JP2018003556A - Fire-resisting structure - Google Patents

Fire-resisting structure Download PDF

Info

Publication number
JP2018003556A
JP2018003556A JP2016135757A JP2016135757A JP2018003556A JP 2018003556 A JP2018003556 A JP 2018003556A JP 2016135757 A JP2016135757 A JP 2016135757A JP 2016135757 A JP2016135757 A JP 2016135757A JP 2018003556 A JP2018003556 A JP 2018003556A
Authority
JP
Japan
Prior art keywords
beams
fireproof
orthogonal
parallel
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135757A
Other languages
Japanese (ja)
Other versions
JP6724611B2 (en
Inventor
慧 木村
Kei Kimura
慧 木村
聡 北岡
Satoshi Kitaoka
聡 北岡
政樹 有田
Masaki Arita
政樹 有田
半谷 公司
Koji Hanya
公司 半谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016135757A priority Critical patent/JP6724611B2/en
Publication of JP2018003556A publication Critical patent/JP2018003556A/en
Application granted granted Critical
Publication of JP6724611B2 publication Critical patent/JP6724611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fire-resisting structure that reduces fire-resistive covering on a steel beam for sufficiently reducing a cost and curtailing a construction period, by appropriately evaluating an actual behavior of the steel beam exposed to fire heat input.SOLUTION: A fire-resisting structure 1 that applies the present invention is provided on a beam member of a building, and includes a plurality of column members 2, a plurality of girders 3 spanned on the column member 2, a beam 4 provided inside a space surrounded by the plurality of girders 3, and a floor slab 5 provided above the beam 4. The plurality of girders 3 includes a pair of orthogonal girders 31 provided roughly orthogonally to the beam 4, and a pair of parallel girders 32 provided roughly parallelly to the beam 4, and fire-resistive covering is applied on the first girder 3 of either the orthogonal girder 31 or the parallel girder 32. The fire-resistive covering applied on the second girder 3 of the orthogonal girder 31 or the parallel girder 32, as well as on the beam 4, is reduced more than the fire-resistive covering applied on the first girder 3 of either the orthogonal girder 31 or the parallel girder 32.SELECTED DRAWING: Figure 1

Description

本発明は、建造物の梁部材に設けられる耐火構造に関する。   The present invention relates to a fireproof structure provided in a beam member of a building.

従来から、RC造床スラブ下に補強鉄骨の上部を埋設して付設することにより、施工性とともにスラブ性能、信頼性を向上しコスト節減を可能とするものとして、特許文献1に開示された補強鉄骨付きRC造床スラブが提案されている。   Conventionally, the reinforcement disclosed in Patent Document 1 is intended to improve the slab performance and reliability as well as the workability by embedding and attaching the upper part of the reinforcing steel frame under the RC floor slab. RC floor slabs with steel frames have been proposed.

特許文献1に開示された補強鉄骨付きRC造床スラブは、柱及び大梁等に一体的に組み込まれたRC造床スラブにおいて、RC造床スラブの下側に、小梁となる補強鉄骨の上部を直接又は間接的に埋設して無耐火被覆で付設したことを特徴とする。   An RC floor slab with a reinforcing steel frame disclosed in Patent Document 1 is an RC floor slab that is integrally incorporated in a column, a large beam, and the like. It is characterized by being embedded directly or indirectly with a fireproof coating.

特開平7−42293号公報JP 7-42293 A

ここで、耐火性能が要求される鉄骨造の建造物においては、柱及び梁に耐火被覆を施すことで、火災入熱を低減して倒壊を防止する手法が一般的である。しかし、国内では耐火被覆工の労働者不足が顕在化しており、火災入熱を受ける鉄骨部材の実挙動を適切に評価することで、耐火被覆を削減した新しい耐火構造の実用化が期待されている。   Here, in a steel structure building that requires fireproof performance, a method of preventing fire collapse by reducing fire heat input by applying fireproof coating to columns and beams is common. However, a shortage of fireproof coating workers has become apparent in Japan, and it is expected that a new fireproof structure with reduced fireproof coating will be put to practical use by appropriately evaluating the actual behavior of steel members subjected to fire heat input. Yes.

また、非耐震地域が太宗を占める海外においては、鉄骨造の建造物を構造設計する上で耐火性能確保が重要となるため、鉄骨梁の耐火被覆の削減によりコスト削減と工期短縮化とを同時に実現できれば、鉄骨造の訴求力が大幅に向上するものとなる。   In overseas, where non-earthquake resistant areas occupy Taejong, it is important to secure fireproof performance in the structural design of steel-framed structures, so it is possible to simultaneously reduce costs and shorten construction time by reducing the fireproof coating of steel beams. If it can be realized, the appeal of steel structure will be greatly improved.

特許文献1に開示された補強鉄骨付きRC造床スラブは、RC造床スラブの下側に補強鉄骨の上部を埋設して、小梁となる補強鉄骨が無耐火被覆で付設されることで、鉄骨造の建造物における耐火被覆を削減することができる。   The RC floor slab with a reinforcing steel frame disclosed in Patent Document 1 embeds the upper part of the reinforcing steel frame under the RC floor slab, and the reinforcing steel frame to be a small beam is attached with a fireproof coating, It is possible to reduce the fireproof coating in the steel structure.

しかし、特許文献1に開示された補強鉄骨付きRC造床スラブは、RC造大梁又は耐火被覆したS造大梁を用いることが前提とされており、火災入熱を受ける鉄骨梁の実挙動を適切に評価するものとなっていない。そして、特許文献1に開示された補強鉄骨付きRC造床スラブは、RC造大梁又は耐火被覆したS造大梁が用いられた大梁の耐火被覆が削減されないため、耐火被覆の削減によるコスト削減及び工期短縮化が不十分であった。   However, the RC floor slab with reinforced steel disclosed in Patent Document 1 is premised on the use of RC large beams or fire-resistant S-shaped large beams, and the actual behavior of steel beams subjected to fire heat input is appropriate. It has not been evaluated. The RC floor slab with a reinforced steel frame disclosed in Patent Document 1 does not reduce the fire-resistant coating of the large beam using the RC beam or the S-shaped beam with fire-resistant coating. The shortening was insufficient.

そこで、本発明は、上述した問題点に鑑みて案出されたものであって、その目的とするところは、火災入熱を受ける鉄骨梁の実挙動を適切に評価して、大梁の耐火被覆の削減によるコスト削減及び工期短縮化を十分なものとした耐火構造を提供することにある。   Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to appropriately evaluate the actual behavior of a steel beam subjected to fire heat input, The object is to provide a fireproof structure that is sufficient in cost reduction and construction period shortening due to the reduction of the cost.

第1発明に係る耐火構造は、建造物の梁部材に設けられる耐火構造であって、複数の柱部材と、前記柱部材に架設される複数の大梁と、複数の前記大梁で取り囲んだ内側に設けられる小梁と、前記小梁の上方に設けられる床スラブとを備え、複数の前記大梁は、前記小梁に対して略直交させて設けられる一対の直交大梁と、前記小梁に対して略平行に設けられる一対の平行大梁とを有して、前記直交大梁及び前記平行大梁の何れか一方の前記大梁に耐火被覆が施されて、前記直交大梁及び前記平行大梁の何れか他方となる前記大梁並びに前記小梁の耐火被覆は、前記直交大梁及び前記平行大梁の何れか一方となる前記大梁に施された耐火被覆よりも削減された状態となることを特徴とする。   The fireproof structure according to the first invention is a fireproof structure provided in a beam member of a building, and includes a plurality of column members, a plurality of large beams installed on the column members, and an inner side surrounded by the plurality of large beams. A small beam provided, and a floor slab provided above the small beam, wherein the plurality of large beams are provided substantially perpendicular to the small beam, and a pair of orthogonal large beams and the small beam A pair of parallel large beams provided substantially in parallel, and a fireproof coating is applied to any one of the orthogonal large beams and the parallel large beams to become either one of the orthogonal large beams and the parallel large beams The refractory coating of the large beam and the small beam is in a state reduced more than the refractory coating applied to the large beam, which is one of the orthogonal large beam and the parallel large beam.

第2発明に係る耐火構造は、第1発明において、複数の前記柱部材、複数の前記大梁及び前記小梁が用いられることで、前記床スラブを支持するための架構が形成されて、前記床スラブは、耐火被覆が削減された前記直交大梁及び前記平行大梁の何れか他方となる前記大梁の材軸方向で、前記架構に隣り合って設けられた周辺架構に拘束されることを特徴とする。   The fireproof structure according to a second aspect of the present invention is the fireproof structure according to the first aspect of the present invention, wherein a frame for supporting the floor slab is formed by using the plurality of column members, the plurality of large beams, and the small beams, and the floor The slab is restrained by a peripheral frame provided adjacent to the frame in the material axis direction of the large beam which is the other of the orthogonal beam and the parallel beam with reduced fireproof coating. .

第3発明に係る耐火構造は、第2発明において、前記床スラブは、前記架構に支持される床スラブ内に配設された鉄筋が、前記周辺架構に支持される床スラブ内に配設された鉄筋と連続して設けられることを特徴とする。   The fireproof structure according to a third aspect of the present invention is the fireproof structure according to the second aspect, wherein the floor slab is provided with a reinforcing bar disposed in the floor slab supported by the frame in the floor slab supported by the peripheral frame. It is characterized by being provided continuously with the rebar.

