手順など、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。また、上記実施形態や変形例は適宜組み合わせることができる。一方、上記実施形態に示した各構成要素は必ずしも全てが必須ではなく、適宜選択することができる。 Although the specific embodiments have been described above, the present invention is not limited to the above embodiments and can be widely modified. For example, in the third embodiment, the first wall member 6 is formed integrally with the left pillar 2, and the second wall member 7 is formed integrally with the right pillar 2 and is made of PCa concrete. The member 6 and the second wall member 7 and the column 2 may be configured as separate members. In this case, the column 2 may be constructed of cast-in-place concrete, thereby eliminating the need for mechanical joints to connect the wall 4 and the column 2 . In addition, the specific configuration, arrangement, quantity, material, angle, construction procedure, etc. of each member and part can be changed as appropriate within the scope of the present invention. Further, the above embodiments and modifications can be combined as appropriate. On the other hand, not all of the components shown in the above embodiments are essential, and can be selected as appropriate.

1 制振構造
2 柱
3 梁
4 壁
5 制振ダンパー
6 第1壁部材
7 第2壁部材
8 エネルギー吸収部材
8A 第1エネルギー吸収部材
8B 第2エネルギー吸収部材
9 フランジ
10 ウェブ
14 弾性部材
17 第1継手鉄筋
19 第2継手鉄筋
28 第3壁部材
31 第1柱壁部材
32 第2柱壁部材
1 damping structure 2 pillar 3 beam 4 wall 5 damper 6 first wall member 7 second wall member 8 energy absorbing member 8A first energy absorbing member 8B second energy absorbing member 9 flange 10 web 14 elastic member 17 first first wall member Joint reinforcement 19 Second joint reinforcement 28 Third wall member 31 First column wall member 32 Second column wall member

Claims (8)

