JP3817402B2 - RC seismic studs - Google Patents

RC seismic studs Download PDF

Info

Publication number
JP3817402B2
JP3817402B2 JP2000035144A JP2000035144A JP3817402B2 JP 3817402 B2 JP3817402 B2 JP 3817402B2 JP 2000035144 A JP2000035144 A JP 2000035144A JP 2000035144 A JP2000035144 A JP 2000035144A JP 3817402 B2 JP3817402 B2 JP 3817402B2
Authority
JP
Japan
Prior art keywords
column
stub
seismic isolation
damper
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000035144A
Other languages
Japanese (ja)
Other versions
JP2001227089A (en
Inventor
訓祥 杉本
安彦 増田
宏彰 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000035144A priority Critical patent/JP3817402B2/en
Publication of JP2001227089A publication Critical patent/JP2001227089A/en
Application granted granted Critical
Publication of JP3817402B2 publication Critical patent/JP3817402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄筋や鋼管で補強されたRC造耐震間柱に係わり、特に大地震時には柱梁架構に先行して降伏した後、地震の振動エネルギを鉄筋や鋼管で吸収して揺れを減少させるようにしたRC造耐震間柱に関する。
【0002】
【従来の技術】
構造物の耐震性能を高める方法として、▲1▼ 柱梁架構の構面全体に耐震壁を設けて強度・剛性を向上させる、▲2▼ 耐震デバイスを組み込むことにより地震時の応答を制御する、▲3▼ 柱梁部材に鋼板や補強繊維あるいは繊維補強シート等を巻き付けて柱梁部材自体の靱性を向上させる、等の手法がある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記▲1▼の耐震壁を設ける場合では、構面全体を塞ぐ必要があることから、構面内に開口を設けることができない。また、壁部材に靱性を期待するには複数階におよぶ連層耐震壁としなければならず、そうすると上下階の平面計画に統一性を持たせる必要が生じてしまうなどして、平面計画上の制約が厳しくなる。さらに、既存建造物の耐震補強工事では、既存架構との一体性を持たせるために、きわめて大掛かりな工事となってしまう。
【0004】
また、▲2▼の耐震デバイスを組み込む場合では、デバイスとして粘弾性体からなるものや、鋼材による摩擦ダンパーもしくは油圧ダンパーなどの機械的な機構を用いたものになるが、機械的なダンパー機構はコストアップにつながることが多く、また、粘弾性体からなるものはその素材によっては温度や速度などに対する依存性が大きいため、四季を通じてその性能が十分に発揮されるかどうか、不明確な部分が多い。
【0005】
また、▲3▼の鋼板若しくは補強繊維や繊維補強シートを巻き付けて柱梁部材の靭性を高める場合では、柱梁架構の剛性の大幅な向上はあまり期待できず、加えて既存建造物の耐震補強工事では、やはり大掛かりな工事となってしまう。
【0006】
本発明は、上記課題を解決するためになされたものであり、その目的は、柱梁架構の強度・剛性の向上が図れるだけでなく、大地震時には当該柱梁架構に先行して降伏し、爾後、地震の振動エネルギを鉄筋や鋼管で吸収して揺れを減少させることができるとともに、開口部の平面計画及び制振構造の配置計画が容易に行え、しかも既存建造物に対しても一体性を持たせて容易に耐震補強工事が行えるRC造耐震真柱を提供することにある。
【0007】
【課題を解決するための手段】
以上の目的を達成するため、請求項1に記載の発明は、柱梁架構の上下の梁間に両端が一体化されて挿入設置されるRC造耐震間柱において、該間柱は、少なくともその一端部側の梁接合部が中央部分よりも平断面積を拡大されて剛強なスタブ状に形成されていて、該中央部分が上下の梁の層間変位に伴い柱梁架構よりも早期に降伏するダンパー部とされており、該ダンパー部とスタブ状梁接合部とにはダンパー部主筋が貫通して一体性を持たされていることを特徴とする。
【0008】
