JP7216005B2 - 焦点可変レンズを用いた粒子特性評価装置 - Google Patents

焦点可変レンズを用いた粒子特性評価装置 Download PDF

Info

Publication number
JP7216005B2
JP7216005B2 JP2019548925A JP2019548925A JP7216005B2 JP 7216005 B2 JP7216005 B2 JP 7216005B2 JP 2019548925 A JP2019548925 A JP 2019548925A JP 2019548925 A JP2019548925 A JP 2019548925A JP 7216005 B2 JP7216005 B2 JP 7216005B2
Authority
JP
Japan
Prior art keywords
detection
variable focus
focus lens
illumination
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019548925A
Other languages
English (en)
Other versions
JP2020510838A (ja
JP2020510838A5 (ja
Inventor
ジェイソン セシル ウィリアム コルベット
デヴィッド ブライス
Original Assignee
マルバーン パナリティカル リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルバーン パナリティカル リミテッド filed Critical マルバーン パナリティカル リミテッド
Publication of JP2020510838A publication Critical patent/JP2020510838A/ja
Publication of JP2020510838A5 publication Critical patent/JP2020510838A5/ja
Application granted granted Critical
Publication of JP7216005B2 publication Critical patent/JP7216005B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • G01N2015/0222Investigating a scatter or diffraction pattern from dynamic light scattering, e.g. photon correlation spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/03Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4728Optical definition of scattering volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optics & Photonics (AREA)

