JPH09158493A - Earthquake resistance reinforcing method for existing reinforced concrete column - Google Patents

Earthquake resistance reinforcing method for existing reinforced concrete column

Info

Publication number
JPH09158493A
JPH09158493A JP32154995A JP32154995A JPH09158493A JP H09158493 A JPH09158493 A JP H09158493A JP 32154995 A JP32154995 A JP 32154995A JP 32154995 A JP32154995 A JP 32154995A JP H09158493 A JPH09158493 A JP H09158493A
Authority
JP
Japan
Prior art keywords
concrete
polymer
concrete column
reinforced concrete
polymer cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32154995A
Other languages
Japanese (ja)
Inventor
Kuniaki Yano
邦昭 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON RIWAAKU KK
Original Assignee
NIPPON RIWAAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON RIWAAKU KK filed Critical NIPPON RIWAAKU KK
Priority to JP32154995A priority Critical patent/JPH09158493A/en
Publication of JPH09158493A publication Critical patent/JPH09158493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a construction period and attain safe, positive earthquake resistance reinforcing construction by covering the surface of an existing reinforced concrete column with polymer cement, winding an Aramid long fiber mesh sheet thereon, and further covering it with polymer cement. SOLUTION: The surface of an existing reinforced concrete column 1 is covered with polymer cement mortar or polymer cement concrete. An Aramid long fiber mesh sheet 3 is wound thereon and further covered with polymer cement mortar or polymer cement concrete 4. The Aramid long fiber has high strength, high modulus, low ductility and excellent alkaline resistance, and can be flexibly wound regardless of the shape of the concrete column. Polymer cement is high in adhesive strength to concrete and excellent in shock resistance, durability, weather resistance and waterproofness. The existing reinforced concrete column 1 and a reinforced part can therefore be integrated positively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、既存鉄筋コンクリ−ト
柱の耐震補強方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic retrofitting method for existing concrete reinforcing concrete columns.

【0002】[0002]

【従来の技術】阪神・淡路大震災(1995年)によ
り、鉄筋コンクリ−ト構造物は大被害を受けた。以前か
ら、地震の被害の原因としてコンクリ−ト柱のせん断破
壊が指摘されており、そのせん断破壊を増長するのは、
地震による多数回の交番繰返し変形であることが解明さ
れている。また、このような交番繰返し変形を防止する
には、主鉄筋に囲まれている部分のコンクリ−トすなわ
ちコアコンクリ−トを帯鉄筋などにより有効に拘束する
ことで、コンクリ−ト柱に復元力特性である安定と粘り
を確保させることが最適であることが解明されている。
2. Description of the Related Art The Great Hanshin-Awaji Earthquake (1995) caused severe damage to reinforced concrete structures. It has been pointed out that shear failure of concrete columns has been pointed out as the cause of earthquake damage.
It has been clarified that it is a large number of alternating deformations caused by an earthquake. In order to prevent such alternating repetitive deformation, by effectively constraining the concrete in the part surrounded by the main rebar, that is, the core concrete, by the strip rebar or the like, the restoring force to the concrete column is increased. It has been elucidated that ensuring the characteristics of stability and tenacity is optimal.