当該請求項1に係る発明のRC造耐震間柱によれば、少なくとも一端部側の梁接合部が平断面積の大きい剛強なスタブ状に形成されて梁と一体化されるので、大地震時に上下の梁間に層間変位が生じると、スタブ状の梁接合部は梁と一体となって変位する。このため、該スタブ状に形成された梁接合部の分だけ柱より短柱化されているダンパ部の変位角は柱の変位角よりも大きくなり、応力が該ダンパー部の付け根に集中し、当該ダンパー部の付け根は柱梁架構に先行して降伏し、爾後、このダンパー部の鉄筋や鋼管等の補強材が弾・塑性変形して地震の振動エネルギを吸収し、建造物の揺れを減少させる。また、ダンパー部の内法高さ、その断面形状、及びダンパー部主筋の配筋量を適宜変更することによって、当該ダンパー部個々の剛性、強度、エネルギー吸収性能を適宜に設定することができ、加えてその本数も調整することでRC造耐震間柱の剛性、強度、エネルギー吸収性能はさらに広範に設定し得る。
【0009】
ここで、請求項2に記載の発明のように、前記スタブ状の梁接合部は上下両端に設ける構成とすることもできる。また、前記RC造耐震間柱は、請求項3に示すように鉄筋コンクリート製となし得る。
【0010】
請求項4に記載の発明は、柱梁架構の上下の梁間に両端が一体化されて挿入設置されるRC造耐震間柱において、該間柱は、少なくともその一端部側の梁接合部が中央部分よりも平断面積を拡大されて剛強なスタブ状に形成されていて、該中央部分が上下の梁の層間変位に伴い柱梁架構よりも早期に降伏するダンパー部とされており、前記RC造耐震間柱が、鉄筋コンクリート造の梁接合部と鋼管コンクリート造のダンパー部とからなることを特徴とする。
【0011】
さらに、請求項5に示すように、前記RC造耐震間柱はプレキャストコンクリート製となし、梁接合部と梁とを両者を貫通するロッド材によりプレストレスによって圧着接合させて一体化する構成とすることもできる。このようにプレキャスト製とすれば、既存の建造物に対し、梁の所望の位置に該ロッドの挿通孔を尖設するだけで当該RC造耐震間柱を容易に追設することができ、既存建造物の耐震補強工事を簡易に行い得る。
【0012】
【発明の実施の形態】
以下に、本発明に係るRC造耐震間柱の好適な実施形態について、添付図面を参照して詳細に説明する。
【0013】
図1は本発明のRC造耐震間柱の基本構成となる第1実施例を概略的に示すものであり、(a)は正断面図、(b)は側断面図である。同図に示すように、本発明のRC造耐震間柱10は、柱と梁とからなる柱梁架構の構面内で上下の梁4,4間に両端が一体化されて挿入設置されるものであって、少なくともその一端部側に中央部分よりも平断面積を大きくして剛強なスタブ状に形成されたスタブ状梁接合部12と、このスタブ状梁接合部12よりも平断面積が小さく形成されたダンパー部14とを有する。
【0014】
この第1実施例では、上記スタブ状梁接合部12は図示するようにRC造耐震間柱10の上端部側のみに形成され、ダンパー部14はスタブ状梁接合部12の下面から下方に延びて3分割形成されて並設されており、その下端部は柱梁架構の下側の梁4に一体化されて接合されている。ダンパー部14とスタブ状梁接合部12、および架構の下側の梁4とにはダンパー部主筋16が貫通しており、これらは一体性を持つ。また、スタブ状梁接合部12には上記ダンパー部主筋16に重ね継ぎされるとともに上端部が上側の梁4内に貫通される壁部縦筋18が設けられていて、当該スタブ状梁接合部12は上側の梁4と一体性を持たされている。
【0015】
ダンパー部14の平断面は矩形や円形に限らず任意形状で良いが、図示例では矩形断面となっている。また、その分割本数も図示例の3本に限らず任意本数で良く、もちろんスタブ状梁接合部12の平断面積より小さければ、分割せずに1本としても良い。
【0016】
また、図示例ではスタブ状梁接合部12をRC造耐震間柱10の上端部側のみに形成しているが下端部側のみに形成する様にしても良く、さらには図2の第2実施例に示すように上下の両端部双方に形成して、架構の上下の梁4に一体化させて接合するようにしてもよい。
【0017】
この様に、剛強なスタブ状梁接合部12を上下の両端部または上端部のみ、あるいは下端部のみに持つRC造耐震間柱10では、図3に示すように、そのスタブ状梁接合部12が形成される分だけダンパー部14の長さが架構6の柱2よりも短くなって短柱化されているから、大地震時に上下の梁4に大きな水平方向の相対的な層間変位が生じると、スタブ状梁接合部12は梁4と一体に変位し、よってダンパー部14の変位角は架構6の柱2の変位角よりも大きくなる。このため、応力はダンパー部14の付け根部分に集中し、当該部位は架構6の柱2の変形が小さい段階で先行して降伏し、それ以後においてダンパー部主筋16が弾・塑性変形して履歴によるエネルギー吸収をするようになり、これにより建造物の揺れが抑制されて減少する。また、基本的に耐震間柱10であるので構面全体を塞ぐことがなく、開口部を確保できて平面計画及び制振構造の配置計画が容易に行える。
【0018】
ここで、ダンパー部14の内法高さ、その断面形状、及びダンパー部主筋16の配筋量を適宜変更することによって、当該ダンパー部14個々の剛性、強度、エネルギー吸収性能を適宜に設定することができ、加えてその本数も調整することでRC造耐震間柱10の剛性、強度、エネルギー吸収性能はさらに広範に設定し得る。
【0019】