Description

発明の詳細な説明
本発明は、粒子特性評価のための方法及び装置に関する。
光子相関分光法(又は、動的光散乱法、DLS)は、粒子懸濁液から散乱される時間分解信号を測定する。試料の緩和時間は、粒径分布が推定され得る散乱信号の相関関数を用いて特定される。この方法は、懸濁液中の各粒子が、照射光ビーム(例えば、レーザ)からの光のみを散乱し、すでに他の粒子から散乱された光を散乱しない場合に、最も効果的に作用する。高濃度での多重散乱は、この方法の質を低下させる傾向にある。
後方散乱角の小さな範囲内では、多重散乱信号は、単散乱信号とほぼ同じ緩和時間(粒径は緩和時間から計算される)を有し得る。
従来技術(非接触後方散乱、又は、NIBSと呼ばれる場合がある)では、図1及び2に示されるように、照射レーザ光路及び後方散乱検出光路を、試料セル/キュベット内の変動する位置に配置するために可動レンズを用いる。照射光路と検出光路との交点は、検出領域又は散乱体積と呼ばれ得る。
試料が混濁している(つまり、粒子を高濃度で有する)場合、検出領域はセル壁に近接して配置されてもよく、このことは、試料内の短縮された照射路長に起因して、多重散乱を大幅に減少させる。さらに、後方散乱角は、すでに説明したように、多重散乱信号が単散乱信号と同様の緩和時間を有するように選択されてもよい。
上述した両方の利点を兼ね備えるために、セル内で検出領域を移動させることは有利であり、移動範囲全体にわたって、選択された検出角を維持することもまた有利である。
粒子濃度が低い場合、検出領域は、セルの中心に向かって、又は、少なくとも壁からの静的散乱の寄与を避けて移動されてもよい。壁からの静的散乱の寄与は、高濃度試料においては、粒子からの散乱の寄与に比べて無視できる一方で、このような壁からの静的散乱は、低濃度試料については、相関関係のないノイズの原因に(又は、静的参照信号にさえ)なり得る。壁からの静的散乱の寄与は、それゆえに、信号対雑音比を低下させ得る。静的散乱は、コレログラムのベースラインを上昇させ、それゆえに、測定の信号対雑音の大きさであるその切片を低下させる。検出領域をセル壁から離れるように移動させることは、それゆえに、信号対雑音比を改善する。
試料の低濃度限界において、DLSは数の変動の影響を受け、それにより、散乱信号は、粒子のブラウン運動により生じる散乱への寄与に加え、検出領域内の粒子数の変動により変化する。しかしながら、より多くの粒子に対応するために検出ビームのサイズを単純に拡大することは、実用的ではない場合がある。なぜならば、このことは、ビームのサイズを単一のコヒーレンス領域よりも大きくし得るからである。DLSを用いる最大の信号対雑音の測定は、単一のコヒーレンス領域内からの測定に依存し得る。
コレログラムの信号対雑音比は、一般に、コレログラムの切片及びY軸から読み取られる。この値を最大化するために、単一モードファイバが、スペックル場の「画像」から単一の空間周波数を選択するように、検出光路内で用いられてもよい。検出光路のサイズを単純に拡大することは、このようなファイバへの最適でない結合をもたらすかもしれず、あるいは、2以上のコヒーレンス領域から集光するかもしれず、このことは、信号対雑音比を低下し得る。
上述した問題の少なくともいくつかを解決又は改善するための方法及び装置が望まれている。
国際公開第2016/034902号は、試料を保持するための試料セル、試料セル内の試料を照射するために光ビームを発生させ、それにより、光ビームと試料との相互作用による散乱光を発生させるための光源、試料内で光ビームを集束するための集束レンズ、及び、試料内で集束された光ビームと交差する検出光路に沿って散乱光を検出するための検出器、を備える粒子特性評価装置であって、試料内の集束された光ビームと検出光路との交点が検出領域を規定し、装置は、検出領域の体積を変化させるための光学構成を備え、試料内の検出領域の位置を変化させるように集束レンズが移動することにより試料内の光ビームの焦点面と検出光路との位置を変化させるように、集束レンズが可動である、粒子特性評価装置を開示する。
本発明の第1態様によれば、光ビームで試料を照射するための光源と、光ビームと試料との相互作用により生じる散乱光を検出するように構成される検出器と、散乱光を散乱体積から検出器へ集光するように、かつ/あるいは、光ビームを試料に向けるように構成される焦点可変レンズと、を備える粒子特性評価装置であって、該装置は、焦点可変レンズの焦点距離の調整が、照射及び検出光路間の角度を変えることなく、散乱体積の位置の変化をもたらすように構成される、粒子特性評価装置が提供される。
「散乱体積」及び「検出領域」という用語は、本開示においては同義である。照射及び検出光路間の角度は、散乱体積にて測定されるものであり、この角度は、本開示において「散乱角」として言及される場合がある。
焦点可変レンズと試料との間には(例えば、照射及び/又は検出光路に沿って)、集束レンズが設けられてもよい。集束レンズは、少なくとも1つの固定焦点距離レンズを備えていてもよい。
集束レンズは、焦点可変レンズの主面上に焦点を有していてもよい。散乱体積の位置が調整されるため、この構成は、一定の散乱角を実現するための的確な方法である。
集束レンズは、試料セル(又は、試料)内に、さらなる焦点を有していてもよい。この構成は、集束レンズが、焦点可変レンズに散乱体積を映し出すことを意味する。
散乱体積の位置は、レンズ又はレンズ素子を並進させることなく調整可能としてもよく、このことは、装置の信頼性をより向上し、かつ/あるいは、照射及び/又は検出光路のより高速の調整を可能にし得る。
装置は、(例えば、試料セル内に)試料を受容するために、試料セル及び/又は試料セルホルダを備えていてもよい。
装置は、散乱光を検出器に到達させるための検出光路、及び、光ビームを光源から試料に到達させるための照射光路を備えていてもよい。検出光路及び照射光路は、共に焦点可変レンズを通過してもよい。いくつかの実施形態において、検出光路のみ、又は、検出光路のみが焦点可変レンズを通過してもよい。
焦点可変レンズは、光軸を有していてもよい。検出光路は、光軸に対して(非ゼロの)第1角度をなしていてもよい。照射光路は、光軸に対して(非ゼロの)第2角度をなしていてもよい。第1及び第2角度は、実質的に同一としてもよい。
第1角度及び/又は第2角度は、5度から15度の間であってもよく、及び/又は、10度以下、又は、5度以下であってもよい。散乱体積における検出及び照射光路間の角度は、10度以下であってもよい。
照射及び検出光路は、共通平面上に位置してもよい(又は、共通平面上になくてもよい)。共通平面は、水平又は垂直であってもよい(明らかな理由から、試料セルの開口は装置内で上方に向けてもよい)。
検出光路及び照射光路は、焦点可変レンズから離れた第1位置にて交差してもよい。第1位置は、焦点可変レンズの光軸上にあってもよい。焦点可変レンズは、焦点可変レンズの焦点を第1位置と同一位置に配置する焦点距離を有するように動作可能としてもよい。
焦点可変レンズは、焦点が第1位置と同一位置に配置される場合に、屈折作用がない状態(un-powered)にしてもよい(又は、焦点距離の動作範囲の中心にあってもよい)。このことは、焦点可変レンズが、静止又は中心動作点で、又は、静止又は中心動作点の近傍で、より安定性又は線形性を有し得るため、有利となり得る。
光源結合レンズは、光源と焦点可変レンズとの間の照射光路上に配置されてもよい。検出器結合レンズは、検出器と焦点可変レンズとの間の検出光路上に配置されてもよい。光源結合レンズは、照射光路を焦点可変レンズの主面上に集束させるように配置されてもよい。検出器結合レンズは、検出光路が焦点可変レンズの主面(例えば、同一の主面)上に集束するように構成されてもよい。
集束レンズは、焦点可変レンズと試料との間に(例えば、照射及び/又は検出光路に沿って)設けられてもよい。集束レンズは、少なくとも1つの固定焦点距離レンズを備えていてもよい。
集束レンズは、焦点可変レンズの主面上に焦点を有していてもよい。集束レンズは、試料セル(又は、試料)内にさらなる焦点を有していてもよい。この構成は、集束レンズが、散乱体積を焦点可変レンズに映し出すことを意味する。
装置は、焦点可変レンズの焦点距離を変更することにより、試料内の散乱体積の位置が光源に接近することが、散乱体積の減少をもたらすように構成されてもよい。焦点可変レンズの焦点距離を変更することにより、試料内の散乱体積の位置が光源から離れることが、散乱体積の増加をもたらしてもよい。
検出領域の体積の調整は、粒子特性評価方法の測定パラメータの優れた最適化をもたらし得る。これにより、高及び/又は低粒子濃度の試料の信号対雑音比を改善することができる。混濁試料に関しては、検出領域は試料セル壁に近接して配置されてもよく、小さな検出領域が用いられる。粒子濃度が低い試料に関しては、検出領域は、試料セル壁から離れて配置されてもよく、比較的大きな検出領域が用いられる。検出領域の位置及び体積の両方の調整は、測定パラメータの改善された最適化を容易にし、確実に特性評価され得る最低及び/又は最高粒子濃度の大幅な改善を可能にする。
検出光路及び照射光路は、試料セル内で集束されてもよく、又は、試料セル内でコリメートされてもよく、又は、これらの状態の間(例えば、収束していく照射及び検出路を試料セル内に有するが、試料セル内では集束しない)であってもよい。
照射光路を試料セルに向けるために、照射ミラーが焦点可変レンズと試料との間に設けられてもよく、照射光路が、焦点可変レンズを通過しないように構成されてもよい。照射ミラーは、照射光路を、焦点可変レンズの軸に沿って試料に向けてもよい。より多くの光学部品が、互いに角度をなすのではなく、共通の軸上に配列されるため、この構成は、光学アライメントをより容易にし得る。
装置は、検出光路からの散乱光と重ね合わせるために、照射光ビームの一部を検出器に向けるように構成されるビームスプリッタをさらに備えてもよい。このことは、検出器における光ヘテロダイン検出を可能にする。
ビームスプリッタは、好適には、照射光路と検出光路との交点に配置されてもよい。
装置は、(照射及び/又は検出光路の空間光変調による)変調光ヘテロダイン検出を容易にするために、照射光路及び/又は検出光路において少なくとも1つの光学素子を移動/振動させるためのアクチュエータをさらに備えてもよい。
装置は、ゼータ電位測定を実行するように構成されてもよい。
検出光路は、平面反射器を備えていてもよく、アクチュエータは、検出光路を空間的に変調するために、平面反射器を、反射器の平面に対して実質的に直交する方向に移動させるように構成されてもよい。
焦点可変レンズは、試料の屈折率、試料が中で保持される試料セルの向き、試料セルの屈折率、及び、試料セルの形状、のうちの少なくとも1つを補償するように動作可能としてもよい。
焦点可変レンズは、並進ステージ上に取り付けられてもよい。
焦点可変レンズは、変形可能なレンズを備えていてもよい。焦点可変レンズは、刺激を与えることにより屈折率が変化し得る材料を含んでいてもよい。焦点可変レンズは、2つ以上のレンズ素子のうちの少なくとも1つが可動である2つ以上のレンズ素子を有する光学サブアセンブリを備えていてもよい。
焦点可変レンズは、前方散乱光、後方散乱光、及び、側方散乱光のうちの少なくとも1つを集光するように構成されてもよい。
前方散乱光とは、散乱体積における、光ビームの伝播方向の成分を有する伝播方向の散乱光として定義されてもよい。後方散乱光とは、散乱体積における、光ビームの伝播方向とは反対の方向に成分を有する伝播方向の散乱光として定義されてもよい。側方散乱光とは、光ビームの伝播方向に対して実質的に直交する方向に伝播する散乱光として定義されてもよい。
焦点可変レンズは集束レンズに入射する光ビーム幅を変化させるように構成されてもよい。
「可動レンズ」という語は、(例えば、リードスクリューの回転により)レンズを制御可能に再配置するための並進構成(又はステージ)上に取り付けられるレンズを指してもよい。
集束レンズは、試料内に検出光路を集束させてもよい。
照射及び/又は検出光路は、光ファイバを備えていてもよい。
光ファイバは、単一モードファイバを備えていてもよい。
装置は、検出光路と光ファイバとを結合するように構成される結合レンズをさらに備えてもよい。
結合レンズは、屈折率分布型レンズを備えていてもよい。
装置は、検出器からの出力を用いて動的光散乱測定を実行するように動作可能としてもよい。
装置は、動的光散乱測定を実行するための処理装置を備えていてもよい。動的光散乱法を実行することは、検出器から取得される時系列散乱強度データについて相関演算を実行すること、及び、その後、平均粒径(Zaverage)、多分散指数(pdi)、及び、粒径分布のうちの少なくとも1つを特定するために、相関演算の結果として得られたコレログラムを処理すること、を含んでもよい。コレログラムを処理することは、公知のキュムラント法を用いることを含んでもよく、あるいは、CONTINのようないくつかの他の方法もしくは非負制約付き最小二乗法を含んでもよい。
第2態様によれば、光ビームで試料を照射するための光源と、光ビームと試料との相互作用により生じる散乱光を検出するように構成される検出器と、散乱光を散乱体積から検出器へ集光するように、かつ/あるいは、光ビームを試料に向けるように構成される焦点可変レンズと、照射路及び検出路のうちの少なくとも1つを試料に向けるように構成される集束反射器と、を備える粒子特性評価装置が提供される。