第4発明に係る耐火構造は、第1発明〜第3発明の何れかにおいて、耐火被覆が削減された前記直交大梁及び前記平行大梁の何れか他方となる前記大梁並びに前記小梁は、断面略H形状のH形鋼が用いられることを特徴とする。   The fire-resistant structure according to a fourth aspect of the present invention is the fire-resistant structure according to any one of the first to third aspects, wherein the large beam and the small beam, which are the other of the orthogonal large beam and the parallel large beam with reduced fire-resistant coating, are substantially in cross section. An H-shaped steel having an H shape is used.

第5発明に係る耐火構造は、第1発明〜第4発明の何れかにおいて、前記柱部材は、断面略H形状のH形鋼、断面略矩形状の角形鋼管、断面略円形状の円形鋼管、鋼管の内部にコンクリートが充填されたコンクリート充填鋼管、鉄筋コンクリート柱、又は、鉄骨鉄筋コンクリート柱が用いられることを特徴とする。   The fireproof structure according to a fifth aspect of the present invention is the fireproof structure according to any one of the first to fourth aspects, wherein the column member is an H-shaped steel having a substantially H-shaped cross section, a square steel pipe having a substantially rectangular cross section, or a circular steel pipe having a substantially circular cross section. A concrete-filled steel pipe, a reinforced concrete column, or a steel-framed reinforced concrete column in which concrete is filled in the steel pipe is used.

第6発明に係る耐火構造は、第1発明〜第5発明の何れかにおいて、前記床スラブは、RCスラブ又は合成スラブが用いられることを特徴とする。   In the fireproof structure according to a sixth aspect of the present invention, in any one of the first to fifth aspects, an RC slab or a synthetic slab is used as the floor slab.

第7発明に係る耐火構造は、第1発明〜第6発明の何れかにおいて、耐火被覆が削減された前記直交大梁及び前記平行大梁の何れか他方となる前記大梁並びに前記小梁は、耐火被覆が施されていない状態となることを特徴とする。   The fireproof structure according to a seventh aspect of the present invention is the fireproof structure according to any one of the first to sixth aspects, wherein the large beam and the small beam which are the other of the orthogonal large beam and the parallel large beam in which the fireproof coating is reduced, It is characterized by being in a state where is not applied.

第8発明に係る耐火構造は、建造物の梁部材に設けられる耐火構造であって、複数の柱部材と、前記柱部材に架設される複数の大梁と、前記大梁の上方に設けられる床スラブとを備え、複数の前記大梁は、互いに対向する一対の第1大梁と、互いに対向する一対の第2大梁とを有して、前記第1大梁と前記第2大梁とが互いに略直交させて設けられて、前記第1大梁及び前記第2大梁の何れか一方の前記大梁に耐火被覆が施されて、前記第1大梁及び前記第2大梁の何れか他方となる前記大梁の耐火被覆は、前記第1大梁及び前記第2大梁の何れか一方となる前記大梁に施された耐火被覆よりも削減された状態となることを特徴とする。   A fireproof structure according to an eighth aspect of the present invention is a fireproof structure provided in a beam member of a building, and includes a plurality of column members, a plurality of large beams installed on the column members, and a floor slab provided above the large beams. The plurality of large beams includes a pair of first large beams facing each other and a pair of second large beams facing each other, and the first large beams and the second large beams are substantially orthogonal to each other. A fire-resistant coating is provided on one of the first and second beams, and the fire-resistant coating on the beam serving as the other of the first and second beams, The present invention is characterized in that the state is reduced as compared with the fireproof coating applied to the large beam which is one of the first large beam and the second large beam.

第1発明〜第8発明によれば、直交大梁及び平行大梁の何れか一方の大梁に耐火被覆が施されるものの、直交大梁及び平行大梁の何れか他方の大梁の耐火被覆が削減されることで、床スラブの面内方向の熱膨張が許容されて、床スラブのたわみ量が抑制されるため、建造物における耐火性能を向上させることが可能となる。   According to 1st invention-8th invention, although a fireproof coating is given to any one of an orthogonal large beam and a parallel large beam, the fireproof coating of the other large beam of an orthogonal large beam and a parallel large beam is reduced. Thus, the thermal expansion in the in-plane direction of the floor slab is allowed and the amount of deflection of the floor slab is suppressed, so that the fire resistance performance in the building can be improved.

第1発明〜第8発明によれば、直交大梁及び平行大梁の何れか一方の大梁に耐火被覆が施されるものの、直交大梁及び平行大梁の何れか他方の大梁並びに小梁の耐火被覆が削減されることで、一部の大梁及び小梁への耐火被覆の削減によるコスト削減及び工期短縮化を実現することが可能となる。   According to the first to eighth aspects of the invention, the fireproof coating is applied to any one of the orthogonal large beam and the parallel large beam, but the fireproof coating of the other large beam and the small beam is reduced. As a result, it is possible to realize cost reduction and shortening of the construction period by reducing the fireproof coating on some large beams and small beams.

特に、第2発明、第3発明によれば、火災室となる架構に支持される床スラブが、架構に隣り合って設けられた周辺架構に拘束されることで、床スラブのたわみ量が抑制されるため、建造物における耐火性能を向上させることが可能となる。   In particular, according to the second and third inventions, the floor slab supported by the frame serving as the fire chamber is restrained by the peripheral frame provided adjacent to the frame, thereby suppressing the amount of deflection of the floor slab. Therefore, it becomes possible to improve the fire resistance in the building.

特に、第7発明によれば、耐火被覆が削減された直交大梁及び平行大梁の何れか他方となる大梁並びに小梁が、耐火被覆が施されていない状態となることで、耐火被覆の削減による大幅なコスト削減及び工期短縮化を実現することが可能となる。   In particular, according to the seventh aspect of the present invention, the large beam and the small beam which are either the other of the orthogonal large beam and the parallel large beam in which the fireproof coating is reduced are not subjected to the fireproof coating, thereby reducing the fireproof coating. Significant cost reduction and shortening of construction period can be realized.

本発明を適用した耐火構造を示す斜視図である。It is a perspective view which shows the fireproof structure to which this invention is applied. (a)は、本発明を適用した耐火構造の架構を示す平面図であり、(b)は、架構に支持される床スラブを示す平面図である。(A) is a top view which shows the frame of the fireproof structure to which this invention is applied, (b) is a top view which shows the floor slab supported by a frame. (a)は、本発明を適用した耐火構造におけるH形鋼の柱部材、(b)は、角形鋼管の柱部材、(c)は、円形鋼管の柱部材を示す断面図である。(A) is a pillar member of H section steel in a fireproof structure to which the present invention is applied, (b) is a pillar member of a square steel pipe, and (c) is a sectional view showing a pillar member of a circular steel pipe. (a)は、本発明を適用した耐火構造におけるコンクリート充填鋼管の柱部材、(b)は、鉄筋コンクリート柱の柱部材、(c)は、鉄骨鉄筋コンクリート柱の柱部材を示す断面図である。(A) is a column member of the concrete filling steel pipe in the fireproof structure to which this invention is applied, (b) is a column member of a reinforced concrete column, (c) is sectional drawing which shows the column member of a steel frame reinforced concrete column. (a)は、本発明を適用した耐火構造における耐火被覆状態の大梁、(b)は、減耐火被覆状態の小梁、(c)は、減耐火被覆状態の大梁を示す断面図である。(A) is a cross-sectional view showing a large beam in a fireproof structure in which the present invention is applied, (b) is a small beam in a reduced fireproof covering state, and (c) is a cross-sectional view showing a large beam in a reduced fireproof covering state. (a)は、本発明を適用した耐火構造における無耐火被覆状態の小梁、(b)は、無耐火被覆状態の大梁を示す断面図である。(A) is a cross-sectional view showing a small beam in a fireproof structure in which the present invention is applied, and (b) is a cross-sectional view showing a large beam in a fireproof structure. (a)は、本発明を適用した耐火構造におけるH形鋼の一部が無耐火被覆状態の小梁、(b)は、H形鋼の一部が無耐火被覆状態の大梁を示す断面図である。(A) is a cross-sectional view showing a small beam in which a part of the H-section steel in the fireproof structure to which the present invention is applied is in a non-fireproof coating state, and (b) is a cross-sectional view in which a part of the H-section steel is in a fireproof coating state It is. (a)は、本発明を適用した耐火構造におけるRCスラブの床スラブ、(b)は、合成スラブの床スラブを示す断面図である。(A) is the floor slab of RC slab in the fireproof structure to which this invention is applied, (b) is sectional drawing which shows the floor slab of a synthetic | combination slab. 本発明を適用した耐火構造における架構で耐火被覆の削減された平行大梁の材軸方向に隣り合って設けられる周辺架構を示す平面図である。It is a top view which shows the surrounding frame provided adjacent to the material axis direction of the parallel large beam by which the fireproof coating was reduced with the frame in the fireproof structure to which this invention is applied. 本発明を適用した耐火構造における架構で耐火被覆の削減された直交大梁の材軸方向に隣り合って設けられる周辺架構を示す平面図である。It is a top view which shows the surrounding frame provided adjacent to the material axis direction of the orthogonal large beam by which the fireproof coating was reduced with the frame in the fireproof structure to which this invention is applied. 本発明を適用した耐火構造における架構に支持されて周辺架構に拘束される床スラブを示す断面図である。It is sectional drawing which shows the floor slab supported by the frame in the fireproof structure to which this invention is applied, and restrained by the surrounding frame. 本発明を適用した耐火構造における架構で柱部材の強軸方向を材軸方向とする平行大梁を示す平面図である。It is a top view which shows the parallel large beam which makes the strong axis direction of a column member the material axis direction in the frame in the fireproof structure to which this invention is applied. 本発明を適用した耐火構造における架構で柱部材の弱軸方向を材軸方向とする平行大梁を示す平面図である。It is a top view which shows the parallel large beam which makes the weak axis direction of a column member the material axis direction in the frame in the fireproof structure to which this invention is applied. (a)は、8階建て事務所ビルの最下層の解析モデルを示す斜視図であり、(b)は、略ハンモック状に沈下して変形する床スラブを示す斜視図である。(A) is a perspective view which shows the analysis model of the lowest layer of an 8-story office building, (b) is a perspective view which shows the floor slab which sinks and deform | transforms into a substantially hammock shape. (a)は、架構が周辺架構に拘束されないcase1の解析モデル、(b)は、架構が周辺架構に拘束されるcase2の解析モデル、(c)は、本発明を適用した耐火構造となるcase3の解析モデルを示す斜視図である。(A) is an analysis model of case 1 in which the frame is not constrained by the peripheral frame, (b) is an analysis model of case 2 in which the frame is constrained by the peripheral frame, and (c) is a case 3 that is a fireproof structure to which the present invention is applied. It is a perspective view which shows the analysis model. (a)は、奥行方向にたわんで変形した床スラブを示す斜視図であり、(b)は、case1〜case3の解析モデルで加熱時間と床スラブの最大たわみ量との関係を示すグラフである。(A) is a perspective view which shows the floor slab which bent and deform | transformed in the depth direction, (b) is a graph which shows the relationship between heating time and the maximum deflection amount of a floor slab by the analysis model of case1-case3. . 本発明を適用した耐火構造で小梁が設けられていない状態を示す斜視図である。It is a perspective view which shows the state in which the small beam is not provided with the fireproof structure to which this invention is applied.