建物の制振構造であって、
1対のRC造の柱と、
上下に異なる位置で左右に延在し、両端にて1対の前記柱に剛接合する1対のRC造の梁と、
1対の前記柱と1対の前記梁とによって囲まれる構面に設けられるRC造の壁と、
前記壁に設けられる制振ダンパーとを備え、
前記壁が、前記構面の左側に配置され、左側の前記柱に剛接合された基端及び1対の前記梁から離間する上端及び下端を有するPCaコンクリートからなる第1壁部材と、前記構面の右側に前記第1壁部材に対して間隔を空けて配置され、右側の前記柱に剛接合された基端及び1対の前記梁から離間する上端及び下端を有するPCaコンクリートからなる第2壁部材とを含み、
前記制振ダンパーが、前記第1壁部材と前記第2壁部材との間に配置され、前記第1壁部材及び前記第2壁部材の遊端に接合されたエネルギー吸収部材を含むことを特徴とする建物の制振構造。
A damping structure for a building,
A pair of RC pillars,
a pair of RC beams extending left and right at different positions vertically and rigidly joined to the pair of pillars at both ends;
an RC wall provided on a structural surface surrounded by the pair of pillars and the pair of beams;
A vibration damper provided on the wall,
a first wall member made of PCa concrete, the wall member being disposed on the left side of the structural surface and having a base end rigidly joined to the left column and upper and lower ends separated from the pair of beams; A second wall member made of PCa concrete spaced from said first wall member on the right side of the face and having a base end rigidly joined to said right column and upper and lower ends spaced from said pair of beams. a wall member;
The vibration damper includes an energy absorbing member disposed between the first wall member and the second wall member and joined to free ends of the first wall member and the second wall member. Vibration control structure of the building.
前記エネルギー吸収部材が、繊維補強セメント系複合材料からなり、前記第1壁部材及び前記第2壁部材の遊端に当接する1対のフランジと、1対の前記フランジに接合され、せん断変形によって振動エネルギーを吸収するウェブとを有し、1対の前記フランジが前記第1壁部材及び前記第2壁部材の遊端に締結されていることを特徴とする請求項1に記載の建物の制振構造。 The energy-absorbing member is made of a fiber-reinforced cementitious composite material, and is joined to a pair of flanges abutting the free ends of the first wall member and the second wall member, and to the pair of flanges by shear deformation. 2. A building restraint according to claim 1, further comprising a web for absorbing vibrational energy, and wherein a pair of said flanges are fastened to the free ends of said first and second wall members. vibration structure. 前記第1壁部材及び前記第2壁部材の前記上端及び前記下端と1対の前記梁との間に設けられた弾性部材を更に備えることを特徴とする請求項1又は請求項2に記載の建物の制振構造。 3. The elastic member according to claim 1, further comprising an elastic member provided between the upper end and the lower end of the first wall member and the second wall member and the pair of beams. damping structure of the building. 前記第1壁部材及び前記第2壁部材の少なくとも一方が、基端側にて1対の前記梁に剛接合される部分を含むことを特徴とする請求項1~請求項3のいずれかに記載の建物の制振構造。 At least one of the first wall member and the second wall member includes a portion rigidly joined to the pair of beams on the base end side. Damping structure of the stated building. 前記壁が、前記第1壁部材と前記第2壁部材との間に前記第1壁部材及び前記第2壁部材に対して間隔を空けて配置され、1対の前記梁に剛接合されるPCaコンクリートからなる第3壁部材を更に有し、
前記制振ダンパーが、前記第1壁部材と前記第3壁部材との間に配置され、前記第1壁部材及び前記第3壁部材に接合された第1エネルギー吸収部材と、前記第2壁部材と前記第3壁部材との間に配置され、前記第2壁部材及び前記第3壁部材に接合された第2エネルギー吸収部材とを含むことを特徴とする請求項1~請求項4のいずれかに記載の建物の制振構造。
The wall is spaced between the first wall member and the second wall member and rigidly joined to the pair of beams. further comprising a third wall member made of PCa concrete;
The vibration damper is disposed between the first wall member and the third wall member, a first energy absorbing member joined to the first wall member and the third wall member, and the second wall and a second energy absorbing member disposed between the member and the third wall member and joined to the second wall member and the third wall member. A damping structure for the building according to any one of the above.
左側の前記柱がPCaコンクリートによって前記第1壁部材と一体に形成された第1柱壁部材により構成され、右側の前記柱がPCaコンクリートによって前記第2壁部材と一体に形成された第2柱壁部材により構成されていることを特徴とする請求項5に記載の建物の制振構造。 The pillar on the left side is composed of a first pillar wall member integrally formed with the first wall member of PCa concrete, and the pillar on the right side is a second pillar integrally formed with the second wall member of PCa concrete. 6. The vibration damping structure for a building according to claim 5, wherein the damping structure is composed of wall members. 建物の制振構造の構築方法であって、
左端面から突出する複数の第1継手鉄筋を有し、1対の柱と1対の梁とによって囲まれる構面の左側に配置されるべきPCaコンクリートからなる第1壁部材、及び、右端面から突出する複数の第2継手鉄筋を有し、前記構面の右側に配置されるべきPCaコンクリートからなる第2壁部材を用意するステップと、
前記構面の左側にて、下側の前記梁の上に当該梁に対して下端が離間するように前記第1壁部材を配置するステップ、
前記構面の右側にて、下側の前記梁の上に当該梁に対して下端が離間するように且つ前記第1壁部材に対して間隔を空けて前記第2壁部材を配置するステップと、
前記第1壁部材と前記第2壁部材との間にエネルギー吸収部材を配置し、前記エネルギー吸収部材を前記第1壁部材及び前記第2壁部材に接合するステップと、
前記第1継手鉄筋及び前記第2継手鉄筋を埋設するようにコンクリートを打設し、前記第1壁部材及び前記第2壁部材が剛接合する1対の前記柱を構築するステップと、
前記第1壁部材の上端及び前記第2壁部材の上端から離間するようにコンクリートを打設し、両端が1対の前記柱に剛接合する上側の梁を構築するステップと
を含むことを特徴とする建物の制振構造の構築方法。
A method for constructing a damping structure for a building, comprising:
A first wall member made of PCa concrete, which has a plurality of first joint reinforcing bars protruding from the left end surface and is to be arranged on the left side of the structural surface surrounded by a pair of columns and a pair of beams, and a right end surface. providing a second wall member made of PCa concrete to be positioned on the right side of the structural surface and having a plurality of second joint rebars protruding from;
arranging the first wall member on the left side of the structure surface on the lower beam so that the lower end is spaced from the beam;
disposing the second wall member on the right side of the structural surface above the lower beam so that the lower end is spaced from the beam and spaced from the first wall member; ,
disposing an energy absorbing member between the first wall member and the second wall member, and joining the energy absorbing member to the first wall member and the second wall member;
placing concrete so as to embed the first joint reinforcing bars and the second joint reinforcing bars, and constructing a pair of the columns rigidly connected to the first wall member and the second wall member;
placing concrete spaced apart from the upper ends of the first wall member and the upper ends of the second wall members and constructing an upper beam rigidly connected at both ends to the pair of pillars. A method of constructing a damping structure for a building.
建物の制振構造の構築方法であって、
1対の柱と1対の梁とによって囲まれる構面の左側に配置されるべき第1壁部材と柱とが一体に形成されたPCaコンクリートからなる第1柱壁部材、前記構面の右側に配置されるべき第2壁部材と柱とが一体に形成されたPCaコンクリートからなる第2柱壁部材、及び、前記構面の幅方向の中間部に配置されるべきPCaコンクリートからなる第3壁部材を用意するステップと、
前記第1壁部材の下端が下側の前記梁から離間するように前記第1柱壁部材を所定の位置に配置して柱の下端を下方の柱に剛接合すると共に、前記第2壁部材の下端が下側の前記梁から離間するように前記第2柱壁部材を所定の位置に配置して柱の下端を下方の柱に剛接合するステップと、
前記第1壁部材の遊端に第1エネルギー吸収部材を接合すると共に、前記第2壁部材の遊端に第2エネルギー吸収部材を接合するステップと、
前記第1エネルギー吸収部材と前記第2エネルギー吸収部材との間に前記第3壁部材を配置し、前記第3壁部材の下端を下側の梁に剛接合するステップと、
前記第3壁部材を前記第1エネルギー吸収部材及び前記第2エネルギー吸収部材に接合するステップと、
前記第1壁部材の上端及び前記第2壁部材の上端が離間するように且つ前記第3壁部材の上端が剛接合するように上側の前記梁を構築するステップと
を含むことを特徴とする建物の制振構造の構築方法。
A method for constructing a damping structure for a building, comprising:
A first column wall member made of PCa concrete in which the column and the first wall member to be placed on the left side of the structural surface surrounded by the pair of columns and the pair of beams are integrally formed, and the right side of the structural surface A second column wall member made of PCa concrete in which the second wall member and the column to be arranged are integrally formed, and a third made of PCa concrete to be arranged in the middle part in the width direction of the structure surface providing a wall member;
The first column wall member is placed at a predetermined position so that the lower end of the first wall member is separated from the lower beam, and the lower end of the column is rigidly joined to the lower column, and the second wall member is provided. placing the second column wall member in a predetermined position such that the lower end is spaced apart from the lower beam, and rigidly joining the lower end of the column to the lower column;
joining a first energy absorbing member to the free end of the first wall member and joining a second energy absorbing member to the free end of the second wall member;
disposing the third wall member between the first energy absorbing member and the second energy absorbing member, and rigidly joining the lower end of the third wall member to the lower beam;
joining the third wall member to the first energy absorbing member and the second energy absorbing member;
and constructing the upper beam such that the upper ends of the first wall member and the upper ends of the second wall member are spaced apart and the upper ends of the third wall member are rigidly connected. A construction method for damping structure of a building.
JP2019114061A 2019-06-19 2019-06-19 Damping structure of building and its construction method Active JP7220627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019114061A JP7220627B2 (en) 2019-06-19 2019-06-19 Damping structure of building and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114061A JP7220627B2 (en) 2019-06-19 2019-06-19 Damping structure of building and its construction method