装置は、焦点可変レンズの焦点距離を変化させることが、散乱体積の位置及び/又はサイズを変更することなく、試料内の照射及び検出光路の交角を変更するように構成されてもよい。
集束反射器は、照射光路及び検出光路を試料に向けるように構成されてもよい。
集束レンズが、焦点可変レンズと試料との間に(例えば、照射及び/又は検出光路に沿って)設けられてもよい。集束レンズは、少なくとも1つの固定焦点距離レンズを備えていてもよい。
集束レンズは、焦点可変レンズの主面上に焦点を有していてもよい。
散乱角は、レンズ又はレンズ素子を並進させることなく調整可能としてもよく、このことは、装置の信頼性をより向上させ得る、かつ/あるいは、散乱角の高速調整を可能にし得る。
装置は、(例えば、試料セル内に)試料を受容するために、試料セル及び/又は試料セルホルダを備えていてもよい。
装置は、散乱光を検出器に到達させるための検出光路、及び、光ビームを光源から試料に到達させるための照射光路を備えていてもよい。検出光路及び照射光路は、共に焦点可変レンズを通過してもよい。いくつかの実施形態においては、検出光路のみ、又は、検出光路のみが、焦点可変レンズを通過してもよい。
焦点可変レンズは、光軸を有していてもよい。(例えば、焦点可変レンズの検出器側の)検出光路は、光軸に対して(非ゼロの)第1角度をなしていてもよい。(例えば、焦点可変レンズの光源側の)照射光路は、光軸に対して(非ゼロの)第2角度をなしていてもよい。第1角度及び第2角度は、実質的に等しくてもよい。
第1角度及び/又は第2角度は、5度から15度の間であってもよく、かつ/あるいは、10度以下、又は、5度以下であってもよい。散乱体積における検出及び照射光路の間の角度は、10度以下であってもよい。
照射及び検出光路は、共通平面上に位置していてもよい(あるいは、共通平面上になくてもよい)。共通平面は、水平又は垂直でもよい(液体が開口を通って落ちないように、試料セルの開口は装置内で上方に向いていてもよい)。
検出光路及び照射光路は、焦点可変レンズから離れた第1位置にて交差してもよい。第1位置は、焦点可変レンズの光軸上にあってもよい。焦点可変レンズは、焦点可変レンズの焦点を第1位置と同一位置に配置する焦点距離を有するように動作可能であってもよい。
焦点可変レンズは、焦点が第1位置と同一位置に配置される場合に、屈折作用がない状態であってもよい(又は、焦点距離の動作範囲の中心にあってもよい)。このことは、焦点可変レンズが、静止又は中心動作点で、又は、静止又は中心動作点の近傍で、より安定性又は線形性を有し得るため、有利となり得る。
光源と焦点可変レンズとの間の照射光路上に、光源結合レンズが配置されてもよい。検出器と焦点可変レンズとの間の検出光路上には、検出器結合レンズが配置されてもよい。光源結合レンズは、照射光路を焦点可変レンズの主面上に集束させるように構成されてもよい。検出器結合レンズは、検出光路を焦点可変レンズの主面(例えば、同一の主面)上に集束させるように構成されてもよい。
集束レンズは、焦点可変レンズと試料との間に(例えば、照射及び/又は検出光路に沿って)設けられてもよい。集束レンズは、少なくとも1つの固定焦点距離レンズを備えていてもよい。
集束レンズは、焦点可変レンズの主面上に焦点を有していてもよい。集束レンズは、試料セル(又は試料)内にさらなる焦点を有していてもよい。この構成は、集束レンズが散乱体積を焦点可変レンズに映し出すことを意味する。
装置は、焦点可変レンズを調整することによる散乱角の減少が散乱体積の減少をもたらすように構成されてもよい。焦点可変レンズを調整することによる散乱角の増加が、散乱体積の増加をもたらしてもよい。
検出光路及び照射光路は、試料セル内で集束されてもよく、あるいは、試料セル内でコリメートされてもよく、あるいは、これらの状態の間(例えば、収束していく照射及び検出路を試料セル内に有するが、試料セル内では集束しない)であってもよい。
照射光路を試料セルに向けるために、照射ミラーが焦点可変レンズと試料との間に設けられてもよく、照射光路が焦点可変レンズを通過しないように構成されてもよい。照射ミラーは、焦点可変レンズの軸に沿って、照射光路を試料に向けてもよい。この構成は、より多くの光学部品が、互いに角度をなすのではなく、共通の軸上に配列されるため、光学アライメントをより容易にし得る。
装置は、検出光路からの散乱光と重ね合わせるために、照射光ビームの一部を検出器に向けるように構成されるビームスプリッタをさらに備えてもよい。このことは、検出器における光ヘテロダイン検出を可能にする。
ビームスプリッタは、好適には、照射光路と検出光路との交点に配置されてもよい。
装置は、(照射及び/又は検出光路の空間光変調による)変調光ヘテロダイン検出を容易にするために、照射光路及び/又は検出光路において少なくとも1つの光学素子を移動/振動させるためのアクチュエータをさらに備えてもよい。
装置は、ゼータ電位測定を実行するように構成されてもよい。
検出光路は、平面反射器を備えていてもよく、アクチュエータは、検出光路を空間的に変調するために、平面反射器を反射器の平面に対して実質的に直交する方向に移動させるように構成されてもよい。
焦点可変レンズは、並進ステージ上に取り付けられてもよい。
焦点可変レンズは、変形可能なレンズを備えていてもよい。焦点可変レンズは、刺激を与えることにより屈折率が変化し得る材料を含んでいてもよい。焦点可変レンズは、2つ以上のレンズ素子のうちの少なくとも1つが可動である2つ以上のレンズ素子を有する光学サブアセンブリを備えていてもよい。
焦点可変レンズは、前方散乱光、後方散乱光、及び、側方散乱光のうちの少なくとも1つを集光するように構成されてもよい。
焦点可変レンズは、集束反射器上に入射する光ビーム位置(及び/又は光ビーム幅)を変化させるように構成されてもよい。
集束反射器は、検出光路を試料内に集束させてもよい。
照射及び/又は検出光路は、光ファイバを備えていてもよい。光ファイバは、単一モードファイバを備えていてもよい。装置は、検出光路と光ファイバとを結合するように構成される結合レンズをさらに備えてもよい。結合レンズは、屈折率分布型レンズを備えていてもよい。
装置は、検出器からの出力を用いて、動的光散乱測定を実行するように動作可能としてもよい。装置は、検出器からの出力を用いて、静的光散乱測定を実行するように構成されてもよい。
装置は、焦点可変レンズを制御することにより、様々な散乱角にて一連の測定を実行し、その後、該一連の測定に関する検出器からの出力から静的光散乱測定を行うように構成される処理装置を備えていてもよい。処理装置は、様々な散乱角における散乱強度パターンを、粒径又は粒径分布と関連付けるために、レイリー又はミー散乱理論を用いるように構成されてもよい。
装置は、動的光散乱測定を実行するための処理装置を備えていてもよい。動的光散乱法を実行することは、検出器から取得される時系列散乱強度データについて相関演算を実行すること、及び、その後、平均粒径(Zaverage)、多分散指数(pdi)、及び、粒径分布のうちの少なくとも1つを特定するために、相関演算の結果として得られたコレログラムを処理すること、を含んでもよい。コレログラムを処理することは、周知のキュムラント法を用いることを含んでもよく、あるいは、CONTINのようないくつかの他の方法又は非負制約付き最小二乗法を含んでもよい。
本発明の第3態様によれば、光ビームで試料を照射するための光源と、光ビームと試料との相互作用により生じる散乱光を検出するように構成される検出器と、散乱光を散乱体積から検出器へ集光するように、かつ/あるいは、光ビームを試料に向けるように構成される焦点可変レンズと、対向する一対の電極を備える試料ホルダであって、試料の平面が電極面と直交して配列され、平面が散乱体積に近接するように、試料を、一対の電極間の測定体積内の適切な位置に保持するように構成される、試料ホルダと、を備える粒子特性評価装置であって、焦点可変レンズの調整が、(例えば、平面が動かないままである一方で)散乱体積を移動させることにより平面と散乱体積との相対位置の調整をもたらす、粒子特性評価装置が提供される。
調整は、光源を並進させることなく、かつ/あるいは、照射又は検出光路内の全ての光学素子を並進させることなく行われるようにしてもよい。
集束レンズは、焦点可変レンズと試料との間に(例えば、照射及び/又は検出光路に沿って)設けられてもよい。集束レンズは、少なくとも1つの固定焦点距離レンズを備えていてもよい。
集束レンズは、焦点可変レンズの主面上に焦点を有していてもよい。この構成は、散乱体積の位置が調整されるときに一定の散乱角を実現するための的確な方法である。
集束レンズは、試料セル(又は試料)内に、さらなる焦点を有していてもよい。この構成は、集束レンズが、焦点可変レンズに散乱体積を映し出すことを意味する。
焦点可変レンズは、光ビームを試料に向けるように構成される照射焦点可変レンズを備えていてもよい。検出器へ散乱光を集光するために、検出焦点可変レンズが設けられてもよい。装置は、照射及び集光焦点可変レンズを直列に調整するように構成されてもよい。
散乱体積の位置は、レンズ又はレンズ素子を並進させることなく調整可能としてもよく、このことは、装置の信頼性をより向上し得る、かつ/あるいは、照射及び/又は検出光路のより高速な調整を可能にし得る。
装置は、散乱光を検出器に到達させるための検出光路、及び、光ビームを光源から試料に到達させるための照射光路を備えていてもよい。
焦点可変レンズは、光軸を有していてもよい。(検出焦点可変レンズの、試料とは反対側において)検出光路は、光軸に対して(非ゼロの)第1角度をなしていてもよい。照射光路は、(照射焦点可変レンズの、試料とは反対側において)光軸に対して(非ゼロの)第2角度をなしていてもよい。第1角度及び第2角度は、実質的に等しくてもよい。
第1角度及び/又は第2角度は、5度から15度の間であってもよく、かつ/あるいは、10度以下、又は、5度以下であってもよい。散乱体積における検出及び照射光路の間の角度は、10度以下であってもよい。
試料内の検出及び照射光路は、焦点可変レンズが調整されるときに、共に平面に対して実質的に平行のままであってもよい。
照射及び検出光路は、異なる平面上に位置していてもよい。照射及び検出光路の異なる平面の間の角度が、散乱角を規定してもよい。
光源結合レンズは、光源と焦点可変レンズとの間の照射光路上に配置されてもよい。検出器結合レンズは、検出器と焦点可変レンズとの間の検出光路上に配置されてもよい。光源結合レンズは、照射光路を焦点可変レンズの主面上に集束させるように構成されてもよい。検出器結合レンズは、検出光路を焦点可変レンズの主面(例えば、同一の主面)上に集束させるように構成されてもよい。
集束レンズは、焦点可変レンズと試料との間に(例えば、照射及び/又は検出光路に沿って)設けられてもよい。集束レンズは、少なくとも1つの固定焦点距離レンズを備えていてもよい。
集束レンズは、焦点可変レンズの主面上に焦点を有していてもよい。集束レンズは、試料セル(又は試料)内にさらなる焦点を有してもよい。この構成は、集束レンズが焦点可変レンズに散乱体積を映し出すことを意味する。
装置は、焦点可変レンズの焦点距離を変更することにより試料内の散乱体積の位置を平面に接近させることが、散乱体積の増加をもたらすように構成されてもよい。焦点可変レンズの焦点距離を変更することにより、試料内の散乱体積の位置を平面から離れさせることが、散乱体積の減少をもたらしてもよい。いくつかの実施形態において、散乱体積を平面から離れさせることは、散乱体積の増加をもたらしてもよい(そして、散乱体積を平面に接近させることは、散乱体積の減少をもたらしてもよい)。
検出領域の体積の調整は、粒子特性評価方法の測定パラメータの優れた最適化をもたらし得る。
検出光路及び照射光路は、試料セル内で集束されてもよく、又は、試料セル内でコリメートされてもよく、又は、これらの状態の間(例えば、収束していく照射及び検出路を試料セル内に有するが、試料セル内では集束しない)であってもよい。
装置は、検出光路からの散乱光と重ね合わせるために、照射光ビームの一部を検出器に向けるように構成されるビームスプリッタをさらに備えてもよい。このことは、検出器における光ヘテロダイン検出を可能にする。
装置は、(照射及び/又は検出光路の空間光変調による)変調光ヘテロダイン検出を容易にするために、照射光路及び/又は検出光路において少なくとも1つの光学素子を移動/振動させるためのアクチュエータをさらに備えてもよい。
装置は、ゼータ電位測定を実行するように構成されてもよい。
検出光路は、平面反射器を備えていてもよく、アクチュエータは、検出光路を空間的に変調するために、平面反射器を検出器の平面に対して実質的に直交する方向に移動させるように構成されてもよい。
焦点可変レンズは、試料の屈折率、試料が中で保持される試料セルの向き、試料セルの屈折率、及び、試料セルの形状、のうちの少なくとも1つを補償するように動作可能としてもよい。
焦点可変レンズは、並進ステージ上に取り付けられてもよい。
焦点可変レンズは、変形可能なレンズを備えていてもよい。焦点可変レンズは、刺激を与えることにより屈折率が変化し得る材料を含んでいてもよい。焦点可変レンズは、2つ以上のレンズ素子のうちの少なくとも1つが可動である2つ以上のレンズ素子を有する光学サブアセンブリを備えていてもよい。