以下、本発明を適用した耐火構造1を実施するための形態について、図面を参照しながら詳細に説明する。   Hereinafter, the form for implementing the fireproof structure 1 to which this invention is applied is demonstrated in detail, referring drawings.

本発明を適用した耐火構造1は、図1に示すように、住宅、学校、事務所又は病院施設等の建造物の梁部材に設けられる。本発明を適用した耐火構造1は、単一の階層からなる平屋の建造物、又は、複数の階層からなる低層若しくは高層建造物に設けられる。   As shown in FIG. 1, the fireproof structure 1 to which the present invention is applied is provided on a beam member of a building such as a house, a school, an office, or a hospital facility. The fireproof structure 1 to which the present invention is applied is provided in a one-story building having a single level, or a low-rise or high-rise building having a plurality of levels.

本発明を適用した耐火構造1は、複数の柱部材2と、柱部材2に架設される複数の大梁3と、複数の大梁3で取り囲んだ内側に設けられる小梁4と、大梁3及び小梁4の上方に設けられる床スラブ5とを備え、耐火性能が要求される鉄骨造の建造物の各階層に設けられる。   The fireproof structure 1 to which the present invention is applied includes a plurality of column members 2, a plurality of large beams 3 installed on the column members 2, a small beam 4 provided on the inner side surrounded by the plurality of large beams 3, a large beam 3 and a small beam The floor slab 5 is provided above the beam 4 and is provided at each level of a steel structure building that requires fireproof performance.

本発明を適用した耐火構造1は、複数の柱部材2、複数の大梁3及び1又は複数の小梁4が用いられることで、床スラブ5を支持するための架構7が形成される。本発明を適用した耐火構造1は、建造物の奥行方向X及び幅方向Yに延びる複数の大梁3が設けられて、建造物の高さ方向Zに延びる複数の柱部材2が架構7の四隅に配置される。   In the fireproof structure 1 to which the present invention is applied, a frame 7 for supporting the floor slab 5 is formed by using a plurality of column members 2, a plurality of large beams 3 and one or a plurality of small beams 4. The fireproof structure 1 to which the present invention is applied is provided with a plurality of large beams 3 extending in the depth direction X and the width direction Y of the building, and a plurality of column members 2 extending in the height direction Z of the building are provided at the four corners of the frame 7. Placed in.

架構7は、図2に示すように、奥行方向X及び幅方向Yで略矩形状等となるように形成される。架構7は、図2(a)に示すように、奥行方向Xの手前側及び奥側で一対の大梁3が設けられるとともに、幅方向Yの右側及び左側で一対の大梁3が設けられる。   As shown in FIG. 2, the frame 7 is formed to have a substantially rectangular shape or the like in the depth direction X and the width direction Y. As shown in FIG. 2A, the frame 7 is provided with a pair of large beams 3 on the front side and the deep side in the depth direction X, and a pair of large beams 3 on the right side and the left side in the width direction Y.

架構7は、奥行方向Xの手前側に設けられた2本の柱部材2に、奥行方向Xの手前側で幅方向Yに延びる大梁3が架設されるとともに、奥行方向Xの奥側に設けられた2本の柱部材2に、奥行方向Xの奥側で幅方向Yに延びる大梁3が架設される。   The frame 7 is provided on the two pillar members 2 provided on the near side in the depth direction X with the large beam 3 extending in the width direction Y on the near side in the depth direction X and on the far side in the depth direction X. A large beam 3 extending in the width direction Y on the back side in the depth direction X is installed on the two pillar members 2 formed.

架構7は、幅方向Yの右側に設けられた2本の柱部材2に、幅方向Yの右側で奥行方向Xに延びる大梁3が架設されるとともに、幅方向Yの左側に設けられた2本の柱部材2に、幅方向Yの左側で奥行方向Xに延びる大梁3が架設される。   The frame 7 includes two pillar members 2 provided on the right side in the width direction Y and a large beam 3 extending in the depth direction X on the right side in the width direction Y and 2 provided on the left side in the width direction Y. A large beam 3 extending in the depth direction X on the left side in the width direction Y is installed on the column member 2.

複数の大梁3は、小梁4に対して略直交させて設けられる一対の直交大梁31と、小梁4に対して略平行に設けられる一対の平行大梁32とを有する。複数の大梁3は、幅方向Yの右側及び左側の柱部材2に、直交大梁31の両端部30が接続されるとともに、奥行方向Xの手前側及び奥側の柱部材2に、平行大梁32の両端部30が接続される。   The plurality of large beams 3 include a pair of orthogonal large beams 31 provided substantially orthogonal to the small beams 4 and a pair of parallel large beams 32 provided substantially parallel to the small beams 4. The plurality of large beams 3 are connected to the right and left column members 2 in the width direction Y at both ends 30 of the orthogonal large beam 31, and parallel large beams 32 to the near side and deep column members 2 in the depth direction X. The both end portions 30 are connected.

複数の大梁3は、奥行方向Xの手前側及び奥側で一対となった大梁3を一対の直交大梁31として、幅方向Yの右側及び左側で一対となった大梁3を一対の平行大梁32とする。複数の大梁3は、各々の直交大梁31に小梁4の両端部40の各々が接続されるとともに、各々の平行大梁32に小梁4の両端部40が接続されないものとなる。   The plurality of large beams 3 includes a pair of large beams 3 on the near side and the deep side in the depth direction X as a pair of orthogonal large beams 31, and a pair of large beams 3 on the right and left sides in the width direction Y as a pair of parallel large beams 32. And In the plurality of large beams 3, both end portions 40 of the small beams 4 are connected to the respective orthogonal large beams 31, and both end portions 40 of the small beams 4 are not connected to the respective parallel large beams 32.

各々の直交大梁31は、厳密に小梁4と直交する方向に延びるほか、小梁4と直交する方向から多少傾斜させることで、小梁4に対して略直交させて設けられる。また、各々の平行大梁32は、厳密に小梁4と平行となる方向に延びるほか、小梁4と平行となる方向から多少傾斜させることで、小梁4に対して略平行に設けられるものとなる。   Each orthogonal large beam 31 is provided so as to extend substantially in a direction perpendicular to the small beam 4 and to be substantially orthogonal to the small beam 4 by being slightly inclined from the direction orthogonal to the small beam 4. Each of the large parallel beams 32 extends in a direction that is strictly parallel to the small beam 4 and is provided substantially parallel to the small beam 4 by being slightly inclined from the direction parallel to the small beam 4. It becomes.

架構7は、複数の柱部材2に一対の直交大梁31及び一対の平行大梁32が架設されるとともに、一対の直交大梁31に所定の数量の小梁4が架設されて形成される。架構7は、直交大梁31、平行大梁32及び小梁4に対して、図2(b)に示すように、略矩形状等に形成された床スラブ5が載せ置かれて固定される。   The frame 7 is formed by installing a pair of orthogonal large beams 31 and a pair of parallel large beams 32 on a plurality of column members 2 and a predetermined number of small beams 4 mounted on the pair of orthogonal large beams 31. As shown in FIG. 2 (b), a floor slab 5 formed in a substantially rectangular shape is placed on and fixed to the frame 7 with respect to the orthogonal large beam 31, the parallel large beam 32 and the small beam 4.