Publications (2)

Publication Number Publication Date
JP2021001443A JP2021001443A (en) 2021-01-07
JP7220627B2 true JP7220627B2 (en) 2023-02-10

Family

ID=73994774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114061A Active JP7220627B2 (en) 2019-06-19 2019-06-19 Damping structure of building and its construction method

Country Status (1)

Country Link
JP (1) JP7220627B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244926A (en) 2003-02-14 2004-09-02 Sangaku Renkei Kiko Kyushu:Kk Multi-story vibration resistant wall structure
WO2009075175A1 (en) 2007-12-13 2009-06-18 Oiles Corporation Wall type friction damper
JP2009144383A (en) 2007-12-13 2009-07-02 Jutaku Kozo Kenkyusho:Kk Vibration control frame
JP6379310B1 (en) 2018-01-05 2018-08-22 住友ゴム工業株式会社 Damping unit, damping device and building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244926A (en) 2003-02-14 2004-09-02 Sangaku Renkei Kiko Kyushu:Kk Multi-story vibration resistant wall structure
WO2009075175A1 (en) 2007-12-13 2009-06-18 Oiles Corporation Wall type friction damper
JP2009144383A (en) 2007-12-13 2009-07-02 Jutaku Kozo Kenkyusho:Kk Vibration control frame
JP6379310B1 (en) 2018-01-05 2018-08-22 住友ゴム工業株式会社 Damping unit, damping device and building

Also Published As

Publication number Publication date
JP2021001443A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN111622374B (en) Composite structural wall and method of construction thereof
CA2659536C (en) Reinforced masonry panel structures
JP5597897B2 (en) Building reinforcement method
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
EP2313568A1 (en) Method for forming connecting structure between pillar and beam, and connecting structure between pillar and beam
KR101277752B1 (en) Remodelling Construction Method by Inserting External Precast Concrete Wall Panel into the Internal Area of Beam-column Frame of Building and that Precast Concrete Panel
JP5193090B2 (en) Reinforcement structure of existing building
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
JP5568710B2 (en) Building reinforcement method
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP7220627B2 (en) Damping structure of building and its construction method
JP7158231B2 (en) Composite column, bridge pier using same, construction method
JP3999591B2 (en) Seismic control structure of concrete structure with fiber reinforced cementitious material
JP5627846B2 (en) Boundary beam, boundary beam design method, boundary beam construction method, and building
JP5083808B2 (en) Concrete earthquake-resistant wall floor structure
CN114045952A (en) Reinforced masonry buttress for damper and application
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
RU2462563C2 (en) Ceiling element
JP3817402B2 (en) RC seismic studs
JP3909488B2 (en) Seismic reinforcement structure of existing building and its construction method
JP7443643B2 (en) wall structure
JP6052460B2 (en) Seismic reinforcement structure and construction method
JP4485876B2 (en) Seismic walls and structures
JP7370199B2 (en) Vibration damping reinforcement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230131

R150 Certificate of patent or registration of utility model

Ref document number: 7220627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150