なお、施工にあたって、既存建造物に適用する場合には、RC造耐震間柱10を設置しようとする所望の位置に合わせて、上下の梁4にダンパー主筋16若しくは壁部縦筋18の挿入孔を尖設して、これらの挿入口に一方側を挿入し鉄筋類を配筋し、その周囲を型枠で囲んでコンクリートをその型枠内部に注入充填することでおこなう。そして、上記挿入孔にはグラウト材を充填して定着させる。
【0020】
図4は第3実施例を示す。この第3実施例では、RC造耐震間柱10がプレキャスト製品となっており、スタブ状梁接合部12は上下の両端に形成されていて、壁部縦筋は設けられずにダンパー部主筋16により当該スタブ状梁接合部12とダンパー部14とが一体化されて予め工場で製造される。
【0021】
このRC造耐震間柱10と架構6との取り合いは、スタブ状梁接合部12にこれを縦に貫通させて形成しておいたロッド材挿入孔(図示せず)と、架構6の梁4にその内部の鉄筋(図示せず)を避けて形成した梁側のロッド材挿入孔(図示せず)とにロッド材たるPC鋼棒20を挿通させ、このPC鋼棒20の両端部をプレストレス導入による圧着工法で定着具22を介してそれぞれ梁4とスタブ状梁接合部12とに定着させて一体化する。
【0022】
即ち、RC造耐震真柱10と架構6は別途に施工していくことができ、架構6の施工が完了した後、プレキャスト製品化したRC造耐震真柱10を搬入して、架構6内に挿入して組み込み、PC鋼棒20による圧着で施工するから、既存建物に組み込む場合でも、梁4にPC鋼棒18等からなるロッド材挿入用の孔をあけるだけで容易に施工できる。
【0023】
また、この様にプレストレス力による圧着工法で上下の梁4にスタブ状梁接合、部12を一体性を持たせて接合するようにすると、前記第1実施例及び第2実施例と同様の作用効果が得られるだけでなく、当該スタブ状梁接合部12の強度・剛性の向上も図ることができ、中央のダンパー部14を降伏させていく際に、上・下端部のスタブ状梁接合部12の損傷をより少なくなるようにプレストレス力で調整できる。
【0024】
なお、この発明で言うRC造とは鉄筋コンクリートに限らず、鋼管充填コンクリートをも含むものであり、図5に示す第4実施例のようにダンパー部14はその周囲を鋼管24で囲繞して形成する構成とし、スタブ状梁接合部12は上述の各実施例と同様に鉄筋コンクリート造としても、あるいは鋼管充填コンクリート造としても良い。もちろん、この場合にあってもRC造耐震間柱10はプレキャスト製品となして、プレストレス導入による圧着工法で梁4と一体性を持たせるようにしても良い。
【0025】
【発明の効果】
以上説明したように、本発明によれば、柱梁架構の上下の梁間に両端が一体化されて挿入設置されるRC造耐震間柱は、少なくともその一端部側の梁接合部が中央部分よりも平断面積を拡大されて剛強なスタブ状に形成されて梁と一体化されているので、大地震時に上下の梁間に大きな層間変位が生じると、スタブ状の梁接合部は梁と一体となって変位し、当該スタブ状梁接合部の分だけ柱より短柱化されているダンパー部はその変位角が架構の柱よりも大きくなって、応力が該ダンパー部の付け根に集中するようになる。これ故、当該ダンパー部の付け根は柱梁架構に先行して降伏し、爾後、このダンパー部の鉄筋や鋼管等の補強材が弾・塑性変形して地震の振動エネルギを吸収するようになり、もって建造物の揺れを減少させることができる。また、ダンパー部の内法高さ、その断面形状、及びダンパー部主筋の配筋量を適宜変更することによって、当該ダンパー部個々の剛性、強度、エネルギー吸収性能を適宜に設定することができ、加えてその本数も調整することでRC造耐震間柱の剛性、強度、エネルギー吸収性能はさらに広範に設定し得る。
【0026】
また、RC造耐震間柱をプレキャストコンクリート製となし、梁接合部と梁とを両者を貫通するロッド材によりプレストレスによって圧着接合させて一体化する構成とすれば、既存の建造物に対し、梁の所望の位置に該ロッドの挿通孔を尖設するだけで当該RC造耐震間柱を容易に追設することができ、既存建造物の耐震補強工事を簡易に行うことができる。
【図面の簡単な説明】
【図1】本発明のRC造耐震間柱の基本構成となる第1実施例を概略的に示すものであり、(a)は正断面図、(b)は側断面図である。
【図2】本発明のRC造耐震間柱の第2実施例を概略的に示すものであり、(a)は正断面図、(b)は側断面図である。
【図3】(a)は本発明のRC造耐震間柱が設けられた柱梁架構の層間変位が生じていない状態を示す作用説明図であり、(b)は層間変位が生じている状態の作用説明図である。
【図4】本発明のRC造耐震間柱の第3実施例を概略的に示すものであり、(a)は正断面図、(b)は同図(a)中のIVb−IVb線部の矢視側断面図である。
【図5】本発明のRC造耐震間柱の第4実施例を概略的に示すものであり、(a)は正断面図、(b)は同図(a)中のIVb−IVb線部の矢視側断面図である。
【符号の説明】
2 柱
4 梁
6 架構
10 RC造耐震間柱
12 スタブ状梁接合部
14 ダンパー部
16 ダンパー部主筋
18 壁部縦筋
20 PC鋼棒(ロッド部材)
22 定着具