柱部材2は、高さ方向Zに対して所定の断面形状となる鋼材等が用いられて、柱部材2の外面にロックウール又はグラスウール等の断熱材が巻き付けられたり吹き付けられたりすることで、耐火被覆が施された状態で用いられる。   The column member 2 is made of a steel material or the like having a predetermined cross-sectional shape with respect to the height direction Z, and a heat insulating material such as rock wool or glass wool is wound or blown around the outer surface of the column member 2. Used with fireproof coating.

柱部材2は、主に、図3(a)に示すように、上フランジ61、ウェブ62及び下フランジ63を有する断面略H形状のH形鋼6が用いられる。また、柱部材2は、図3(b)、図3(c)に示すように、角形鋼管21等の鋼管の内部20を略中空状のものとして、断面略矩形状の角形鋼管21、又は、断面略円形状の円形鋼管22が用いられてもよい。   As shown in FIG. 3A, the column member 2 is mainly made of an H-shaped steel 6 having a substantially H-shaped cross section having an upper flange 61, a web 62, and a lower flange 63. Further, as shown in FIGS. 3 (b) and 3 (c), the column member 2 has a substantially hollow rectangular steel pipe 21 such as a square steel pipe 21 or the like, or a rectangular steel pipe 21 having a substantially rectangular cross section, or Alternatively, a circular steel pipe 22 having a substantially circular cross section may be used.

柱部材2は、図4(a)に示すように、鋼管の内部20にコンクリート9が充填されたコンクリート充填鋼管が用いられてもよい。また、柱部材2は、図4(b)に示すように、異形鉄筋等の鉄筋90がコンクリート9に埋設された鉄筋コンクリート柱23が用いられてもよい。さらに、柱部材2は、図4(c)に示すように、鉄筋90及びH形鋼6等の鉄骨材がコンクリート9に埋設された鉄骨鉄筋コンクリート柱24が用いられてもよい。   As the column member 2, as shown in FIG. 4A, a concrete-filled steel pipe in which the concrete 9 is filled in the inside 20 of the steel pipe may be used. Further, as shown in FIG. 4 (b), a reinforced concrete column 23 in which a reinforcing bar 90 such as a deformed reinforcing bar is embedded in the concrete 9 may be used as the column member 2. Furthermore, as the column member 2, as shown in FIG. 4C, a steel reinforced concrete column 24 in which a steel frame material such as a reinforcing bar 90 and an H-shaped steel 6 is embedded in the concrete 9 may be used.

大梁3及び小梁4は、図5に示すように、上フランジ61、ウェブ62及び下フランジ63を有する断面略H形状のH形鋼6等が用いられる。このとき、複数の大梁3は、直交大梁31及び平行大梁32の何れか一方の大梁3に、ロックウール又はグラスウール等の断熱材が巻き付けられたり吹き付けられたりすることで耐火被覆が施される。   As shown in FIG. 5, the large beam 3 and the small beam 4 are made of, for example, H-section steel 6 having a substantially H-shaped cross section having an upper flange 61, a web 62 and a lower flange 63. At this time, the plurality of large beams 3 are provided with a fireproof coating by winding or spraying a heat insulating material such as rock wool or glass wool on one of the orthogonal large beams 31 and the parallel large beams 32.

複数の大梁3は、図5(a)に示すように、一対の直交大梁31の両方にロックウール等の断熱材が設けられる場合に、一対の直交大梁31が耐火被覆の施された耐火被覆状態Pとなる。また、複数の大梁3は、一対の平行大梁32の両方にロックウール等の断熱材が設けられる場合に、一対の平行大梁32が耐火被覆の施された耐火被覆状態Pとなる。   As shown in FIG. 5A, the plurality of large beams 3 have a fireproof coating in which a pair of orthogonal large beams 31 are provided with a fireproof coating when both of the pair of orthogonal large beams 31 are provided with a heat insulating material such as rock wool. State P is entered. In addition, when a plurality of large beams 3 are provided with a heat insulating material such as rock wool on both of the pair of parallel large beams 32, the pair of parallel large beams 32 are in a fireproof coating state P in which the fireproof coating is applied.

これに対して、小梁4の耐火被覆は、図5(b)に示すように、直交大梁31及び平行大梁32の何れか一方となる大梁3に施された耐火被覆よりも削減された減耐火被覆状態Rとなる。また、直交大梁31及び平行大梁32の何れか他方となる大梁3の耐火被覆も、図5(c)に示すように、直交大梁31及び平行大梁32の何れか一方となる大梁3に施された耐火被覆よりも削減された減耐火被覆状態Rとなる。   On the other hand, as shown in FIG. 5 (b), the fireproof coating of the small beam 4 is reduced more than the fireproof coating applied to the large beam 3 which is either the orthogonal large beam 31 or the parallel large beam 32. It becomes fireproof covering state R. Further, as shown in FIG. 5 (c), the fireproof coating of the large beam 3 which is the other of the orthogonal large beam 31 and the parallel large beam 32 is also applied to the large beam 3 which is either the orthogonal large beam 31 or the parallel large beam 32. The reduced fireproof coating state R is reduced as compared with the fireproof coating.

耐火被覆状態Pは、例えば、直交大梁31又は平行大梁32のロックウール等の被覆厚を、「吹付けロックウール被覆耐火構造 施工品質管理指針(ロックウール工業会 吹付け部会)」に準拠して、1時間耐火性能が要求される場合には25mm、2時間耐火性能が要求される場合には45mm、3時間耐火性能が要求される場合には65mmとする。   The fireproof covering state P is, for example, according to the “Glowing Rock Wool Covered Fireproof Structure Construction Quality Control Guidelines (Rockwool Industry Association Spraying Section)” for the thickness of rock wool or the like of the orthogonal beam 31 or the parallel beam 32. When 1 hour fire resistance is required, it is 25 mm. When 2 hours fire resistance is required, it is 45 mm. When 3 hours fire resistance is required, it is 65 mm.

これに対して、減耐火被覆状態Rは、耐火被覆状態Pよりもロックウール等による耐火被覆が削減されているものの、ロックウール等による耐火被覆が幾分か施されている状態も含まれる。そして、減耐火被覆状態Rでのロックウール等の被覆厚は、例えば、各々の耐火性能に応じた耐火被覆状態Pでの被覆厚の1/10〜1/2程度とする。   On the other hand, the reduced fireproof covering state R includes a state in which the fireproof covering by rock wool or the like is somewhat applied, although the fireproof covering by rock wool or the like is reduced compared to the fireproof covering state P. The coating thickness of rock wool or the like in the reduced fireproof coating state R is, for example, about 1/10 to 1/2 of the coating thickness in the fireproof coating state P corresponding to each fireproof performance.

また、耐火被覆が削減された直交大梁31及び平行大梁32の何れか他方となる大梁3並びに小梁4は、図6に示すように、耐火被覆が施されていない無耐火被覆状態Uとした減耐火被覆状態Rとなってもよい。さらに、耐火被覆が削減された直交大梁31及び平行大梁32の何れか他方となる大梁3並びに小梁4は、図7に示すように、H形鋼6の一部のみにロックウール等による耐火被覆が施された減耐火被覆状態Rとなってもよい。   In addition, as shown in FIG. 6, the large beam 3 and the small beam 4 which are either the orthogonal large beam 31 and the parallel large beam 32 in which the fireproof coating is reduced are in a non-fireproof coating state U in which the fireproof coating is not applied. The reduced fireproof covering state R may be obtained. Further, as shown in FIG. 7, the large beam 3 and the small beam 4 which are the other of the orthogonal large beam 31 and the parallel large beam 32 in which the fireproof coating is reduced are fireproofed by rock wool or the like only on a part of the H-shaped steel 6. The reduced fireproof coating state R may be provided.

なお、耐火被覆が削減された直交大梁31及び平行大梁32の何れか他方となる大梁3並びに小梁4は、特に、断面略H形状のH形鋼6が用いられる。これに対して、耐火被覆が施される直交大梁31及び平行大梁32の何れか一方となる大梁3は、断面略H形状のH形鋼6が用いられるほか、鉄筋コンクリート造の大梁3が用いられてもよい。   Note that the H-beam 6 having a substantially H-shaped cross section is used for the large beam 3 and the small beam 4 which are the other of the orthogonal large beam 31 and the parallel large beam 32 with reduced fireproof coating. On the other hand, as the large beam 3 which is one of the orthogonal large beam 31 and the parallel large beam 32 to which the fireproof coating is applied, the H-section steel 6 having a substantially H-shaped cross section is used and the large beam 3 made of reinforced concrete is used. May be.

床スラブ5は、例えば、図8(a)に示すように、格子状等に配列された異形鉄筋等の鉄筋90がコンクリート9に埋設されたRCスラブ51が用いられる。また、床スラブ5は、図8(b)に示すように、略波形状に形成された鋼板等のデッキプレート91の上方にコンクリート9が設けられた合成スラブ52が用いられてもよい。   As the floor slab 5, for example, as shown in FIG. 8A, an RC slab 51 in which reinforcing bars 90 such as deformed reinforcing bars arranged in a lattice shape or the like are embedded in the concrete 9 is used. Further, as shown in FIG. 8B, the floor slab 5 may be a synthetic slab 52 in which concrete 9 is provided above a deck plate 91 such as a steel plate formed in a substantially wave shape.

本発明を適用した耐火構造1は、図9、図10に示すように、火災発生時における所定の架構7を火災室として想定したうえで、火災室となる架構7で火災入熱を受ける大梁3等の実挙動を適切に評価するためのものである。このとき、本発明を適用した耐火構造1は、火災室となる架構7の奥行方向X又は幅方向Yに隣り合って、複数の柱部材2、複数の大梁3及び1又は複数の小梁4が用いられた周辺架構70が設けられる。   As shown in FIGS. 9 and 10, the fireproof structure 1 to which the present invention is applied is assumed to be a large beam that receives a heat input from the frame 7 that becomes a fire room, assuming a predetermined frame 7 at the time of the fire as a fire room. This is to properly evaluate the actual behavior of 3 etc. At this time, the fireproof structure 1 to which the present invention is applied is adjacent to the depth direction X or the width direction Y of the frame 7 serving as a fire chamber, and includes a plurality of column members 2, a plurality of large beams 3, and one or a plurality of small beams 4. A peripheral frame 70 using is used.

本発明を適用した耐火構造1は、耐火被覆が削減された直交大梁31及び平行大梁32の何れか他方となる大梁3の材軸方向αで、火災室として想定される架構7に隣り合って、常温室として想定される周辺架構70が設けられる。   The fireproof structure 1 to which the present invention is applied is adjacent to the frame 7 assumed as a fire chamber in the material axis direction α of the large beam 3 which is the other of the orthogonal large beam 31 and the parallel large beam 32 with reduced fireproof coating. A peripheral frame 70 assumed as a room temperature room is provided.

本発明を適用した耐火構造1は、火災室となる架構7と常温室となる周辺架構70とで、それらの境界に配置される柱部材2及び大梁3が互いに共通させて用いられる。そして、本発明を適用した耐火構造1は、火災室となる架構7と常温室となる周辺架構70との境界に配置される大梁3が、耐火被覆の施された耐火被覆状態Pとなる。   In the fireproof structure 1 to which the present invention is applied, the column member 2 and the large beam 3 arranged at the boundary between the frame 7 serving as a fire room and the peripheral frame 70 serving as a room temperature room are used in common. And the fireproof structure 1 to which this invention is applied becomes the fireproof covering state P in which the large beam 3 arrange | positioned at the boundary of the frame 7 used as a fire room and the peripheral structure 70 used as a normal temperature room was given fireproof coating.

本発明を適用した耐火構造1は、建造物の内部側に架構7が配置される場合には、耐火被覆が削減された大梁3の材軸方向αで架構7の両側に周辺架構70が設けられる。また、本発明を適用した耐火構造1は、建造物の外周側に架構7が配置される場合には、耐火被覆が削減された大梁3の材軸方向αで架構7の片側のみに周辺架構70が設けられる。   In the fireproof structure 1 to which the present invention is applied, when the frame 7 is arranged on the inner side of the building, the peripheral frame 70 is provided on both sides of the frame 7 in the material axis direction α of the large beam 3 with reduced fireproof coating. It is done. In addition, when the frame 7 is arranged on the outer peripheral side of the building, the fireproof structure 1 to which the present invention is applied has a peripheral frame only on one side of the frame 7 in the material axis direction α of the large beam 3 in which the fireproof coating is reduced. 70 is provided.

周辺架構70は、図9に示すように、火災室となる架構7で平行大梁32が耐火被覆の削減された減耐火被覆状態Rとなる場合には、特に、平行大梁32の材軸方向αで架構7に隣り合って設けられる。このとき、火災室となる架構7と常温室となる周辺架構70との境界に配置される直交大梁31が、耐火被覆の施された耐火被覆状態Pとなる。   As shown in FIG. 9, when the parallel large beam 32 is in a reduced fireproof covering state R in which the fireproof coating is reduced in the frame 7 serving as a fire chamber, the peripheral frame 70 is particularly in the material axis direction α of the parallel large beam 32. And provided next to the frame 7. At this time, the orthogonal large beam 31 arranged at the boundary between the frame 7 serving as the fire chamber and the peripheral frame 70 serving as the room temperature chamber is in the fireproof coating state P where the fireproof coating is applied.

周辺架構70は、図10に示すように、火災室となる架構7で直交大梁31が耐火被覆の削減された減耐火被覆状態Rとなる場合には、特に、直交大梁31の材軸方向αで架構7に隣り合って設けられる。このとき、火災室となる架構7と常温室となる周辺架構70との境界に配置される平行大梁32が、耐火被覆の施された耐火被覆状態Pとなる。   As shown in FIG. 10, when the orthogonal large beam 31 is in the reduced fireproof covering state R in which the fireproof coating is reduced in the frame 7 that becomes a fire room, the peripheral frame 70 is particularly in the material axis direction α of the orthogonal large beam 31. And provided next to the frame 7. At this time, the parallel girder 32 arranged at the boundary between the frame 7 serving as a fire chamber and the peripheral frame 70 serving as a room temperature chamber is in a fireproof coating state P with a fireproof coating.

ここで、火災室となる架構7に支持される床スラブ5は、図11に示すように、火災室となる架構7と常温室となる周辺架構70との境界に配置される大梁3に固定されることで、架構7に隣り合って設けられた周辺架構70に拘束されるものとなる。なお、図11では、周辺架構70との境界に配置される大梁3の耐火被覆の図示を省略している。   Here, as shown in FIG. 11, the floor slab 5 supported by the frame 7 serving as a fire room is fixed to a girder 3 arranged at the boundary between the frame 7 serving as a fire room and the peripheral frame 70 serving as a room temperature room. As a result, the frame is restrained by the peripheral frame 70 provided adjacent to the frame 7. In addition, in FIG. 11, illustration of the fireproof coating | cover of the big beam 3 arrange | positioned in the boundary with the surrounding frame 70 is abbreviate | omitted.

また、火災室となる架構7に支持される床スラブ5は、床スラブ5内に配設された鉄筋90が、周辺架構70との境界に配置される大梁3に跨って、常温室となる周辺架構70に支持される床スラブ5内に配設された鉄筋90と連続して設けられてもよい。このとき、火災室となる架構7に支持される床スラブ5は、架構7の床スラブ5内の鉄筋90から周辺架構70の床スラブ5内の鉄筋90に対して引張力Tが伝達されることで、架構7に隣り合って設けられた周辺架構70に拘束されるものとなる。   In addition, the floor slab 5 supported by the frame 7 serving as a fire room is a room temperature room in which the reinforcing bars 90 arranged in the floor slab 5 straddle the large beam 3 arranged at the boundary with the peripheral frame 70. You may provide continuously with the reinforcing bar 90 arrange | positioned in the floor slab 5 supported by the periphery frame 70. FIG. At this time, the floor slab 5 supported by the frame 7 serving as a fire chamber transmits the tensile force T from the reinforcing bar 90 in the floor slab 5 of the frame 7 to the reinforcing bar 90 in the floor slab 5 of the peripheral frame 70. Thus, the frame is restrained by the peripheral frame 70 provided adjacent to the frame 7.

本発明を適用した耐火構造1は、奥行方向X又は幅方向Yに異方性を有さない柱部材2が用いられるほか、図12に示すように、奥行方向Xを強軸方向Sとし、幅方向Yを弱軸方向Wとして、異方性を有するH形鋼6等の柱部材2が用いられてもよい。また、本発明を適用した耐火構造1は、図13に示すように、奥行方向Xを弱軸方向Wとし、幅方向Yを強軸方向Sとして、異方性を有するH形鋼6等の柱部材2が用いられてもよい。なお、図12、図13では、柱部材2の耐火被覆の図示を省略している。   In the fireproof structure 1 to which the present invention is applied, in addition to the column member 2 having no anisotropy in the depth direction X or the width direction Y, as shown in FIG. A column member 2 such as an H-section steel 6 having anisotropy may be used with the width direction Y as the weak axis direction W. Moreover, as shown in FIG. 13, the fireproof structure 1 to which the present invention is applied includes a depth direction X as a weak axis direction W, a width direction Y as a strong axis direction S, and an H-section steel 6 having anisotropy. Column member 2 may be used. In FIGS. 12 and 13, the illustration of the fireproof coating of the column member 2 is omitted.

このとき、本発明を適用した耐火構造1は、図12に示すように、幅方向Yを弱軸方向Wとする柱部材2が用いられる場合には、柱部材2の強軸方向Sを材軸方向αとする平行大梁32を減耐火被覆状態Rとして、直交大梁31を耐火被覆状態Pとしてもよい。また、柱部材2の強軸方向Sを材軸方向αとする平行大梁32を耐火被覆状態Pとして、直交大梁31を減耐火被覆状態Rとしてもよい。   At this time, in the fireproof structure 1 to which the present invention is applied, as shown in FIG. 12, when the column member 2 having the width direction Y as the weak axis direction W is used, the strong axis direction S of the column member 2 is used as the material. The parallel girder 32 having the axial direction α may be in the reduced fireproof covering state R, and the orthogonal large beam 31 may be in the fireproof covering state P. Further, the parallel large beam 32 having the strong axis direction S of the column member 2 as the material axis direction α may be set as the fireproof covering state P, and the orthogonal large beam 31 may be set as the reduced fireproof covering state R.