焦点可変レンズは、前方散乱光、後方散乱光、及び、側方散乱光のうちの少なくとも1つを集光するように構成されてもよい。
焦点可変レンズは、集束レンズに入射する光ビーム幅を変化させるように構成されてもよい。
集束レンズは、検出光路を試料内で集束させてもよい。
照射及び/又は検出光路は、光ファイバを備えていてもよい。光ファイバは、単一モードファイバを備えていてもよい。装置は、検出光路と光ファイバとを結合するように構成される結合レンズをさらに備えてもよい。結合レンズは、屈折率分布型レンズを備えていてもよい。
装置は、検出器からの出力を用いて動的光散乱測定を実行するように動作可能であってもよい。
装置は、動的光散乱測定を実行するための処理装置を備えていてもよい。動的光散乱法を実行することは、検出器から取得される時系列散乱強度データについて相関演算を実行すること、及び、その後、平均粒径(Zaverage)、多分散指数(pdi)、及び、粒径分布のうちの少なくとも1つを特定するために、相関演算の結果として得られたコレログラムを処理すること、を含んでもよい。コレログラムを処理することは、周知のキュムラント法を用いることを含んでもよく、又は、CONTINのようないくつかの他の方法又は非負制約付き最小二乗法を含んでもよい。
第4態様によれば、動的又は静的光散乱測定を実行する方法であって、試料を光ビームで照射するステップであって、それにより、光ビームと試料との相互作用により散乱光を発生させる、照射するステップと、試料内の検出領域において光ビームと交差する検出光路に沿った散乱光を検出するステップであって、それによりデータを取得する、検出するステップと、照射及び検出光路のうちの少なくとも1つにある焦点可変レンズの焦点距離を変更することにより、検出領域の位置、検出領域の体積、又は、検出領域における照射及び検出光路の間の角度のうちの少なくとも1つを調整するステップと、焦点可変レンズの焦点距離を変更することにより、少なくとも1つの対応する調整ステップを実行した後に、散乱光を検出するステップを少なくとも1回繰り返すステップと、焦点可変レンズの少なくとも1つの焦点距離から取得したデータを用いて、静的又は動的光散乱測定を実行するステップと、を含む方法が提供される。
当該方法は、各調整するステップが検出領域の少なくとも位置を変更し、かつ、各調整するステップが、先行する調整するステップに対応する測定データに応答したものである、動的光散乱測定を実行することを含んでもよい。この手法は、最適位置が試料セル壁の近傍であり得る混濁試料に関する、及び、最適位置が試料セルの中心の近傍であり得る低濃度試料に関する、動的光散乱測定のための最適な測定位置を特定するために用いられてもよい。測定データの平均計数率は、適切な測定位置を特定するための1つの方法である。測定データから生成されるコレログラムの切片が、適切な測定位置を特定するために、代替として、又は、追加的に用いられてもよい。
当該方法は、焦点可変レンズの焦点距離を調整して、複数の散乱角から測定データを取得することにより、動的又は静的光散乱測定を実行することを含んでもよい。マルチアングル静的光散乱測定及び動的光散乱測定は、粒子特性評価の分野で周知であるが、これらは、通常は、光学部品(例えば光源)を物理的に並進させることにより、又は、異なる角度に配置される複数の検出器を用いることによりなされる。様々な測定角度を選択するために焦点可変レンズを用いることは、調整時間を短縮することを可能にし、(例えば、並進ステージ及び/又は異なる角度に配置される複数の検出器を避けることにより)コストを削減し、構造を簡素化し得る。
当該方法は、試料セル内の粒子の推定濃度を提供することをさらに含んでもよい。
推定濃度は、濃度の定性的な指標を含んでもよい。
当該方法は、試料内の粒子濃度を測定することをさらに含んでもよい。
任意の態様による装置は、(例えば、試料セルの)壁から様々な距離で複数回の動的光散乱測定を実行するように構成されてもよい。処理装置は、壁の近傍で妨げられる散乱効果を特徴付けるために用いられてもよい。
任意の態様の特徴は、任意の他の態様の特徴と組み合わされてもよい。任意の態様又は実施形態の方法は、第1又は第2態様の装置を用いて、それらの特徴に従って実行されてもよい。任意の態様による装置は、第4態様の方法を、その選択的な特徴の任意のものを含み、実行するように構成されてもよい。
焦点可変レンズを備える任意の態様は、代替として、可動レンズ構成を用いて実施されてもよい。例えば、第4態様で述べた焦点可変レンズは、第2態様に関連して説明されたものと同様の可動レンズ(つまり、レンズ及び並進ステージ)に置き換えられてもよい。
本発明の実施形態を、添付の図面を参照して説明する。
第1位置に検出領域を有する従来技術のNIBS構成の概略図である。 第2位置に検出領域を有する従来技術のNIBS構成の概略図である。 焦点可変レンズを用いる前方散乱検出構成の概略図である。 並進ステージ上の焦点可変レンズを用いる前方散乱検出構成の概略図である。 焦点可変レンズを用いる後方散乱検出構成の概略図である。 第1態様による、対称な検出及び照射光路が使用される、焦点可変レンズを用いる後方散乱検出の実施形態の概略図である。 第1態様による、対称な検出及び照射光路が使用される、焦点可変レンズを用いる後方散乱検出の実施形態の概略図である。 焦点可変レンズを用いる第1態様の後方散乱検出の実施形態の概略図であり、非対称の検出及び照射光路が、第1及び第2焦点可変レンズ素子と共に用いられる。 焦点可変レンズを用いる第1態様の後方散乱検出の実施形態の概略図であり、非対称の検出及び照射光路が用いられ、可動検出器が用いられる。 焦点可変レンズを用いる第1態様の後方散乱検出の実施形態の概略図であり、非対称の検出及び照射光路が用いられ、複数の検出器ファイバが用いられる。 焦点可変レンズを用いる第1態様の後方散乱検出の実施形態の概略図であり、対称の検出及び後方散乱光路が用いられ、照射及び検出ビームは試料内でコリメートされる。 焦点可変レンズを用いる後方散乱検出の実施形態の概略図であり、対称な検出及び後方散乱光路が用いられ、照射及び検出ビームは試料内で集束される。 照射光路が検出光路と対称でない、後方散乱検出の実施形態の概略図である。 可変焦点距離レンズを用いる側方散乱検出の実施形態の概略図である。 照射及び検出光路を試料担持体に向けるための曲面反射器(例えば、ミラー)を用いる、第2態様の後方散乱検出の実施形態の概略図である。 第2態様のヘテロダイン後方散乱検出の実施形態の概略図であり、曲面ミラーが、照射及び検出光路を試料担持体に向け、ビームスプリッタが、照射光ビームの一部をセンサに向けるために用いられる。 第2態様の別のヘテロダイン後方散乱検出の実施形態の概略図であり、平面ミラーが検出光路を試料に向け、曲面ミラーが照射光路を試料に向ける。 第2態様のさらに別のヘテロダイン後方散乱検出の実施形態の概略図であり、平面ミラーが検出光路を試料に向け、曲面ミラーが照射光路を試料に向ける。 第1態様による、前方散乱検出におけるセル深さ補償を示す概略図である。 第3態様の前方散乱検出構成における垂直方向のアライメント調整を示す概略図である。 欧州特許出願公開第2721399号明細書からの従来技術の検出構成である。 一実施形態による、試料内に懸濁された粒子の特性評価方法の概略フローチャートである。
図1及び図2を参照すると、従来技術のNIBS構成100が示されており、照射ビーム106は、集束レンズ130により、試料セル110内の試料150に集束される。
検出光路108は、試料150内に分散された粒子により照射ビーム106から散乱された光を受け取る。検出光路108は、散乱光を検出するための検出器の視野(図示なし)を規定する。検出光路108は、検出軸109に沿って、特定の散乱角103上に中心をおく狭い範囲の角度で散乱される光を受け取ってもよい。検出光路108もまた、集束レンズ130により試料150内で集束される。
照射ビーム106と検出光路108との交点は、検出領域120を規定する。試料セル110内の検出領域120の位置は、試料セル110内で集束レンズ130の焦点面112の位置を変化させることになる集束レンズ130の移動によって変化させることができる。集束レンズが試料セルに接近するにつれて、検出体積は同じ方向に移動し、検出領域120と、光ビーム106が試料150を照射するために通過するセル壁との間の距離102を増加させる。図1において、検出体積120は、図2の場合よりも試料セル110の壁により近接した位置にある。
上述したように、本構成は、検出領域120の位置の調整をもたらすが、検出領域120の体積の調整はできない。
国際公開第WO2016/0349902号は、集束レンズに入射する照射光ビームの幅を変化させるためにビーム拡大器を備える構成を開示している。集束レンズに入射する拡大されたビーム直径は、試料内の焦点面において焦点のより狭いビームウエストをもたらす。逆に、集束レンズに入射するより小さなビーム直径は、試料内の焦点面において焦点のより広いビームウエストをもたらす。焦点のより狭いビームウエストは、より小さな検出領域と等しいと考えられ、より広いビームウエストは、より大きな検出領域と等しいと考えられる。
狭いビームウエストは、粒子が高濃度で含まれる混濁試料の特性評価に特に適している。より小さな体積の検出領域は、試料セルの壁により近接して配置されてもよく、このことは、多重散乱の可能性を低減し、装置により確実に特性評価され得る最大粒子濃度の上昇を直接的にもたらす。粒子が低濃度で含まれる試料については、検出領域のサイズは、可動レンズを固定レンズからさらに遠くに移動させて集束レンズにおけるビーム幅を拡大することにより、拡大されてもよい。
図3は、(変形可能なレンズであってもよい)焦点可変レンズ125を備える検出構成400を示す。照射ビーム光路106は(試料セル110内の)試料150に入射し、試料150から光が散乱される。試料150を通過した後、照射ビームは、ビームダンプ131にて捕捉される。散乱光は、図3の例では前方散乱で検出される。検出光路108は、試料150内の検出領域の位置を調整するように動作可能な焦点可変レンズ125を通過する。固定結合レンズ126(例えば、GRINレンズ)が、散乱光を検出素子(例えば、フォトダイオード)に送る光ファイバ(図示せず)に検出光路108を結合するために設けられてもよい。
図4は、図3の実施形態の全ての特徴を備える別の検出構成400を示しており、焦点可変レンズ125が、並進アセンブリ上に取り付けられ、その結果、試料セル110と焦点可変レンズ125との間の距離を変化させるように検出光路108に沿って焦点可変レンズ125が移動され得る点が異なる。
図5は、照射光路106及び検出光路108の両方が、焦点可変レンズ125を通過する実施形態を示す。照射光路106は、焦点可変レンズ125の光軸と実質的に一致する。検出光路108は、照射光路106に対してある角度をなして焦点可変レンズ125を通過する後方散乱検出路である。ここでも、焦点可変レンズ125の焦点距離の調整は、試料内の検出領域の位置の変化(例えば、位置1と位置2との間の変化)をもたらす。検出領域の体積もまた、検出光路108の有効散乱角の変化の結果として、検出領域の位置の調整と共に変化し得る。
例えば様々なセル及び試料の種類、濃度といった広範な測定の種類を提供しようとする装置について、散乱体積と照射光ビームとが交差する重なり形状、及び、試料内の散乱体積の位置を変化させることが可能であることは有利であろう。
現在のところ、前方散乱光の集光は、試料によって異なる屈折率ならびに異なる試料セル材料及び形状に伴って生じる交差位置の違いに対する補償が必要となり得る。このような因子を、付属ホイール内の厚さの異なる複数の個々のオプティカルフラットを介して補償することが知られている。これは、限られた数の条件が補償可能であることを意味し、オプティカルフラットの公差、及び、オプティカルフラットの組み付けのばらつきにより、補償にある程度のばらつきが生じる。現在の構成は、集光系の光学素子を移動し得る並進ステージも必要とする場合がある。現状では、これらの部品は嵩張り、このことは、セル領域周辺に追加機能を入れ込むことをますます困難にする。一方、焦点可変レンズを用いる方法は、比較的小型の単一の要素を含み得る、より的確な方法を可能にする。
焦点可変レンズ125は、前方散乱光に対するセル補償を実行するように、かつ、(例えば、非接触後方散乱光検出装置において)後方散乱光を集光するように構成されてもよい。(例えば、照射光に対して90度の角度で散乱される光などの別の散乱角の調整などの)他の例もまた想定される。
図3~5において、交点「1」は、散乱体積を試料セル110(試料セルは標準10mm又は12mmの試料セルとしてもよい)の中心に配置するように調整した焦点可変レンズの状態を示す。
焦点可変レンズ125は、異なるセル構成(例えば、より小さいセル)を補正するために、あるいは、散乱領域を試料セル110の中心のより近傍に(又は中心に)配置するために、変形されてもよい。この変形構成は、焦点可変レンズ125による集束力を変更することにより、散乱体積の位置を交点「2」に調整する。いくつかの実施形態において、焦点可変レンズ125は、焦点を調整するために変形されなくてもよいが、その代わりにレンズ材料の屈折率が変更されてもよい。
実施形態の他の利点は、以下を含み得る。