24 鋼管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an RC seismic isolation column reinforced with reinforcing steel bars and steel pipes. In particular, in the event of a large earthquake, after yielding ahead of a column beam structure, the vibration energy of the earthquake is absorbed by the reinforcing bars and steel pipes to reduce shaking. It relates to RC seismic isolation columns.
[0002]
[Prior art]
As a method to improve the earthquake resistance of the structure, (1) improve the strength and rigidity by installing the earthquake resistant wall on the entire surface of the column beam structure, (2) control the response at the time of earthquake by incorporating the earthquake resistance device, (3) There is a method of improving the toughness of the column beam member itself by winding a steel plate, a reinforcing fiber, a fiber reinforced sheet or the like around the column beam member.
[0003]
[Problems to be solved by the invention]
However, in the case of providing the earthquake resistant wall of the above (1), it is necessary to block the entire construction surface, and therefore it is not possible to provide an opening in the construction surface. In addition, in order to expect the toughness of the wall member, it is necessary to use multi-story earthquake-resistant walls that span multiple floors, which would require the uniformity of the floor plan for the upper and lower floors. Restrictions become stricter. Furthermore, the seismic retrofitting work for existing buildings is extremely large in order to have integrity with the existing frame.
[0004]
In addition, when the earthquake-resistant device (2) is incorporated, the device is made of a viscoelastic material or a mechanical mechanism such as a friction damper or a hydraulic damper made of steel, but the mechanical damper mechanism is In many cases, this leads to an increase in cost, and depending on the material, viscoelastic materials are highly dependent on temperature, speed, etc., so it is unclear whether the performance will be fully demonstrated throughout the seasons. Many.
[0005]
In addition, when the steel beam or reinforcing fiber or fiber reinforced sheet of (3) is wrapped to increase the toughness of the column beam member, a significant improvement in the rigidity of the column beam frame cannot be expected. In the construction, it will be a big construction.
