JP5568710B2 - Building reinforcement method - Google Patents

Building reinforcement method Download PDF

Info

Publication number
JP5568710B2
JP5568710B2 JP2011284347A JP2011284347A JP5568710B2 JP 5568710 B2 JP5568710 B2 JP 5568710B2 JP 2011284347 A JP2011284347 A JP 2011284347A JP 2011284347 A JP2011284347 A JP 2011284347A JP 5568710 B2 JP5568710 B2 JP 5568710B2
Authority
JP
Japan
Prior art keywords
steel plate
mortar
steel plates
fiber sheet
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011284347A
Other languages
Japanese (ja)
Other versions
JP2013133637A (en
Inventor
栄次 槇谷
Original Assignee
栄次 槇谷
新日本建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栄次 槇谷, 新日本建設株式会社 filed Critical 栄次 槇谷
Priority to JP2011284347A priority Critical patent/JP5568710B2/en
Publication of JP2013133637A publication Critical patent/JP2013133637A/en
Application granted granted Critical
Publication of JP5568710B2 publication Critical patent/JP5568710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、主にビル等のコンクリート建造物を補強する建造物の補強工法に関する。   The present invention mainly relates to a method for reinforcing a building for reinforcing a concrete structure such as a building.

既設のコンクリート建造物の躯体(柱、梁、床、壁など)は、耐震性の向上等を図るために強度および靭性等の強度を向上させる補強が実施される場合がある。従来の補強工法としては、躯体の表面にモルタルを塗布して補強する工法(特許文献1)や、躯体の周囲に配設した鋼板と躯体との間の空隙にモルタル等のグラウト材を充填して補強する工法(特許文献2)などが知られている。   Existing concrete structures (columns, beams, floors, walls, etc.) may be reinforced to improve strength such as strength and toughness in order to improve earthquake resistance. As a conventional reinforcing method, there is a method (Patent Document 1) in which mortar is applied to the surface of the casing to reinforce, or a gap between a steel plate and a casing disposed around the casing is filled with a grout material such as mortar. A construction method (Patent Document 2) is known.

特開2010−159611号公報JP 2010-159611 A 特開2006−063608号公報JP 2006-063608 A

上記従来工法では強度向上の増大に限界があり、また、耐震性とともに制震性を備えた補強工法の開発が望まれた。   There is a limit to the increase in strength in the conventional construction method described above, and the development of a reinforcement construction method that has seismic resistance as well as earthquake resistance is desired.

本発明は上記事情に鑑みてなされたものであり、その主たる技術的課題は、強度の向上が図られるとともに、効果的な制震性を備えた建造物の補強工法を提供することにある。   The present invention has been made in view of the above circumstances, and a main technical problem thereof is to provide a method for reinforcing a building with improved strength and effective vibration control.

本発明の建造物の補強工法は、既設の建造物の表面に対し、この表面に沿って複数の鋼板を載置した状態で積層し、積層した該鋼板により建造物の前記表面を覆う鋼板積層工程と、前記建造物の表面と、積層した前記鋼板との間に、グラウト材を充填するグラウト材充填工程とを備え、積層された上下の前記鋼板のそれぞれの下端および上端に、建造物の前記表面の方向に突出し、積層状態で互いに接触可能なリブがそれぞれ形成されており、これらリブを直接接触させた状態、またはこれらリブの間に粘弾性部材を挟んだ状態とするとともに、これらリブが、横方向に所定の力による振動を受けた場合に互いに横方向に相対移動可能に積層されていることを特徴とする。 The reinforcing method for a building according to the present invention is a method of laminating a plurality of steel plates placed on the surface of an existing building, and covering the surface of the building with the laminated steel plates. A grout material filling step of filling a grout material between the surface of the building and the laminated steel plates, and a lower end and an upper end of the laminated upper and lower steel plates, Ribs that protrude in the direction of the surface and are in contact with each other in a laminated state are formed. The ribs are in direct contact with each other, or a viscoelastic member is sandwiched between the ribs. Are laminated so that they can move relative to each other in the lateral direction when subjected to vibrations caused by a predetermined force in the lateral direction .

本発明によれば、建造物の表面にグラウト材を介して鋼板が固着されて一体化されることにより、補強がなされる。鋼板のリブがグラウト材中に埋設された状態となることによりグラウト材への鋼板の結合強度が高くなり、その結果、建造物にかかる引っ張りやせん断等の応力に対する抵抗力が向上する。   According to the present invention, the steel plate is fixed to and integrated with the surface of the building via the grout material, thereby reinforcing the structure. When the ribs of the steel plate are embedded in the grout material, the bonding strength of the steel plate to the grout material increases, and as a result, the resistance to stress such as tension and shear applied to the building is improved.

また、積層された上側の鋼板の下端のリブと下側の鋼板の上端のリブとが互いに接触した状態では、地震等によって横方向の振動を受けた際に、上下のリブの接触面に摩擦が生じ、このときの摩擦力が、振動を抑制するダンパーとなり、制震性が効果的に発揮される。このため、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得る。   In addition, when the lower rib of the upper steel plate and the upper rib of the lower steel plate are in contact with each other, friction is caused on the contact surfaces of the upper and lower ribs when subjected to lateral vibration due to an earthquake or the like. The frictional force at this time becomes a damper that suppresses vibration, and the damping performance is effectively exhibited. For this reason, the effect which attenuates a shake and suppresses a shake quickly, or makes a shake small is acquired.

また、積層された上側の鋼板の下端のリブと下側の鋼板の上端のリブとの間に粘弾性部材を挟んだ状態とした場合には、上下のリブが粘弾性部材により一体化した状態になる。そして地震等によって横方向の振動を受けた際に、粘弾性部材によって粘弾性ダンパー効果が生じ、制震性が効果的に発揮される。このため、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得る。   In addition, when the viscoelastic member is sandwiched between the lower rib of the upper steel plate and the upper rib of the lower steel plate, the upper and lower ribs are integrated by the viscoelastic member. become. And when receiving a vibration of a horizontal direction by an earthquake etc., a viscoelastic damper effect will arise by a viscoelastic member, and a damping property will be exhibited effectively. For this reason, the effect which attenuates a shake and suppresses a shake quickly, or makes a shake small is acquired.

本発明では、前記リブは、前記鋼板の端部を折り曲げ加工して形成されている形態を含む。   In this invention, the said rib contains the form formed by bending the edge part of the said steel plate.

また、本発明では、積層された前記鋼板の表面に繊維シートを張って接着する繊維シート接着工程を有する形態を含む。   Moreover, in this invention, the form which has a fiber sheet adhesion process which stretches | bonds and adheres a fiber sheet to the surface of the laminated said steel plate is included.

また、本発明では、前記鋼板積層工程において、複数の前記鋼板を横方向に配列するとともに、横方向に隣接する鋼板の間に空隙を設ける形態を含む。   Moreover, in this invention, the said steel plate lamination process includes the form which provides a space | gap between the steel plates adjacent to a horizontal direction while arranging the said several steel plate in a horizontal direction.

また、本発明では、前記繊維シート接着工程で鋼板の表面に張られた前記繊維シートの表面に、仕上げ材としてモルタルを塗布するモルタル施工工程を有することを特徴とする。   Moreover, in this invention, it has the mortar construction process which apply | coats mortar as a finishing material on the surface of the said fiber sheet stretched on the surface of the steel plate by the said fiber sheet adhesion process.

また、本発明では、前記モルタル施工工程においては、前記繊維シートの表面に、含有セメントが微粒子状である微細モルタルを塗布する一次モルタル施工工程と、この微細モルタルの表面に二次モルタルを塗布する二次モルタル施工工程とを行うことを特徴とする請求項5に記載の建造物の補強工法。   Moreover, in this invention, in the said mortar construction process, the primary mortar construction process which apply | coats the fine mortar in which the containing cement is a fine particle form to the surface of the said fiber sheet, and apply | coats a secondary mortar to the surface of this fine mortar. The method for reinforcing a building according to claim 5, wherein a secondary mortar construction step is performed.

また、本発明では、前記二次モルタルは、ポリマーセメントモルタルまたは繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物である形態を含む。   In the present invention, the secondary mortar includes a polymer cement mortar, a fiber-containing mortar, or a mixture of the polymer cement mortar and the fiber-containing mortar.

本発明によれば、強度の向上が図られるとともに、効果的な制震性を備えさせることができる建造物の補強工法が提供されるといった効果を奏する。   According to the present invention, it is possible to improve the strength and provide an effect of providing a building reinforcement method capable of providing effective vibration control.