・スタンドオフの可能な限りの短縮、及び、より「線形の」光学構成を可能にすること。照射ビーム106を効果的に取り除くことができる場合、照射軸により近い位置(減少した散乱角)での検出が可能となり得る。
・また、調整に関してそれほど気にすることなく様々なセルの向き(例えば90度で再現されるが、傾けられたセル構成)に関する可能性を開くために、様々な屈折率が連続的に調整され得る。
・焦点可変レンズ125及びセル110の特性評価は、屈折率が、焦点可変レンズを制御するために与えられる駆動電流に基づいて逆算することができることを意味し得る。
・(前方及び後方散乱において共通部品を利用する)対称的な構成は有利となり得る。焦点可変レンズ125は広い焦点範囲を有していてもよく、一般的なタイプの焦点可変レンズを前方及び後方散乱光の集光に使用することができる。
・システムのある程度の「自動アライメント」が可能にされ得る。
焦点可変レンズ125は、その最小有効スタンドオフ範囲に近い距離分だけ、試料セル110から離れて配置されてもよい。焦点可変レンズ125から試料セル110までの距離は、40mm未満、30mm未満、20mm未満、又は、10mm未満としてもよい。このことは、光学構成の小型化を可能にする上で、いくつかの利点を有する。
焦点可変レンズ125は、(図4に例示されているように)並進アセンブリ上に設けられてもよい。並進アセンブリ上に焦点可変レンズ125を設けることは、特定の測定要求に従い、交差体積が調整されることを可能にする。例えば、一部の測定(例えば、粒子が高濃度で含まれる試料の特性評価に用いられ得る小型セルにおける測定)では、より高速の光学系(より狭い焦点及びコリメート範囲)を有することが役に立ち、一方、他の測定(例えば低濃度における測定)では、より小さな角度において、より大きな、より広い交点を有することが役立つ可能性がある。
いくつかの焦点可変レンズは、像にかなりの「コマ収差」が生じる。出願人は、このような像の「コマ収差」が、現在用いられる固体シングレットレンズ構成と比較して、実質的にビームの質に影響を与えないであろうことを見出した。いくつかの実施形態においては、レンズからの軸外光線に生じ得る、後方伝播集光モードにおける劣化の初期評価もまた期待されている。
焦点可変レンズ125は、並進ステージ上に取り付けられたくさび型の光学素子と共に用いられてもよい。くさび型光学素子は、焦点可変レンズ125と同一の(例えば、検出及び/又は照射)光路上にあってもよい。調整可能なくさび型構成が、散乱角に影響を与えることなく散乱体積の並進の連続的範囲をもたらすために用いられてもよい。
一部の焦点可変レンズにおける広範囲にわたる焦点移動は、将来を保証する設計にとって有利である。
好適な焦点可変レンズの例は、http://www.optotune.com/publications-2において見ることができる。
様々な代替の光学構成が想定され、これらの実施形態は単に例示的なものである。変形可能なレンズは、並進レンズが用いられる従来の公知の構成と比較して、さらなる自由度をもたらし得る。焦点可変レンズは、測定交差形状及び位置の範囲の提供を改善する。測定交差形状及び位置は、単一の駆動制御下で制御されてもよく、また、ソフトウェアを介してユーザにより制御されてもよい。
図6及び7は、粒子特性評価のための装置を示し、光源302、検出器306、焦点可変レンズ125、集束レンズ130、及び、試料セル110を備える。
光源302は、照射光路106に沿って、試料セル110の内部を光ビームで照射するように構成される。試料中の粒子は、照射光ビームを散乱させ、散乱光を生じさせる。検出器306は、検出路108に沿ってこの散乱光を受光するように構成される。
試料セル110は、試料(水又は空気などの希釈媒体中に懸濁された粒子を含み得る)を収容するためのものである。光源302は、レーザ源に光学的に結合される光ファイバを備えていてもよい。照射結合レンズ(図7に示される)が、光源302から(例えば、ファイバから)の光を、照射光路106上の点Bに集束するために設けられてもよい。検出器306は、検出素子に結合される光ファイバを備えていてもよい。検出結合レンズ(図7に示される)が、検出光路108上の焦点Aから(例えば、検出ファイバに結合する)検出器306上に光を集光するために設けられてもよい。
検出光路108及び照射光路106は、共に、焦点可変レンズ125の光軸に対して角度をなして焦点可変レンズ125に入射する。検出及び照射光路108,106のそれぞれは、光軸に対して同一の角度αをなしていてもよい。いくつかの実施形態において、焦点可変レンズ125の光軸、検出光路108、及び、照射光路106は、全て同一平面上にあってもよいが、このことは(好都合ではあるかもしれないが)必須ではない。該平面は、垂直又は水平であってもよい。検出光路108及び照射光路106は、それぞれ焦点可変レンズの後側焦点距離(f1-centre)にて焦点可変レンズ125の光軸と交差してもよい。
集束レンズ130は、固定焦点距離レンズであってもよく、照射及び検出光路106,108を、試料セル110内の検出領域上に集束するように構成される。焦点可変レンズ125及び集束レンズ130の光軸は、一致していてもよい。
焦点可変レンズ125の焦点距離を変化させることは、照射光路106及び検出光路108が集束レンズ130に入射する位置を変化させる。焦点可変レンズ125は、集束レンズ130の後焦点面上に配置されてもよく、これは、集束レンズ130の光軸に沿った位置は異なるけれども、焦点可変レンズ125の焦点距離にかかわらず同一の検出角Θを満たす照射及び検出路106,108をもたらす。これは、焦点可変レンズ125の焦点距離の制御が、試料セル110内において、固定された検出角Θにて、可変の測定位置をもたらすことを意味する。
さらに、集束レンズ130は、A(焦点可変レンズ125の平面内の検出ビームスポット)の共役像が(試料セル110内の)A’に配置され、同様にB(焦点可変レンズ125の平面内の照射ビームスポット)の共役像が(試料セル110内の)B’に配置されるように構成される。それゆえに、焦点可変レンズ125から光軸に至る、集束レンズ130を通る何れの経路がとられるかにかかわらず、照射及び検出路106,108は、共に同一の挙動で変化し、サイズは一致したままとなる。このことは、複数の検出コヒーレンス領域を扱う場合に重要な利点となる場合がある。
焦点可変レンズ125及び集束レンズ130の、それらの共通の光軸の両側における対称な照射は、試料内で、照射及び検出光路のスポットサイズが光軸に沿って一致すること、また、照射及び検出路の交点が光軸に沿って移動するときに試料内の検出角が一定のままであることを確実にする。
焦点可変レンズ125の焦点距離が変更されると(変化δ)、スポットサイズが変化し、検出領域の体積に対応する変化をもたらす。いくつかの実施形態において、最小のスポット(つまり、検出領域)が、セル壁に最も接近する位置(より短い焦点距離に対応し得る)に生じる場合には有利である場合がある。なぜならば、これは、高濃度試料に関する利点(多重散乱事象が減少する)を有しながらもセル壁と検出器との間の距離を最小化するからである。検出角Θは、物理的に実現可能な任意の角度をとり得るが、Θ<10度が有利である場合がある。これは、この角度範囲では、比較的高濃度の試料に関する付加的な利点を有しながらも、多重散乱光が単散乱光と同様の緩和時間を有することが知られているからである。
図8は、図7の実施形態に類似する別の実施形態を示しているが、照射及び検出光路106,108は、(それぞれ、焦点可変レンズ125の検出器及び光源側で)集束レンズ130の光軸に対して同一の角度をなしてはいない。本実施形態において、照射光路106は、集束レンズ130の軸に対して角度αをなし、検出光路は、集束レンズ130の軸に対して異なる角度βをなす。本例において、焦点可変レンズ125は、照射光路106上に第1可変レンズ素子を備え、検出光路108上に第2可変レンズ素子を備える。各焦点可変レンズ素子は、照射及び検出光路が、対応する焦点可変レンズの後方焦点距離(それぞれf1a-centre及びf1b-centre)において、レンズ素子軸とそれぞれ交差するように構成されてもよい。この構成は、試料内の散乱体積の位置が、焦点可変レンズ125の焦点距離を調整することにより変化するため、一定の散乱角Θをもたらす。
図9は、さらなる別の実施形態を示し、検出器306は、移動可能であり、かつ、散乱光が集束レンズ130又は焦点可変レンズ125を通過することなく、試料セル110からの散乱光を直接受光する。検出器306は、焦点可変レンズ125の焦点距離が変化するにつれて、試料内の照射ビームの変化する位置を追跡するために、散乱光を横切る方向に移動可能であってもよく、かつ/あるいは、例えば試料セル内の焦点スポットサイズを変更するために、長手方向に移動可能であってもよい。
図10は、さらなる別の実施形態を示し、検出器306は、焦点可変レンズの調整の結果として、試料内の様々な位置から散乱される光を受け取るように構成される複数の検出ファイバを備える。
焦点可変レンズ125及び集束レンズ130は、図11に示されるように、試料内で(例えば、Cにおいて)照射及び検出光路106,108をコリメートするように構成されてもよく、図11は、その他の点では、図7の全ての特徴を有する。図7及び図12の構成において、検出及び照射ビームは、集束レンズ130により試料内で(コリメートされるのではなく)集束される。
図13は、一実施形態による別の後方散乱検出構成を示し、検出光路108は、図11に関して説明された全ての特徴を有する。該検出構成は、検出器306、焦点可変レンズ125、集束レンズ130、試料セル110、光源302、及び、照射ミラー132を備える。
検出器306は、光ファイバを備え、(照射光路106に沿った照射の結果として)試料から散乱する光を検出する。ファイバ結合レンズは、検出光路108を検出ファイバに結合するために設けられる。検出光路108は、試料セル110から、集束レンズ130を通り、焦点可変レンズ125を通り、ファイバ結合レンズを通って、検出ファイバ306に入る。照射光路106は、焦点可変レンズ125を通過しないが、代わりに照射ミラー132により集束レンズ130を通るように(例えば、集束レンズの軸に沿って)方向付けられる。図15の構成において、照射及び検出路は試料セル110内でコリメートされるものとして図示されているが、必ずしもこのようにする必要はなく、代わりに、試料セル110内で集束されてもよい。独立した照射光路を用いることは、検出構成のアライメントを単純化する可能性があり、つまり、より多くの光学素子を共通軸に沿って整列させることを容易にする可能性がある。
図14は、側方散乱検出構成を示しており、照射及び検出光路106,108は、試料110内で互いに対して90度の角度をなす。検出光路108は、焦点可変レンズ125及び集束レンズ130を通過し、試料セル110内で集束される(なお、別の実施形態においては、代わりに、集束レンズ130により試料セル110内でコリメートされてもよい)。照射光路106は、1つ以上のレンズ(図示せず)により試料セル110内で集束されるか、又は、コリメートされてもよい。該1つ以上のレンズは、固定焦点距離又は焦点可変レンズを有していてもよい。
側方散乱検出構成において、照射光路106と検出光路108との重なり部における検出領域は、非常に小さく(例えば、100μm未満の範囲)なる傾向があり、それゆえに、光源(例えば、レーザ)の指向安定性、及び、(相対的に位置合わせして複数の光学素子を保持する)光学ベッドにおける、輸送及び熱的変動などに起因する特に(図示されるような)x方向の光学的アライメントの変動の影響を受けやすい場合がある。
焦点可変レンズ125は、任意のそのような光学的アラインメントのずれを、(少なくとも1自由度において)補償するために用いられてもよい。例えば、高散乱用途(例えば、混濁試料)の場合、集束系ではなくコリメートされたビームが有益となり得る場合がある。図14にて示される例において、焦点可変レンズ125の焦点距離の調整は、検出光路のx方向(つまり、垂直方向)における(試料セル110内における照射光路106に対する)調整をもたらす。別の実施形態において、焦点可変レンズ125は、(例えば、垂直面ではなく水平面に検出光路108を有する)試料セル内で照射光路と平行なz方向、又は、y方向を補償するように構成されてもよく、あるいは、例えば、焦点可変シリンドリカルレンズ、及び/又は、照射光路106に対してある合成角をなす検出光路108を用いて、(x、y又はz位置のうちの少なくとも1つの)複合的な調整を行うように構成されてもよい。
照射及び検出光路の両方が、検出光路に関して説明されるものと同一の素子を有する、図14に類似する構成が、妨げられた拡散を調査するために用いられてもよい。