[0006]
The present invention has been made in order to solve the above-mentioned problems, and its purpose is not only to improve the strength and rigidity of the column beam frame, but also to yield in advance of the column beam frame in the event of a large earthquake, After the dredging, the vibration energy of the earthquake can be absorbed by reinforcing bars and steel pipes to reduce the shaking, and the plan of the opening and the arrangement plan of the damping structure can be easily performed, and also integrated with the existing structure. The purpose is to provide an RC seismic column that can be easily seismically strengthened.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is an RC seismic isolation column in which both ends are integrated and installed between upper and lower beams of a column beam frame. The beam joint portion is formed in a rigid stub shape having a larger plane cross-sectional area than the center portion, and the center portion yields earlier than the column beam frame due to the interlayer displacement of the upper and lower beams, The damper portion and the stub-shaped beam joint portion are characterized in that a damper portion main bar penetrates and is integrated .
[0008]
According to the RC seismic isolation column of the invention according to claim 1, at least a beam joint on one end side is formed in a rigid stub shape having a large cross-sectional area and is integrated with the beam. When an interlayer displacement occurs between the beams, the stub-shaped beam joint is displaced integrally with the beam. For this reason, the displacement angle of the damper portion, which is shorter than the column by the beam joint portion formed in the stub shape, is larger than the displacement angle of the column, and stress concentrates at the root of the damper portion, The base of the damper part yields ahead of the column beam frame, and after the failure, the reinforcing material of the damper part, such as reinforcing bars and steel pipes, elastically and plastically deforms to absorb the vibration energy of the earthquake and reduce the shaking of the building Let In addition, by appropriately changing the internal height of the damper part, its cross-sectional shape, and the amount of reinforcement of the damper part main reinforcement, the rigidity, strength, and energy absorption performance of the damper part can be appropriately set, In addition, by adjusting the number, the rigidity, strength, and energy absorption performance of RC seismic isolation columns can be set more widely.
[0009]
Here, as in the invention described in claim 2, the stub-shaped beam joints may be provided at both upper and lower ends. Further, the RC seismic isolation column can be made of reinforced concrete as shown in claim 3.
[0010]
The invention according to claim 4 is the RC seismic isolation column in which both ends are integrated and installed between the upper and lower beams of the column beam frame. The intermediate column has at least a beam joint at one end side thereof than the central portion. The flat cross-sectional area is enlarged and formed into a strong stub shape, and the central part is a damper part that yields earlier than the column beam frame due to the interlayer displacement of the upper and lower beams. The stud is characterized by comprising a reinforced concrete beam joint and a steel pipe concrete damper.
[0011]
Furthermore, as shown in claim 5, the RC seismic isolation column is made of precast concrete, and the beam joint portion and the beam are integrally joined by pressure bonding with a rod material penetrating both. You can also. In this way, if it is made of precast, it is possible to easily add the RC seismic stud to the existing building simply by sharpening the insertion hole of the rod at the desired position of the beam. Seismic retrofitting work can be done easily.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the RC seismic resistant stud according to the present invention will be described in detail with reference to the accompanying drawings.
[0013]
FIG. 1 schematically shows a first embodiment which is a basic configuration of an RC seismic stud of the present invention, wherein (a) is a front sectional view and (b) is a side sectional view. As shown in the figure, the RC seismic isolation column 10 of the present invention is inserted and installed with both ends being integrated between the upper and lower beams 4 and 4 within the structure of the column beam frame composed of columns and beams. The stub-like beam joint 12 formed in a rigid stub shape with a larger plane cross-sectional area than that of the central part at least at one end thereof, and a plane cross-sectional area larger than that of the stub-like beam joint 12 And a small damper portion 14.
[0014]
In the first embodiment, the stub-shaped beam joint 12 is formed only on the upper end side of the RC seismic isolation column 10 as shown in the figure, and the damper portion 14 extends downward from the lower surface of the stub-shaped beam joint 12. It is divided into three parts and arranged side by side, and its lower end is integrated and joined to the lower beam 4 of the column beam frame. The damper main bar 16 penetrates the damper part 14, the stub-shaped beam joint part 12, and the beam 4 on the lower side of the frame, and these have unity. Further, the stub-shaped beam joint 12 is provided with a wall vertical bar 18 that is overlapped with the damper main bar 16 and has an upper end penetrating into the upper beam 4. 12 is integrated with the upper beam 4.
[0015]
The flat cross section of the damper portion 14 is not limited to a rectangle or a circle, but may be an arbitrary shape, but in the illustrated example, it has a rectangular cross section. Further, the number of divisions is not limited to three in the illustrated example, and any number may be used. Of course, as long as it is smaller than the plane cross-sectional area of the stub-like beam joint portion 12, it may be one without division.