本発明の第1実施形態によって柱を補強した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which reinforced the pillar by 1st Embodiment of this invention. 同横断面図である。FIG. 第1実施形態で用いる鋼板および鋼板で構成される鋼板ユニットを示す平面図である。It is a top view which shows the steel plate unit comprised with the steel plate used in 1st Embodiment, and a steel plate. 同鋼板ユニットの側面図である。It is a side view of the steel plate unit. 同鋼板ユニットの斜視図である。It is a perspective view of the steel plate unit. 鋼板のリブを示す鋼板の一部縦断面図であって、(a)上下のリブを直接接触させた状態、(b)上下のリブの間に粘弾性部材を挟んだ状態である。It is the partial longitudinal cross-sectional view of the steel plate which shows the rib of a steel plate, Comprising: (a) The state which contacted the upper and lower ribs directly, (b) The state which pinched | interposed the viscoelastic member between the upper and lower ribs. 鋼板の表面に設けられる繊維シートおよびモルタル層からなる被覆層の基本形態を示す断面図である。It is sectional drawing which shows the basic form of the coating layer which consists of a fiber sheet provided on the surface of a steel plate, and a mortar layer. 同被覆層のモルタル層の別形態を示す断面図である。It is sectional drawing which shows another form of the mortar layer of the same coating layer. 同被覆層のモルタル層のさらに別形態を示す断面図である。It is sectional drawing which shows another form of the mortar layer of the same coating layer. 本発明の第2実施形態を示す横断面図である。It is a cross-sectional view showing a second embodiment of the present invention. 本発明の第3実施形態を示す横断面図である。It is a cross-sectional view showing a third embodiment of the present invention. 本発明の第4実施形態を示す横断面図である。It is a cross-sectional view showing a fourth embodiment of the present invention. 本発明の第5実施形態を示す横断面図である。It is a cross-sectional view showing a fifth embodiment of the present invention. 本発明の第6実施形態を示す横断面図である。It is a cross-sectional view showing a sixth embodiment of the present invention. 本発明の第7実施形態によって柱・梁接合部を補強した状態を示す側面図である。It is a side view which shows the state which reinforced the column-beam junction part by 7th Embodiment of this invention. 図15のA−A断面図である。It is AA sectional drawing of FIG. 図15のB−B断面図である。It is BB sectional drawing of FIG. 本発明の第8実施形態によって柱・梁接合部を補強した状態を示す側面図である。It is a side view which shows the state which reinforced the column and beam junction part by 8th Embodiment of this invention. 図18のC−C断面図である。It is CC sectional drawing of FIG. 図18のD−D断面図である。It is DD sectional drawing of FIG. 図18のE−E断面図である。It is EE sectional drawing of FIG. 別形態の継手鋼板を用いた柱用の鋼板ユニットを示す(a)平面図、(b)側面図である。It is the (a) top view and the (b) side view which show the steel plate unit for pillars using the joint steel plate of another form. さらに別形態の継手鋼板を用いた柱用の鋼板ユニットを示す(a)平面図、(b)側面図である。Furthermore, (a) top view and (b) side view which show the steel plate unit for pillars using the joint steel plate of another form.

以下、図面を参照して本発明の実施形態を説明する。
[1]柱の全面補強
図1〜図9は、本発明を既設の柱の補強に適用した第1実施形態を示している。これら図で符号1は断面矩形状の鉛直方向に立設されている既設の鉄筋コンクリート製の柱である。本実施形態においては柱1の全周面(4面)が補強対象面であり、床スラブ2と梁3間の内法高さの全長にわたって補強している。以下、柱1を補強する第1実施形態の補強工法を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[1] Reinforcement of entire column FIGS. 1 to 9 show a first embodiment in which the present invention is applied to reinforcement of an existing column. In these drawings, reference numeral 1 denotes an existing reinforced concrete column which is erected in a vertical direction having a rectangular cross section. In the present embodiment, the entire peripheral surface (four surfaces) of the column 1 is a surface to be reinforced, and is reinforced over the entire length of the internal height between the floor slab 2 and the beam 3. Hereinafter, the reinforcing method of the first embodiment for reinforcing the pillar 1 will be described.

はじめに、図1および図2に示すように、柱1の周囲の4つの角部11に対応する位置に、柱1と所定の間隔を空けて4本の補強用の鉄筋21を柱1と平行に立て、その状態を保持する。鉄筋21は、柱1の断面における対角線の延長上に配置され、例えば床スラブ2および梁3に設けられる所定の支保工で立設状態を保持する。鉄筋21の配置数および配置位置は任意であり、補強条件等に応じて選択される。   First, as shown in FIGS. 1 and 2, four reinforcing bars 21 are arranged in parallel with the pillar 1 at a predetermined distance from the pillar 1 at positions corresponding to the four corners 11 around the pillar 1. And keep that state. The reinforcing bars 21 are arranged on an extension of the diagonal line in the cross section of the column 1 and hold a standing state by a predetermined support work provided on the floor slab 2 and the beam 3, for example. The number and position of the reinforcing bars 21 are arbitrary and are selected according to the reinforcing conditions and the like.

次に、柱1の4面に対し、それら表面に沿って複数の鋼板31を載置した状態で積層し、これら鋼板31で柱1の内法高さの全面を囲って覆う(鋼板積層工程)。この場合の鋼板31は、図3〜図5に示すように、長方形状の素材鋼板の長手方向中間部を直角に折り曲げてL字状に形成したもので、4枚1組で柱1の全周を囲う鋼板ユニット30Aが構成される。鋼板31は、直角の角部311の両側に平坦な板部312を有する構成であり、板部312の横方向の長さは等しいものである。   Next, it laminates | stacks on the 4 surfaces of the pillar 1 in the state which mounted the several steel plate 31 along those surfaces, and encloses and covers the whole surface of the internal height of the pillar 1 with these steel plates 31 (steel plate lamination process) ). As shown in FIGS. 3 to 5, the steel plate 31 in this case is formed in an L shape by bending a longitudinal intermediate portion of a rectangular material steel plate at a right angle. A steel plate unit 30A that surrounds the periphery is configured. The steel plate 31 is configured to have flat plate portions 312 on both sides of a right-angled corner portion 311, and the lengths of the plate portions 312 in the horizontal direction are equal.

図2に示すように、鋼板31は、角部311を柱1の角部11に対応させ、かつ、柱1の表面との間に一定の間隔(かぶり厚さ)を空けて柱1の周囲に4枚が配列され、これにより1つの鋼板ユニット30Aが構成される。柱1と鋼板31間は、例えば120〜300mm程度の間隔とされる。横方向に隣接する鋼板31の間には空隙45が空けられる。また、空隙45の両側の鋼板31のうち、一方側の鋼板31の空隙45に臨む端部の内面には、空隙45を塞ぐ平板状の継手鋼板41がスポット溶接等の手段で固着されている。柱1の表面と鋼板31との間隔は、スペーサ等を介在させるなどの手段により、その間隔を保持する。   As shown in FIG. 2, the steel plate 31 has a corner portion 311 corresponding to the corner portion 11 of the column 1 and a certain distance (cover thickness) between the column 1 and the surface of the column 1 around the column 1. In this way, one steel plate unit 30A is configured. The space between the pillar 1 and the steel plate 31 is, for example, about 120 to 300 mm. A gap 45 is formed between the steel plates 31 adjacent in the lateral direction. Further, among the steel plates 31 on both sides of the gap 45, a flat joint steel plate 41 that closes the gap 45 is fixed to the inner surface of the end portion facing the gap 45 of the one side steel plate 31 by means such as spot welding. . The interval between the surface of the pillar 1 and the steel plate 31 is maintained by means such as interposing a spacer.

図5および図6(a)に示すように、鋼板31の上端および下端は、内側すなわち柱1の表面の方向に直角に折り曲げ加工されており、これにより内側に水平に突出する一定幅のリブ39が、上下の端部の全長にわたってそれぞれ形成されている。リブ39は、鋼板31自体をL字状に折り曲げ加工する前に形成され、角部311でリブ39どうしが重畳せず円滑に折り曲げ可能とするために、リブ39の角部311に対応する箇所には、逃げ用の切欠きが予め形成される。   As shown in FIGS. 5 and 6 (a), the upper end and the lower end of the steel plate 31 are bent at right angles to the inner side, that is, the direction of the surface of the pillar 1, and thereby a rib having a constant width that protrudes horizontally inward. 39 are formed over the entire length of the upper and lower ends. The rib 39 is formed before the steel plate 31 itself is bent into an L shape, and the rib 39 corresponds to the corner 311 of the rib 39 so that the rib 39 can be bent smoothly without overlapping each other. A notch for escape is formed in advance.

図1に示すように、柱1の周囲には鋼板ユニット30Aを複数段(図示例で4段)積層して柱1の全面を覆う。鋼板ユニット30Aの積層は、はじめに床スラブ2に4枚の鋼板31で1組の鋼板ユニット30Aを組んで柱1の下端部を覆い、続いて、組んだ鋼板ユニット30A上に鋼板31を積層しながら、2段目、3段目…の鋼板ユニット30Aを順に積み上げていく。   As shown in FIG. 1, a plurality of stages (four stages in the illustrated example) are stacked around the pillar 1 to cover the entire surface of the pillar 1. The lamination of the steel plate unit 30A is performed by first assembling one set of steel plate units 30A with the four steel plates 31 on the floor slab 2 to cover the lower end of the pillar 1, and then laminating the steel plate 31 on the assembled steel plate unit 30A. However, the second, third,... Steel plate units 30A are sequentially stacked.

鋼板31の上に鋼板31を積層する際には、図6(a)に示すように、下側の鋼板のリブ39に上側の鋼板のリブ39を重ね合わせて載置した状態とし、上下のリブ39が互いに直接面接触した状態とする。このように下側の鋼板31の上端のリブ39に、上側の鋼板31の下端のリブ39を積層しながら1組の鋼板ユニット30Aを組んで積み上げ、次いでその鋼板ユニット30Aに4枚の鋼板31を載置するといった手順を繰り返して、柱1を複数段の鋼板ユニット30Aで覆う。先に配筋した鉄筋21は、図2に示すように、リブ39の直角の内隅に配置され、かつ、リブ39に接触した状態とされる。   When laminating the steel plate 31 on the steel plate 31, as shown in FIG. 6A, the upper steel plate rib 39 is placed on the rib 39 of the lower steel plate, The ribs 39 are in direct surface contact with each other. In this way, one set of steel plate units 30A is assembled and stacked on the upper rib 39 of the lower steel plate 31 while the lower rib 39 of the upper steel plate 31 is laminated, and then the four steel plates 31 are stacked on the steel plate unit 30A. Is repeated to cover the pillar 1 with a plurality of steel plate units 30A. As shown in FIG. 2, the reinforcing bar 21 previously arranged is disposed at a right-angle inner corner of the rib 39 and is in contact with the rib 39.

リブ39の上にリブ39を重ねることにより、リブ39を形成していない鋼板の端縁どうしを合わせて積層する場合と比べると、鋼板31の積層状態は安定し、積層状態を保持する必要がある場合には、その手段が簡素なものでよい。なお、鋼板31の厚さは、例えば1.6〜3.2mm程度、高さは例えば300〜600mm程度、リブ39の幅は例えば30〜60mm程度である。   By stacking the ribs 39 on the ribs 39, the stacked state of the steel plates 31 needs to be stabilized and maintained as compared with the case where the edges of the steel plates not formed with the ribs 39 are stacked together. In some cases, the means may be simple. The thickness of the steel plate 31 is, for example, about 1.6 to 3.2 mm, the height is, for example, about 300 to 600 mm, and the width of the rib 39 is, for example, about 30 to 60 mm.

以上のようにして鋼板積層工程を完了したら、次に、図7に示すように、積層した鋼板31の表面に繊維シート51を張って接着する(繊維シート接着工程)。繊維シート51を接着するには、帯状に加工した連続する繊維シートに接着剤を含浸させたものを鋼板ユニット30Aにテンションを付与しながら巻き付ける手法が好適である。このようにすると繊維シート51を上方あるいは下方に巻き付けながら、1枚の長い繊維シート51を複数段の鋼板ユニット30Aにわたって連続的に張ることができ、含浸する接着剤によって巻き付けと同時に鋼板20の外面に接着させることができる。   When the steel plate laminating step is completed as described above, the fiber sheet 51 is then stretched and bonded to the surface of the laminated steel plates 31 as shown in FIG. 7 (fiber sheet adhering step). In order to bond the fiber sheet 51, a technique in which a continuous fiber sheet processed into a strip shape is impregnated with an adhesive is wound around the steel plate unit 30A while applying tension. In this way, one long fiber sheet 51 can be continuously stretched over the plurality of steel plate units 30A while winding the fiber sheet 51 upward or downward, and the outer surface of the steel plate 20 is simultaneously wound with the impregnating adhesive. Can be adhered to.

繊維シート接着工程は、下側の鋼板ユニット30Aに1つの鋼板ユニット30Aを積層するごとに、上下の鋼板ユニット30Aの境界に対して繊維シート51を巻き付けていくといった手法を採ることでも遂行することができる。この手法によれば、積層した鋼板ユニット30Aを繊維シート51で保持しながら、鋼板ユニット30Aの積層を進めることができ、鋼板ユニット30Aの積層状態を繊維シート51によって速やかに安定した状態とすることができる。   The fiber sheet bonding step is also performed by adopting a technique in which the fiber sheet 51 is wound around the boundary between the upper and lower steel plate units 30A each time one steel plate unit 30A is stacked on the lower steel plate unit 30A. Can do. According to this method, while the laminated steel plate units 30A are held by the fiber sheets 51, the lamination of the steel plate units 30A can be advanced, and the lamination state of the steel plate units 30A can be promptly stabilized by the fiber sheets 51. Can do.

繊維シート51の繊維材料は、例えばポリエチレン、カーボン、ガラス、ビニロン、アラミド等からなるものが挙げられるが、耐アルカリ性に優れたポリエチレンおよびカーボンが好適とされる。   Examples of the fiber material of the fiber sheet 51 include polyethylene, carbon, glass, vinylon, aramid, and the like, and polyethylene and carbon excellent in alkali resistance are preferable.

次に、図2に示すように、積層した鋼板ユニット30Aの中、すなわち柱1の表面と積層した鋼板31との間に、グラウト材61を充填する(グラウト材充填工程)。グラウト材61は、例えばモルタル、セメント、コンクリート等が挙げられ、適宜なものが選択される。なお、鋼板ユニット30Aは内法高さの全長にわたって積層されるが、梁3に近接する上端部分にグラウト材充填用の孔を形成し、その孔からグラウト材61を充填する。   Next, as shown in FIG. 2, the grout material 61 is filled in the laminated steel plate units 30A, that is, between the surface of the pillars 1 and the laminated steel plates 31 (grouting material filling step). Examples of the grout material 61 include mortar, cement, concrete and the like, and an appropriate one is selected. Although the steel plate unit 30A is stacked over the entire length of the inner height, a grout material filling hole is formed in the upper end portion close to the beam 3, and the grout material 61 is filled from the hole.

次に、図7に示すように、鋼板ユニット30Aの各鋼板31の表面に巻き付けて接着した繊維シート51の表面に、仕上げ材としてモルタルを塗布してモルタル層71を形成する(モルタル施工工程)。モルタル施工工程では、モルタルのみを適宜な厚さに施工してもよいが、図示例のようにモルタル中に格子状のメッシュ繊維シート72を埋め込んだ状態のモルタル、あるいは有機高分子を混和させたポリマーセメントモルタル、炭素繊維やポリエチレン繊維等の繊維を適宜な長さにカットしたものを分散させた繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物のモルタルを用いることにより、モルタル層72の強度が向上するので好適である。   Next, as shown in FIG. 7, mortar is applied as a finishing material to form a mortar layer 71 on the surface of the fiber sheet 51 that is wound around and adhered to the surface of each steel plate 31 of the steel plate unit 30A (mortar construction process). . In the mortar construction process, only the mortar may be constructed to an appropriate thickness. However, as shown in the illustrated example, a mortar in which the lattice mesh fiber sheet 72 is embedded in the mortar or an organic polymer is mixed. By using a polymer-containing mortar, a fiber-containing mortar in which fibers such as carbon fiber and polyethylene fiber are cut to an appropriate length, or a mixture of these polymer-cement mortar and fiber-containing mortar, a mortar layer 72 is used. This is preferable because the strength of the is improved.

また、モルタル層71は、鋼板ユニット30Aの各鋼板31の表面に巻き付けて接着した繊維シート51の表面に、含有セメントが微粒子状である微細モルタルを塗布する一次モルタル施工工程と、この微細モルタルの表面に二次モルタルを塗布する二次モルタル施工工程の2工程を含む複数工程に分けて形成してもよい。二次モルタルとしては、ポリマーセメントモルタルまたは繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物を用いることができる。   In addition, the mortar layer 71 includes a primary mortar construction process in which fine mortar in which the cement is fine is applied to the surface of the fiber sheet 51 that is wound around and adhered to the surface of each steel plate 31 of the steel plate unit 30A. You may divide and form in two or more processes including two processes of the secondary mortar construction process which applies secondary mortar to the surface. As the secondary mortar, polymer cement mortar or fiber-containing mortar, or a mixture of these polymer cement mortar and fiber-containing mortar can be used.

図8はその例であり、繊維シート51の表面に、微細モルタル71A、二次モルタル71Bを順に塗布してモルタル層71を形成している。微細モルタル71Aは、含有セメントの平均粒径が通常のものより微細なモルタルであり、含有セメントは、平均粒径が20μm以下、好ましくは10μm以下、より好ましくは2〜5μmのものとされる。この微細モルタル71A中に有機高分子を混和させたポリマーセメントモルタルを用いてもよい。微細モルタル71Aの厚さは、例えば1〜3mm程度とされ、モルタル層71全体の厚さは、例えば10〜30mm程度とされる。   FIG. 8 shows an example in which fine mortar 71A and secondary mortar 71B are sequentially applied to the surface of fiber sheet 51 to form mortar layer 71. The fine mortar 71A is a mortar whose average particle size of the contained cement is finer than a normal one, and the contained cement has an average particle size of 20 μm or less, preferably 10 μm or less, more preferably 2 to 5 μm. You may use the polymer cement mortar which mixed the organic polymer in this fine mortar 71A. The thickness of the fine mortar 71A is, for example, about 1 to 3 mm, and the total thickness of the mortar layer 71 is, for example, about 10 to 30 mm.

また、図9に示すように、繊維シート51の表面に微細モルタル71Aを塗布し、次いで、下塗りモルタル71Cを塗布した後、この下塗りモルタル71Cの表面に、微細モルタル中に格子状のメッシュ繊維シート72を埋め込んだ状態のモルタル71Dを施工する。この微細モルタル71Dとして、ポリマーセメントモルタルを用いてもよい。そして最後に上塗りモルタル71Eを施工するといった工程を採ってもよい。   Further, as shown in FIG. 9, after applying fine mortar 71A to the surface of the fiber sheet 51, and then applying the undercoat mortar 71C, the surface of the undercoat mortar 71C has a grid-like mesh fiber sheet in the fine mortar. A mortar 71D in which 72 is embedded is applied. As this fine mortar 71D, polymer cement mortar may be used. And finally, you may take the process of constructing top coat mortar 71E.

以上が第1実施形態の補強工法であり、この実施形態によれば、柱1の表面にグラウト材61を介して鋼板31が固着されて一体化されることにより、柱1の補強がなされる。鋼板1にはリブ39が形成され、このリブ39がグラウト材61中に埋設されるため、リブ効果による鋼板31自体の強度や、グラウト材61に対する鋼板31の結合強度が高くなり、その結果、柱1にかかる引っ張りやせん断等の応力に対する抵抗力が高いものとなる。   The above is the reinforcing method of the first embodiment, and according to this embodiment, the steel plate 31 is fixed to and integrated with the surface of the pillar 1 via the grout material 61, whereby the pillar 1 is reinforced. . Since the rib 39 is formed in the steel plate 1 and the rib 39 is embedded in the grout material 61, the strength of the steel plate 31 itself due to the rib effect and the bonding strength of the steel plate 31 to the grout material 61 are increased. Resistance to stress such as pulling and shearing applied to the column 1 is high.

また、引っ張りやせん断等の応力は、グラウト材61を介して繊維シート51に伝わる。繊維シート51はそのような応力に対する抵抗力が高く、鋼板31に比べて例えば約10倍以上の引っ張り強度を有する場合がある。このため、柱1は高い強度で補強される。さらに繊維シート51は、外側に塗布されるモルタル層71により補強されるため、外側から繊維シート51にかかる応力に対する抵抗力も十分に強いものとなる。   Further, stress such as tension and shear is transmitted to the fiber sheet 51 through the grout material 61. The fiber sheet 51 has a high resistance to such stress, and may have a tensile strength that is, for example, about 10 times or more that of the steel plate 31. For this reason, the pillar 1 is reinforced with high strength. Furthermore, since the fiber sheet 51 is reinforced by the mortar layer 71 applied to the outside, the resistance against the stress applied to the fiber sheet 51 from the outside is sufficiently strong.

また、図8または図9に示したように、繊維シート51の表面に微細モルタル71Aを塗布し、微細モルタル71Aの上にモルタルを塗布する多層のモルタル層71とすることにより、繊維シート51が微細モルタル71Aを介して高い結合力または付着力でモルタルに結合する。このため、柱1にかかる応力は、モルタル層71にひび割れ等の損傷を生じさせることなく繊維シート51に伝播しやすい。すなわち、応力の多くを繊維シート51で受けることになり、これによっても高い補強構造が得られる。   Moreover, as shown in FIG. 8 or FIG. 9, the fiber sheet 51 is formed by applying a fine mortar 71A on the surface of the fiber sheet 51 and forming a multilayer mortar layer 71 on which the mortar is applied on the fine mortar 71A. Bonding to the mortar with high bonding force or adhesion force through the fine mortar 71A. For this reason, the stress applied to the pillar 1 is easily propagated to the fiber sheet 51 without causing damage such as cracks in the mortar layer 71. That is, most of the stress is received by the fiber sheet 51, and this also provides a high reinforcing structure.

また、地震等によって横方向の振動を受けた場合には、鋼板ユニット30Aの4枚の鋼板31は、それぞれ独自に動こうとする。これは、鋼板31の間に空隙45が空いているので、横方向の動きが鋼板31ごとに独自に可能となっているからである。上下の鋼板31が横方向に相対的に動いたとき、上下のリブ39の接触面に摩擦が生じる。このときの摩擦力が振動を抑制するダンパーとなり、制震性が効果的に発揮される。また、鋼板31の横方向および上下方向の動きは繊維シート51で拘束されようとする。これらの結果、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得る。また、リブ39を重ねて鋼板31を載置しながら積層するため、鋼板積層工程においては鋼板31の積層状態が安定し、施工を安全、かつ、速やかに進めることができる。   Further, when a horizontal vibration is received due to an earthquake or the like, the four steel plates 31 of the steel plate unit 30A try to move independently. This is because the gap 45 is vacant between the steel plates 31, so that the lateral movement is independently possible for each steel plate 31. When the upper and lower steel plates 31 move relatively in the lateral direction, friction occurs on the contact surfaces of the upper and lower ribs 39. The frictional force at this time becomes a damper that suppresses the vibration, and the damping performance is effectively exhibited. Further, the movement of the steel plate 31 in the horizontal direction and the vertical direction tends to be restrained by the fiber sheet 51. As a result, it is possible to obtain an effect of suppressing the shaking quickly by reducing the shaking or reducing the shaking. Moreover, since it laminates | stacks, mounting the steel plate 31 on the rib 39, the lamination | stacking state of the steel plate 31 is stabilized in a steel plate lamination process, and construction can be advanced safely and promptly.

なお、上記実施形態では、積層する上下の鋼板31のリブ39を直接接触させた状態としているが、図6(b)に示すように、上下のリブ39の間に粘弾性部材91を挟んだ状態としてもよい。粘弾性部材91としては、例えば天然ゴム、合成ゴム等のゴムを材料としたものが用いられる。この場合、粘弾性部材91によって上下のリブ39が一体化したような状態になる。そして地震等によって横方向の振動を受けた際に、粘弾性部材91によって粘弾性ダンパー効果が生じ、制震性が効果的に発揮される。このため、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得る。   In the above embodiment, the ribs 39 of the upper and lower steel plates 31 to be laminated are in direct contact with each other. However, as shown in FIG. 6B, a viscoelastic member 91 is sandwiched between the upper and lower ribs 39. It is good also as a state. As the viscoelastic member 91, for example, a material made of rubber such as natural rubber or synthetic rubber is used. In this case, the upper and lower ribs 39 are integrated by the viscoelastic member 91. And when receiving the vibration of a horizontal direction by an earthquake etc., the viscoelastic damper effect will arise by the viscoelastic member 91, and a damping property will be exhibited effectively. For this reason, the effect which attenuates a shake and suppresses a shake quickly, or makes a shake small is acquired.

上記第1実施形態は柱1の全面を補強する例であって、本発明の基本的な補強構造を示している。柱1の場合には、補強が必要な面のみに同じ構造で補強を施すことができる。また、本発明では補強対象の建造物は柱に限定されず、柱以外の、壁、梁、床スラブ等の躯体の補強に適用することができる。以下、その例を示していく。なお、参照図面では上記実施形態、あるいはその実施形態以前の既出の構成要素と同一の構成要素には同一の符号を付し、説明を簡略化あるいは省略する。   The said 1st Embodiment is an example which reinforces the whole surface of the pillar 1, Comprising: The basic reinforcement structure of this invention is shown. In the case of the pillar 1, reinforcement can be performed with the same structure only on the surface that needs reinforcement. In the present invention, the building to be reinforced is not limited to a pillar, and can be applied to reinforcement of a housing other than a pillar, such as a wall, a beam, or a floor slab. An example is shown below. In the reference drawings, the same reference numerals are given to the same constituent elements as those in the above-described embodiment or the previous embodiment, and the description will be simplified or omitted.

[2]柱の補強の変形例
図10は、柱1の1面のみが補強対象面であり、その補強対象面1aを本発明の補強工法で補強した第2実施形態を示している。この場合は、長板部322と短板部323とを有するL字状の鋼板32が2枚1組で鋼板ユニット30Bを構成する。1組の鋼板ユニット30Bの鋼板32は、柱1と間隔を空けて、補強対象面1aに長板部322を平行に対面させ、短板部323の端部を補強対象面1aの両側に対応させて配設される。鋼板32の間には空隙45が空けられ、一方の鋼板32の内面に、空隙45を塞ぐ継手鋼板41がスポット溶接される。
[2] Modified Example of Column Reinforcement FIG. 10 shows a second embodiment in which only one surface of the column 1 is a surface to be reinforced, and the surface 1a to be reinforced is reinforced by the reinforcing method of the present invention. In this case, the L-shaped steel plate 32 having the long plate portion 322 and the short plate portion 323 constitutes a steel plate unit 30B by one set. The steel plates 32 of the pair of steel plate units 30B are spaced apart from the pillars 1, with the long plate portions 322 facing the reinforcement target surface 1a in parallel, and the ends of the short plate portions 323 correspond to both sides of the reinforcement target surface 1a. Arranged. A gap 45 is formed between the steel plates 32, and a joint steel plate 41 that closes the gap 45 is spot welded to the inner surface of one of the steel plates 32.

鋼板32の上端および下端には、内側に直角に折り曲げ加工することによりリブ39がそれぞれ形成されている。そして鋼板ユニット30Bを、リブ39を重ねることにより積層して柱1の補強対象面1aを覆い、鋼板32の表面への繊維シート51の接着、鋼板32と柱1の間の空間へのグラウト材61の充填、繊維シート51の表面へのモルタル層71の形成を、この順で行う。   Ribs 39 are formed on the upper and lower ends of the steel plate 32 by bending the steel plate 32 at a right angle inside. Then, the steel plate units 30B are stacked by overlapping the ribs 39 so as to cover the reinforcement target surface 1a of the column 1 and the fiber sheet 51 is adhered to the surface of the steel plate 32, and the grout material to the space between the steel plate 32 and the column 1 The filling of 61 and the formation of the mortar layer 71 on the surface of the fiber sheet 51 are performed in this order.

また、この場合には、柱1の補強対象面1aに直交させて適宜本数のアンカー81を挿入し、アンカー81の頭部をグラウト材61中に埋め込んでいる。アンカー81は、柱1に穿孔したアンカー孔に挿入し、接着剤により挿入状態を固定する。柱1へのアンカー81の固定は、鋼板32の施工の前に行う。さらに、鋼板ユニット30Bの2枚の鋼板32の短板部323間にわたりタイバー82を貫通させ、タイバー82をナット83で締め込んで緊張状態に締結しており、タイバー82もグラウト材61中に埋め込んでいる。アンカー81により柱1に対するグラウト材61の結合、および柱1に対する鋼板32とモルタル層71の結合が一層強くなり、また、タイバー82により鋼板32の水平拘束強度が向上するものとなっている。   In this case, an appropriate number of anchors 81 are inserted so as to be orthogonal to the reinforcement target surface 1 a of the pillar 1, and the heads of the anchors 81 are embedded in the grout material 61. The anchor 81 is inserted into an anchor hole drilled in the column 1 and the inserted state is fixed by an adhesive. The anchor 81 is fixed to the column 1 before the steel plate 32 is constructed. Further, the tie bar 82 is penetrated between the short plate portions 323 of the two steel plates 32 of the steel plate unit 30B, and the tie bar 82 is tightened with a nut 83 to be tightened. The tie bar 82 is also embedded in the grout material 61. It is out. The anchor 81 further strengthens the coupling of the grout material 61 to the column 1 and the coupling of the steel plate 32 and the mortar layer 71 to the column 1, and the tie bar 82 improves the horizontal restraint strength of the steel plate 32.

図11は、柱1の隣接する2面が補強対象面1aであり、それら面に対し本発明の補強工法で補強した第3実施形態を示している。この場合、2つの補強対象面1aの間の角部11aに対応する2枚の板部332の長さが同じL字状の鋼板33と、この鋼板33の両側に空隙45を空けて配設される長板部342と短板部343とを有する2枚のL字状の鋼板34との組み合わせで、1段の鋼板ユニット30Cが構成される。いずれの鋼板33,34にも上下の端部に互いに重なるリブ39が形成されており、上下のリブ39を重ねて鋼板ユニット30Cが複数段に積層され、柱1の補強対象面1aを覆って施工される。また、この場合にも、補強対象面1aにアンカー81が挿入、固定され、また、補強対象面1aに対応してタイバー82が鋼板34に貫通されている。   FIG. 11 shows a third embodiment in which two adjacent surfaces of the pillar 1 are reinforcing target surfaces 1a, and these surfaces are reinforced by the reinforcing method of the present invention. In this case, the L-shaped steel plate 33 having the same length of the two plate portions 332 corresponding to the corner portion 11a between the two reinforcing target surfaces 1a, and the gap 45 are provided on both sides of the steel plate 33. A combination of two L-shaped steel plates 34 each having a long plate portion 342 and a short plate portion 343 constitute a single-stage steel plate unit 30C. Each of the steel plates 33 and 34 is formed with ribs 39 that overlap each other at the upper and lower ends, and the steel plate units 30C are stacked in a plurality of stages by overlapping the upper and lower ribs 39 so as to cover the reinforcement target surface 1a of the column 1. It is constructed. Also in this case, the anchor 81 is inserted and fixed to the reinforcement target surface 1a, and the tie bar 82 penetrates the steel plate 34 corresponding to the reinforcement target surface 1a.

図12は、補強用の鉄筋21を四隅に配筋することを省略して、図2で示した例と同様に柱1の全面に鋼板31および継手鋼板41、繊維シート51およびモルタル層71からなる補強構造を施工した第4実施形態を示している。この場合、鉄筋21を配筋しない分、鋼板31は柱1の表面に接近しており、リブ39と柱1との間隔も狭い。このため、リブ39が仕切りとなって柱1と鋼板31との間の空間が鋼板ユニット30Aごとに隔絶された状態に近くなり、1箇所からグラウト材61を充填しても、空間全体をグラウト材61で充満させることができない場合がある。したがってこのような場合には、鋼板ユニット30Aごとにグラウト材61を充填すればよい。   12 omits reinforcing bars 21 for reinforcement at the four corners, and the steel plate 31, the joint steel plate 41, the fiber sheet 51, and the mortar layer 71 are formed on the entire surface of the column 1 in the same manner as the example shown in FIG. The 4th Embodiment which constructed the reinforcement structure which becomes is shown. In this case, the steel plate 31 is close to the surface of the column 1 as much as the reinforcing bars 21 are not arranged, and the interval between the rib 39 and the column 1 is also narrow. For this reason, the rib 39 serves as a partition, and the space between the column 1 and the steel plate 31 is close to the state where each steel plate unit 30A is isolated. Even if the grout material 61 is filled from one place, the entire space is grouted. In some cases, the material 61 cannot be filled. Therefore, in such a case, the grout material 61 may be filled for each steel plate unit 30A.

[3]柱と壁を含む補強例
図13は、柱1の一面の両側に袖壁4が連続して施工された建造物を補強した第5実施形態を示している。この場合には、柱1と両側の袖壁4が平坦に連続する面が補強対象面14aであり、左右対称の一対の鋼板35で鋼板ユニット30Eが構成される。鋼板35は、柱1から袖壁4にわたって柱1と間隔を空けて平坦に配設される主板部351の一端部に、袖壁4に近接するようにクランク状に屈曲部352が形成されたもので、屈曲部352の端部には、柱1に挿入されるボルト84が通される。鋼板35の間には空隙45が空けられ、一方の鋼板35の端部内面に、空隙45を塞ぐ継手鋼板41がスポット溶接される。鋼板ユニット30Eは、鋼板35の上下端に形成されているリブ39を重ねて複数段に積層され、補強対象面14aを覆って施工される。そして、補強対象面14aの、左右の鋼板35の主板部351に対応する部分にはアンカー81が挿入されて固定され、グラウト材61中にアンカー81が埋設される。
[3] Reinforcing Example Including Column and Wall FIG. 13 shows a fifth embodiment in which a building in which sleeve walls 4 are continuously constructed on both sides of one surface of the column 1 is reinforced. In this case, the surface where the pillar 1 and the sleeve walls 4 on both sides are continuously flat is the reinforcement target surface 14a, and the steel plate unit 30E is composed of a pair of symmetrical steel plates 35. In the steel plate 35, a bent portion 352 is formed in a crank shape so as to be close to the sleeve wall 4 at one end portion of the main plate portion 351 that is disposed flat from the pillar 1 to the sleeve wall 4 at a distance from the pillar 1. Therefore, a bolt 84 inserted into the column 1 is passed through the end of the bent portion 352. A gap 45 is formed between the steel plates 35, and a joint steel plate 41 that closes the gap 45 is spot welded to the inner surface of the end of one steel plate 35. The steel plate unit 30E is laminated in a plurality of stages by overlapping the ribs 39 formed on the upper and lower ends of the steel plate 35, and is constructed so as to cover the reinforcement target surface 14a. The anchor 81 is inserted and fixed in a portion of the reinforcement target surface 14 a corresponding to the main plate portion 351 of the left and right steel plates 35, and the anchor 81 is embedded in the grout material 61.

図13では、柱1と袖壁4が平坦に連続する面を補強対象面としていたが、図14は、柱1が突出する側の面を補強対象面14bとする第6実施形態を示している。この場合は、柱1の2つの外隅側の角部11bに対応する2枚のL字状の鋼板36と、柱1と袖壁4とで形成される2つの内隅側の角部11cに対応する2枚のL字状の鋼板37とが左右対称に組まれて、鋼板ユニット30Fが構成される。   In FIG. 13, the surface on which the pillar 1 and the sleeve wall 4 are flatly connected is the surface to be reinforced, but FIG. 14 illustrates a sixth embodiment in which the surface on which the column 1 protrudes is the surface to be reinforced 14 b. Yes. In this case, two inner corner corners 11c formed by the two L-shaped steel plates 36 corresponding to the two outer corner corners 11b of the pillar 1 and the pillars 1 and the sleeve walls 4 are used. The two L-shaped steel plates 37 corresponding to are assembled symmetrically to constitute a steel plate unit 30F.

中央側の2枚の鋼板36間、およびこれら鋼板36と両側の鋼板37との間には空隙45が空けられ、隣接する鋼板のうちの一方の鋼板36(もしくは鋼板37)の内面に、空隙45を塞ぐ継手鋼板41がスポット溶接される。鋼板ユニット30Fは、鋼板36,37の上下端に形成されているリブ39を重ねて複数段に積層され、補強対象面14bを覆って施工される。両側の鋼板37の端部には、袖壁4に挿入されるボルト84が通される。図示例では上記のようなグラウト材61に埋設されるアンカー81は柱1に挿入されていないが、同様にアンカー81を設けてもよい。   A gap 45 is formed between the two steel plates 36 on the center side and between the steel plates 36 and the steel plates 37 on both sides, and a gap is formed on the inner surface of one of the adjacent steel plates 36 (or the steel plate 37). The joint steel plate 41 closing the 45 is spot welded. The steel plate unit 30F is constructed in such a manner that the ribs 39 formed on the upper and lower ends of the steel plates 36 and 37 are stacked in a plurality of stages and the reinforcing target surface 14b is covered. Bolts 84 inserted into the sleeve wall 4 are passed through the ends of the steel plates 37 on both sides. In the illustrated example, the anchor 81 embedded in the grout material 61 as described above is not inserted into the column 1, but the anchor 81 may be provided similarly.

[4]柱・梁接合部の補強
次に、図15〜図17を参照して柱1の4面に梁3が直交して接合された柱・梁接合部を本発明を適用することによって補強した第7実施形態を説明する。この場合、梁3の上面には床スラブ2が施工されている。柱1、梁3および床スラブ2は、いずれも既設の鉄筋コンクリート製の建造物の躯体である。
[4] Reinforcement of Column / Beam Joint Next, with reference to FIGS. 15 to 17, the present invention is applied to a column / beam joint in which the beam 3 is orthogonally joined to the four surfaces of the column 1. A reinforced seventh embodiment will be described. In this case, the floor slab 2 is constructed on the upper surface of the beam 3. The pillar 1, the beam 3, and the floor slab 2 are all skeletons of existing reinforced concrete structures.

第7実施形態では、はじめに、柱1の周囲に、角部11に対応して補強用の鉄筋21を鉛直方向に立てて保持する。また、特に梁3と重なる部分の鉄筋21の周囲には、鉄筋21に通した螺旋フープ筋22を巻いた状態として保持する。次に、柱1の周囲に、上記第1実施形態と同様に4枚のL字状の鋼板31を配列して鋼板ユニット30Aを組み、梁3の上下の柱1に、鋼板ユニット30Aを積層する。   In the seventh embodiment, first, reinforcing reinforcing bars 21 are vertically held around the pillars 1 so as to correspond to the corners 11. In particular, a spiral hoop bar 22 that passes through the bar 21 is held around the bar 21 that overlaps the beam 3. Next, the four L-shaped steel plates 31 are arranged around the pillar 1 to assemble the steel plate units 30A, and the steel plate units 30A are stacked on the upper and lower pillars 1 of the beam 3 as in the first embodiment. To do.

また、図16に示すように、梁3の両側面と梁3の下面を、間隔を空けて側面鋼板381および下面鋼板382で覆う。図17に示すように、梁3の幅は柱1の幅よりも小さく、柱1の4つの角部11が露出した状態となっている。側面鋼板381は、柱1の角部11の両側の面のうちの一方側の面と梁3の側面に対面して配設し、柱1の角部11に対応する鋼板381,382の継ぎ目を、断面略M字状に折り曲げ加工された継手鋼板42で互いに接合した状態とする。そして、梁3の下面を下面鋼板382で覆う。   Also, as shown in FIG. 16, both side surfaces of the beam 3 and the lower surface of the beam 3 are covered with a side steel plate 381 and a lower surface steel plate 382 with a space therebetween. As shown in FIG. 17, the width of the beam 3 is smaller than the width of the column 1 and the four corners 11 of the column 1 are exposed. The side steel plate 381 is disposed so as to face one of the surfaces on both sides of the corner 11 of the column 1 and the side surface of the beam 3, and the seams of the steel plates 381 and 382 corresponding to the corner 11 of the column 1. Are joined to each other by a joint steel plate 42 bent into a substantially M-shaped cross section. Then, the lower surface of the beam 3 is covered with a lower surface steel plate 382.

側面鋼板381の下端部であって下側の柱1を覆う鋼板ユニット30Aが被る部分には、柱1の鋼板ユニット30Aの各鋼板31のリブ39に積層するリブ39が形成されている。リブ39は、側面鋼板381の下端を内側に折り曲げ加工して形成されている。下側の柱1を覆う鋼板31のリブ39には、側面鋼板381の下側のリブ39が重ねて積層される。また、側面鋼板381の端部は、梁3の側面に近接するようにクランク状に屈曲し、その端部には、梁3に挿入されるボルト84が通される。なお、側面鋼板381が施工される前に、梁3に複数のアンカー81を挿入して固定する。   A rib 39 that is laminated on the rib 39 of each steel plate 31 of the steel plate unit 30A of the column 1 is formed at the lower end of the side steel plate 381 and covered by the steel plate unit 30A that covers the lower column 1. The rib 39 is formed by bending the lower end of the side steel plate 381 inward. On the rib 39 of the steel plate 31 covering the lower column 1, the lower rib 39 of the side steel plate 381 is overlapped and laminated. Further, the end of the side steel plate 381 is bent in a crank shape so as to be close to the side of the beam 3, and a bolt 84 inserted into the beam 3 is passed through the end. A plurality of anchors 81 are inserted and fixed to the beam 3 before the side steel plate 381 is constructed.

柱1を覆う鋼板ユニット30Aと、側面鋼板381および下面鋼板382を施工して柱・梁接合部をこれら鋼板で覆った後、鋼板表面に繊維シート51を接着し、次いで各鋼板と柱1および梁3との間の空間へのグラウト材61の充填を行い、最後に、繊維シート51の表面にモルタル層71を形成する。   After constructing the steel plate unit 30A covering the pillar 1, the side steel plate 381 and the bottom steel plate 382 and covering the pillar / beam joint with these steel plates, the fiber sheet 51 is bonded to the steel plate surface, and then each steel plate and the pillar 1 and The grout material 61 is filled into the space between the beams 3, and finally, a mortar layer 71 is formed on the surface of the fiber sheet 51.

図18〜図21は、柱1の3面に梁3が直交して接合された柱・梁接合部に本発明を適用して補強した第8実施形態を示している。この場合、柱1の両側に延びる梁3は外面(図21で下側の面)側で面一の状態に施工されており、柱1および柱1から両側の梁3に連なる平坦な外面が補強対象面13aとなっている。   18 to 21 show an eighth embodiment in which the present invention is applied to a column / beam joint in which the beam 3 is orthogonally joined to the three surfaces of the column 1 to be reinforced. In this case, the beams 3 extending on both sides of the column 1 are constructed so as to be flush with each other on the outer surface (the lower surface in FIG. 21), and the flat outer surface that continues from the columns 1 and 1 to the beams 3 on both sides is formed. It becomes the reinforcement object surface 13a.

第8実施形態では、図19に示すように、柱1の外面(補強対象面13a)に、図10で示したものと同様の長板部322と短板部323とを有するL字状の鋼板32を2枚1組とする鋼板ユニット30Bを配設する。鋼板32の間には空隙45が空けられ、一方の鋼板32の内面に、空隙45を塞ぐ継手鋼板41がスポット溶接される。鋼板32の上端および下端には、内側に直角に折り曲げ加工することによりリブ39がそれぞれ形成されている。そして鋼板ユニット30Bを、リブ39を重ねることにより積層して柱1が覆われ、鋼板32の表面に繊維シート51が接着される。2枚の鋼板32の短板部323間にわたりタイバー82を貫通させており、タイバー82の両端をナット83で締め込んで緊張状態に締結し、タイバー82をグラウト材61中に埋め込んでいる。   In the eighth embodiment, as shown in FIG. 19, an L-shape having a long plate portion 322 and a short plate portion 323 similar to those shown in FIG. 10 on the outer surface (reinforcement target surface 13 a) of the pillar 1. A steel plate unit 30 </ b> B including two steel plates 32 is provided. A gap 45 is formed between the steel plates 32, and a joint steel plate 41 that closes the gap 45 is spot welded to the inner surface of one of the steel plates 32. Ribs 39 are formed on the upper and lower ends of the steel plate 32 by bending the steel plate 32 at a right angle inside. Then, the steel plate units 30 </ b> B are stacked by overlapping the ribs 39 to cover the pillar 1, and the fiber sheet 51 is bonded to the surface of the steel plate 32. The tie bar 82 is penetrated between the short plate portions 323 of the two steel plates 32, and both ends of the tie bar 82 are tightened with nuts 83 to be tightened, and the tie bar 82 is embedded in the grout material 61.

また、図18および図20に示すように、柱1と柱1の両側の梁3からなる平坦な外面(補強対象面13a)には、上下2枚の梁部鋼板383,384が補強対象面13aと間隔を空けて配設される。上下2枚の梁部鋼板383,384の両端部は梁3の側面に近接するようにクランク状に屈曲し、その端部には、梁3に挿入されるボルト84が通される。梁部鋼板383,384が施工される前に、梁3に複数のアンカー81を挿入して固定される。   Further, as shown in FIGS. 18 and 20, on the flat outer surface (reinforcement target surface 13 a) composed of the pillar 1 and the beams 3 on both sides of the pillar 1, two upper and lower beam steel plates 383, 384 are the reinforcement target surfaces. 13a is arranged at an interval. Both ends of the upper and lower beam steel plates 383 and 384 are bent in a crank shape so as to be close to the side surface of the beam 3, and bolts 84 inserted into the beam 3 are passed through the ends. Before the beam steel plates 383 and 384 are constructed, a plurality of anchors 81 are inserted and fixed to the beam 3.

図20に示すように、上側の梁部鋼板383の上端には内側に折り曲げ加工してリブ392が形成されており、このリブ392は床スラブ2の下面に接触した状態とされる。また、下側の梁部鋼板384の下端は内側にある程度の奥行きで折り曲げられて下板部394が形成され、下板部394の内側の先端には、上側に折り曲げられてリブ393が形成されており、このリブ393が、梁3の側面の下端部に接触する状態となっている。そして、上下の梁部鋼板383,384のそれぞれ下端および上端にはリブ39が形成されており、これらリブ39が重ねて積層される。また、下側の梁部鋼板384の下板部394は、梁3の下側の柱1を覆う鋼板31の上端のリブ39に重ねて積層される。   As shown in FIG. 20, a rib 392 is formed on the upper end of the upper beam steel plate 383 by bending inward, and the rib 392 is in contact with the lower surface of the floor slab 2. In addition, the lower end of the lower beam portion steel plate 384 is bent inward to a certain depth to form a lower plate portion 394, and the inner end of the lower plate portion 394 is bent upward to form a rib 393. The rib 393 is in contact with the lower end of the side surface of the beam 3. And the rib 39 is formed in each lower end and upper end of the upper and lower beam steel plates 383 and 384, and these ribs 39 are laminated | stacked. Further, the lower plate portion 394 of the lower beam portion steel plate 384 is laminated on the rib 39 at the upper end of the steel plate 31 covering the lower column 1 of the beam 3.

第8実施形態においては、柱1の外面に対する鋼板ユニット30Aと、柱・梁の外面に対する上下2枚の梁部鋼板383,384を施工し、鋼板31,383,384の表面に繊維シート51を接着し、次いで、鋼板31,383,384と柱1および梁3との間の空間へのグラウト材61の充填を行い、最後に、繊維シート51の表面にモルタル層71を形成する。   In the eighth embodiment, the steel plate unit 30A for the outer surface of the column 1 and the two upper and lower beam steel plates 383, 384 for the outer surface of the column / beam are constructed, and the fiber sheet 51 is placed on the surfaces of the steel plates 31, 383, 384. Next, the grout material 61 is filled in the space between the steel plates 31, 383, 384 and the columns 1 and 3, and finally, a mortar layer 71 is formed on the surface of the fiber sheet 51.

第8実施形態では、柱・梁接合部の外面の上下2枚の梁部鋼板383,384のリブ39が重ねて積層され、また、下側の梁部鋼板の下板部394が鋼板31の上端のリブ39に重ねて積層された状態となる。このようにリブ39どうしおよびリブ39と下板部394が重ねて積層されることにより、この柱・梁接合部においては、横方向の振動を受けた場合、重なっているリブ39どうしおよびリブ39と下板部394の接触面に摩擦が生じ、このときの摩擦力が振動を抑制するダンパーとなって制震性が効果的に発揮される。   In the eighth embodiment, the ribs 39 of the two upper and lower beam steel plates 383 and 384 on the outer surface of the column / beam joint are stacked and laminated, and the lower plate portion 394 of the lower beam steel plate is the steel plate 31. It will be in the state laminated | stacked on the rib 39 of the upper end. In this manner, the ribs 39 and the ribs 39 and the lower plate portion 394 are stacked so that, in this column / beam joint portion, when receiving lateral vibration, the overlapping ribs 39 and the ribs 39 are overlapped. Friction occurs on the contact surface of the lower plate portion 394, and the frictional force at this time becomes a damper that suppresses vibration, and the damping performance is effectively exhibited.

[5]継手鋼板の別形態
上記実施形態で鋼板間の空隙45を塞ぐ継手鋼板41は、単なる平板状のものであったが、図22に示すように、柱の4面を4枚の鋼板31で覆う鋼板ユニット30Aにおいて、上下の端部に、鋼板31のリブ39の内面に重なるリブ419を有するものであってもよい。この場合には、鋼板31のリブ39間の空隙45がリブ419に塞がれ、継手鋼板41のリブ419によって強度が向上するといった利点がある。また、鋼板31のリブ39に作用する応力が継手鋼板41のリブ419を介して隣接する鋼板31のリブ39に伝わり、これによって応力伝達が鋼板31間で連続しやすくなり、応力への抵抗性が向上する。
[5] Another Form of Joint Steel Sheet The joint steel sheet 41 that closes the gap 45 between the steel sheets in the above embodiment is a simple flat plate. However, as shown in FIG. The steel plate unit 30 </ b> A covered with 31 may have ribs 419 that overlap the inner surface of the rib 39 of the steel plate 31 at the upper and lower ends. In this case, there is an advantage that the gap 45 between the ribs 39 of the steel plate 31 is blocked by the ribs 419 and the strength is improved by the ribs 419 of the joint steel plate 41. Further, the stress acting on the rib 39 of the steel plate 31 is transmitted to the rib 39 of the adjacent steel plate 31 via the rib 419 of the joint steel plate 41, whereby the stress transmission is easily continued between the steel plates 31, and resistance to stress. Will improve.

また、図23に示すように、柱の4面を、各面に対応するサイズの平板状の鋼板315を柱の各面に対面させ、これら鋼板315で形成される内側の角部の内面に、断面L字状の角継手鋼板43を重ね合わせ、各鋼板315の横移動が可能なように、角継手鋼板43の一方側の横方向端部を、対面する鋼板315の内面にスポット溶接する形態としてもよい。この場合、4枚の鋼板315および角継手鋼板43の上下の端部にはリブ319,439がそれぞれ形成され、角継手鋼板43のリブ439が鋼板315のリブ319の内面側に重ね合わされる。   Further, as shown in FIG. 23, the plate-like steel plates 315 having sizes corresponding to the respective faces are faced to the respective faces of the pillars, and the inner surfaces of the inner corners formed by these steel plates 315 are arranged on the four faces of the pillars. The corner joint steel plates 43 having an L-shaped cross section are overlapped, and one side end of the corner joint steel plate 43 is spot welded to the inner surface of the steel plate 315 facing each other so that each steel plate 315 can be laterally moved. It is good also as a form. In this case, ribs 319 and 439 are formed on the upper and lower ends of the four steel plates 315 and the corner joint steel plate 43, respectively, and the rib 439 of the corner joint steel plate 43 is superimposed on the inner surface side of the rib 319 of the steel plate 315.

1…柱
3…梁
31,32,33,34,35,36,37…鋼板
381…側面鋼板
382…下面鋼板
383…梁部鋼板
384…梁部鋼板
39…リブ
45…空隙
51…繊維シート
61…グラウト材
71…モルタル層
71A…微細モルタル
71B…二次モルタル
91…粘弾性部材
DESCRIPTION OF SYMBOLS 1 ... Column 3 ... Beam 31, 32, 33, 34, 35, 36, 37 ... Steel plate 381 ... Side surface steel plate 382 ... Bottom surface steel plate 383 ... Beam portion steel plate 384 ... Beam portion steel plate 39 ... Rib 45 ... Air gap 51 ... Fiber sheet 61 ... Grout material 71 ... Mortar layer 71A ... Fine mortar 71B ... Secondary mortar 91 ... Viscoelastic material

Claims (7)

既設の建造物の表面に対し、この表面に沿って複数の鋼板を載置した状態で積層し、積層した該鋼板により建造物の前記表面を覆う鋼板積層工程と、
前記建造物の表面と、積層した前記鋼板との間に、グラウト材を充填するグラウト材充填工程と、
を備え、
積層された上下の前記鋼板のそれぞれの下端および上端に、建造物の前記表面の方向に突出し、積層状態で互いに接触可能なリブがそれぞれ形成されており、これらリブを直接接触させた状態、またはこれらリブの間に粘弾性部材を挟んだ状態とするとともに、これらリブが、横方向に所定の力による振動を受けた場合に互いに横方向に相対移動可能に積層されていること
を特徴とする建造物の補強工法。
Steel plate lamination step of laminating a plurality of steel plates along the surface with respect to the surface of the existing building, and covering the surface of the building with the laminated steel plates,
A grout material filling step of filling a grout material between the surface of the building and the laminated steel plates,
With
Ribs that protrude in the direction of the surface of the building and are in contact with each other in the laminated state are formed at the lower and upper ends of the upper and lower laminated steel plates, respectively, or the ribs are in direct contact with each other, or The viscoelastic member is sandwiched between the ribs, and the ribs are stacked so as to be movable relative to each other in the lateral direction when subjected to vibration caused by a predetermined force in the lateral direction. Reinforcement method for buildings.
前記リブは、前記鋼板の端部を折り曲げ加工して形成されていることを特徴とする請求項1に記載の建造物の補強工法。   The method of reinforcing a building according to claim 1, wherein the rib is formed by bending an end portion of the steel plate. 積層された前記鋼板の表面に繊維シートを張って接着する繊維シート接着工程を有することを特徴とする請求項1または2に記載の建造物の補強工法。   The reinforcing method for a building according to claim 1 or 2, further comprising a fiber sheet bonding step in which a fiber sheet is stretched and bonded to the surface of the laminated steel plates. 前記鋼板積層工程において、複数の前記鋼板を横方向に配列するとともに、横方向に隣接する鋼板の間に空隙を設けることを特徴とする請求項1〜3のいずれかに記載の建造物の補強工法。   The said steel plate lamination process WHEREIN: While arranging the said several steel plate in a horizontal direction, a space | gap is provided between the steel plates adjacent to a horizontal direction, The reinforcement of the building in any one of Claims 1-3 characterized by the above-mentioned. Construction method. 前記繊維シート接着工程で鋼板の表面に張られた前記繊維シートの表面に、仕上げ材としてモルタルを塗布するモルタル施工工程を有することを特徴とする請求項に記載の建造物の補強工法。 The method for reinforcing a building according to claim 3 , further comprising a mortar construction step of applying mortar as a finishing material to the surface of the fiber sheet stretched on the surface of the steel sheet in the fiber sheet bonding step. 前記モルタル施工工程においては、前記繊維シートの表面に、含有セメントが微粒子状である微細モルタルを塗布する一次モルタル施工工程と、この微細モルタルの表面に二次モルタルを塗布する二次モルタル施工工程とを行うことを特徴とする請求項5に記載の建造物の補強工法。   In the mortar construction process, a primary mortar construction process in which fine mortar containing fine particles of cement is applied to the surface of the fiber sheet; and a secondary mortar construction process in which secondary mortar is applied to the surface of the fine mortar; The method for reinforcing a building according to claim 5, wherein: 前記二次モルタルは、ポリマーセメントモルタルまたは繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物であることを特徴とする請求項6に記載の建造物の補強工法。   The method for reinforcing a building according to claim 6, wherein the secondary mortar is polymer cement mortar, fiber-containing mortar, or a mixture of these polymer cement mortar and fiber-containing mortar.
JP2011284347A 2011-12-26 2011-12-26 Building reinforcement method Active JP5568710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284347A JP5568710B2 (en) 2011-12-26 2011-12-26 Building reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284347A JP5568710B2 (en) 2011-12-26 2011-12-26 Building reinforcement method

Publications (2)

Publication Number Publication Date
JP2013133637A JP2013133637A (en) 2013-07-08
JP5568710B2 true JP5568710B2 (en) 2014-08-13

Family

ID=48910525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284347A Active JP5568710B2 (en) 2011-12-26 2011-12-26 Building reinforcement method

Country Status (1)

Country Link
JP (1) JP5568710B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794550B1 (en) * 2014-04-11 2015-10-14 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building
JP5664989B1 (en) * 2014-04-28 2015-02-04 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of existing columns
JP5797815B1 (en) * 2014-06-27 2015-10-21 細田建設株式会社 Post-installed anchor and its construction method
JP6518886B2 (en) * 2014-09-30 2019-05-29 一般社団法人 レトロフィットジャパン協会 Building reinforcement structure
JP5984273B1 (en) * 2015-06-09 2016-09-06 株式会社サンヨーホーム Column reinforcement method and column reinforcement structure
JP6494488B2 (en) * 2015-10-13 2019-04-03 栄次 槇谷 Seismic reinforcement structure for concrete structures

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158493A (en) * 1995-12-11 1997-06-17 Nippon Riwaaku:Kk Earthquake resistance reinforcing method for existing reinforced concrete column
JP3741490B2 (en) * 1996-09-17 2006-02-01 佐藤工業株式会社 Seismic reinforcement method for existing concrete structures
JP3249789B2 (en) * 1999-05-26 2002-01-21 株式会社白石 Reinforcement method for columnar structures
JP2003096715A (en) * 2001-09-26 2003-04-03 Sumitomo Rubber Ind Ltd Method for reinforcing in-river concrete pier
JP2007239421A (en) * 2006-03-13 2007-09-20 Fujita Corp Method of reinforcing existing structure
JP2008240368A (en) * 2007-03-27 2008-10-09 Eiji Makitani Reinforced concrete column reinforcing structure
JP4945428B2 (en) * 2007-12-26 2012-06-06 大成建設株式会社 Reinforced structure
JP5459661B2 (en) * 2009-12-25 2014-04-02 株式会社大林組 Seismic reinforcement panel and seismic reinforcement method using the same

Also Published As

Publication number Publication date
JP2013133637A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5597897B2 (en) Building reinforcement method
JP5568710B2 (en) Building reinforcement method
JP6754560B2 (en) Bearing plate member
JP4160078B2 (en) Construction structure of building members using fiber sheet as the main joining material
JP2008240368A (en) Reinforced concrete column reinforcing structure
JP4279739B2 (en) Seismic retrofitting methods and walls for existing buildings
KR101998579B1 (en) Steel Built Up Beam And Column-Beam Joint Construction Method Using Thereof
JP5275545B2 (en) Seismic wall and its construction method
JP6227452B2 (en) Wall pillar structure
JP6053485B2 (en) Installation structure of studs in existing building
JP7052949B2 (en) Flat slab structure
JP4945428B2 (en) Reinforced structure
JP5806028B2 (en) Masonry building
JP7201149B2 (en) Horizontal member reinforcement structure
KR20130117204A (en) Earthquake-resistant frame and seismic retrofit method for building using the same
JP5475054B2 (en) Seismic shelter reinforcement method and seismic shelter with high seismic strength
JP2002317498A (en) Framework structure of multistory building
JP2003172040A (en) Vibration damping wall
JP6144931B2 (en) Column support structure
JP6293207B2 (en) Installation structure of studs in existing building
JP4247482B2 (en) Floor structure
JP6768358B2 (en) Slab structure
JP2015129385A (en) Earthquake-resisting wall reinforcement method and structure therefor
JP2000001999A (en) Vibration control reinforcement structure for existing building
JP7220627B2 (en) Damping structure of building and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5568710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250