JP5083808B2 - Concrete earthquake-resistant wall floor structure - Google Patents

Concrete earthquake-resistant wall floor structure Download PDF

Info

Publication number
JP5083808B2
JP5083808B2 JP2007167700A JP2007167700A JP5083808B2 JP 5083808 B2 JP5083808 B2 JP 5083808B2 JP 2007167700 A JP2007167700 A JP 2007167700A JP 2007167700 A JP2007167700 A JP 2007167700A JP 5083808 B2 JP5083808 B2 JP 5083808B2
Authority
JP
Japan
Prior art keywords
wall
region
concrete
slab
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007167700A
Other languages
Japanese (ja)
Other versions
JP2009007759A (en
Inventor
昌宏 菅田
隆氏 西崎
眞 大平
博章 太田
拓 川合
一臣 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2007167700A priority Critical patent/JP5083808B2/en
Publication of JP2009007759A publication Critical patent/JP2009007759A/en
Application granted granted Critical
Publication of JP5083808B2 publication Critical patent/JP5083808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンクリート製耐震壁床式構造に関する。なお、本明細書において、「壁床式構造」とは、梁や柱を用いずに平面的な構造体(壁版及び床板)で躯体にかかる力を支える構造をいうものとする。   The present invention relates to a concrete earthquake-resistant wall floor structure. In the present specification, the “wall-floor structure” refers to a structure that supports the force applied to the frame by a planar structure (wall slab and floorboard) without using beams or columns.

柱を無くして躯体を壁と床と梁とで構成した構造物は従来公知であるが、室内に梁が突き出て空間的に邪魔となることから、更に梁を省略して壁と床とで構成した構造物が提案されている(特許文献1)。   A structure in which a pillar is eliminated and the frame is composed of a wall, a floor, and a beam is conventionally known. However, since the beam protrudes into the room and disturbs the space, the beam and the floor are further omitted. A constructed structure has been proposed (Patent Document 1).

この種の構造物において、壁と床とが交差する箇所の強度を向上させるために、本出願人は、縦断面方向から見て、壁・床の交差部を含む断面十字形であって、壁・床の接合線に沿って延びた部材(壁床接合部)を、高強度のコンクリート部材として予め製造することを提案している(特許文献2)。このコンクリート部材は図16に示すように通し配筋を予め挿通した形状で構成される。
特開平11−081450号 特開2005−220517
In this type of structure, in order to improve the strength of the location where the wall and the floor intersect, the applicant has a cross-sectional shape including the intersection of the wall and the floor as viewed from the longitudinal section direction, It has been proposed that a member (wall-floor joint) extending along the wall-floor joint line is manufactured in advance as a high-strength concrete member (Patent Document 2). As shown in FIG. 16, the concrete member has a shape in which a penetration bar is inserted in advance.
JP-A-11-081450 JP-A-2005-220517

特許文献1の構造は、躯体内の空間を広くとることができる反面、柱や梁を用いないため、壁版や床版の強度設計には十分留意する必要がある。この点に関して特許文献2は、床壁式構造の強度を高めるために床と壁との交差部付近に高強度のコンクリートを用いる手法を提案している。しかしこの手法では、現場打ちでは躯体の各部に強度の異なるコンクリートを使い分けるのが難しいため、交差部付近の高強度コンクリート部分を予めコンクリート部材として工場打ちすることになる。これでは工場から現場までのコンクリート部材の運送料がかさみ、コストを重視されるマンションなどの建設には不利である。   The structure of Patent Document 1 can take a large space in the housing, but does not use columns or beams, so it is necessary to pay sufficient attention to the strength design of the wall and floor slabs. In this regard, Patent Document 2 proposes a method using high-strength concrete in the vicinity of the intersection between the floor and the wall in order to increase the strength of the floor wall structure. However, with this method, it is difficult to use concrete with different strengths for each part of the frame in the field, so a high-strength concrete portion near the intersection is pre-fabricated as a concrete member in advance. This increases the shipping cost of the concrete members from the factory to the site, which is disadvantageous for the construction of condominiums where cost is an important factor.

更に近年の研究では、壁床式の構造では床版(及び壁版)を挿通した鉄筋の付着破壊による滑りが問題となっている。付着破壊による滑りというのは、付着面が固着した状態と滑りの状態とを細かく繰り返しながら割裂する現象であり、これがコンクリートと鉄筋(通し配筋)との間で起こると鉄筋の拘束力が低下し、耐震性能が劣化する。こうした滑りを防止するためには通し配筋の長手方向のところどころに横拘束筋を多く挿入して補強する必要がある。   Furthermore, in recent studies, slipping due to adhesion failure of reinforcing bars inserted through the floor slab (and wall slab) has become a problem in the wall-floor type structure. Slip due to adhesion failure is a phenomenon in which the adhesion surface is split and the state of sliding is repeatedly repeated, and if this occurs between concrete and reinforcing bars (through reinforcement), the reinforcing force of the reinforcing bars decreases. However, the seismic performance deteriorates. In order to prevent such slipping, it is necessary to reinforce by inserting a large number of lateral restraint bars in the longitudinal direction of the through bar.

例えば特許文献2のコンクリート部材においても通し配筋と同じ方向に補強筋が挿入されているが、この場合には次のような問題点があった。即ち、コンクリート部材の各端部を現場打ちの床版(又は壁版)コンクリートに接合することになるが、そうするとコンクリート部材と隣接する床版(又は壁版)コンクリート部分が地震力によって塑性変形を生じ易い領域となる。そうするとこの塑性領域を避けてコンクリート部材の通し配筋を、床版のコンクリート配筋と継ぎ合わせる必要があるため、コンクリート部材からの通し配筋の突出長さを大とする必要がある。それゆえに通し配筋を含むコンクリート部材はいよいよ嵩張るものとなり、運搬が困難となる。     For example, in the concrete member of Patent Document 2, reinforcing bars are inserted in the same direction as the through bars, but in this case, there are the following problems. In other words, each end of the concrete member is joined to the floor slab (or wall slab) concrete that is cast in the field, and then the floor slab (or wall slab) concrete portion adjacent to the concrete member is plastically deformed by seismic force. This is an area that is likely to occur. Then, since it is necessary to splice the reinforcing bar of the concrete member with the concrete reinforcing bar of the floor slab while avoiding this plastic region, it is necessary to increase the protruding length of the reinforcing bar from the concrete member. Therefore, the concrete member including the reinforcing bar becomes bulky and difficult to carry.

そこで本発明は、現場打ちの壁床式コンクリート構造において付着破壊による滑りを防止するために壁及び床の交差部分付近に拘束筋を挿入したものを提案することを目的とする。   In view of this, the present invention has an object of proposing a structure in which constraining bars are inserted in the vicinity of a crossing portion of a wall and a floor in order to prevent slippage due to adhesion failure in a wall-and-floor type concrete structure cast on site.

第1の手段は、耐震壁床式構造であり、
複数のコンクリート製の壁版及び床版が互いに交差し、この交差部を介して壁版及び床版内に通し配筋を配したコンクリート製耐震床壁式構造物において、
交差部12を含めて壁版4及び床版6をほぼ均一なコンクリート強度で形成し、
この床版6の通し配筋10と同方向に延びる曲げ補強筋18を少なくとも交差部12に挿入するとともに、
この曲げ補強筋18を床版のうち交差部12と隣接する部分14へ延長することで、
これら交差部12及び隣接部14を、その曲げ変形と通し配筋の付着破壊による滑りとに抵抗する補強領域16として剛体化し、
補強領域16に連なる床版部分を塑性領域22とし、
かつ補強領域に接する塑性領域の端部23に塑性ヒンジh形成箇所を再配置し、
上記塑性領域の端面24を補強領域16に継ぎ目なく連続させるとともに、現場打ちにより形成した。
The first means is a seismic wall floor structure,
In a concrete earthquake-resistant floor wall structure in which a plurality of concrete wall slabs and floor slabs intersect each other, and through the intersections, bar reinforcements are arranged in the wall slab and floor slab.
The wall slab 4 and the floor slab 6 including the intersection 12 are formed with substantially uniform concrete strength,
A bending reinforcement bar 18 extending in the same direction as the through bar 10 of the floor slab 6 is inserted into at least the intersecting portion 12, and
By extending this bending reinforcement 18 to the portion 14 adjacent to the intersection 12 of the floor slab,
The crossing portion 12 and the adjacent portion 14 are made rigid as a reinforcing region 16 that resists bending deformation and slippage due to adhesion failure of the bar arrangement,
A floor slab portion connected to the reinforcing region 16 is a plastic region 22,
And reposition the plastic hinge h p the area where the end portion 23 of the plastic region in contact with the reinforcing region,
The end surface 24 of the plastic region was continuously connected to the reinforcing region 16 and was formed by spotting.