[0016]
Further, in the illustrated example, the stub-shaped beam joint 12 is formed only on the upper end side of the RC seismic isolation column 10, but it may be formed only on the lower end side. Further, the second embodiment of FIG. As shown in FIG. 5, the upper and lower ends may be formed so as to be integrated with the upper and lower beams 4 of the frame.
[0017]
In this way, in the RC seismic isolation column 10 having the rigid stub-like beam joints 12 only at the upper and lower ends or only at the upper end or only at the lower end, as shown in FIG. Since the length of the damper portion 14 is shorter than the column 2 of the frame 6 by the amount formed, if a large horizontal relative interlayer displacement occurs in the upper and lower beams 4 during a large earthquake, The stub-shaped beam joint portion 12 is displaced integrally with the beam 4, so that the displacement angle of the damper portion 14 is larger than the displacement angle of the column 2 of the frame 6. For this reason, the stress is concentrated on the base portion of the damper portion 14, and the portion yields in advance when the deformation of the column 2 of the frame 6 is small, and thereafter, the damper main muscle 16 is elastically and plastically deformed and history The energy absorption due to this will be absorbed, and this will suppress and reduce the shaking of the building. In addition, since it is basically the earthquake-resistant stud 10, the entire construction surface is not blocked, an opening can be secured, and a plan plan and an arrangement plan for the damping structure can be easily performed.
[0018]
Here, by appropriately changing the internal height of the damper portion 14, the cross-sectional shape thereof, and the bar arrangement amount of the damper portion main reinforcement 16, the rigidity, strength, and energy absorption performance of each damper portion 14 are appropriately set. In addition, by adjusting the number thereof, the rigidity, strength, and energy absorption performance of the RC seismic frame 10 can be set more widely.
[0019]
In addition, when applying to an existing building at the time of construction, an insertion hole for the damper main bar 16 or the wall vertical bar 18 is formed in the upper and lower beams 4 in accordance with a desired position where the RC seismic isolation column 10 is to be installed. This is done by placing them sharply, inserting one side into these insertion openings, placing reinforcing bars, surrounding the area with a formwork, and pouring and filling concrete into the formwork. The insertion hole is filled with a grout material and fixed.
[0020]
FIG. 4 shows a third embodiment. In this third embodiment, the RC seismic proof stud 10 is a precast product, the stub-shaped beam joints 12 are formed at both the upper and lower ends, and no wall vertical bars are provided, and the damper main bars 16 are used. The stub-shaped beam joint portion 12 and the damper portion 14 are integrated and manufactured in advance in a factory.
[0021]
The RC seismic frame 10 and the frame 6 are connected to a rod material insertion hole (not shown) formed by vertically penetrating the stub-shaped beam joint 12 and the beam 4 of the frame 6. A PC steel rod 20 as a rod material is inserted into a rod material insertion hole (not shown) on the beam side formed so as to avoid a reinforcing bar (not shown) inside, and both ends of the PC steel rod 20 are prestressed. Each of the beams 4 and the stub-like beam joints 12 is fixed and integrated through the fixing tool 22 by the crimping method by introduction.
[0022]
That is, the RC seismic column 10 and the frame 6 can be separately constructed. After the construction of the frame 6 is completed, the RC earthquake-proof true column 10 that is a precast product is carried into the frame 6. Since it is inserted and assembled, and is constructed by pressure bonding with the PC steel rod 20, even when incorporating into an existing building, it can be easily constructed by simply drilling a rod material insertion hole made of the PC steel rod 18 or the like in the beam 4.
[0023]
In addition, when the stub-like beam is joined to the upper and lower beams 4 by the prestressing pressure bonding method and the portion 12 is joined with the integrity, the same as in the first and second embodiments. In addition to obtaining operational effects, the strength and rigidity of the stub-shaped beam joint 12 can be improved. When yielding the damper 14 at the center, the stub-shaped beam joints at the upper and lower ends are joined. The prestressing force can be adjusted so as to reduce the damage to the portion 12.
[0024]
The RC structure referred to in the present invention includes not only reinforced concrete but also steel pipe-filled concrete, and the damper portion 14 is formed by surrounding its periphery with a steel pipe 24 as in the fourth embodiment shown in FIG. The stub-shaped beam joint 12 may be a reinforced concrete structure or a steel pipe-filled concrete structure as in the above-described embodiments. Of course, even in this case, the RC seismic isolation column 10 may be a precast product and may be integrated with the beam 4 by a crimping method using prestressing.