本発明を適用した耐火構造1は、図13に示すように、奥行方向Xを弱軸方向Wとする柱部材2が用いられる場合には、柱部材2の弱軸方向Wを材軸方向αとする平行大梁32を減耐火被覆状態Rとして、直交大梁31を耐火被覆状態Pとすることもできる。また、柱部材2の弱軸方向Wを材軸方向αとする平行大梁32を耐火被覆状態Pとして、直交大梁31を減耐火被覆状態Rとしてもよい。   As shown in FIG. 13, in the fireproof structure 1 to which the present invention is applied, when the column member 2 having the depth direction X as the weak axis direction W is used, the weak axis direction W of the column member 2 is set to the material axis direction α. It is also possible to set the parallel large beam 32 as the reduced fireproof covering state R and the orthogonal large beam 31 as the fireproof covering state P. Further, the parallel large beam 32 having the material axis direction α as the weak axis direction W of the column member 2 may be set as the fireproof covering state P, and the orthogonal large beam 31 may be set as the reduced fireproof covering state R.

また、本発明を適用した耐火構造1は、直交大梁31及び平行大梁32の何れか一方の材長L1を長くして、直交大梁31及び平行大梁32の何れか他方の材長L2を短くすることもできる。このとき、本発明を適用した耐火構造1は、材長L2の短い何れかの大梁3を減耐火被覆状態Rとして、材長L1の長い何れかの大梁3を耐火被覆状態Pとしてもよい。また、本発明を適用した耐火構造1は、材長L1の長い何れかの大梁3を減耐火被覆状態Rとして、材長L2の短い何れかの大梁3を耐火被覆状態Pとすることもできる。   Moreover, the fireproof structure 1 to which the present invention is applied increases the material length L1 of either the orthogonal large beam 31 or the parallel large beam 32 and shortens the other material length L2 of the orthogonal large beam 31 or the parallel large beam 32. You can also At this time, in the fireproof structure 1 to which the present invention is applied, any of the large beams 3 having the short material length L2 may be set to the reduced fireproof covering state R and any of the large beams 3 having the long material length L1 may be set to the fireproof covering state P. Moreover, the fireproof structure 1 to which the present invention is applied can also set any large beam 3 having a long material length L1 as a reduced fireproof covering state R and any large beam 3 having a short material length L2 to be in a fireproof covering state P. .

ここで、本発明を適用した耐火構造1では、図14(a)に示すように、火災室となる架構7で火災入熱を受ける大梁3等の実挙動を評価するにあたって、耐震設計された8階建て事務所ビルの最下層を対象とする解析モデルとした。このとき、火災室となる架構7では、大梁3、小梁4及び床スラブ5等が火災入熱を受けることで、図14(b)に示すように、床スラブ5が略ハンモック状に沈下して変形するものとなる。   Here, in the fireproof structure 1 to which the present invention is applied, as shown in FIG. 14 (a), an earthquake resistant design was performed in evaluating the actual behavior of the large beam 3 and the like which receive fire heat input in the frame 7 serving as a fire room. The analysis model is for the bottom layer of an 8-story office building. At this time, in the frame 7 serving as a fire chamber, the large beam 3, the small beam 4, the floor slab 5, etc. are subjected to fire heat input, so that the floor slab 5 sinks into a substantially hammock shape as shown in FIG. And will be deformed.

なお、この解析モデルでは、柱部材2の材長を4000mm、大梁3及び小梁4の材長を6000mmとして、各々の柱部材2に上方から4310kNの載荷、架構7の自重として4900kN/m2の載荷がされるものとした。そして、この解析モデルでは、直交大梁31を耐火被覆状態PのH−800×400×14×28(SN400B)、平行大梁32を耐火被覆状態PのH−700×300×14×28(SN490B)、小梁4を減耐火被覆状態RのH−400×200×8×13(SN490B)、柱部材2を耐火被覆状態Pの□−500×28(BCP325)とした。また、この解析モデルでは、図11に示すように、火災室となる架構7における床スラブ5の上面5aでの温度境界条件を20℃、床スラブ5の下面5b及び大梁3等となるH形鋼6の外面での温度境界条件をISO834標準加熱曲線に準拠する2時間加熱とした。 In this analysis model, the length of the column member 2 is 4000 mm, the length of the large beam 3 and the small beam 4 is 6000 mm, the column member 2 is loaded with 4310 kN from above, and the weight of the frame 7 is 4900 kN / m 2. It was supposed to be loaded. In this analysis model, the orthogonal large beam 31 is H-800 × 400 × 14 × 28 (SN400B) in the fireproof covering state P, and the parallel large beam 32 is H-700 × 300 × 14 × 28 (SN490B) in the fireproof covering state P. The small beam 4 is H-400 × 200 × 8 × 13 (SN490B) in the reduced fireproof covering state R, and the column member 2 is □ -500 × 28 (BCP325) in the fireproof covering state P. Further, in this analysis model, as shown in FIG. 11, the temperature boundary condition on the upper surface 5a of the floor slab 5 in the frame 7 serving as a fire room is 20 ° C. The temperature boundary condition on the outer surface of the steel 6 was 2 hours heating in accordance with the ISO834 standard heating curve.

次に、図15に示す解析モデルでは、柱部材2の寸法、小梁4の寸法及び温度境界条件を図14に示す解析モデルと同一にして、火災室となる架構7で等間隔に3本の小梁4が設けられるものとした。ここで、図15(a)に示すcase1の解析モデルでは、火災室となる架構7が周辺架構70に拘束されないものとして、図15(b)に示すcase2の解析モデルでは、火災室となる架構7が周辺架構70に拘束されるものとした。また、図15(c)に示すcase3の解析モデルでは、火災室となる架構7が周辺架構70に拘束されるものとして、本発明を適用した耐火構造1と同様、直交大梁31が耐火被覆の施された耐火被覆状態Pとなるものの、平行大梁32及び小梁4が耐火被覆の施されていない減耐火被覆状態Rとなるものとした。   Next, in the analysis model shown in FIG. 15, the dimensions of the column member 2, the dimensions of the beam 4 and the temperature boundary condition are made the same as those in the analysis model shown in FIG. The small beam 4 was provided. Here, in the case 1 analysis model shown in FIG. 15A, it is assumed that the frame 7 serving as a fire chamber is not restrained by the peripheral frame 70, and in the case 2 analysis model shown in FIG. 7 is bound to the peripheral frame 70. Further, in the analysis model of case 3 shown in FIG. 15 (c), it is assumed that the frame 7 serving as a fire chamber is constrained by the peripheral frame 70, and the orthogonal large beam 31 is formed of a fire-resistant coating as in the fire-resistant structure 1 to which the present invention is applied. Although the fireproof coating state P is applied, the parallel large beam 32 and the small beam 4 are in the reduced fireproof coating state R where the fireproof coating is not applied.

ここで、火災室となる架構7では、図14に示すように、耐火被覆の施されていない減耐火被覆状態Rの小梁4が火災入熱を受けて温度上昇して、小梁4の部材耐力が著しく低下したものとなる。しかし、火災室となる架構7では、床スラブ5が略ハンモック状に沈下して変形することで、床スラブ5に面内方向の引張力Tが作用するため、小梁4の部材耐力が低下するにもかかわらず、床スラブ5が沈下したときのたわみ量が小さくなる。   Here, in the frame 7 serving as the fire chamber, as shown in FIG. 14, the temperature of the small beam 4 in the reduced fireproof coating state R not subjected to the fireproof coating is increased by receiving heat input from the fire. The member yield strength is significantly reduced. However, in the frame 7 serving as a fire chamber, the floor slab 5 sinks and deforms in a substantially hammock-like shape, so that an in-plane tensile force T acts on the floor slab 5, so that the member strength of the small beam 4 decreases. Nevertheless, the amount of deflection when the floor slab 5 sinks is reduced.

さらに、火災室となる架構7では、直交大梁31及び平行大梁32の両方に耐火被覆が施されると、床スラブ5の四方の全てが大梁3に拘束されるため、床スラブ5の熱膨張が面内方向に制限される。このとき、火災室となる架構7では、床スラブ5の熱膨張が面内方向に制限されて、床スラブ5の面外方向の沈下が促進されることで、床スラブ5が沈下したときのたわみ量が大きくなる。   Furthermore, in the frame 7 serving as a fire chamber, when both the orthogonal large beam 31 and the parallel large beam 32 are covered with fireproof coating, all four sides of the floor slab 5 are constrained by the large beam 3, so that the thermal expansion of the floor slab 5 is performed. Is restricted in the in-plane direction. At this time, in the frame 7 serving as a fire chamber, the thermal expansion of the floor slab 5 is limited in the in-plane direction, and the subsidence in the out-of-plane direction of the floor slab 5 is promoted, whereby the floor slab 5 is submerged. Increases the amount of deflection.

これに対して、火災室となる架構7では、直交大梁31及び平行大梁32の何れか片方の耐火被覆が削減されると、図16(a)に示すように、床スラブ5の四方の一部が拘束を受けず、床スラブ5の熱膨張が面内方向に許容される。このとき、火災室となる架構7では、床スラブ5の熱膨張が面内方向に許容されて、床スラブ5が面内方向で所定の方向のみにたわんで変形することで、床スラブ5が沈下したときのたわみ量が小さくなる。   On the other hand, in the frame 7 serving as a fire chamber, when the fireproof coating on one of the orthogonal large beam 31 and the parallel large beam 32 is reduced, as shown in FIG. The part is not restrained, and the thermal expansion of the floor slab 5 is allowed in the in-plane direction. At this time, in the frame 7 serving as a fire chamber, the thermal expansion of the floor slab 5 is allowed in the in-plane direction, and the floor slab 5 is deformed by being bent only in a predetermined direction in the in-plane direction. The amount of deflection when sinking is reduced.