図15は、対称的な検出及び照射光路108,106を備える後方散乱検出構成を示す。図示される検出構成は、光源302、検出器306、焦点可変レンズ125、集束レンズ130、集束反射器/ミラー133、及び、試料セル110を備える。検出及び照射光路108,106のそれぞれは、焦点可変レンズ125への入射時に焦点可変レンズ125の軸に対して同一の角度αをなす。好適には、検出及び照射光路は、同一平面(例えば、水平又は垂直面)上にあってもよい。本実施形態において、集束レンズ130は、照射集束レンズ130a及び検出集束レンズ130bを備える。集束レンズ130は、照射及び検出光路106,108を、(湾曲した)集束ミラー133に向け、集束ミラー133は、照射及び検出光路106,108を試料セル110内の検出領域に(例えば、コリメートビーム又は集束ビームで)向かうように方向転換する。本実施形態においては、焦点可変レンズ125の焦点距離が変化しても、検出領域の位置は変化しない。代わりに、試料内の照射光路106と検出光路108との間の角度が変化する。焦点可変レンズ125の焦点距離が増加すると、試料セル110内の照射光路106と検出光路108との間の角度が増加する(そして、逆もまた成り立つ)。
別の実施形態において、集束ミラー133は、集束レンズ130と試料セル110との間に配置されるさらなる集束レンズに置き換えられてもよい。
散乱角(つまり、散乱体積における照射光路と検出光路との間の角度)の調整を可能にする実施形態が、複数の測定角にて静的光散乱測定を実行するために用いられてもよい。いくつかの実施形態において、可変波長光源が用いられて、波長及び散乱角Θの両方が変化し得る(それにより、「q」ベクトルのより広範囲の調整が可能となる)ようにしてもよい。
図16は、ヘテロダイン法を用いた後方散乱構成を示し、これは、図20に示されるものと同じであるが、照射光路106と検出光路108との交点に配置されるビームスプリッタ134を備える。ビームスプリッタ134は、検出器306にて光ヘテロダイン法を実行するために、検出光路108上の散乱光と重ね合わせるための参照ビームとして、照射光ビームの一部を照射光路106から検出器306へ向けるように構成される。ビームスプリッタ134は、本明細書で説明される他の任意の実施形態(例えば、反射器を備えない実施形態)において用いられてもよく、この特定の例に限定されるものではない。
いくつかの実施形態において、例えば、低周波粒子運動のヘテロダイン検出(例えば、ゼータ電位測定)を実行するために、参照ビーム及び/又は散乱光のうちの1つを変調することが有益となる場合がある。これを容易にするために、照射及び/又は検出光路における光学素子の少なくとも1つを移動可能としてもよい。
前方散乱における変調ヘテロダイン検出に適した実施形態の例が図17に示されている。本例における照射光路106は、集束ミラー133がより小さく、検出光路108内で用いられないことを除けば、図16に示されるものと同一である。代わりに、図17の検出光路108は、平面ミラー135を介して前方散乱を検出するように構成される。平面ミラー135は、前方散乱角の範囲で散乱される光を集束レンズ130bに向け、焦点可変レンズ125及びビームスプリッタ134を通過させ、検出器306に向かわせる。平面ミラー135は、散乱光を空間的に変調し、それにより、検出器306における変調ヘテロダイン検出を可能にするために、平面ミラー135を(例えばミラーの平面に直交する方向に)移動/振動させるように動作可能なアクチュエータ又は並進ステージ上に取り付けられてもよい。ビームダンプ131は、照射光ビームが試料セル110を通過した後に照射光ビームを捕捉するために設けられる。
図18は、変調ヘテロダイン前方散乱測定に適した別の実施形態を示しており、照射光路106及び検出光路108の焦点可変レンズ125におけるそれぞれの入射角α,βは異なるが、それ以外の点では図18の例に類似する。照射及び検出光路106,108の交点におけるビームスプリッタの代わりに、ビームスプリッタは、(焦点可変レンズ125より前の)照射光路上に設けられ、再結合器が、検出器306の前で参照ビームを検出光路108と結合するために、検出光路上に設けられる。変調器136は、参照ビームの光路に設けられる。いくつかの実施形態において、ビームスプリッタ及び変調器は省略されてもよい。
検出器306又は集束ミラー133などの任意の適切な素子が、変調をもたらすために作動/振動させられてもよい。
図19は、本開示の実施形態に従い、試料セル110の様々なサイズ及び位置を補償するために、かつ/あるいは、様々な試料壁の屈折率及び/又は厚さを補償するために、焦点可変レンズ125がどのように用いられ得るかの例を示している。本例は、前方散乱検出構成であり、照射光路106は、明確さを向上するために輪郭のみで示されている。任意の照射光路が、本明細書で説明される補正と併せて用いられてもよい。
試料セル110の断面積が大きい場合、焦点可変レンズ125の焦点距離を短くして、(例えば、試料が混濁している場合に)散乱体積を試料セル110の壁に近接して配置してもよい。試料セル110がより小さい場合、より長い焦点距離が適切であり得る。様々な屈折率及び壁厚を有する試料セル110は、角度のついた検出光路を様々な角度に屈折させ、散乱体積を試料セル110内の様々な位置に配置するであろう。焦点可変レンズ125の焦点距離の調整は、様々な屈折率及び様々なセル壁厚の両方を補償するために用いられてもよい。
図20を参照すると、欧州特許出願公開第2721399号明細書に説明される(かつ、図21に示される)ものに類似する、液体内に懸濁させた粒子の表面電荷及び/又は電気泳動移動度を測定するためのディップセル構成が示されている。図21は、光源14、被験試料22の試験面12を電解液に接触させて被験試料22を保持するための試料セル16、及び、検出器18を示す。この装置は、被験試料22の試験面のゼータ電位を測定するように構成されてもよい。
図20に戻ると、試料セル110は、試料ホルダ150を受容するための測定チャンバを形成する。試料ホルダ150内の試料に電場をかけるための構成が設けられる。例えば、試料ホルダ150には、対向して(例えば、互いに面して)配置される一対の電極が設けられてもよく、試料の平面が電極面と直交して配列されるように、試料を一対の電極間の測定体積内の適切な位置に保持するように構成されてもよい。
欧州特許出願公開第2721399号明細書においては、固定照射ビームから散乱される光が検出される散乱体積に対する試料の平面の位置を調整するために、機械的アクチュエータが設けられる。図20の構成は、試料の平面と散乱体積120との相対位置を変化させるために(例えば、散乱体積が平面にどれくらい近接しているのかを変更するために)、どのように焦点可変レンズ125,145が用いられ得るかを例示している。
本例の焦点可変レンズ125,145は、照射焦点可変レンズ125及び検出焦点可変レンズ145を備える。照射焦点可変レンズ125は、光源と試料との間(光源302と集束レンズ130aとの間)に配置される。検出焦点可変レンズ145は、検出器306と試料との間(検出器306と集束レンズ130bとの間)に配置される。
図20の例において、光源302は、照射焦点可変レンズ125を介して散乱体積120を照射する。光源302は、照射焦点可変レンズ125の軸に対して角度αをなして照射焦点可変レンズ125に入射し、照射焦点可変レンズ125は、試料セル内のある位置を照射するために、照射光路を屈折させる。集束レンズ130aは、例えば、試料セル110内で照射光ビームをコリメートするか又は集束するために、照射焦点可変レンズ125と試料セル110との間に設けられる。検出光路は、試料セルに対して照射光路と対称にしてもよく、この場合、対応する検出焦点可変レンズ145及び集束レンズ130bを備える。焦点可変レンズ125,145の焦点距離の調整は、試料セル110内の散乱体積120の(例えば、垂直方向における)位置を変化させる効果を有する。機械的アクチュエータを調整し、試料ホルダを照射光路に対して物理的に移動させる必要はもはやないため、表面電荷の測定は、このような構成を用いてより容易に自動化され得る。
本明細書に開示される例示的実施形態いずれにおいても、焦点可変レンズは、焦点距離を調整可能な円柱状の屈折又は反射レンズを備えてもよい。図20の実施形態において、焦点可変レンズ125は、調整可能なシリンドリカルレンズ又はミラーと置き換えられてもよい。この場合、光源と焦点可変レンズ125との間の照射光路、及び、焦点可変レンズ125から検出器への後方散乱検出路は、共に、試料内の光ビームの光路に対して(紙面内/外で)ある角度をなして位置してもよい。この場合、光ビーム及び後方散乱光の両方が、焦点可変レンズ125を通過する。これは、試料内の照射及び検出光路の垂直位置が、同時に変更されることを可能にする。焦点可変レンズ125が円柱状であるため、同一の屈折力が両方のビームに与えられ、試料内において、(レーザ及び検出路間で)同一の検出角がビーム対(照射及び検出)のそれぞれの垂直位置にて維持される。
検出光路は、第1平面上にあってもよく、検出光路は、第2平面上にあってもよい。第1及び第2平面は、互いに対して非ゼロ角度をなしていてもよい。第1平面と第2平面との間の角度が、散乱角を規定してもよい。
本明細書で開示される光学スキームを用いて、照射及び検出路の一致する位置を、他の光学検出レイアウトへ向かう単一モードファイバ、少数モードファイバ、多重モードファイバ、又は、ピンホール入射開口へ移動させるために、焦点可変レンズを用いることが可能である。このことは、可動部品なしで非接触性の後方散乱検出が実行されることを可能にし、粒子特性評価装置の寿命にわたる摩耗を大幅に削減し、例えば時間分解位置調査に関して、高周波(例えば、20Hzより大きい)における測定位置の変調の実現性を与える。
検出領域の再配置を容易にする実施形態に関して、複数の他の用途が存在する。濃度勾配(例えば、垂直濃度勾配)は、様々な位置で複数の測定を行うことにより測定されてもよい。焦点可変レンズの再配置の速度は、従来の光学素子を動かす(slew)より速い場合があり、このような分析をより高速で行うことを可能にする。例えば、DLSを用いて異なるレオロジー特性のドメインの調査を行うために、ゲルドメインの位置が(x、y及びz方向のうちの少なくとも1つにおいて)調査されてもよい。
いくつかの実施形態においては、低品質の試料セル上の傷や表面含有物を避けるために、照射又は検出光路の再配置を行うことが可能である。このような欠陥は、一般的に、コレログラムにおいて高計数率及び低切片をもたらす。これらの特徴がデータ及び/又はコレログラムに存在する場合には、装置は、(焦点可変レンズの焦点距離を変化させることにより、)異なる測定位置を試すように、かつ/あるいは、より最適な計数率及びコレログラム切片を有する測定位置を探すように構成されてもよい。
(例えば、図19に示されるような)照射光路に対する検出光路の調整を容易にする実施形態において、検出器を飽和させることなくより強い散乱を生じる試料を収容するために、意図的に照射及び検出光路の位置の整合をずらすことにより、装置のダイナミックレンジを増加させることができる場合もある。これは、照射及び/又は散乱光路に減衰フィルタを設けるよりも、より単純で的確であり得る。
各例の特徴を他の例の特徴と組み合わせることができることが理解されるであろう。例えば、図20の実施形態において、ファイバアレイ又は可動検出構成(図9及び10に示されるものと類似のもの)が、焦点可変レンズ145の代わりに用いられてもよい。
図22を参照すると、一実施形態による例示的な方法が示されている。本方法は、試料内の粒子濃度を推定又は測定すること401を含む。例えば、流体内の粒子濃度は、(例えば、紫外分光法により)測定されてもよい。あるいは、ユーザは、試料内の粒子濃度の定性的測定を行うために(例えば、試料が混濁して見えるかどうか判定するために)試料を目視で検査してもよい。粒子特性評価装置は、(例えば、散乱強度測定又は計数率に基づいて)粒子濃度を自動的に推定するように構成されてもよく、あるいは、ユーザが粒子濃度の推定を入力してもよい。
粒子濃度の推定/測定のステップ401に続いて、例えば試料の粒子濃度に応じて、検出領域の位置及び体積が調整される402。
検出領域が調整されると、検出領域が照射され、照射ビームの試料との相互作用により散乱された光が(例えば、検出器にて)検出される403。照射は、上述したものと同様に、光路に沿って行われ得る。同様にして、検出は、上述したもののように、光路に沿って行われ得る。
散乱光の検出により得られたデータは、その後、検出された散乱光から試料の粒子特性を特定するために、周知の動的光散乱法に従い分析される404。このような分析は、処理装置を用いて実行されてもよく、結果は、画面上に表示されてもよく、あるいは、媒体(例えば、コンピュータ可読媒体)に記録されてもよい。
検出光路が後方散乱光を検出するように構成される実施形態の例が説明されてきたが、別の実施形態においては、検出光路は、(例えば、照射光ビーム軸から90度未満で散乱される)前方散乱光を検出するように構成されてもよい。さらに、検出器及び/又は光源を試料と結合するために光ファイバを用いる例が説明されてきたが、本発明は、自由空間光通信を用いる構成にも同様に適用できることが理解されるであろう。
それぞれの態様又は実施形態において、検出器は、試料内の粒子特性(例えば、粒径及び/又は粒径分布)を明らかにするために、動的光散乱分析又は静的光散乱分析を実行するように構成され得る処理装置に信号を供給してもよい。このような分析の結果をユーザに表示するために、表示装置が設けられてもよい。
当業者であれば、他の変形例及び変更例が明らかであり、このような変形例及び変更例も、添付の特許請求の範囲により定義される本発明の範囲内にあることが意図される。