【0003】本発明に係る従来の技術としては、次のよ
うな技術がある。 (A)既存鉄筋コンクリ−ト柱の表面を主鉄筋の近傍ま
ではつり、帯鉄筋を巻増しし、コンクリ−トによって所
要の厚さに被覆する方法。 (B)特開昭58−54164に開示されている補強方
法。既存鉄筋コンクリ−ト柱の表面を、その主鉄筋近傍
まではつり、ファイバ−コンクリ−トもしくはファイバ
−モルタルによって所要の厚さに被覆する方法。 (C)特開昭48−53523他に開示されている補強
方法。既存鉄筋コンクリ−ト柱の表面を、溶接などによ
り筒状に形成した鋼板で囲い、鋼板と既存鉄筋コンクリ
−トの間に無収縮モルタルあるいはエポキシ樹脂を注入
する方法。 (D)特開昭62−242057他に開示されている補
強方法。既存鉄筋コンクリ−トの表面に、高強度長繊維
ストランドをスパイラル状に巻き付けてフ−プを形成す
る方法。
The following techniques are known as conventional techniques according to the present invention. (A) A method of suspending the surface of an existing rebar concrete column up to the vicinity of the main rebar, winding up the band rebar, and coating the rebar with a required thickness. (B) The reinforcing method disclosed in JP-A-58-54164. A method of suspending the surface of an existing reinforced concrete column up to the vicinity of the main reinforcing bar and coating it with a fiber concrete or a fiber mortar to a required thickness. (C) The reinforcing method disclosed in Japanese Patent Laid-Open No. 48-53523 and others. A method in which the surface of an existing rebar concrete column is surrounded by a steel plate formed into a tubular shape by welding or the like, and non-shrink mortar or epoxy resin is injected between the steel plate and the existing rebar concrete. (D) Reinforcement method disclosed in JP-A-62-242057 and others. A method of forming a hoop by spirally winding a high-strength long fiber strand around the surface of an existing rebar concrete.

【0004】しかし、従来の技術(A)では次のような
問題がある。 (イ)標準的なコンクリ−トにおける初期強度の出現に
は、気温10〜20℃で4日間、気温10℃以下で最低
6日間はかかる。また、打設後7日間はコンクリ−トの
養生を慎重に行うことが必要とされる。さらに、設計基
準強度の出現には日数が掛かる。これらのことにより、
工期は長いものとなり、工事費もかかる。 (ロ)コン
クリ−トにおいては、アルカリ骨材反応による吸水膨
脹、中性化による体積膨脹、乾燥収縮などの原因から、
ひびわれや剥離が発生しやすい。また、このひびわれや
剥離からの雨水等の侵入により、さらにコンクリ−トが
劣化したり、鉄筋が腐食したりする。したがって、強度
上の問題が生じやすい。 (ハ)コンクリ−トの性質上、硬化したコンクリ−トに
対して打設されるコンクリ−トは接着しにくく、既存鉄
筋コンクリ−トと補強した鉄筋コンクリ−トとが確実に
一体化しない。 (ニ)耐震補強は既存の構造物に対して行われるもの
で、例えば、橋脚などの耐震補強においては、絶えず自
動車や列車などの通行による載荷荷重を受けている。よ
って、主鉄筋が完全に露出するまではつるには、強度上
の問題から荷重に対する支保工を施したり、施工範囲を
分割しながら施工するなどの対策が必要となる。このこ
とにより、工期は長いものとなり、工事費もかかる。 (ホ)コンクリ−トは完全に硬化するのに時間がかかる
ので、橋脚などの耐震補強においては、コンクリ−トに
自動車や列車などの通行等による振動から硬化不良など
の影響がでやすい。
However, the conventional technique (A) has the following problems. (B) It takes 4 days at an air temperature of 10 to 20 ° C. and at least 6 days at an air temperature of 10 ° C. or less for the initial strength to appear in a standard concrete. Moreover, it is necessary to carefully cure the concrete for seven days after the casting. Further, it takes days for the design standard strength to appear. By these things,
The construction period is long and the construction cost is high. (B) In concrete, due to causes such as water absorption expansion due to alkali-aggregate reaction, volume expansion due to neutralization, and dry shrinkage,
Cracks and peeling are likely to occur. Further, the entry of rainwater or the like from the cracks or peeling further deteriorates the concrete or corrodes the reinforcing bars. Therefore, strength problems are likely to occur. (C) Due to the nature of the concrete, the concrete cast on the hardened concrete is difficult to bond, and the existing rebar concrete and the reinforced concrete reinforce are not reliably integrated. (D) Seismic retrofitting is performed on existing structures. For example, in seismic retrofitting of bridge piers, etc., the load of vehicles, trains, etc. is constantly applied. Therefore, until the main rebar is completely exposed, it is necessary to take measures such as supporting the load against the load or constructing the construction range while dividing the construction range, because of problems in strength. As a result, the construction period is long and the construction cost is high. (E) Since it takes time for the concrete to completely harden, in the earthquake-proof reinforcement of bridge piers and the like, the concrete is easily affected by vibrations due to passage of automobiles and trains.