本手段の主題は、コンクリート強度が均一のコンクリート躯体(好ましくは現場打ちのコンクリート躯体)の一部に柱・梁・ハンチなどの肉厚部分を形成したり、高強度のコンクリートを使ったりしなくても地震力に対抗できるようにすることである。この目的を達成のために、本手段では、均一な強度で連続する壁版及び床版の構造体において塑性ヒンジの位置を交差部よりも床スパンの中央側へ再配置することとしている。具体的には、交差部と交差部に隣接する床版部分とに、通し配筋に沿って曲げ補強筋を挿入して補強し、この補強領域に接する塑性領域の端部に塑性ヒンジ形成箇所を配置している。尚、本明細書で「再配置」とは、曲げ補強筋を交差部から隣接部へ延長することで、塑性ヒンジの位置を移動することをいう。     The main theme of this measure is that thick concrete parts such as columns, beams, and hunches are not formed on a part of a concrete frame with uniform concrete strength (preferably on-site concrete frame), or high-strength concrete is not used. But it is to be able to counter seismic forces. In order to achieve this object, in the present means, the position of the plastic hinge is rearranged from the intersection to the center side of the floor span in the continuous wall slab and floor slab structure with uniform strength. Specifically, a reinforcing reinforcement is inserted at the end of the plastic region in contact with the reinforcing region by inserting a bending reinforcing bar along the through bar in the crossing portion and the floor slab portion adjacent to the crossing portion. Is arranged. In this specification, “rearrangement” means that the position of the plastic hinge is moved by extending the bending reinforcing bar from the intersecting portion to the adjacent portion.

本明細書では「剛体化」とは、補強領域を曲げ補強筋で拘束して周囲に比べて塑性変形(及び弾性変形)を生じ難くするという程度の意味である。   In the present specification, “stiffening” means that the reinforcing region is restrained by a bending reinforcing bar so that plastic deformation (and elastic deformation) is less likely to occur than the surrounding area.

「補強領域」は、曲げ補強筋により強化された領域であり、こうした補強領域を通し配筋の複数個所に設置することで、配筋とコンクリートとのズレを防止している。特に本発明では、壁版との交差部を含む補強領域に曲げ補強筋を入れたので、この領域では壁の荷重で通し配筋の外周面が周囲のコンクリートとが圧接され、この圧接状態で水平方向のズレを曲げ補強筋で抑止するので、コンクリートへの通し配筋の付着力が向上する。この点について発明の実施形態の欄で詳説する。補強領域は、交差部と隣接部とで形成される。     The “reinforcing region” is a region reinforced by bending reinforcing bars, and is installed at a plurality of positions of the reinforcing bars through the reinforcing areas, thereby preventing a deviation between the reinforcing bars and the concrete. In particular, in the present invention, since the bending reinforcing bar is inserted in the reinforcing region including the intersection with the wall plate, the outer peripheral surface of the reinforcing bar is pressed against the surrounding concrete by the load of the wall in this region, and in this pressed state Since the horizontal displacement is suppressed by the bending reinforcing bar, the adhesion of the through bar to the concrete is improved. This will be described in detail in the section of the embodiment of the invention. The reinforcing region is formed by the intersecting portion and the adjacent portion.

「交差部」は、相互に交差する壁版と床版とが重なる部分であり、壁版及び床版の連結箇所であるとともに、通し配筋を周囲のコンクリートが最も強く締め付ける場所でもある。ここで「交差」とは2本の線状のものが少なくとも1点で交わることをいい、十字形に交わるものはもちろん、T字形やL字形に交わるものを含むものとする。     The “intersection” is a portion where a wall slab and a floor slab that intersect each other overlap, and is a connection point between the wall slab and the floor slab and also a place where the surrounding concrete is most strongly tightened by surrounding concrete. Here, “intersection” means that two linear objects intersect at at least one point, and includes those intersecting in a cross shape as well as those intersecting in a T shape or L shape.

「隣接部」は、交差部から突出しており、床塑性ヒンジの発生箇所を交差部から床版又は壁版のスパンの中間部側へ遠ざけるための領域である。この隣接部の突出長が短すぎると通し配筋の滑りを十分に防止できず、また長すぎると交差部付近に曲げ補強筋を挿入した意味がなくなる。     The “adjacent portion” is a region that protrudes from the intersecting portion, and is a region for moving the generation site of the floor plastic hinge away from the intersecting portion toward the middle portion of the span of the floor slab or wall slab. If the protruding length of the adjacent portion is too short, slippage of the through bar cannot be sufficiently prevented, and if it is too long, there is no point in inserting a bending reinforcing bar near the intersection.

「塑性領域」は、一定以上の地震の際に塑性変形して震動のエネルギーを吸収する領域である。従来公知の如くコンクリート構造は小さな揺れでは弾性変形するに過ぎないが、一定以上の大きさの揺れに対しては塑性変形して、エネルギー吸収特性を示し、構造物の揺れを減衰させる作用を有する。その際の床平均剪断力と層間変移角との関係をグラフに示すと図10のようになるが、図示の紡錘形のループの面積が大きいほどエネルギーの吸収性能が高い。地震の規模が大きい場合、塑性領域が補強領域と連続する端部では、その全面に亘って塑性変形を生じ、塑性ヒンジとして作用する。本発明において重要なことの一つは、この塑性ヒンジを壁版との交差部から床の中央側へ移動したことであり、これにより縦横の通し配筋が錯綜する交差部内での付着破壊による滑りを確実に阻止するようにしている。     The “plastic region” is a region that absorbs vibration energy by plastic deformation during an earthquake of a certain level or more. As is well known in the art, a concrete structure can only be elastically deformed by a small shaking, but it will plastically deform to a certain degree of shaking, exhibit energy absorption characteristics, and act to attenuate the shaking of the structure. . FIG. 10 is a graph showing the relationship between the floor average shear force and the interlayer transition angle at that time, and the larger the area of the spindle-shaped loop shown, the higher the energy absorption performance. When the magnitude of the earthquake is large, at the end where the plastic region is continuous with the reinforcing region, plastic deformation occurs over the entire surface and acts as a plastic hinge. One of the important things in the present invention is that the plastic hinge is moved from the intersection with the wall plate to the center side of the floor, and this causes adhesion failure in the intersection where the vertical and horizontal bar arrangements are complicated. Slip is surely prevented.

「塑性ヒンジ」とは、連続した鉄筋コンクリート部材において正負交番の繰返し変形を受けた場合に塑性変形性能を発揮する部位をいい、一般的には連続面及び不連続面のいずれにも生じうる。もっとも特許文献2のように高強度のコンクリート部材を普通のコンクリートに接続したときには、その接続面近傍の普通コンクリートの部分に塑性ヒンジができるのが通常である。本手段ではコンクリート強度と厚さとが同じ構造体(特に継ぎ目なく連続したコンクリート構造)において必要箇所に曲げ補強筋を入れることで塑性ヒンジの形成箇所の位置を制御する技術である。     “Plastic hinge” refers to a portion that exhibits plastic deformation performance when it is subjected to repeated positive and negative alternating deformations in a continuous reinforced concrete member, and can generally occur on both continuous and discontinuous surfaces. However, when a high-strength concrete member is connected to ordinary concrete as in Patent Document 2, it is normal that a plastic hinge is formed in the portion of ordinary concrete near the connection surface. This means is a technique for controlling the position of the place where the plastic hinge is formed by inserting a bending reinforcing bar at a necessary place in a structure having the same concrete strength and thickness (especially a continuous concrete structure without joints).

また本手段は、“上記塑性領域の端面24を補強領域16に継ぎ目なく連続させるとともに、現場打ちにより形成した”ことを構成要件の一部としている。Further, this means has a part of the constituent requirement that “the end face 24 of the plastic region is seamlessly continuous with the reinforcing region 16 and is formed by on-site strike”.

これによれば、工場打ちの壁床式構造において滑り防止用の曲げ補強筋を採用したから、交差部付近の高強度コンクリート部材を運搬する必要がなく、継ぎ目がない場所に塑性ヒンジを形成するようにしたから、不連続面に塑性ヒンジを形成する場合と比べてより大きな塑性変形に耐えることができる。According to this, since the bending reinforcement reinforcement for preventing slip is adopted in the factory-made wall floor type structure, it is not necessary to transport a high-strength concrete member near the intersection, and a plastic hinge is formed in a place where there is no seam. Since it did in this way, it can endure larger plastic deformation compared with the case where a plastic hinge is formed in a discontinuous surface.

第2の手段は、第1の手段を有し、かつ  The second means comprises the first means, and
上記壁版4の通し配筋10と同方向に延びる曲げ補強筋18を少なくとも交差部12に挿入するとともに、Inserting at least the crossing portion 12 a bending reinforcing bar 18 extending in the same direction as the through bar 10 of the wall plate 4, and
この曲げ補強筋18を壁版のうち交差部12と隣接する部分14へ延長することで、By extending the bending reinforcement 18 to the portion 14 adjacent to the intersection 12 of the wall plate,
これら交差部12及び隣接部14を、その曲げ変形と通し配筋の付着破壊による滑りとに抵抗する補強領域16として剛体化し、The crossing portion 12 and the adjacent portion 14 are made rigid as a reinforcing region 16 that resists bending deformation and slippage due to adhesion failure of the bar arrangement,
補強領域16に連なる壁版部分を塑性領域22とし、The wall slab portion connected to the reinforcing region 16 is defined as a plastic region 22,
かつ補強領域に接する塑性領域の端部23に塑性ヒンジhAnd a plastic hinge h at the end 23 of the plastic region in contact with the reinforcing region p 形成箇所を再配置している。The formation locations are rearranged.

本手段では、第1の手段で床版に適用した構造を、壁版にも適用するように形成するものである In this means, the structure applied to the floor slab by the first means is formed so as to be applied to the wall slab .

の手段は、第1の手段又は第2の手段を有し、かつ
上述の補強領域16内での曲げ補強筋18の鉄筋量を、通し配筋の鉄筋量及び強度に応じて、地震により生ずる通し配筋の降伏時の軸力によって通し配筋の付着破壊による滑りを生じない鉄筋量としている。
The third means includes the first means or the second means , and the amount of reinforcement of the bending reinforcement 18 in the above-described reinforcement region 16 is changed according to the amount and strength of the reinforcing reinforcement. The amount of rebar does not cause slippage due to adhesion failure of the penetration bar due to the axial force at the time of yielding of the penetration bar.

即ち、通し配筋の鉄筋量及び強度が大きくなると、その鉄筋の表面に作用する力の総量も大きくなるから、その力を通し配筋に代わって曲げ補強筋が負担するためには曲げ補強筋の長さを大きくする必要がある。もっとも曲げ補強筋の長さには限りがあるので、複数の曲げ補強筋を補強領域に挿入し、その長さの総和が必要長さになればよい。またこれら各鉄筋に作用する力は、考えうる範囲で最大の力、即ち鉄筋の降伏時の力とすればよい。   That is, as the amount and strength of the reinforcing bar increases, the total amount of force acting on the surface of the reinforcing bar also increases. Therefore, in order to bear the bending reinforcing bar instead of the reinforcing bar through the force, the bending reinforcing bar It is necessary to increase the length. However, since the length of the bending reinforcing bar is limited, a plurality of bending reinforcing bars may be inserted into the reinforcing region, and the sum of the lengths may be a required length. Moreover, what is necessary is just to let the force which acts on these each reinforcing bar be the maximum force in the range which can be considered, ie, the force at the time of yielding of a reinforcing bar.

の手段は、第1の手段を有し、
床版6及び壁版4のうちの一方内部での曲げ補強筋18の長さを、他方の版厚の2倍から3倍の範囲としている。
The fourth means has the first means,
The length of the bending reinforcing bar 18 in one of the floor slab 6 and the wall slab 4 is in a range of 2 to 3 times the thickness of the other slab.

曲げ補強筋の長さは、本来は前述の通り通し鉄筋の鉄筋量などから設計するが、通常の建物(10階建て程度、或いは免震ならば15階建て程度)であれば2〜4倍程度あればよい。   The length of the bending reinforcement is originally designed based on the amount of reinforcing bars as described above, but it is 2 to 4 times for normal buildings (about 10 stories or about 15 stories if seismic isolation). It only has to be about.

の手段は、第1の手段から第の手段の何れかを有し、かつ
曲げ補強筋18の両端に、その鉄筋中間部に比べて定着力の大きな形を有する定着部20を設けている。
The fifth means includes any one of the first means to the fourth means, and the fixing portions 20 having a shape having a larger fixing force than the middle portion of the reinforcing bar are provided at both ends of the bending reinforcing bar 18. ing.

本手段では、曲げ補強筋の両端部に定着部を設けることで塑性ヒンジの位置を明瞭にすることを提案している。即ち補強領域の両端での曲げ補強筋の拘束力を高めることで、そうした拘束力のない塑性領域は変形し易く、他方、補強領域は変形しにくくしたものである。これにより補強領域内での通し配筋の付着破壊による滑りを防止できる。「定着部」とは、定着力が大きい、碇(アンカー)としての機能を有する部分であり、その機能を果たせばどのような形状でもよい。例えば一本の曲げ補強筋の両端部を、図6の如くフック状の屈曲部としたり、表面にリブなどを周設した拡径部としてもよく(図示せず)、更に図7の如く曲げ補強筋をループ状としてそのコーナー部分を定着部としてもよい。     This means proposes to clarify the position of the plastic hinge by providing fixing portions at both ends of the bending reinforcing bar. That is, by increasing the restraining force of the bending reinforcing bars at both ends of the reinforcing region, the plastic region without such restraining force is easily deformed, while the reinforcing region is difficult to deform. As a result, slippage due to adhesion failure of the bar arrangement in the reinforcing region can be prevented. The “fixing part” is a part having a large fixing force and having a function as an anchor, and may have any shape as long as the function is achieved. For example, both ends of one bending reinforcing bar may be hook-shaped bent portions as shown in FIG. 6 or may be enlarged diameter portions (not shown) having ribs or the like on the surface (not shown), and further bent as shown in FIG. The reinforcing bars may be looped and the corners may be used as fixing portions.

の手段は、第1の手段から第の手段の何れかを有し、かつ
交差部12での通し配筋10の付着力と隣接部14での通し配筋10の付着力との合計が、補強領域16内における通し配筋10の必要付着力を上回るように壁体及び床版からなる躯体全体のコンクリート強度を設計している。
The sixth means includes any one of the first means to the fifth means, and the adhesion force of the penetration bar 10 at the intersecting portion 12 and the adhesion force of the penetration bar 10 at the adjacent portion 14. The concrete strength of the entire frame composed of the wall body and the floor slab is designed so that the total exceeds the necessary adhesion force of the bar reinforcement 10 in the reinforcing region 16.

本手段では、躯体全体のコンクリート強度を設計するときに、交差部での通し配筋の付着力の他に、隣接部での通し配筋の付着力を考慮することを提案している。即ち、交差部での通し配筋の付着力をTc,隣接部での通し配筋の付着力をTn、通し配筋の必要付着力をTaとすると、次式のようになる。この式の具体的内容については後述するが、コンクリートの圧縮強度をσとすると、Tc∝{1+(σ/σ))×σ 2/3であり、また、Tn∝√(σ)である。他方、通し配筋のJIS規格降伏強度に比例する定数であり、これより数式1を満足するようにσを決定することができる。
[数式1]Tc+Tn≧Ta
なお、躯体のコンクリート強度の上限値は適切な変形性能が得られるように設定すればよい。コンクリート強度が高すぎると付着性能が良くなり過ぎて、エネルギー吸収性能が高くなるが、変形性能が小さくなるデメリットがある。例えば終局限界層間変位角が1.5〜4%となるように設計すればよい。
In this means, when designing the concrete strength of the entire frame, it is proposed to consider the adhesive strength of the bar arrangement in the adjacent portion in addition to the adhesive strength of the bar arrangement in the intersection. In other words, when the adhesive strength of the penetration bar at the intersection is Tc, the adhesion strength of the penetration bar in the adjacent portion is Tn, and the required adhesion strength of the penetration bar is Ta, the following equation is obtained. The specific contents of this equation will be described later. When the compressive strength of concrete is σ B , Tc∝ {1+ (σ 0 / σ B )) × σ B 2/3 , and Tn∝√ (σ B ). On the other hand, it is a constant proportional to the JIS standard yield strength of the penetration bar, and from this, σ B can be determined so as to satisfy Formula 1.
[Formula 1] Tc + Tn ≧ Ta
In addition, what is necessary is just to set the upper limit of the concrete strength of a housing so that appropriate deformation performance may be obtained. If the concrete strength is too high, the adhesion performance is too good and the energy absorption performance is high, but there is a demerit that the deformation performance is small. For example, the ultimate limit interlayer displacement angle may be designed to be 1.5 to 4%.

第1の手段に係る発明によれば次の効果を奏する。
○コンクリート強度が均一の壁床式構造において曲げ補強筋18を挿入したから、その補強筋の挿入場所に応じて塑性ヒンジの形成箇所を自由に設定できる。
○壁の荷重がかかる交差部及び隣接部内に曲げ補強筋18を挿入したから、配筋の拘束力と荷重とが相俟ってコンクリートへの通し配筋の付着力を高めることができる。
The invention according to the first means has the following effects.
O Since the bending reinforcement 18 is inserted in the wall-and-floor type structure with a uniform concrete strength, the formation location of the plastic hinge can be freely set according to the insertion location of the reinforcement.
○ Since the bending reinforcing bars 18 are inserted into the intersection and adjacent portions where the wall load is applied, the binding force of the reinforcing bars and the load can be combined to increase the adhesive strength of the reinforcing bars through the concrete.

またの手段に係る発明によれば、次の効果を奏する。
○現場打ちした壁床式コンクリート構造において交差部及び隣接部に曲げ補強筋を挿入したから、交差部及び隣接部を別体のプレキャスト部材として形成する場合に比べて低コストで形成できる。
○塑性領域22を補強領域16に継ぎ目なく接続したから、不連続面に塑性ヒンジを形成させる場合と比べて地震エネルギーを有効に吸収することができるとともに、塑性ヒンジの位置を自由に設定できる。
Moreover , according to the invention which concerns on a 1st means, there exist the following effects.
○ Because the bending reinforcement bars are inserted at the intersection and the adjacent part in the wall-floored concrete structure cast in the field, it can be formed at a lower cost than when the intersection and the adjacent part are formed as separate precast members.
O Since the plastic region 22 is seamlessly connected to the reinforcing region 16, it is possible to effectively absorb seismic energy and to freely set the position of the plastic hinge as compared with the case where the plastic hinge is formed on the discontinuous surface.

また第2の手段に係る発明によれば、壁版4と床版6とをそれぞれ曲げ補強筋18で補強したから、耐震性が更に高まる Further, according to the invention relating to the second means, since the wall slab 4 and the floor slab 6 are reinforced by the bending reinforcing bars 18 respectively, the earthquake resistance is further enhanced .

の手段に係る発明によれば、曲げ補強筋18の長さを地震により生ずる通し配筋の降伏時の軸力によって付着破壊による滑りを生じない長さとしたから、配筋が降伏しない範囲において付着破壊による滑りを完全に防止することができる。 According to the third aspect of the invention, since the length of the bending reinforcing bar 18 is set to such a length that does not cause slippage due to adhesion failure due to the axial force at the time of yielding of the reinforcing bar due to an earthquake, the range where the reinforcing bar does not yield It is possible to completely prevent slippage due to adhesion failure.

の手段に係る発明によれば、床版6及び壁版4のうち一方部材内の曲げ補強筋18の長さを、一方又は他方の部材の厚さの2倍以上としたから、経験的に付着破壊による滑りを十分に防止することができる。 According to the fourth aspect of the invention, since the length of the bending reinforcing bar 18 in one member of the floor slab 6 and the wall slab 4 is set to be twice or more the thickness of one or the other member, In particular, slippage due to adhesion failure can be sufficiently prevented.

の手段に係る発明によれば、曲げ補強筋18の両端に、その鉄筋中間部に比べて定着力の大きな形を有する定着部20を設けたから、塑性領域22の端部の始まり位置が明確になり、設計上有利である。 According to the fifth aspect of the invention, since the fixing portions 20 having a shape having a larger fixing force than the intermediate portion of the reinforcing bar are provided at both ends of the bending reinforcing bar 18, the starting position of the end portion of the plastic region 22 is determined. It becomes clear and advantageous in design.

の手段によれば、交差部12での通し配筋10の付着力と隣接部14での通し配筋10の付着力との合計が、補強領域16内における通し配筋10の必要付着力を上回るように壁体及び床版からなる躯体全体のコンクリート強度を設計したから、付着破壊による滑りを防止して地震などのエネルギーを十分に吸収することができる。
According to the sixth means, the sum of the adhesive force of the bar reinforcing bar 10 at the crossing portion 12 and the adhesive force of the bar reinforcing bar 10 at the adjacent portion 14 is necessary for the bar reinforcing bar 10 in the reinforcing region 16. Since the concrete strength of the entire frame consisting of the wall and floor slabs is designed to exceed the adhesion force, slippage due to adhesion failure can be prevented and energy such as earthquakes can be absorbed sufficiently.

図1から図8は、本発明の第1実施形態に係るコンクリート製耐震壁床式構造2を示している。   1 to 8 show a concrete earthquake-resistant wall floor structure 2 according to a first embodiment of the present invention.

この壁床式構造2は、図1に示すようにコンクリート製の壁版4と床版6と天井スラブ8とで現場打ちにより一体的に打設されている。なお、本明細書において、壁版及び床版というときには、建物の躯体を形成する平板状の構造材を指すものとする。壁板及び床板と言ってもよいが、内装材としての床板などと区別するためにこのように称する。   As shown in FIG. 1, the wall-floor type structure 2 is integrally cast by a concrete wall slab 4, a floor slab 6, and a ceiling slab 8. In this specification, the term “wall slab” and “floor slab” refer to a flat plate-like structural material that forms a building frame. Although it may be called a wall board and a floor board, it is referred to in this way to distinguish it from a floor board as an interior material.

まず本発明の構成のうち従来公知の事項を簡単に説明する。図示の構造物は、多層ボックスカルバート状に形成されており、集合住宅やマンションとして用いることができる。壁版4、床版6、及び天井スラブ8は、それぞれ鉄筋コンクリート板であり、床版及び天井スラブには上下一対の通し配筋10を、また壁版には左右一対の通し配筋10を通している。これら壁版4、床版6、及び天井スラブ8は相互に交差している。外壁と床スラブとの交差箇所、及び天井スラブと内壁との交差箇所ではT字形(又は横倒しのT字形)に、それ以外の箇所では十字形に交差している。この交差部12では上記縦の通し配筋10と横の通し配筋10とが交錯している。   First, heretofore known matters in the configuration of the present invention will be briefly described. The illustrated structure is formed in a multilayer box culvert shape, and can be used as an apartment house or a condominium. The wall slab 4, the floor slab 6, and the ceiling slab 8 are each a reinforced concrete plate, and a pair of upper and lower through bars 10 are passed through the floor slab and ceiling slab, and a pair of left and right through bars 10 are passed through the wall slab. . The wall slab 4, floor slab 6 and ceiling slab 8 intersect each other. At the intersection between the outer wall and the floor slab, and at the intersection between the ceiling slab and the inner wall, it intersects in a T shape (or a sideways T-shape), and intersects in a cross shape in other portions. At the intersection 12, the vertical penetration bar 10 and the horizontal penetration bar 10 cross each other.

本発明においては、この交差部12から交差部と連続する隣接部14に亘って、曲げ補強筋18が挿入され、この曲げ補強筋の拘束力により上記交差部12と隣接部14とを、補強領域16としている。   In the present invention, a bending reinforcing bar 18 is inserted from the intersecting part 12 to the adjacent part 14 continuous with the intersecting part, and the intersecting part 12 and the adjacent part 14 are reinforced by the binding force of the bending reinforcing bar. Region 16 is designated.

この補強領域16は、側方(図面では前方)から見て十字形又はT字形であって、壁と床との稜線に沿って奥行き方向に延びる部分であり、縦方向及び横方向の曲げ補強筋の拘束力で剛体化している。剛体化と言っても、外部からの引っ張り力や曲げ応力に対抗して、コンクリートと通し配筋との間の滑りを防止できればよい。もっとも曲げ補強筋や通し配筋にプレストレスをかけることも可能である。曲げ補強筋による補強領域16を、壁版4の前後方向、及び床版6の左右水平方向に間欠的に形成することで、少ない鉄筋量で効果的に通し配筋の付着すべりを防止できる。また、曲げ補強筋を交差部付近に挿入したのは次の理由による。仮に交差部間の床版のスパンの中間部に曲げ補強筋を挿入したとすれば、その中間部の重量が過剰になって好ましくない。これに対して交差部及び隣接部に曲げ補強筋を入れたときには、その重量が壁にかかるので建物に無用の変形が生じないばかりか、その荷重が下の層の交差部に伝わり、この交差部内で床版の通し配筋とコンクリートとが密着するので、付着力が向上する。     The reinforcing region 16 is a cross or T shape as viewed from the side (front in the drawing), and extends in the depth direction along the ridgeline between the wall and the floor, and is bent and reinforced in the vertical and horizontal directions. It is rigidized by the restraining force of the muscles. Even if it says rigidification, it is only necessary to resist slippage between the concrete and the reinforcing bar against external pulling force and bending stress. However, it is also possible to apply prestress to the bending reinforcing bars and the through bars. By forming the reinforcing region 16 by the bending reinforcing bars intermittently in the front-rear direction of the wall slab 4 and the horizontal direction of the floor slab 6, the slippage of the reinforcing bars can be effectively prevented with a small amount of reinforcing bars. The reason why the bending reinforcement is inserted near the intersection is as follows. If a bending reinforcement is inserted in the middle part of the span of the floor slab between the intersecting parts, the weight of the middle part becomes excessive, which is not preferable. On the other hand, when bending reinforcements are inserted at the intersection and adjacent parts, the weight is applied to the walls, so that not only unnecessary deformation does not occur in the building, but the load is transmitted to the intersection of the lower layer, and this intersection Adhesion is improved because the slab reinforcement and the concrete are in close contact with each other.

上記交差部12は、躯体のうち床版及び壁版が共有する部分である。補強領域16の中でも鉄筋の密度が最も高く、通し配筋10の滑りを防止する上で最も重要な働きをする。   The crossing portion 12 is a portion shared by the floor slab and the wall slab in the housing. Among the reinforcing regions 16, the density of the reinforcing bars is the highest and plays the most important role in preventing slippage of the through bars 10.

上記隣接部14は、交差部に隣接しており、かつ曲げ補強筋の垂直又は水平部分と定着しているコンクリート部分である。図2及び図3に示すように、壁版及び床版が十字状に交差している箇所では、交差部から左右方向及び上下方向へ突出する4つの隣接部があり、また、図4及び図5のように壁版及び床版がT字状に交差する箇所では、3つの隣接部がある。一般的には床版の隣接部の突出長(横巾)Lは、おおよそ壁版の厚さと同じ程度、また壁版の隣接部の突出長(縦巾)Lは、おおよそ床版の厚さと同じ程度とすることが望ましい。図面では、床版及び壁版を同じ厚さに描いているが、例えば建物の下層階などのように壁版厚を床版厚より大きくすべき場合には、それぞれに隣接部の長さを設定する。更に具体的には曲げ補強筋の長さに関連して説明する。もっとも隣接部14の長さを標準的な長さよりも大きく設定することもできる。   The adjacent portion 14 is a concrete portion that is adjacent to the intersection and is fixed to the vertical or horizontal portion of the bending reinforcement. As shown in FIG. 2 and FIG. 3, at the place where the wall slab and the floor slab intersect in a cross shape, there are four adjacent portions protruding from the intersection in the left-right direction and the up-down direction. In a place where the wall slab and the floor slab intersect in a T-shape as in 5, there are three adjacent portions. In general, the protruding length (width) L of the adjacent portion of the floor slab is approximately the same as the thickness of the wall slab, and the protruding length (vertical width) L of the adjacent portion of the wall slab is approximately the thickness of the floor slab. The same level is desirable. In the drawing, the floor slab and wall slab are drawn to the same thickness. However, when the wall slab thickness should be larger than the floor slab thickness, for example, in the lower floor of a building, the length of the adjacent portion is set for each. Set. More specifically, the description will be made in relation to the length of the bending reinforcement. However, the length of the adjacent portion 14 can be set larger than the standard length.

上記曲げ補強筋18は、補強領域16内に縦横に配置されている。床版内では、図2に示す如く上下の通し配筋10にそれぞれ沿う上端筋及び下端筋として各通し配筋と平行に配置する。全ての曲げ補強筋は同じ長さで、左右の隣接部の各外端の間に伸びている。壁版内でも、図3に示すように対応した構造とする。曲げ補強筋18は、両端部に一対の定着部20を有し、両定着部が補強領域の端部に配置されることで、補強領域内のコンクリートをしっかりと拘束する。図示例の定着部はフック状であるが、その形状は適宜変更することができる。曲げ補強筋の長さは交差部と隣接部との長さの総和である。曲げ補強筋の長さ及び本数は、通し配筋の筋量及び強度に応じて、地震により生ずる通し配筋の降伏時の軸力によって通し配筋の付着破壊による滑りを生じないように設計する。   The bending reinforcing bars 18 are arranged vertically and horizontally in the reinforcing region 16. In the floor slab, as shown in FIG. 2, the upper and lower reinforcing bars along the upper and lower reinforcing bars 10 are arranged in parallel with the reinforcing bars, respectively. All the bending reinforcement bars have the same length and extend between the outer ends of the left and right adjacent portions. A corresponding structure as shown in FIG. The bending reinforcing bar 18 has a pair of fixing portions 20 at both ends, and both the fixing portions are arranged at the ends of the reinforcing region, thereby firmly restraining the concrete in the reinforcing region. The fixing unit in the illustrated example has a hook shape, but the shape can be changed as appropriate. The length of the bending reinforcement is the sum of the lengths of the intersection and the adjacent portion. The length and number of bending reinforcement bars are designed so as not to cause slippage due to adhesive breakage of the penetration bar due to the axial force at the time of yielding of the penetration bar, depending on the amount and strength of the penetration bar. .

補強領域16の隣の床版部分及び壁版部分は、補強領域に比べて変形し易い部分で、本明細書ではこれを塑性領域22と呼んでいる。塑性領域は補強領域と同じ強度のコンクリートで形成されている。塑性領域22の端面24は補強領域16と継目なく連続しており、一定以上のゆれが加わったときには塑性領域の端部23に塑性ヒンジhが生ずる。 The floor slab portion and the wall slab portion adjacent to the reinforcing region 16 are portions that are more easily deformed than the reinforcing region, and are referred to as a plastic region 22 in this specification. The plastic zone is made of concrete with the same strength as the reinforced zone. The end face 24 of the plastic region 22 is continuous with the reinforcing area 16 seamlessly, plastic hinge h p is generated in the end portion 23 of the plastic region when more than a predetermined swing is applied.

上記構成によれば、地震が起きたときに交差部12及び隣接部14は曲げ補強筋18で拘束されているため、その範囲では変形を生じず、その外側の塑性領域22で塑性変形が起こる。このとき、塑性ヒンジhが形成される場所は塑性領域22の端部23であり、交差部から離れるので、コンクリートに対する曲げ補強筋の付着破壊による滑りが防止される。 According to the above configuration, when the earthquake occurs, the crossing portion 12 and the adjacent portion 14 are constrained by the bending reinforcing bar 18, so that no deformation occurs in that range, and plastic deformation occurs in the plastic region 22 on the outer side. . In this case, where the plastic hinge h p is formed is an end portion 23 of the plastic region 22, since the distance from the intersection, the slip due to the adhesion disruption of Reinforcement bending against the concrete is prevented.

次に本発明の構造物の設計の手順について説明する。本発明では、交差部12内及び隣接部14内内における付着力が、通し配筋の必要付着力を上回るように設計する。具体的には次の数式2のように設計する。この数式2は数式1(Tc+Tn≧Ta)の具体例である。以下の説明では床版の通し配筋の付着力について説明する。
[数式2]π×d×τ×D+π×d×τ×2(r×r×D)≧(π/4)×d ×κ×σ(1+γ)
この数式2の左辺第1項(Tc=π×d×τ×D)は、交差部中の通し配筋部分の付着力を表す。dは通し配筋の径であり、τは交差部内の付着強度、Dは壁版の厚さである。この項の意味は、[交差部中の通し配筋部分の付着力]=[配筋部分の表面積]×[付着強度]ということであり、従来公知の事項である。そして交差部内の付着強度は、数式3で定める。Cは交差部の付着強度を定める定数で、好適な数値は1.0もしくは1.25である。σは壁の圧縮軸応力度(N/mm)である。
[数式3]τ=C×0.7{1+(σ/σ))×σ 2/3 (N/mm
数式3の左辺第2項(Tn=π×d×τ×2(r×r×D))は、隣接部中の通し配筋部分の付着力を表す。τは隣接部内の付着強度である。rは壁厚に対する隣接部の突出長の比であり、更にrは隣接部の突出長のうち付着応力を有効に担う部分の長さ(有効付着長)である。保有耐力時の層間変形角Rが2%以下の場合は、r=1.0としてよい。そして隣接部中の付着強度は数式4で定める。Cは隣接部の付着強度を定める定数で好適な数値は1.2である。
[数式4]Tc=C×(0.4b+0.5)√(σ) (N/mm
またbは、b=[b/(Nb×d)−1]で与えられる定数である。bは任意の検討巾であり、Nbはbにおける通し配筋の本数である。
Next, the procedure for designing the structure of the present invention will be described. In this invention, it designs so that the adhesive force in the cross | intersection part 12 and the adjacent part 14 may exceed the required adhesive force of a bar arrangement. Specifically, it is designed as the following Expression 2. Formula 2 is a specific example of Formula 1 (Tc + Tn ≧ Ta). In the following description, the adhesion of the bar slab reinforcement will be described.
[Equation 2] π × d b × 0 τ u × D + π × d b × 1 τ u × 2 (r 0 × r 1 × D) ≧ (π / 4) × d b 2 × κ 1 × T σ u (1 + γ)
Left first term of this formula 2 (Tc = π × d b × 0 τ u × D) represents the adhesion of through Haisuji portion in cross section. d b is the diameter of the through Haisuji, 0 tau u is the adhesion strength in the cross section, D is the thickness of the wall plate. The meaning of this term is [adhesive force of the bar arrangement portion in the intersection] = [surface area of the bar arrangement portion] × [adhesion strength], which is a conventionally known matter. The adhesion strength in the intersection is determined by Equation 3. C 1 is a constant that determines the adhesion strength at the intersection, and a suitable numerical value is 1.0 or 1.25. σ 0 is the compressive axial stress degree (N / mm 2 ) of the wall.
[Formula 3] 0 τ u = C 1 × 0.7 {1+ (σ 0 / σ B )) × σ B 2/3 (N / mm 2 )
Left side second term of Equation 3 (Tn = π × d b × 1 τ u × 2 (r 0 × r 1 × D)) represents the adhesion of through Haisuji part in the neighboring unit. 1 τ u is the adhesion strength in the adjacent portion. r 0 is the ratio of the protrusion length of the adjacent portion to the wall thickness, and r 1 is the length of the portion that effectively bears the adhesion stress (effective attachment length) of the protrusion length of the adjacent portion. When the interlaminar deformation angle R at the holding strength is 2% or less, r 1 = 1.0 may be set. The adhesion strength in the adjacent portion is determined by Equation 4. C 2 Suitable numerical constants defining the adhesion strength of the adjacent portion is 1.2.
[Formula 4] Tc = C 2 × (0.4b i +0.5) √ (σ B ) (N / mm 2 )
B i is a constant given by b i = [b / (Nb × d b ) −1]. b is an arbitrary width of examination, and Nb is the number of bar arrangements in b.

数式3の左辺は、通し配筋の必要付着力である。同式中κは上限強度算定用の強度を定めるための係数、σは通し配筋のJIS規格降伏強度、γは複筋比である。 The left side of Formula 3 is the necessary adhesion force of the bar arrangement. In the equation, κ 1 is a coefficient for determining the strength for calculating the upper limit strength, T σ u is the JIS standard yield strength of the through bar, and γ is the double muscle ratio.

[実施例1]
次に上記の計算方法に従ってさまざまな強度の試験体について引っ張り鉄筋比とコンクリート強度との関係を試験した。ここでr=0.5,=1.0とする。通し配筋の鉄筋をD19,D22、D25とする(なお、DNとは、鉄筋の径がNmmという意味である)。鉄筋降伏強度をσ=345N/mmとし、κ=1.25とする。これら条件のもとで数式2を満足しない引っ張り鉄筋比ptとコンクリート強度の組み合わせをプロットすると図9となる。同図の点線は全てのデータを直線回帰したものである。これからpに応じて最小限のコンクリート強度を求めることができる。なお、梁の長さがb、成(上下幅)がD、有効成(梁の上端面から下端筋までの距離をいう)がd、長さb内の上端筋及び下端筋の各本数をN本、各鉄筋の断面積を(π×d )/4とすると、pt={(π×d )/4}×N/(b×d)となる。これを用いて図9が導かれる。
[Example 1]
Next, the relationship between the tensile strength ratio and the concrete strength was tested for various strength specimens according to the above calculation method. Here, r 0 = 0.5, = 1.0. Reinforcing bars are D19, D22, and D25 (DN means that the diameter of the reinforcing bars is Nmm). The reinforcing bar yield strength is T σ u = 345 N / mm 2 and κ 1 = 1.25. FIG. 9 is a plot of the combination of the tensile reinforcement ratio pt and the concrete strength that does not satisfy Formula 2 under these conditions. The dotted line in the figure is a linear regression of all data. It is possible to obtain the minimum of concrete strength in response to the future p t. It should be noted that the length of the beam is b, the formation (vertical width) is D, the effective formation (the distance from the upper end surface of the beam to the lower end) is d, and the number of the upper and lower ends in the length b is Assuming that the cross-sectional area of N b pieces and each reinforcing bar is (π × d b 2 ) / 4, pt = {(π × d b 2 ) / 4} × N b / (b × d). Using this, FIG. 9 is derived.

[実施例2]
コンクリート強度と通し配筋の量とをパラメータとした表1の各試験体について耐震性能を調べるための実験を行った。
[Example 2]
An experiment was conducted to examine the seismic performance of each specimen in Table 1 using the concrete strength and the amount of reinforcing bars as parameters.

Figure 0005083808
Figure 0005083808

図10は、中程度のコンクリート強度(σ=29.7)を有する試験体No10のデータを示している。これは変形と荷重とがちょうどよくバランスしている例である。即ち、層間変位角は7%以上と耐震性能上十分な変形性能を示している。またエネルギーの吸収特性に関しても一般的なラーメン架構での梁部材と同等以上のエネルギー吸収性能を有している。なお、エネルギー吸収性能の良否の判断は等価粘性減衰係数heqによって行った。図14は、図10から得られたheqに対して一般的な架構梁部材の等価粘性減衰定数推定値(同図破線)を比較した結果である。同図によれば等価粘性減衰定数の実験値は推定値を上回っており、良好なエネルギー吸収特性を示していると判断できる。 FIG. 10 shows data of specimen No. 10 having a medium concrete strength (σ B = 29.7). This is an example in which the deformation and the load are well balanced. That is, the interlayer displacement angle is 7% or more, which shows sufficient deformation performance in terms of earthquake resistance. In addition, the energy absorption performance is equal to or better than that of a beam member in a general rigid frame. In addition, the judgment of the quality of energy absorption performance was performed by the equivalent viscous damping coefficient h eq . FIG. 14 is a result of comparing the estimated value of the equivalent viscous damping constant (dashed line) of a general frame beam member with h eq obtained from FIG. 10. According to the figure, the experimental value of the equivalent viscosity damping constant exceeds the estimated value, and it can be determined that the energy absorption characteristic is good.

次いで図11は、やや小さなコンクリート強度(σ=27.4)を有する試験体No3のデータを示している。層間変位角は7%程度あるが、図10に比べて荷重−変形関係を表す紡錘形の面積が小さく、エネルギー吸収性能が低い。図15は、試験体No10の図14に対応する図であるが、エネルギー吸収性能の実測値は推定値を下回っている。 Next, FIG. 11 shows data of specimen No. 3 having a slightly small concrete strength (σ B = 27.4). Although the interlayer displacement angle is about 7%, the spindle-shaped area representing the load-deformation relationship is smaller than in FIG. 10, and the energy absorption performance is low. FIG. 15 is a diagram corresponding to FIG. 14 of the specimen No. 10, but the actual measurement value of the energy absorption performance is lower than the estimated value.

図12は、大きなコンクリート強度(σ=48.5)を有する試験体No8のデータを示している。荷重−変形関係は十分に膨らんだ紡錘形状でエネルギー吸収特性に富むことが見てとれるが、変形性能に乏しく層間変位角で3%程度を超えた時点で破壊が生じている。 FIG. 12 shows data of specimen No. 8 having a large concrete strength (σ B = 48.5). It can be seen that the load-deformation relationship is a sufficiently swollen spindle shape and rich in energy absorption characteristics. However, the deformation performance is poor and the fracture occurs when the interlayer displacement angle exceeds about 3%.

図15は、上記の考察をまとめた結果として、通し配筋の鉄筋比pとコンクリート圧縮強度の組み合わせをプロットしたものである。エネルギー吸収性能及び変形性能ともに良好な範囲Sをハッチングで示している。これに対してSは付着破壊による滑りが生じてエネルギー吸収性能に劣る範囲であり、Sはエネルギー吸収性能が大きすぎて変形性能に劣る範囲である。 FIG. 15 is a plot of the combination of the reinforcing bar ratio p t and the concrete compression strength as a result of summarizing the above considerations. The energy absorbing performance and Ductility both show good range S 1 in hatching. S 2 In contrast ranges is inferior in energy absorption performance slippage occurs due to adhesion breakdown, S 3 is in a range inferior to the deformation performance Energy Characteristics is too large.

本発明の実施形態に係る壁床式構造物を前壁を切り欠いて示す斜視図である。It is a perspective view which cuts out the front wall and shows the wall-floor type structure which concerns on embodiment of this invention. 図1の構造物の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the structure of FIG. 図1の構造物の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the structure of FIG. 図1の構造物の他の要部を示す拡大断面図である。It is an expanded sectional view which shows the other principal part of the structure of FIG. 図1の構造物のさらに他の要部を示す拡大断面図である。It is an expanded sectional view which shows the other principal part of the structure of FIG. 図1の構造物に使用される曲げ補強筋の一例を示す図である。It is a figure which shows an example of the bending reinforcement used for the structure of FIG. 図1の構造物に使用される曲げ補強筋の他の例を示す図である。It is a figure which shows the other example of the bending reinforcement used for the structure of FIG. 図1の要部の作用説明図である。FIG. 2 is an operation explanatory diagram of a main part of FIG. 1. 図1の構造物の試験体の荷重−変形実験の結果を示すグラフである。It is a graph which shows the result of the load-deformation experiment of the test body of the structure of FIG. 図1の構造物の荷重−変形試験を条件を変えて行った結果の1である。It is 1 of the result of having performed the load-deformation test of the structure of FIG. 1 changing conditions. 図1の構造物の荷重−変形試験を条件を変えて行った結果の2である。It is 2 of the result of having performed the load-deformation test of the structure of FIG. 1 changing conditions. 図1の構造物の荷重−変形試験を条件を変えて行った結果の3である。3 is a result 3 of the load-deformation test of the structure of FIG. 1 performed under different conditions. 図10の結果を分析したグラフである。It is the graph which analyzed the result of FIG. 図11の結果を分析したグラフである。It is the graph which analyzed the result of FIG. 図10〜図12の試験の結果をまとめたグラフである。It is the graph which put together the result of the test of FIGS. 従来技術の床及び壁の交差部に相当するコンクリート部材の端面図である。1 is an end view of a concrete member corresponding to the intersection of a prior art floor and wall. FIG.

符号の説明Explanation of symbols

2…壁床式構造 4…壁版 6…床版 8…天井スラブ 10…通し配筋
12…交差部 14…隣接部 16…補強領域 18…曲げ補強筋
20…定着部 22…塑性領域 23…端部 24…端面 h…塑性ヒンジ
2 ... Wall floor type structure 4 ... Wall slab 6 ... Floor slab 8 ... Ceiling slab 10 ... Through bar 12 ... Intersection 14 ... Adjacent part 16 ... Reinforcement region 18 ... Bending reinforcement 20 ... Fixing part 22 ... Plastic region 23 ... end 24 ... end surface h p ... plastic hinge

Claims (6)

複数のコンクリート製の壁版及び床版が互いに交差し、この交差部を介して壁版及び床版内に通し配筋を配したコンクリート製耐震床壁式構造物において、
交差部(12)を含めて壁版(4)及び床版(6)をほぼ均一なコンクリート強度で形成し、
この床版(6)の通し配筋(10)と同方向に延びる曲げ補強筋(18)を少なくとも交差部(12)に挿入するとともに、
この曲げ補強筋(18)を床版のうち交差部(12)と隣接する部分(14)へ延長することで、
これら交差部(12)及び隣接部(14)を、その曲げ変形と通し配筋の付着破壊による滑りとに抵抗する補強領域(16)として剛体化し、
補強領域(16)に連なる床版部分を塑性領域(22)とし、
かつ補強領域に接する塑性領域の端部(23)に塑性ヒンジ( )形成箇所を再配置し、
上記塑性領域の端面(24)を補強領域(16)に継ぎ目なく連続させるとともに、現場打ちにより形成したことを特徴とする、コンクリート製耐震壁床式構造。
In a concrete earthquake-resistant floor wall structure in which a plurality of concrete wall slabs and floor slabs intersect each other, and through the intersections, bar reinforcements are arranged in the wall slab and floor slab.
The wall slab ( 4 ) and floor slab ( 6 ) including the intersection ( 12 ) are formed with almost uniform concrete strength,
Is inserted into at least intersection through Haisuji (10) and extending in the same direction bending reinforcement (18) of the slab (6) (12),
The bending reinforcement (18) that extend into portions (14) adjacent intersection of the slab and (12),
These crossing portions ( 12 ) and adjacent portions ( 14 ) are rigidized as a reinforcing region ( 16 ) that resists bending deformation and slippage due to adhesive breakage of the bar arrangement,
The floor slab part connected to the reinforcement region ( 16 ) is the plastic region ( 22 ) ,
And repositioning the plastic hinge ( h p ) formation at the end of the plastic region ( 23 ) in contact with the reinforcing region,
A concrete seismic wall-type floor structure, characterized in that the end face (24) of the plastic region is seamlessly continuous with the reinforcing region (16) and is formed by on-site striking .
上記壁版(4)の通し配筋(10)と同方向に延びる曲げ補強筋(18)を少なくとも交差部(12)に挿入するとともに、
この曲げ補強筋(18)を壁版のうち交差部(12)と隣接する部分(14)へ延長することで、
これら交差部(12)及び隣接部(14)を、その曲げ変形と通し配筋の付着破壊による滑りとに抵抗する補強領域(16)として剛体化し、
補強領域(16)に連なる壁版部分を塑性領域(22)とし、
かつ補強領域に接する塑性領域の端部(23)に塑性ヒンジ( )形成箇所を再配置したことを特徴とする、請求項1記載のコンクリート製耐震壁床式構造。
At least intersection through Haisuji (10) and extending in the same direction bending reinforcement (18) of the wall plate (4) is inserted into (12),
The bending reinforcement (18) that extend into portions (14) adjacent intersections of the walls plate (12),
These crossing portions ( 12 ) and adjacent portions ( 14 ) are rigidized as a reinforcing region ( 16 ) that resists bending deformation and slippage due to adhesive breakage of the bar arrangement,
The wall slab portion connected to the reinforcement region ( 16 ) is defined as a plastic region ( 22 ) ,
And it is characterized in that relocate the plastic hinge (h p) the area where the end of the plastic region in contact with the reinforcing region (23), concrete shear wall bed structure according to claim 1, wherein.
上述の補強領域(16)内での曲げ補強筋(18)の鉄筋量を、通し配筋の鉄筋量及び強度に応じて、地震により生ずる通し配筋の降伏時の軸力によって通し配筋の付着破壊による滑りを生じない鉄筋量としたことを特徴とする、請求項1又は請求項2に記載のコンクリート製耐震壁床式構造。 The amount of reinforcement of the bending reinforcement ( 18 ) in the reinforcement region ( 16 ) described above is determined by the axial force at the time of yielding of the reinforcing bar due to the earthquake according to the reinforcing bar quantity and strength of the reinforcing bar. The concrete seismic wall-type floor structure according to claim 1 or 2 , wherein the amount of rebar does not cause slippage due to adhesion failure. 床版(6)及び壁版(4)のうちの一方内部での曲げ補強筋(18)の長さを、一方又は他方の版厚の2倍から3倍の範囲としたことを特徴とする、請求項1記載のコンクリート製耐震壁床式構造。 The length of the bending reinforcing bar ( 18 ) inside one of the floor slab ( 6 ) and wall slab ( 4 ) is in the range of 2 to 3 times the plate thickness of one or the other. A concrete earthquake-resistant wall floor structure according to claim 1. 曲げ補強筋(18)の両端に、その鉄筋中間部に比べて定着力の大きな形を有する定着部(20)を設けたことを特徴とする、請求項1から請求項の何れかに記載のコンクリート製耐震壁床式構造。 5. A fixing portion ( 20 ) having a shape having a larger fixing force than that of an intermediate portion of the reinforcing bar is provided at both ends of the bending reinforcing bar ( 18 ) , according to any one of claims 1 to 4. Concrete earthquake resistant wall floor structure. 交差部(12)での通し配筋(10)の付着力と隣接部(14)での通し配筋(10)の付着力との合計が、補強領域(16)内における通し配筋(10)の必要付着力を上回るように壁体及び床版からなる躯体全体のコンクリート強度を設計したことを特徴とする、請求項1から請求項の何れかに記載のコンクリート製耐震壁床式構造。 Total adhesion through at intersections (12) Haisuji (10) and the adhesive force through Haisuji (10) at the adjacent portion (14), through Haisuji (10 in the reinforcing region (16) in characterized in that the concrete strength of the whole skeleton was designed consisting of walls and a floor plate to exceed the required adhesion), concrete shear wall bed structure according to any one of claims 1 to 5 .
JP2007167700A 2007-06-26 2007-06-26 Concrete earthquake-resistant wall floor structure Active JP5083808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167700A JP5083808B2 (en) 2007-06-26 2007-06-26 Concrete earthquake-resistant wall floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167700A JP5083808B2 (en) 2007-06-26 2007-06-26 Concrete earthquake-resistant wall floor structure

Publications (2)

Publication Number Publication Date
JP2009007759A JP2009007759A (en) 2009-01-15
JP5083808B2 true JP5083808B2 (en) 2012-11-28

Family

ID=40323113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167700A Active JP5083808B2 (en) 2007-06-26 2007-06-26 Concrete earthquake-resistant wall floor structure

Country Status (1)

Country Link
JP (1) JP5083808B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508866B2 (en) * 2013-02-22 2019-05-08 株式会社竹中工務店 Column-beam frame
CN106121030A (en) * 2016-05-06 2016-11-16 湖南标迪夫节能科技有限公司 Selective model integral system
CN109868920B (en) * 2019-02-26 2021-04-02 武汉理工大学 Connection structure of T-shaped superimposed shear wall edge member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306930A (en) * 1993-04-19 1994-11-01 Taisei Prefab Kk Connection structure of precast reinforced concrete construction

Also Published As

Publication number Publication date
JP2009007759A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
Moehle et al. Seismic design of reinforced concrete special moment frames: a guide for practicing engineers
Moehle et al. Seismic design of cast-in-place concrete special structural walls and coupling beams
Grauvilardell et al. Synthesis of design, testing and analysis research on steel column base plate connections in high-seismic zones
JP4247496B2 (en) Seismic reinforcement structure
Wijaya et al. Experimental study on wall-frame connection of confined masonry wall
Shin et al. Seismic performance of reinforced concrete eccentric beam-column connections with floor slabs
Moehle et al. Seismic design of reinforced concrete special moment frames
Esmaeili et al. Introducing an easy-install precast concrete beam-to-column connection strengthened by steel box and peripheral plates
KR101751432B1 (en) Seismic reinforcement structure of conventional ferroconcrete structure using corrugate steel plate
JP5083808B2 (en) Concrete earthquake-resistant wall floor structure
Ahn et al. Large-scale testing of coupled shear wall structures with damping devices
Hareen et al. Evaluation of seismic torsional response of ductile RC buildings with soft first story
JP2008163646A (en) Method and structure for reinforcing existing column
Lee et al. Punching shear strength and post-punching behavior of CFT column to RC flat plate connections
Derkowski et al. Complex stress state in prestressed hollow core slabs
Kang et al. Experimental investigation of composite moment connections with external stiffeners
JP2018003556A (en) Fire-resisting structure
JP5385510B2 (en) Flexible element damping structure and flexible mixed damping structure
JP6099128B2 (en) Joint structure of RC frame and brace and RC frame with brace
JP4120826B2 (en) Reinforcing wall structure
JP7220627B2 (en) Damping structure of building and its construction method
JP2004052494A (en) Rc beam damper
JP2000001999A (en) Vibration control reinforcement structure for existing building
Zabihi Seismic Retrofitting of Reinforced Concrete Beam-Column Joints Using Diagonal Haunch
JP5654658B2 (en) Eccentric column beam frame and building composed of the same frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

R150 Certificate of patent or registration of utility model

Ref document number: 5083808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3