Claims (15)

  1. 光ビームで試料を照射するための光源と、
    前記光ビームと前記試料との相互作用により生じる散乱光を検出するように構成される検出器と、
    前記散乱光を前記検出器に到達させるための検出光路と、
    前記光ビームを前記光源から前記試料に到達させるための照射光路と、
    前記散乱光を散乱体積から前記検出器へ集光するように、かつ/あるいは、前記光ビームを前記試料に向けるように構成される焦点可変レンズと、
    前記照射及び/又は検出光路に沿って前記焦点可変レンズと前記試料との間に設けられる集束レンズと、
    を備える粒子特性評価装置であって、前記焦点可変レンズの焦点距離の調整が、前記照射光路及び前記検出光路が前記集束レンズに入射する位置を変化させて、前記照射及び検出光路の間の角度を変更することなく前記散乱体積の位置の変更をもたらすように構成される、粒子特性評価装置。
  2. 前記集束レンズが前記焦点可変レンズの主面上に焦点を有する、請求項に記載の装置。
  3. 前記集束レンズが試料内に焦点を有する、請求項又はに記載の装置。
  4. 前記焦点可変レンズが、前記集束レンズに入射する光ビーム幅を変化させるように構成される、請求項のいずれか一項に記載の装置。
  5. 前記検出光路及び前記照射光路のうちの少なくとも1つは前記焦点可変レンズを通過する、請求項1~のいずれか一項に記載の装置。
  6. 前記焦点可変レンズが光軸を有し、前記検出光路は、前記光軸に対して非ゼロの第1角度をなし、前記照射光路は、前記光軸に対して非ゼロの第2角度をなす、請求項1~のいずれか一項に記載の装置。
  7. 前記検出光路及び前記照射光路は、前記焦点可変レンズから離れた第1位置にて交差する、請求項又はに記載の装置。
  8. 前記焦点可変レンズは、前記焦点可変レンズの焦点を前記第1位置と同一位置に配置する焦点距離を有するように動作可能である、請求項に記載の装置。
  9. 前記焦点可変レンズの焦点距離を変更することにより、前記試料内の前記散乱体積の位置を前記光源に接近させることで、前記散乱体積の減少をもたらすように構成される、請求項1~のいずれか一項に記載の装置。
  10. 前記検出光路からの散乱光と重ね合わせるために、前記光ビームの一部を前記検出器に向けるように構成されるビームスプリッタをさらに備える、請求項1~9のいずれか一項に記載の装置。
  11. 前記照射及び/又は検出光路の空間光変調による変調光ヘテロダイン検出を容易にするために、前記照射光路及び/又は前記検出光路において少なくとも1つの光学素子を移動/振動させるためのアクチュエータをさらに備える、請求項10に記載の装置。
  12. 前記焦点可変レンズは、変形可能レンズ、及び/又は、刺激を与えることにより屈折率が変化し得る材料を含む、請求項1~11のいずれか一項に記載の装置。
  13. 動的光散乱測定を実行する方法であって、
    試料を光ビームで照射光路に沿って照射するステップであって、それにより、前記光ビームと前記試料との相互作用による散乱光を発生させる、照射するステップと、
    前記試料内の検出領域において前記光ビームと交差する検出光路に沿って、前記散乱光を検出するステップであって、それによりデータを取得する、検出するステップと、
    前記照射及び検出光路のうちの少なくとも1つにある焦点可変レンズの焦点距離を変更して、前記照射光路及び前記検出光路が集束レンズに入射する位置を変化させ、前記照射及び検出光路の間の角度を変更することなく散乱体積の位置の変更をもたらすことにより、前記検出領域の位置又は前記検出領域の体積のうちの少なくとも1つを調整するステップと、
    前記焦点可変レンズの焦点距離を変更することにより対応する調整するステップを少なくとも1回実行した後に、前記散乱光を検出するステップを少なくとも1回繰り返すステップと、
    前記焦点可変レンズの少なくとも1つの焦点距離から取得したデータを用いて、動的光散乱測定を実行するステップと、
    を含み、各調整するステップが少なくとも前記検出領域の位置を変更し、各調整するステップが、先行する調整するステップに対応する測定データに応答する、方法。
  14. 動的光散乱測定に関する最適な測定位置を判定するステップを含む、請求項13に記載の方法。
  15. 請求項1~12のいずれか一項に記載の装置を用いることを含む、請求項13又は14に記載の方法。
JP2019548925A 2016-04-21 2017-10-24 焦点可変レンズを用いた粒子特性評価装置 Active JP7216005B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB201606918 2016-04-21
US15/454,814 2017-03-09
US15/454,814 US10365198B2 (en) 2016-04-21 2017-03-09 Particle characterization
PCT/GB2017/053204 WO2018162869A1 (en) 2016-04-21 2017-10-24 Particle characterisation with a focus tuneable lens

Publications (3)

Publication Number Publication Date
JP2020510838A JP2020510838A (ja) 2020-04-09
JP2020510838A5 JP2020510838A5 (ja) 2020-12-03
JP7216005B2 true JP7216005B2 (ja) 2023-01-31

Family

ID=60088999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019548925A Active JP7216005B2 (ja) 2016-04-21 2017-10-24 焦点可変レンズを用いた粒子特性評価装置

Country Status (5)

Country Link
US (2) US10365198B2 (ja)
EP (2) EP4372361A1 (ja)
JP (1) JP7216005B2 (ja)
CN (2) CN110402380B (ja)
WO (1) WO2018162869A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936229B2 (ja) 2015-09-23 2021-09-15 マルバーン パナリティカル リミテッド 粒子特性評価
US11002655B2 (en) 2015-09-23 2021-05-11 Malvern Panalytical Limited Cuvette carrier
GB201604460D0 (en) * 2016-03-16 2016-04-27 Malvern Instr Ltd Dynamic light scattering
US10365198B2 (en) 2016-04-21 2019-07-30 Malvern Panalytical Limited Particle characterization
EP3379232A1 (en) 2017-03-23 2018-09-26 Malvern Panalytical Limited Particle characterisation
WO2020011360A1 (de) * 2018-07-12 2020-01-16 Robert Bosch Gmbh Partikelsensor
WO2020026704A1 (ja) * 2018-08-01 2020-02-06 株式会社島津製作所 光散乱検出装置
GB201816607D0 (en) * 2018-10-11 2018-11-28 Univ Court Univ St Andrews Light-sheet imaging
CN109030298B (zh) * 2018-11-01 2020-08-21 山东理工大学 一种利用后向散射纳米颗粒粒度测量装置实现的测量方法
CN109030299B (zh) * 2018-11-01 2020-08-21 山东理工大学 高浓度样品的后向散射纳米颗粒粒度测量装置的测量方法
US11841311B2 (en) * 2018-11-19 2023-12-12 Samsung Electronics Co., Ltd. Multimodal dust sensor
WO2021236735A1 (en) * 2020-05-20 2021-11-25 Ysi, Inc. Spatial gradient-based fluorometer
CN113029958B (zh) * 2021-04-01 2023-07-25 温州大学 一种用于检测dna变性的动态光散射检测装置
AT525224A1 (de) * 2021-06-21 2023-01-15 Engel Austria Gmbh Verfahren, System und Computerprogrammprodukt zum Überwachen eines Formgebungsprozesses
KR102655295B1 (ko) * 2021-12-30 2024-04-05 (주)인프라칩 유체렌즈를 이용한 미세먼지센서

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069494A (ja) 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd 噴流速度計測装置
JP2006047064A (ja) 2004-08-03 2006-02-16 Sumitomo Chemical Co Ltd 粒子径分布測定方法および粒子径分布測定装置
WO2016034902A1 (en) 2014-09-05 2016-03-10 Malvern Instruments Limited A particle characterization method and apparatus
DE202016006846U1 (de) 2016-11-07 2016-12-23 Particle Metrix Gmbh Vorrichtung zum Messen der Konzentration und der Größe von Nanopartikeln in Flüssigkeiten im Streulichtmodus und im Fluoreszenzmodus

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3000033A1 (de) * 1979-01-02 1980-07-31 Coulter Electronics Verfahren und vorrichtung zum messen der richtungsverteilung der von einem teilchen zurueckgestrahlten strahlungsenergie zur teilchencharakterisierung
US4273443A (en) * 1979-11-21 1981-06-16 Coulter Electronics, Inc. Method and apparatus for measurement of reradiation in particle flow cell systems
US4690561A (en) * 1985-01-18 1987-09-01 Canon Kabushiki Kaisha Particle analyzing apparatus
CN87214585U (zh) * 1987-10-20 1988-06-29 地质矿产部海洋地质综合研究大队 显微镜光度计
ATE298084T1 (de) * 1997-01-31 2005-07-15 Horticulture & Food Res Inst Optische vorrichtung und methode
DE19725211C1 (de) * 1997-06-15 1998-06-04 Alv Laser Vertriebsgesellschaf Faserdetektor zur Detektion des Streulichtes oder des Fluoreszenzlichtes einer flüssigen Suspension
US6178346B1 (en) * 1998-10-23 2001-01-23 David C. Amundson Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US7202953B1 (en) * 1998-12-21 2007-04-10 Evotec Biosystems Ag Scanning microscopic method having high axial resolution
US20090075391A1 (en) * 2003-01-17 2009-03-19 Newton Laboratories, Inc. Spectroscopic diagnostic method and system based on scattering of polarized light
US10620105B2 (en) * 2004-03-06 2020-04-14 Michael Trainer Methods and apparatus for determining characteristics of particles from scattered light
US9297737B2 (en) 2004-03-06 2016-03-29 Michael Trainer Methods and apparatus for determining characteristics of particles
US20140226158A1 (en) * 2004-03-06 2014-08-14 Michael Trainer Methods and apparatus for determining particle characteristics
US20070242269A1 (en) * 2004-03-06 2007-10-18 Michael Trainer Methods and apparatus for determining characteristics of particles
KR100817854B1 (ko) * 2006-09-19 2008-03-31 재단법인서울대학교산학협력재단 라만 산란광 및 광산란의 동시 검출 장치
JP5350810B2 (ja) * 2008-01-11 2013-11-27 株式会社東芝 自動分析装置及び自動分析方法
KR100968352B1 (ko) * 2008-01-31 2010-07-08 정철우 수중 조명등 제어장치
US7999936B1 (en) * 2008-04-03 2011-08-16 N&K Technology, Inc. Combined transmittance and angle selective scattering measurement of fluid suspended particles for simultaneous determination of refractive index, extinction coefficient, particle size and particle density
US8427641B2 (en) * 2008-12-18 2013-04-23 Azbil BioVigilant, Inc. Compact detector for simultaneous particle size and fluorescence detection
KR101545419B1 (ko) * 2011-02-10 2015-08-18 가부시키가이샤 히다치 하이테크놀로지즈 이물 검출 장치 및 이물 검출 방법
CN105891304B (zh) 2011-06-15 2018-10-23 马尔文仪器有限公司 表面电荷测量
WO2013022971A1 (en) * 2011-08-09 2013-02-14 Tsi, Incorporated System and method for converting optical diameters of aerosol particles to mobility and aerodynamic diameters
US9746412B2 (en) 2012-05-30 2017-08-29 Iris International, Inc. Flow cytometer
CN102818759B (zh) * 2012-07-19 2015-04-15 华中科技大学 一种基于光散射的湿性颗粒形状参数在线测量系统及方法
JP6396305B2 (ja) * 2012-10-24 2018-09-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California 粒子の変形及び分析システム及び方法
KR102101350B1 (ko) * 2013-03-15 2020-04-17 삼성전자주식회사 파티클 카운터 및 그를 구비한 임멀젼 노광 설비
EP2808669B1 (de) * 2013-05-31 2015-03-04 Durag GmbH Vorrichtung zur Messung von Streulicht aus einem Messvolumen unter Kompensation von Hintergrundsignalen
DE102013211885A1 (de) * 2013-06-24 2014-12-24 Siemens Aktiengesellschaft Partikeldetektor und Verfahren zur Detektion von Partikeln
US9933351B2 (en) * 2015-03-06 2018-04-03 Scanit Technologies, Inc. Personal airborne particle monitor with quantum dots
FR3048240B1 (fr) * 2016-02-29 2018-04-13 Cordouan Tech Dispositif de caracterisation de particules dispersees dans un milieu liquide
US10365198B2 (en) 2016-04-21 2019-07-30 Malvern Panalytical Limited Particle characterization
CN106333650B (zh) * 2016-09-26 2019-05-07 华南师范大学 一种多尺度光声显微成像装置及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069494A (ja) 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd 噴流速度計測装置
JP2006047064A (ja) 2004-08-03 2006-02-16 Sumitomo Chemical Co Ltd 粒子径分布測定方法および粒子径分布測定装置
WO2016034902A1 (en) 2014-09-05 2016-03-10 Malvern Instruments Limited A particle characterization method and apparatus
DE202016006846U1 (de) 2016-11-07 2016-12-23 Particle Metrix Gmbh Vorrichtung zum Messen der Konzentration und der Größe von Nanopartikeln in Flüssigkeiten im Streulichtmodus und im Fluoreszenzmodus

Also Published As

Publication number Publication date
US20170307495A1 (en) 2017-10-26
CN110402380B (zh) 2022-06-10
JP2020510838A (ja) 2020-04-09
US10365198B2 (en) 2019-07-30
US11054356B2 (en) 2021-07-06
CN110402380A (zh) 2019-11-01
US20200166446A1 (en) 2020-05-28
WO2018162869A1 (en) 2018-09-13
EP3593110B1 (en) 2023-10-04
EP4372361A1 (en) 2024-05-22
CN114778393A (zh) 2022-07-22
EP3593110A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP7216005B2 (ja) 焦点可変レンズを用いた粒子特性評価装置
US9435726B2 (en) Dynamic and depolarized dynamic light scattering colloid analyzer
US11112342B2 (en) Particle characterisation instrument
JP7444941B2 (ja) 粒子特性評価
JP6936144B2 (ja) 粒子特性評価方法及び装置
JP2020510838A5 (ja)
JP7241764B2 (ja) 光回折により改良された粒子サイジング
EP3023770B1 (en) Determination of a refractive index of a sample and of a particle size of particles in said sample by means of an apparatus for measuring light scattering
JPH0843292A (ja) コロイド状の媒体の薄層による散乱光の光度を測定する検知器
JP4016328B2 (ja) 粘度測定方法および測定装置
RU2183828C1 (ru) Способ определения малоугловой индикатрисы рассеяния
JPS63182547A (ja) 粒子解析装置
Angelsky et al. Interference measurement of erythrocyte size and concentration
JPH0552897B2 (ja)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230119

R150 Certificate of patent or registration of utility model

Ref document number: 7216005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150