【0005】従来の技術(B)では、前記の(ロ)につ
いてはやや改善されるものの、(イ)、(ハ)、
(ニ)、(ホ)の問題が残る。
In the prior art (B), although the above (b) is slightly improved, (a), (c),
The problems of (d) and (e) remain.

【0006】従来の技術(C)では次のような問題があ
る。 (ヘ)鋼板に防錆処理を施す必要があり、維持管理費が
掛かる。 (ト)鋼板の切断、曲げ加工、運搬、溶接などの費用が
掛かる。
The conventional technique (C) has the following problems. (F) It is necessary to apply anticorrosion treatment to the steel sheet, which results in maintenance costs. (G) Costs such as cutting, bending, transportation, and welding of steel sheets are required.

【0007】従来の技術(D)では次のような問題があ
る。 (チ)使用材の対衝撃性や、接着材の耐火性、安全性に
難がある。 (リ)使用材が高価である。
The conventional technique (D) has the following problems. (H) The impact resistance of the materials used and the fire resistance and safety of the adhesives are poor. (I) The material used is expensive.

【0008】[0008]

【発明が解決しようとする課題】本発明の解決しようと
する課題は、次のような課題である。 (イ)既存鉄筋コンクリ−トと補強部分とを確実に一体
化させるとともに、コアコンクリ−トを有効に拘束す
る。 (ロ)既存鉄筋コンクリ−トに対して保護機能の高いも
のにする。 (ハ)既存鉄筋コンクリ−ト構造物の補強鉄筋を露出さ
せるなど強度的に支障のある施工は行わない。 (ニ)工期を短縮し工事費の低減を図るとともに、安全
でかつ確実な耐震補強の施工を図る。
The problems to be solved by the present invention are as follows. (A) The existing concrete reinforcement concrete and the reinforcing portion are surely integrated, and the core concrete is effectively restrained. (B) Make the existing reinforcing bar concrete highly protective. (C) Do not perform construction that has a problem in terms of strength, such as exposing reinforcing bars of existing reinforcing bar concrete structures. (D) The construction period will be shortened to reduce construction costs, and safe and reliable seismic reinforcement will be implemented.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
の本発明請求項1に記載の既存鉄筋コンクリ−ト柱の耐
震補強方法は、既存鉄筋コンクリ−ト柱の表面をポリマ
−セメントモルタルまたはポリマ−セメントコンクリ−
トで被覆し、その上からアラミド長繊維メッシュシ−ト
を巻き付けた後、さらにポリマ−セメントモルタルまた
はポリマ−セメントコンクリ−トで被覆することを特徴
とする。本発明請求項2に記載の既存鉄筋コンクリ−ト
柱の耐震補強方法は、前記請求項1に記載の既存鉄筋コ
ンクリ−ト柱の耐震補強方法において、前記ポリマ−セ
メントモルタルまたはポリマ−セメントコンクリ−ト
が、ポルトランドセメントと、珪酸塩鉱物の粉細粒と、
砂利あるいは砕石と、水性ポリマ−ディスパ−ジョンあ
るいは再乳化形粉末樹脂とを混合してなることを特徴と
する。本発明請求項3に記載の既存鉄筋コンクリ−ト柱
の耐震補強方法は、前記請求項1または請求項2に記載
の既存鉄筋コンクリ−ト柱の耐震補強方法において、前
記アラミド長繊維メッシュシ−トが、主に帯方向の引張
力を補強し、軸方向は補助材である2次元のシ−トであ
ることを特徴とする。
The seismic retrofitting method for an existing reinforced concrete column according to claim 1 of the present invention for solving the above-mentioned problems is a method of reinforcing the surface of an existing reinforced concrete column with polymer cement mortar or Polymer cement concrete
It is characterized in that it is coated with a polymer cement mortar or a polymer-cement concrete after being wound with an aramid filament fiber mesh sheet. According to a second aspect of the present invention, there is provided a method for earthquake-proofing reinforcement of an existing reinforced concrete column according to the first aspect of the present invention, wherein the polymer-cement mortar or polymer-cement concrete is used. Portland cement and fine particles of silicate minerals,
It is characterized by mixing gravel or crushed stone with an aqueous polymer dispersion or re-emulsified powder resin. According to a third aspect of the present invention, there is provided an earthquake-proof reinforcing method for an existing reinforced concrete column according to the first aspect of the present invention, which is the aramid continuous fiber mesh sheet. However, it is characterized in that it mainly reinforces the tensile force in the band direction and the axial direction is a two-dimensional sheet which is an auxiliary material.

【0010】[0010]

【発明の実施の形態】本発明による既存鉄筋コンクリ−
ト柱の耐震補強方法の一実施の形態について説明する。
本発明による耐震補強方法は、アラミド長繊維メッシュ
シ−トを既存鉄筋コンクリ−ト柱に巻き付けて、スパイ
ラルフ−プとしてコアコンクリ−トを有効に拘束し、そ
の前後にポリマ−セメントモルタルまたはポリマ−セメ
ントコンクリ−トを被覆して補強するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Existing reinforcing bar concrete according to the present invention
An embodiment of a method for seismic retrofitting a toe pillar will be described.
The seismic strengthening method according to the present invention comprises wrapping an aramid filament fiber mesh sheet around an existing rebar concrete column to effectively constrain the core concrete as a spiral hoop, and before and after the polymer cement mortar or polymer. The cement concrete is coated and reinforced.

【0011】アラミド長繊維は、高強度、高モジュラ
ス、低伸度であり、耐アルカリ性にもすぐれる。したが
って、コンクリ−ト柱が角形であってもしなやかに巻き
付けることができ力の伝達力にもすぐれることから、強
固にコアコンクリ−トを拘束できる。ポリマ−セメント
は、高強度で、早強性で初期強度の出現に数時間しかか
からなく、コンクリ−トに対する接着力にすぐれる。ま
た、耐衝撃性、耐久性、耐侯性、防水性にすぐれる。し
たがって、既存鉄筋コンクリ−ト柱の保護機能にすぐれ
るとともに、アラミド長繊維の弱点を補って既存鉄筋コ
ンクリ−トと補強部分とを確実に一体化できる。
The aramid filaments have high strength, high modulus, low elongation and excellent alkali resistance. Therefore, even if the concrete column has a rectangular shape, it can be wrapped flexibly and has an excellent force transmission force, so that the core concrete can be firmly restrained. The polymer cement has high strength, early strength, takes only a few hours for the initial strength to appear, and has excellent adhesion to concrete. It also has excellent impact resistance, durability, weather resistance, and waterproofness. Therefore, while being excellent in the protection function of the existing reinforced concrete column, the weakness of the aramid filaments can be compensated and the existing reinforced concrete and the reinforcing portion can be reliably integrated.

【0012】本発明による耐震補強方法の施工は、次の
ような手順で行う。 図1に示される既存鉄筋コンクリ−ト1の表面を高圧
洗浄により汚れを落とし、エポキシ系シ−ラ−を劣化部
分に十分に浸透させる。 12時間以上経過させて、ポリマ−セメントモルタル
またはポリマ−セメントコンクリ−ト2を10〜15m
m、下塗りする。 下塗りが乾燥しないうちに、図2に示されるアラミド
長繊維メッシュシ−ト3を包帯を巻くように、スパイラ
ル状に巻き付ける。図3に示されるアラミド長繊維メッ
シュシ−ト3は、密に太い繊維5と粗く細い繊維6とか
らなり、一方向に強く効くような織り方がなされてい
る。 エポキシ系シ−ラ−でサイジング処理をする。 3〜4日間経過させて、ポリマ−セメントモルタルま
たはポリマ−セメントコンクリ−ト4を10〜15mm、
上塗りする。
The seismic retrofitting method according to the present invention is carried out in the following procedure. The surface of the existing reinforced concrete 1 shown in FIG. 1 is cleaned by high pressure to remove stains, and the epoxy sealer is sufficiently penetrated into the deteriorated portion. 10 to 15 m of polymer-cement mortar or polymer-cement concrete 2 after 12 hours or more
m, undercoat. Before the undercoat has dried, the aramid long-fiber mesh sheet 3 shown in FIG. 2 is spirally wound like a bandage. The aramid long-fiber mesh sheet 3 shown in FIG. 3 is composed of densely thick fibers 5 and coarse and thin fibers 6, and is woven so as to strongly work in one direction. Sizing is performed with an epoxy sealer. After 3 to 4 days, 10 to 15 mm of polymer-cement mortar or polymer-cement concrete 4 is added.
Top coat.

【0013】したがって、施工は既存構造物に強度的に
支障を及ぼすことなくできる。また、作業者にとって危
険な作業もない。また、ポリマ−セメントモルタルまた
はポリマ−セメントコンクリ−トの塗り作業およびアラ
ミド長繊維メッシュシ−ト巻き付け作業は容易で熟練し
た作業は必要としないこと、ポリマ−セメントモルタル
またはポリマ−セメントコンクリ−トが早強性であるこ
となどから工期が短縮でき、工事費の低減できる。ま
た、水性で安全なポリマ−セメントは扱いやすいし、ア
ラミド長繊維も安定的に安価に入手可能である。
Therefore, the construction can be performed without affecting the existing structure in terms of strength. Also, there is no dangerous work for the worker. Further, the coating work of the polymer-cement mortar or polymer-cement concrete and the winding work of the aramid long-fiber mesh sheet are easy and do not require skillful work. Due to its strength, the construction period can be shortened and the construction cost can be reduced. In addition, water-based and safe polymer cement is easy to handle, and aramid filaments are stably available at low cost.

【発明の効果】本発明により、次のような効果がある。 (イ)工期を短縮し建築費を低減できる。 (ロ)既存鉄筋コンクリ−トと補強部分とを確実に一体
化できるとともに、コアコンクリ−トを有効に拘束でき
る。 (ハ)既存鉄筋コンクリ−トに対しての保護機能が高
い。 (ニ)既存構造物に、安全上および強度上の支障を及ぼ
さない。 (ホ)高度な施工技術を必要としない。
The present invention has the following effects. (B) The construction period can be shortened and the construction cost can be reduced. (B) The existing reinforcing bar concrete and the reinforcing portion can be reliably integrated, and the core concrete can be effectively restrained. (C) It has a high protection function against the existing concrete reinforcement. (D) The existing structure will not be affected in terms of safety and strength. (E) No advanced construction technology is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による耐震補強方法の一実施の形態に
ついて説明する図で、耐震補強後の鉄筋コンクリ−ト柱
の断面図。
FIG. 1 is a view for explaining an embodiment of a seismic strengthening method according to the present invention, which is a cross-sectional view of a reinforcing bar concrete column after seismic strengthening.

【図2】 本発明による耐震補強方法の一実施の形態に
ついて説明する図で、アラミド長繊維メッシュシ−トを
巻き付けた状態での鉄筋コンクリ−ト柱の側面図。
FIG. 2 is a view for explaining an embodiment of the seismic strengthening method according to the present invention, and is a side view of a reinforcing bar concrete column in a state in which an aramid long fiber mesh sheet is wound.

【図3】 本発明による耐震補強方法の一実施の形態に
ついて説明する図で、アラミド長繊維メッシュシ−トの
構造を示す説明図
FIG. 3 is a diagram for explaining an embodiment of the seismic strengthening method according to the present invention, and is an explanatory diagram showing the structure of an aramid long fiber mesh sheet.

【符号の説明】[Explanation of symbols]

1 既存鉄筋コンクリ−ト 2、4 ポリマ−セメントモルタルまたはポリマ−セメ
ントコンクリ−ト 3 アラミド長繊維メッシュシ−ト 5、6 繊維
1 Existing Reinforcing Bar Concrete 2, 4 Polymer-Cement Mortar or Polymer-Cement Concrete 3 Aramid Long Fiber Mesh Sheet 5, 6 Fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】既存鉄筋コンクリ−ト柱の表面をポリマ−
セメントモルタルまたはポリマ−セメントコンクリ−ト
で被覆し、その上からアラミド長繊維メッシュシ−トを
巻き付けた後、さらにポリマ−セメントモルタルまたは
ポリマ−セメントコンクリ−トで被覆することを特徴と
する既存鉄筋コンクリ−ト柱の耐震補強方法。
1. The surface of an existing reinforced concrete column is made of polymer.
An existing rebar concrete characterized by being coated with a cement mortar or a polymer-cement concrete, wrapping an aramid filament fiber mesh sheet thereon, and further coating with a polymer-cement mortar or a polymer-cement concrete. -A method of seismic retrofitting of columns.
【請求項2】前記ポリマ−セメントモルタルまたはポリ
マ−セメントコンクリ−トが、ポルトランドセメント
と、珪酸塩鉱物の粉細粒と、砂利あるいは砕石と、水性
ポリマ−ディスパ−ジョンあるいは再乳化形粉末樹脂と
を混合してなることを特徴とする前記請求項1に記載の
既存鉄筋コンクリ−ト柱の耐震補強方法。
2. The polymer-cement mortar or polymer-cement concrete comprises Portland cement, fine particles of silicate minerals, gravel or crushed stone, and water-based polymer dispersion or re-emulsified powder resin. The method for earthquake-proofing reinforcement of an existing reinforced concrete column according to claim 1, characterized in that
【請求項3】前記アラミド長繊維メッシュシ−トが、主
に帯方向の引張力を補強し、軸方向は補助材である2次
元のシ−トであることを特徴とする前記請求項1または
請求項2に記載の既存鉄筋コンクリ−ト柱の耐震補強方
法。
3. The aramid continuous fiber mesh sheet is a two-dimensional sheet which mainly reinforces tensile force in the band direction and is an auxiliary material in the axial direction. The method for earthquake-proofing reinforcement of an existing reinforced concrete column according to claim 2.
JP32154995A 1995-12-11 1995-12-11 Earthquake resistance reinforcing method for existing reinforced concrete column Pending JPH09158493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32154995A JPH09158493A (en) 1995-12-11 1995-12-11 Earthquake resistance reinforcing method for existing reinforced concrete column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32154995A JPH09158493A (en) 1995-12-11 1995-12-11 Earthquake resistance reinforcing method for existing reinforced concrete column

Publications (1)

Publication Number Publication Date
JPH09158493A true JPH09158493A (en) 1997-06-17

Family

ID=18133812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32154995A Pending JPH09158493A (en) 1995-12-11 1995-12-11 Earthquake resistance reinforcing method for existing reinforced concrete column

Country Status (1)

Country Link
JP (1) JPH09158493A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256653A (en) * 2001-03-02 2002-09-11 Ryukichi Toyama Method for reinforcing reinforced concrete structural member
JP2006336365A (en) * 2005-06-03 2006-12-14 Yahagi Construction Co Ltd Asr countermeasure method and asr countermeasure structure
JP2007070991A (en) * 2005-09-09 2007-03-22 East Japan Railway Co Reinforcing structure
CN102605900A (en) * 2012-03-03 2012-07-25 江苏新桥建工有限公司 Combined member of fiber cloth reinforced concrete prefabricated part and manufacturing method of combined member
JP2013133637A (en) * 2011-12-26 2013-07-08 Eiji Makitani Method for reinforcing building structure
CN104389439A (en) * 2014-12-18 2015-03-04 江阴瑞鑫建筑特种技术工程有限公司 Strengthening method for reinforced concrete column
CN108798054A (en) * 2018-05-31 2018-11-13 昆明理工大学 A kind of reinforcement means for the enhancing damaged frame column that ECC is combined with reinforced mesh
JP2019007325A (en) * 2017-06-20 2019-01-17 株式会社奥村組 Method of reinforcing existing columns

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256653A (en) * 2001-03-02 2002-09-11 Ryukichi Toyama Method for reinforcing reinforced concrete structural member
JP2006336365A (en) * 2005-06-03 2006-12-14 Yahagi Construction Co Ltd Asr countermeasure method and asr countermeasure structure
JP2007070991A (en) * 2005-09-09 2007-03-22 East Japan Railway Co Reinforcing structure
JP2013133637A (en) * 2011-12-26 2013-07-08 Eiji Makitani Method for reinforcing building structure
CN102605900A (en) * 2012-03-03 2012-07-25 江苏新桥建工有限公司 Combined member of fiber cloth reinforced concrete prefabricated part and manufacturing method of combined member
CN104389439A (en) * 2014-12-18 2015-03-04 江阴瑞鑫建筑特种技术工程有限公司 Strengthening method for reinforced concrete column
JP2019007325A (en) * 2017-06-20 2019-01-17 株式会社奥村組 Method of reinforcing existing columns
CN108798054A (en) * 2018-05-31 2018-11-13 昆明理工大学 A kind of reinforcement means for the enhancing damaged frame column that ECC is combined with reinforced mesh

Similar Documents

Publication Publication Date Title
Meier Composite materials in bridge repair
Kunieda et al. Recent progress on HPFRCC in Japan required performance and applications
Hollaway et al. Strengthening of reinforced concrete structures: Using externally-bonded FRP composites in structural and civil engineering
Jumaat et al. A review of the repair of reinforced concrete beams
US5852905A (en) Method for manufacturing a composite girder and so manufactured girder
McKenna et al. Strengthening of reinforced concrete flexural members using externally applied steel plates and fibre composite sheets—A survey
JPH09158493A (en) Earthquake resistance reinforcing method for existing reinforced concrete column
JP3790088B2 (en) Structural member cross-section repair method
US20050252165A1 (en) Fiber reinforced metal construct for reduced fatigue and metal embrittlement in susceptible structural applications
JP7118880B2 (en) Shear reinforcement method for PC box girder bridge
KR20010009973A (en) Rod material for reinforced concrete structure
Carolin Strengthening of concrete structures with cfrp: shear strengthening and full scale applications
KR101151395B1 (en) High strength reinforced for concrete structure
JP2002146904A (en) Method for reinforcing concrete structure and reinforced concrete structure
JP3565957B2 (en) Bridge pier reinforcement method
JPH08218326A (en) Reinforcing method of floor plate of elevated bridge
JPH10121745A (en) Earthquake-resistant reinforcing method
CN112430021A (en) Damaged RC beam reinforced by unidirectional FRP grid/high-ductility high-permeability concrete composite and preparation method thereof
KR100310016B1 (en) Fiber-Reinforced Epoxy Panel And Process For Preparing Thereof
Sobuz et al. Structural strengthening of RC beams externally bonded with different CFRP laminates configurations
SU697665A1 (en) Reinforced-concrete element
KR100776808B1 (en) Rod member
Nanni et al. Strengthening of RC flexural members with FRP composites
Rizkalla Partial Bonding and Partial Prestressing Using Stainless Steel Reinforcement for Members Prestressed with FRP.
JPH05141064A (en) Reinforcing structure for concrete construction