[0025]
【The invention's effect】
As described above, according to the present invention, the RC seismic isolation column in which both ends are integrated and installed between the upper and lower beams of the column beam frame has at least a beam joint portion at one end side thereof than the center portion. Since the cross-sectional area is enlarged and formed into a rigid stub shape and integrated with the beam, if a large interlayer displacement occurs between the upper and lower beams during a large earthquake, the stub-shaped beam joint will be integrated with the beam. The damper part that is displaced by the length of the stub-shaped beam joint is shorter than the column, and the displacement angle is larger than that of the column of the frame, so that the stress is concentrated at the base of the damper part. . Therefore, the base of the damper part yields ahead of the column beam frame, and after the failure, reinforcing materials such as rebars and steel pipes of this damper part elastically and plastically deform to absorb the vibration energy of the earthquake, Therefore, the shaking of the building can be reduced. In addition, by appropriately changing the internal height of the damper part, its cross-sectional shape, and the amount of reinforcement of the damper part main reinforcement, the rigidity, strength, and energy absorption performance of the damper part can be appropriately set, In addition, by adjusting the number, the rigidity, strength, and energy absorption performance of RC seismic columns can be set more widely.
[0026]
Also, if the RC seismic frame is made of precast concrete and the beam joint and beam are joined together by pressure bonding with a rod material that penetrates both, it will be integrated with the existing building. It is possible to easily install the RC seismic isolation column simply by sharpening the insertion hole of the rod at the desired position, and it is possible to easily perform the seismic reinforcement work for the existing building.
[Brief description of the drawings]
FIG. 1 schematically shows a first embodiment as a basic configuration of an RC seismic stud of the present invention, wherein (a) is a front sectional view and (b) is a side sectional view.
FIG. 2 schematically shows a second embodiment of the RC seismic resistant stud according to the present invention, in which (a) is a front sectional view and (b) is a side sectional view.
FIG. 3 (a) is an operation explanatory view showing a state in which an interlayer displacement of a column beam frame provided with an RC seismic isolation column according to the present invention is not generated, and FIG. 3 (b) is a state in which an interlayer displacement is generated. It is an operation explanatory view.
FIGS. 4A and 4B schematically show a third embodiment of the RC seismic stud according to the present invention, in which FIG. 4A is a front sectional view, and FIG. 4B is a sectional view taken along line IVb-IVb in FIG. It is arrow sectional drawing.
FIGS. 5A and 5B schematically show a fourth embodiment of an RC seismic stud according to the present invention, in which FIG. 5A is a front sectional view and FIG. 5B is a sectional view taken along line IVb-IVb in FIG. It is arrow sectional drawing.
[Explanation of symbols]
2 Column 4 Beam 6 Frame 10 RC seismic isolation column 12 Stub-shaped beam joint 14 Damper 16 Damper main reinforcement 18 Wall vertical reinforcement 20 PC steel rod (rod member)
22 Fixing tool 24 Steel pipe

Claims (5)

柱梁架構の上下の梁間に両端が一体化されて挿入設置されるRC造耐震間柱において、
該間柱は、少なくともその一端部側の梁接合部が中央部分よりも平断面積を拡大されて剛強なスタブ状に形成されていて、該中央部分が上下の梁の層間変位に伴い柱梁架構よりも早期に降伏するダンパー部とされており、該ダンパー部とスタブ状梁接合部とにはダンパー部主筋が貫通して一体性を持たされていることを特徴とするRC造耐震間柱。
In RC seismic isolation columns that are inserted and installed with both ends integrated between the upper and lower beams of the column beam frame,
The inter-column is formed in a rigid stub shape in which at least the beam joint portion on one end side thereof has a larger plane cross-sectional area than the central portion and is formed into a rigid stub shape. An RC seismic isolation column characterized in that the damper part yields earlier, and the damper part main bar penetrates the damper part and the stub-like beam joint part so as to be integrated .