そして、この解析結果によると、図16(b)に示すように、case1の解析モデルとcase2の解析モデルとを比較した場合に、加熱開始後2時間経過した時点で、case1の解析モデルよりもcase2の解析モデルにおいて、床スラブ5が沈下したときの高さ方向Zの最大たわみ量が小さくなることがわかる。   According to this analysis result, as shown in FIG. 16 (b), when the analysis model of case 1 and the analysis model of case 2 are compared, when 2 hours have elapsed after the start of heating, the analysis model of case 1 In the analysis model of case 2, it can be seen that the maximum deflection amount in the height direction Z when the floor slab 5 sinks becomes small.

また、この解析結果によると、case2の解析モデルとcase3の解析モデルとを比較した場合に、加熱開始後2時間経過した時点で、case2の解析モデルよりもcase3の解析モデルにおいて、床スラブ5が沈下したときの高さ方向Zの最大たわみ量が小さくなることがわかる。   Further, according to this analysis result, when the analysis model of case 2 and the analysis model of case 3 are compared, the floor slab 5 in the analysis model of case 3 is more than the analysis model of case 2 when two hours have elapsed after the start of heating. It can be seen that the maximum amount of deflection in the height direction Z when sinking is reduced.

したがって、本発明を適用した耐火構造1は、直交大梁31及び平行大梁32の何れか一方の大梁3に耐火被覆が施されるものの、直交大梁31及び平行大梁32の何れか他方の大梁3の耐火被覆が削減されることで、図16(a)に示すように、床スラブ5の面内方向の熱膨張が許容されて、床スラブ5のたわみ量が抑制される。そして、本発明を適用した耐火構造1は、床スラブ5のたわみ量が抑制されて、鉛直荷重に対する支持力が維持されて倒壊が防止されるため、建造物における耐火性能を向上させることが可能となる。   Therefore, in the fireproof structure 1 to which the present invention is applied, the fireproof coating is applied to any one of the orthogonal large beams 31 and the parallel large beams 32, but the other large beams 3 of the orthogonal large beams 31 and the parallel large beams 32 are provided. By reducing the fireproof coating, as shown in FIG. 16A, thermal expansion in the in-plane direction of the floor slab 5 is allowed, and the amount of deflection of the floor slab 5 is suppressed. And the fireproof structure 1 to which the present invention is applied suppresses the amount of deflection of the floor slab 5, maintains the supporting force against the vertical load, and prevents collapse, so that the fireproof performance in the building can be improved. It becomes.

また、本発明を適用した耐火構造1は、直交大梁31及び平行大梁32の何れか一方の大梁3に耐火被覆が施されるものの、直交大梁31及び平行大梁32の何れか他方の大梁3並びに小梁4の耐火被覆が削減されることで、一部の大梁3及び小梁4への耐火被覆の削減によるコスト削減及び工期短縮化を実現することが可能となる。   In addition, the fireproof structure 1 to which the present invention is applied has a fireproof coating applied to any one of the orthogonal large beam 31 and the parallel large beam 32, but the other large beam 3 of the orthogonal large beam 31 and the parallel large beam 32 and By reducing the fireproof coating of the small beams 4, it is possible to realize cost reduction and shortening the work period by reducing the fireproof coating on some of the large beams 3 and the small beams 4.

さらに、本発明を適用した耐火構造1は、図15(a)に示すcase1の解析モデルと図15(b)に示すcase2の解析モデルとを比較した解析結果から、図11に示すように、火災室となる架構7に支持される床スラブ5が、架構7に隣り合って設けられた周辺架構70に拘束されることで、床スラブ5が略ハンモック状に沈下して変形するときに面内方向の引張力Tが伝達されて、床スラブ5のたわみ量が抑制されるため、建造物における耐火性能を向上させることが可能となる。   Furthermore, as shown in FIG. 11, the fireproof structure 1 to which the present invention is applied is based on the analysis result comparing the analysis model of case 1 shown in FIG. 15A and the analysis model of case 2 shown in FIG. When the floor slab 5 supported by the frame 7 serving as a fire chamber is restrained by the peripheral frame 70 provided adjacent to the frame 7, the floor slab 5 sinks into a substantially hammock shape and deforms. Since the tensile force T in the inward direction is transmitted and the amount of deflection of the floor slab 5 is suppressed, it is possible to improve the fire resistance performance in the building.

そして、本発明を適用した耐火構造1は、耐火被覆が削減された直交大梁31及び平行大梁32の何れか他方となる大梁3並びに小梁4が、特に、図6に示すように、耐火被覆が施されていない無耐火被覆状態Uの減耐火被覆状態Rとなることで、耐火被覆の削減による大幅なコスト削減及び工期短縮化を実現することが可能となる。   The fire-resistant structure 1 to which the present invention is applied has a structure in which the large beam 3 and the small beam 4 which are either one of the orthogonal large beam 31 and the parallel large beam 32 in which the fire-resistant coating is reduced, particularly, as shown in FIG. It becomes possible to implement | achieve drastic cost reduction and construction period shortening by reduction of a fireproof coating by becoming the reduced fireproof coating state R of the non-fireproof coating state U which is not given.

なお、本発明を適用した耐火構造1は、図12、図13に示すように、材長L2の短い大梁3を減耐火被覆状態Rとした場合には、材長L1の長い大梁3を減耐火被覆状態Rとするよりも床スラブ5のたわみ量が抑制することができる。これに対して、本発明を適用した耐火構造1は、材長L1の長い大梁3を減耐火被覆状態Rとした場合には、材長L2の短い大梁3を減耐火被覆状態Rとするよりも耐火被覆を大きく削減することができる。   In addition, as shown in FIGS. 12 and 13, the fireproof structure 1 to which the present invention is applied reduces the large beam 3 having the long material length L1 when the short beam 3 having the short material length L2 is set to the reduced fireproof covering state R. The amount of deflection of the floor slab 5 can be suppressed as compared with the fireproof covering state R. On the other hand, in the fireproof structure 1 to which the present invention is applied, when the long beam 3 with the long material length L1 is in the reduced fireproof covering state R, the long beam 3 with the short material length L2 is in the reduced fireproof covering state R. Can also greatly reduce the fireproof coating.

本発明を適用した耐火構造1は、小梁4が設けられないものとして、図17に示すように、複数の柱部材2と、柱部材2に架設される複数の大梁3と、大梁3の上方に設けられる床スラブ5とを備えるものであってもよい。   As shown in FIG. 17, the fireproof structure 1 to which the present invention is applied is provided with a plurality of column members 2, a plurality of large beams 3 installed on the column member 2, and a large beam 3. A floor slab 5 provided above may be provided.

このとき、本発明を適用した耐火構造1は、複数の大梁3として、互いに対向する一対の第1大梁3aと、互いに対向する一対の第2大梁3bとが設けられて、第1大梁3aと第2大梁3bとが互いに略直交させて設けられる。本発明を適用した耐火構造1は、特に、図17に示す第1大梁3aが図1に示す直交大梁31に相当し、図17に示す第2大梁3bが図1に示す平行大梁32に相当するものとなる。   At this time, the fireproof structure 1 to which the present invention is applied includes, as the plurality of large beams 3, a pair of first large beams 3a facing each other and a pair of second large beams 3b facing each other, and the first large beams 3a The second large beams 3b are provided so as to be substantially orthogonal to each other. In the fireproof structure 1 to which the present invention is applied, in particular, the first large beam 3a shown in FIG. 17 corresponds to the orthogonal large beam 31 shown in FIG. 1, and the second large beam 3b shown in FIG. 17 corresponds to the parallel large beam 32 shown in FIG. Will be.

そして、本発明を適用した耐火構造1は、第1大梁3a及び第2大梁3bの何れか一方の大梁3に耐火被覆が施された状態となる。また、本発明を適用した耐火構造1は、第1大梁3a及び第2大梁3bの何れか他方となる大梁3の耐火被覆が、第1大梁3a及び第2大梁3bの何れか一方となる大梁3に施された耐火被覆よりも削減された状態となる。   And the fireproof structure 1 to which this invention is applied will be in the state by which the fireproof coating was given to any one of the 1st big beam 3a and the 2nd big beam 3b. In addition, the fireproof structure 1 to which the present invention is applied is a large beam in which the fireproof coating of the first beam 3a and the second beam 3b is the other one of the first beam 3a and the second beam 3b. It becomes the state reduced rather than the fireproof coating given to 3.

以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。   As mentioned above, although the example of embodiment of this invention was demonstrated in detail, all the embodiment mentioned above showed only the example of actualization in implementing this invention, and these are the technical aspects of this invention. The range should not be interpreted in a limited way.

1 :耐火構造
2 :柱部材
20 :内部
21 :角形鋼管
22 :円形鋼管
23 :鉄筋コンクリート柱
24 :鉄骨鉄筋コンクリート柱
3 :大梁
3a :第1大梁
3b :第2大梁
30 :大梁の両端部
31 :直交大梁
32 :平行大梁
4 :小梁
40 :小梁の両端部
5 :床スラブ
5a :上面
5b :下面
51 :RCスラブ
52 :合成スラブ
6 :H形鋼
61 :上フランジ
62 :ウェブ
63 :下フランジ
7 :架構
70 :周辺架構
9 :コンクリート
90 :鉄筋
91 :デッキプレート
X :奥行方向
Y :幅方向
Z :高さ方向
1: Fireproof structure 2: Column member 20: Interior 21: Square steel pipe 22: Circular steel pipe 23: Reinforced concrete column 24: Steel-framed reinforced concrete column 3: Large beam 3a: First large beam 3b: Second large beam 30: Both ends 31 of the large beam: Orthogonal Large beam 32: Parallel beam 4: Small beam 40: Both ends 5 of the small beam: Floor slab 5a: Upper surface 5b: Lower surface 51: RC slab 52: Composite slab 6: H-section steel 61: Upper flange 62: Web 63: Lower flange 7: Frame 70: Peripheral frame 9: Concrete 90: Reinforcing bar 91: Deck plate X: Depth direction Y: Width direction Z: Height direction

Claims (8)

建造物の梁部材に設けられる耐火構造であって、
複数の柱部材と、前記柱部材に架設される複数の大梁と、複数の前記大梁で取り囲んだ内側に設けられる小梁と、前記大梁及び前記小梁の上方に設けられる床スラブとを備え、
複数の前記大梁は、前記小梁に対して略直交させて設けられる一対の直交大梁と、前記小梁に対して略平行に設けられる一対の平行大梁とを有して、前記直交大梁及び前記平行大梁の何れか一方の前記大梁に耐火被覆が施されて、
前記直交大梁及び前記平行大梁の何れか他方となる前記大梁並びに前記小梁の耐火被覆は、前記直交大梁及び前記平行大梁の何れか一方となる前記大梁に施された耐火被覆よりも削減された状態となること
を特徴とする耐火構造。
A fireproof structure provided on a beam member of a building,
A plurality of column members, a plurality of large beams laid on the column members, a small beam provided on the inner side surrounded by the plurality of large beams, and a floor slab provided above the large beam and the small beam,
The plurality of large beams include a pair of orthogonal large beams provided substantially orthogonal to the small beam, and a pair of parallel large beams provided substantially parallel to the small beam, the orthogonal large beam and the A fireproof coating is applied to any one of the parallel beams,
The fireproof coating of the large beam and the small beam, which is the other of the orthogonal large beam and the parallel large beam, is reduced compared to the fireproof coating applied to the large beam which is either the orthogonal large beam or the parallel large beam. Fireproof structure characterized by being in a state.
複数の前記柱部材、複数の前記大梁及び前記小梁が用いられることで、前記床スラブを支持するための架構が形成されて、
前記床スラブは、耐火被覆が削減された前記直交大梁及び前記平行大梁の何れか他方となる前記大梁の材軸方向で、前記架構に隣り合って設けられた周辺架構に拘束されること
を特徴とする請求項1記載の耐火構造。
A frame for supporting the floor slab is formed by using the plurality of pillar members, the plurality of large beams, and the small beams.
The floor slab is constrained by a peripheral frame provided adjacent to the frame in the direction of the material axis of the large beam which is the other of the orthogonal beam and the parallel beam with reduced fireproof coating. The fireproof structure according to claim 1.
前記床スラブは、前記架構に支持される床スラブ内に配設された鉄筋が、前記周辺架構に支持される床スラブ内に配設された鉄筋と連続して設けられること
を特徴とする請求項2記載の耐火構造。
The floor slab is provided such that a reinforcing bar disposed in a floor slab supported by the frame is continuously provided with a reinforcing bar disposed in a floor slab supported by the peripheral frame. Item 2. The fireproof structure according to item 2.
耐火被覆が削減された前記直交大梁及び前記平行大梁の何れか他方となる前記大梁並びに前記小梁は、断面略H形状のH形鋼が用いられること
を特徴とする請求項1〜3の何れか1項記載の耐火構造。
4. The H-shaped steel having a substantially H-shaped cross section is used for the large beam and the small beam which are the other of the orthogonal large beam and the parallel large beam in which the fireproof coating is reduced. The fireproof structure according to claim 1.
前記柱部材は、断面略H形状のH形鋼、断面略矩形状の角形鋼管、断面略円形状の円形鋼管、鋼管の内部にコンクリートが充填されたコンクリート充填鋼管、鉄筋コンクリート柱、又は、鉄骨鉄筋コンクリート柱が用いられること
を特徴とする請求項1〜4の何れか1項記載の耐火構造。
The column member may be an H-shaped steel having a substantially H-shaped cross section, a square steel pipe having a substantially rectangular cross-section, a circular steel pipe having a substantially circular cross-section, a concrete-filled steel pipe filled with concrete, a reinforced concrete column, or a steel reinforced concrete. A pillar is used. The fireproof structure according to any one of claims 1 to 4, wherein the pillar is used.
前記床スラブは、RCスラブ又は合成スラブが用いられること
を特徴とする請求項1〜5の何れか1項記載の耐火構造。
The fireproof structure according to any one of claims 1 to 5, wherein the floor slab is an RC slab or a synthetic slab.
耐火被覆が削減された前記直交大梁及び前記平行大梁の何れか他方となる前記大梁並びに前記小梁は、耐火被覆が施されていない状態となること
を特徴とする請求項1〜6の何れか1項記載の耐火構造。
The fire beam is not applied to the large beam and the small beam which are the other of the orthogonal large beam and the parallel large beam with reduced fire resistance coating. 1. A fireproof structure according to item 1.
建造物の梁部材に設けられる耐火構造であって、
複数の柱部材と、前記柱部材に架設される複数の大梁と、前記大梁の上方に設けられる床スラブとを備え、
複数の前記大梁は、互いに対向する一対の第1大梁と、互いに対向する一対の第2大梁とを有して、前記第1大梁と前記第2大梁とが互いに略直交させて設けられて、前記第1大梁及び前記第2大梁の何れか一方の前記大梁に耐火被覆が施されて、
前記第1大梁及び前記第2大梁の何れか他方となる前記大梁の耐火被覆は、前記第1大梁及び前記第2大梁の何れか一方となる前記大梁に施された耐火被覆よりも削減された状態となること
を特徴とする耐火構造。
A fireproof structure provided on a beam member of a building,
A plurality of column members, a plurality of large beams installed on the column members, and a floor slab provided above the large beams,
The plurality of large beams have a pair of first large beams facing each other and a pair of second large beams facing each other, and the first large beams and the second large beams are provided substantially orthogonal to each other, A fireproof coating is applied to one of the first beams and the second beam,
The fire-resistant coating of the first beam, which is the other of the first and second beams, is reduced more than the fire-resistant coating applied to the first beam, the first beam, or the second beam. Fireproof structure characterized by being in a state.
JP2016135757A 2016-07-08 2016-07-08 Fireproof structure Active JP6724611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135757A JP6724611B2 (en) 2016-07-08 2016-07-08 Fireproof structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135757A JP6724611B2 (en) 2016-07-08 2016-07-08 Fireproof structure

Publications (2)

Publication Number Publication Date
JP2018003556A true JP2018003556A (en) 2018-01-11
JP6724611B2 JP6724611B2 (en) 2020-07-15

Family

ID=60946044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135757A Active JP6724611B2 (en) 2016-07-08 2016-07-08 Fireproof structure

Country Status (1)

Country Link
JP (1) JP6724611B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130553A (en) * 2019-05-22 2019-08-16 山东联兴绿厦建筑科技有限公司 Heat insulation floorslab structure and production method
WO2020110995A1 (en) * 2018-11-27 2020-06-04 日本製鉄株式会社 Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure
WO2020110985A1 (en) * 2018-11-27 2020-06-04 日本製鉄株式会社 Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110995A1 (en) * 2018-11-27 2020-06-04 日本製鉄株式会社 Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure
WO2020110985A1 (en) * 2018-11-27 2020-06-04 日本製鉄株式会社 Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure
CN110130553A (en) * 2019-05-22 2019-08-16 山东联兴绿厦建筑科技有限公司 Heat insulation floorslab structure and production method

Also Published As

Publication number Publication date
JP6724611B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
JP5314356B2 (en) Composite beam, composite beam construction method, and fireproof building
JP4247496B2 (en) Seismic reinforcement structure
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
KR100802515B1 (en) Composite floor structure using two precast composite steel beams
JP2018003556A (en) Fire-resisting structure
JP2016216900A (en) Structure
JP6565434B2 (en) Steel structure
JP6422795B2 (en) Composite beam, PCa composite beam member constituting the same, and composite ramen structure
JP2017106273A (en) Reinforcement method of existing cylindrical wall made of reinforced concrete
JP5865567B2 (en) Connecting slab and its construction method
JP5424761B2 (en) Seismic reinforcement method for existing buildings
JP2011069148A (en) Building structure
JP6909094B2 (en) Fireproof wall structure
KR200450899Y1 (en) Earthquake shelter
JP5226295B2 (en) Building structure
JP6012353B2 (en) Composite column structure and composite column construction method
JP7121640B2 (en) floor slab
JP2017066846A (en) Column-beam frame
JP2010156177A (en) Aseismatic reinforcement structure and aseismatic reinforcing method of existing building
KR20070072404A (en) Columnless structure of apartment buildings
JP2006022572A (en) Outer frame type aseismic reinforcement structure of existing building
Sarkar et al. Seismic Design of Expanded Polystyrene Core Panel Based Building Systems
JP6045807B2 (en) Seismic element intensive structure
JP7435979B2 (en) Earthquake reinforcement structure for existing buildings using CLT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R151 Written notification of patent or utility model registration

Ref document number: 6724611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151