前記スタブ状の梁接合部が上下両端に形成されていることを特徴とする請求項1に記載のRC造耐震間柱。  The RC seismic resistant stud according to claim 1, wherein the stub-shaped beam joints are formed at both upper and lower ends. 前記RC造耐震間柱が鉄筋コンクリート製であることを特徴とする請求項1または2のいずれかに記載のRC造耐震間柱。  The RC seismic isolation column according to claim 1 or 2, wherein the RC seismic isolation column is made of reinforced concrete. 柱梁架構の上下の梁間に両端が一体化されて挿入設置されるRC造耐震間柱において、
該間柱は、少なくともその一端部側の梁接合部が中央部分よりも平断面積を拡大されて剛強なスタブ状に形成されていて、該中央部分が上下の梁の層間変位に伴い柱梁架構よりも早期に降伏するダンパー部とされており、
前記RC造耐震間柱が、鉄筋コンクリート造の梁接合部と鋼管コンクリート造のダンパー部とからなることを特徴とするRC造耐震間柱。
In RC seismic isolation columns that are inserted and installed with both ends integrated between the upper and lower beams of the column beam frame,
The inter-column is formed in a rigid stub shape in which at least the beam joint portion on one end side thereof has a larger plane cross-sectional area than the central portion and is formed into a rigid stub shape. It is considered as a damper part surrendering earlier,
The RC earthquake-resistant interphase column is composed of a reinforced concrete beam joint and a steel pipe concrete damper .
前記RC造耐震間柱がプレキャストコンクリート製であり、前記スタブ状の梁接合部と梁とを貫通するロッド材によりプレストレスによって圧着接合されることを特徴とする請求項1〜4のいずれかに記載のRC造耐震間柱。  5. The RC seismic isolation pillar is made of precast concrete, and is pressure-bonded by prestress with a rod material penetrating the stub-shaped beam joint and the beam. 6. RC seismic studs.
JP2000035144A 2000-02-14 2000-02-14 RC seismic studs Expired - Fee Related JP3817402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000035144A JP3817402B2 (en) 2000-02-14 2000-02-14 RC seismic studs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000035144A JP3817402B2 (en) 2000-02-14 2000-02-14 RC seismic studs

Publications (2)

Publication Number Publication Date
JP2001227089A JP2001227089A (en) 2001-08-24
JP3817402B2 true JP3817402B2 (en) 2006-09-06

Family

ID=18559384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000035144A Expired - Fee Related JP3817402B2 (en) 2000-02-14 2000-02-14 RC seismic studs

Country Status (1)

Country Link
JP (1) JP3817402B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735585B2 (en) * 2007-03-29 2011-07-27 鹿島建設株式会社 Concrete rod-shaped damper structure
JP6437713B2 (en) * 2013-09-17 2018-12-12 前田建設工業株式会社 Plate house
CN103669896B (en) * 2013-10-23 2015-12-30 北京工业大学 The method of outer adhesive tape ductility pile damper reinforced concrete frame method ruggedized construction
JP6412684B2 (en) * 2013-11-08 2018-10-24 株式会社竹中工務店 Vibration control structure
CN106895228A (en) * 2015-12-21 2017-06-27 中国核动力研究设计院 A kind of apparatus support structure with bit shift compensation function

Also Published As

Publication number Publication date
JP2001227089A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP5069534B2 (en) Outer shell reinforcement structure of existing building
JP3899354B2 (en) Seismic isolation building
JP3799036B2 (en) Building basic structure and construction method
KR101901435B1 (en) Seismic rehabilitation method for openings of building of indirect connection method using corrugated steel plates
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
KR101236575B1 (en) Method for constructing partition wall using seismic control device
JP3817402B2 (en) RC seismic studs
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP3766941B2 (en) Seismic reinforcement method for existing buildings
JP2001303584A (en) Structure for connecting head of foundation pile with footing
JP2000160683A (en) Aseismatic reinforcing structure of wooden house
JP4571904B2 (en) Seismic reinforcement method using concrete blocks
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP4660810B2 (en) Boundary beam damper
JP6359349B2 (en) Mounting structure and mounting method
JP4092651B2 (en) Seismic reinforcement structure for existing buildings
JPH0776953A (en) Damping structure
JP3897648B2 (en) Seismic control structure of reinforced concrete building
JP5778062B2 (en) Seismic and damping material installation structure
JP2017110418A (en) Building structure
JP2003090051A (en) Structure for joining pile and column together
CN212927132U (en) Anti-seismic reinforcing structure of frame structure filled ductile anti-seismic component
JP6052460B2 (en) Seismic reinforcement structure and construction method
JP6388738B1 (en) Seismic reinforcement structure for concrete structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees