JP7209139B2 - 超音波流量計 - Google Patents

超音波流量計 Download PDF

Info

Publication number
JP7209139B2
JP7209139B2 JP2018089001A JP2018089001A JP7209139B2 JP 7209139 B2 JP7209139 B2 JP 7209139B2 JP 2018089001 A JP2018089001 A JP 2018089001A JP 2018089001 A JP2018089001 A JP 2018089001A JP 7209139 B2 JP7209139 B2 JP 7209139B2
Authority
JP
Japan
Prior art keywords
ultrasonic
flow
channel
fluid
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018089001A
Other languages
English (en)
Other versions
JP2019196905A (ja
Inventor
真人 佐藤
裕治 中林
正誉 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018089001A priority Critical patent/JP7209139B2/ja
Publication of JP2019196905A publication Critical patent/JP2019196905A/ja
Application granted granted Critical
Publication of JP7209139B2 publication Critical patent/JP7209139B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流路を多層にした構成で流量を計測する超音波流量計に関するものである。
従来、この種の超音波流量計として、流路を仕切り板により分割して流量を計測するものが知られている(例えば、特許文献1参照)。
図8は、特許文献1に記載された超音波流量計の計測流路の断面を示したものである。この超音波流量計では、一対の超音波送受波器(図示していない)を有する流路101の流量測定部は、仕切り板102a,102b,102c,102d,102e,102fにより複数の分割流路103a,103b,103c,103d,103e,103f,103gに区分されている。
被計測流体は、仕切り板102a,102b,102c,102d,102e,102fで、7つの分割流路103a,103b,103c,103d,103e,103f,103gに分流される。一方の超音波送受波器で送信された超音波は、分割流路103a~103gのそれぞれを伝搬し、他方の超音波送受波器で受信される。
特開平9-43015号公報
しかしながら、前記従来の構成では、被計測流体を整流化させるために仕切り板を設けることで、流速分布の均一化を図っているが、超音波の伝搬経路が仕切り板により多数の狭い通路に分散され、超音波の伝搬経路を塞ぐような構造となる。すなわち、送信側からの超音波送受波器の超音波伝搬が仕切り板102a,102b,102c,102d,102e,102fで超音波が反射面に衝突して拡散することで減衰してしまうことや超音波信号が反射面に衝突して位相ずれが発生し、信号を打ち消しあうことでもう一方の超音波送受波器の受信信号が減衰してしまうという課題を有していた。
本発明は、前記従来の課題を解決するもので、流体の流速分布を均一化させるために流路に仕切り板を設けた構成でも、超音波送受波器の送信信号の伝搬時における減衰を抑制することができる超音波流量計の提供を目的とするものである。
前記従来の課題を解決するために、本発明の超音波流量計は、被計測流体が流れる矩形断面の計測流路を備え、前記計測流路に流れる前記被計測流体に超音波を伝搬させることにより前記被計測流体の流速を計測する超音波流量計であって、前記計測流路には、前記被計測流体の流れ方向に沿って平行となるように仕切り板を配置するとともに、前記仕切り板には、超音波の伝搬経路上に、複数の開口部を形成し、複数の前記開口部は、前記伝搬経路に平行な2辺と、前記被計測流体の流れ方向に平行な2辺で囲まれた形状で設けたことを特徴とすることで、超音波伝搬の減衰を抑制することができる。

本発明の超音波流量計によると、仕切り板の超音波伝搬経路に開口部を設けることで、超音波送受波器の送信側から出力された超音波信号が仕切り板で反射や拡散することを抑
制することができ、もう一方の超音波送受波器で超音波信号を効率よく安定して受信できるため、精度が高い超音波流量計を構築することができる。
本発明の実施の形態1における超音波流量計の断面斜視図 本発明の実施の形態1における流路部の断面図 本発明の実施の形態1における超音波流量計の構成を示す断面図 (a),(b)本発明の実施の形態1における開口部の詳細図 (a),(b),(c)本発明の実施の形態1における仕切り板の組合せ構成図 本発明の実施の形態2における開口部の他の構成を示す詳細図 本発明の実施の形態2における開口部の他の構成を示す詳細図 従来の超音波流量計における流路の構成を示す断面図
第1の発明は、被計測流体が流れる矩形断面の計測流路と、前記計測流路に流れる前記被計測流体に超音波を伝搬させることにより前記被計測流体の流速を計測する超音波流量計であって、前記計測流路には、前記被計測流体の流れ方向に沿って平行となるように仕切り板を配置するとともに、前記仕切り板は超音波の伝搬経路に開口部を設けたことを特徴とすることにより、超音波伝搬の減衰を抑制することができ、超音波信号を効率よく安定して受信できるため、精度が高い超音波流量計を構築することができる。
第2の発明は、特に第1の発明において、前記開口部は、超音波の伝搬方向に超音波の波長の1倍以上の開口幅を有していることを特徴とすることで、超音波伝搬時の多重の反射を低減して減衰をより確実に抑制することができる。
第3の発明は、特に第1または2の発明において、前記開口部を複数個設けたことを特徴とすることで、超音波伝搬の反射や拡散による受信信号の減衰を抑制でき、さらに開口部の分散により流れの乱れが分散され、各分割流路での流れが安定化し、精度良い流量計測が実現できる。
第4の発明は、特に第1~3のいずれか1つの発明において、前記仕切り板を複数設け、前記開口部は、前記仕切り板で異ならせたことを特徴とすることで、それぞれの分割流路での流れの安定化や均一化を促進できる。
第5の発明は、特に第1~4のいずれか1つの発明において、前記開口部は、微細穴を多数設けた多孔体、若しくはメッシュ体として形成したことを特徴とすることで、微細な形状設定が可能となり、超音波の減衰の抑制と流れの安定化を両立できる。
第6の発明は、特に第1~5のいずれか1つの発明において、前記計測流路の対向する2面のいずれか一方の面である第1の面に一対の超音波送受波器が設置され、一方の前記超音波送受波器の発信した超音波が前記第1の面に対向する第2の面において一回以上反射し他方の前記超音波送受波器が受信することを特徴とすることで、計測可能な流量範囲が大きくコンパクトな流量計が提供できるとともに、超音波伝搬の低減が抑制と各分割流路での流れの均一性が向上して超音波の出力信号が安定し精度が高い超音波流量計を構築することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
実施の形態1について、図1~図4を用いて説明する。
図1は、本発明の実施の形態1における超音波流量計の概略構成を示す断面斜視図、図2は図1におけるB-B断面図で流路部の断面を示している。
図1および図2において、超音波流量計1は、被計測流体が流れる矩形断面の筒状流路2を有しており、筒状流路2は、第1の面11、第2の面16、第1の側面25、第2の側面26で囲まれた構成で、内部は被計測流体の流れ方向に沿って平行となるように配置した仕切り板3、4、5により、矩形断面の分割流路6、7、8、9に分割され、全体として多層流路10を形成している。
図1は、この分割流路9の位置での断面を示したもので、分割流路9では仕切り板5と向き合う筒状流路2を形成する面でもある図面手前側の面(図2の第1の側面25)は描かれていない。
筒状流路2の分割流路6~9に臨み、対向する2面の一つである上面の第1の面11には上流側の超音波送受波器12および下流側の超音波送受波器13が配置されている。この第1の面11は、第1の超音波通過窓14および第2の超音波通過窓15を有している。また、分割流路6~9に臨み、対向する2面の一つである下面の第2の面16は超音波の反射面として作用するように構成されている。
この一対の超音波送受波器12、13および多層流路10により 超音波が伝搬する計測流路17を形成している。また、仕切り板3、4、5には開口部18を図3に示す超音波の伝搬経路P1、P2領域に面して設け、この開口部18により隣接する分割流路は互いに連通している。
ここで、分割流路6、および分割流路9は、それぞれ、もっとも外側に位置しているため、外側流路とも称する。また、分割流路7、および分割流路8は、それぞれ、内側に位置しているため、内側流路とも称する。
図3は図1のA-A断面を示した超音波流量計の断面図と構成図である。なお、計測回路19と演算回路20は、回路基板27上に搭載されているものであり、説明の為、図に示すように、取り出して表記している。
前述のようにP1、P2で示した矢印は超音波の伝搬経路であり、超音波は計測流路17を横切るように伝搬する。なお、矢印の方向は上流側の超音波送受波器12から超音波を発信して、下流側の超音波送受波器13で受信する場合を示したもので、下流側の超音波送受波器13から超音波を発信して上流側の超音波送受波器12で受信する場合は矢印方向が逆になる。
第1の超音波送受波器12、および第2の超音波送受波器13からの信号は計測手段である計測回路19にて伝搬時間測定等の処理をされ、さらに演算手段である演算回路20で流量算出等の演算が実行される。
次に超音波による流量計測に関して図3を用いて説明する。 計測流路17を流れる流体の流速をV、流体中の音速をC、流体の流れる方向と超音波が第2の面16で反射するまでの超音波伝搬方向とのなす角度をθとする。また、第1の超音波送受波器12と第2の超音波送受波器13との間で伝搬する超音波の伝搬経路の有効長さをLとする。
このとき、第1の超音波送受波器12から出た超音波が、もう一方の第2の超音波送受波器13に到達するまでの伝搬時間t1は、次式にて示される。
t1=L/(C+Vcosθ) (1)
次に第2の超音波送受波器13から出た超音波が、もう一方の第1の超音波送受波器12に到達するまでの伝搬時間t2は、次式にて示される。
t2=L/(C-Vcosθ) (2)
式(1)と式(2)から流体の音速Cを消去すると、次式が得られる。
V=(L/(2cosθ))((1/t1)-(1/t2)) (3)
式(3)にて分るように、Lとθが既知なら、計測回路19にて計測された伝搬時間t1、およびt2を用いて、流速Vが求められる。この演算は、演算回路20にて実行される。
次に、次式に示すようにこの流速Vに分割流路6,7,8,9の断面積の総和Sを乗じて、全体の流量Qを求めるが、通常、流速Vは、平均流速とはならないため、流量係数kを乗じることになる。
Q=k×(V×S) (4)
一般的には、この流量係数kは、流量により異なる値をとり、誤差要因となりうるが、各分割流路6,7,8,9の流速分布が一定であれば、上記の流速Vは平均流速を表すことになるため、kは1に近い一定の値となり、誤差の少ない計測が実現されることとなる。
図4は仕切り板3~5に設けた開口部18の詳細を示したものであり、図4(a)は第2の仕切り板4での詳細図であり、開口部18は、超音波の伝搬経路P1,P2のそれぞれに沿って、開口部18a~18eとして形成されている。そして、開口部18は、伝搬経路P1,P2に平行な2辺と被計測流体の流れ方向に平行な2辺で囲まれた形状としている。
ここで、開口部18a,18eは、図の上端が開放した形状であり、開口部18cは、超音波の反射の近傍に位置している為、伝搬経路P1上の開口部と伝搬経路P2上の開口部が繋がった形状となっている。また、開口部18の幅wは、第1の超音波通過窓14および第2の超音波通過窓15の開口と同等以下としている。
図4(b)は開口部18の数を図4(a)に比べ多く形成した他の例を示している。
開口部18は超音波の伝搬方向に開口長さm,m’として、超音波の伝搬経路領域に配置するとともに、複数個の穴を設けて形成している。なお、開口部18の間隔n,n’は必要な整流効果を維持できる間隔に調整される。
次に、本発明の超音波流量計の動作について説明する。
図3において、入口部21より流入する流れは、仕切り板3、4、5により、分割流路6,7,8,9へ分流して流れる。
この分割流路6、7、8、9内の計測流路17の流れを横切るように超音波送受波器12と超音波送受波器13の間で第2の面16で超音波を反射させて超音波の送信受信を繰り返し、伝搬時間の計測を行う。
分割流路6、7、8、9内に入った超音波は、仕切り板3~5の面で多重の反射を繰り返すが、開口部18では反射面に衝突する面積が減るので超音波伝搬の減衰を抑制することができ、受信信号の感度が向上して計測精度が向上する。
また、開口部18の開口長さm,m’を超音波の波長の1倍以上とすることで、超音波伝搬時の多重の反射をより確実に低減し、受信される超音波の減衰をより確実に抑制することができる。
しかし、超音波の伝搬経路領域において分割流路の壁面が全域にわたり全て開口していると、超音波の多重反射はなくなるものの流れの整流効果が低減し、分割流路6、7、8、9間での流速分布の相違や変動をもたらして、計測精度や計測可能領域が低下する。
そこで、各仕切り板3、4、5での開口部18を複数個設けることで流れの整流効果を維持し、超音波の減衰の低減と流れの整流効果の維持を両立できる。このため、超音波伝搬の反射や拡散による受信信号の減衰を抑制でき、さらに開口部の分散により流れの乱れが分散され、各分割流路での流れが安定化し、精度良い流量計測が実現できる。
また、以上は各仕切り板3、4、5にすべて同じ開口部18を用いる場合で説明したが、仕切り板3、4、5において異なる開口部18を設けることが可能である。図5は仕切り板に異なる開口部を設けた例を示す。
すなわち、分割流路6~9では各流路の流れ状況がほぼ同等となるように、断面の縦横比(アスペクト比)を大きな偏平断面とすることで、各分割流路での流れが小流量域から大流量域まで層流となるようにして流量計測精度を高めている。しかし、大流量域において内側に位置し内側流路とも称する分割流路7および分割流路8は、外側に位置し外側流路とも称する分割流路6および分割流路9に比べて、流速が若干大きくなる傾向にあり流れ形状が乱流となり始め、層流を保つ外側流路に対して流速分布の形状に差が生じ始めるため、高い計測精度を維持するには課題が生じて大流量域側での計測限界となる。
そこで図5(a)~(c)に示すように、仕切り板3、4、5の開口部18は形状や穴の数に違いを設けている。
そして、内側流路に接する仕切り板4は図5(b)に示すように開口部18を穴の数を多くして小さな形状にしている。このため超音波の減衰の抑制を維持したまま、内側流路では大流量域での流れの層流維持に努める。内側流路で乱流化が生じ始める流量域に達すると、外側流路でも乱流化が始まるように仕切り板3、仕切り板5の開口部18の穴を大きくすることで、穴の端部エッヂでの乱流促進効果を高めて、流れの乱れを早めて乱流化するように設定している。なお、図5では仕切り板3および仕切り板5は、流入側および流出側ともに多層部に対して対称となる場合を想定して同じ形状としている。
大流量域で内側流路で乱流化が始まっても外側流路でも乱流化が始まり、すべての分割流路でほぼ同じような流れ形状の乱流化のために高い計測精度を保つことが可能となり、計測可能な大流量域の上限を高めることができる。
このように、外側流路に面する仕切り板で開口部18の形状や穴の数に違いを設けることで、超音波の減衰を低減することに加えて、外側流路でも内側流路と同等の流速分布状況として、それぞれの分割流路での流れの安定化や均一化を促進し、計測精度の向上や大流量に対する計測流量領域の拡大ができる。
なお、流入側および流出側の流路構成の条件によっては、両端の最外側流路に面する仕切り板3、仕切り板5では同じ開口部18の仕様としても、異ならせても良い。さらに、分割流路の分割数が増えた場合や流れ状況に応じて、すべての仕切り板で開口穴の形状・数などの仕様を異ならせて良いのは言うまでもない。
また、超音波周波数による違いとして、計測精度を高めるには高い周波数が適しているが多重の反射し易くなる傾向にあり、減衰しやすくなるといえる。一方、超音波周波数が低い場合はより直線的に伝搬し易く多重反射を抑制して受信感度を高めることができるが、計測の分解能が低下する傾向にあるため計測精度は抑制される。
大流量域においては計測の分解能をあまり気にしなくても良くなり、低い超音波周波数の使用が実用上可能となる。ここで波長の長い低い周波数を使用する場合は、多重反射を抑制するには開口長さをより大きく必要とするが、外側流路での乱流化促進のための大きな開口穴が有利であり、大流量域での周波数と開口長さの関係は同様の傾向のため適用可能である。
このため、超音波送受波器を発振駆動する周波数の使用設定値を変えることで、開口部の形状や穴の数による計測可能な流量域の拡大に加えてより一層拡大できる。
なお、ここでは第2の面16で1回超音波を反射させるVパスの伝搬経路の場合を示したが、第2の面16で2回超音波を反射させ第1の面11で1回超音波を反射させるWパスの伝搬経路の場合(図示せず)の場合も同様であるのは言うまでもない。
(実施の形態2)
次に、本発明の実施の形態2について、図6、図7を参照しながら説明する。
図6および図7は、本発明の実施の形態2における開口部18の他の構成を示すもので、実施の形態1と同じ機能のものは同一番号で示している。
開口部18は、超音波の伝搬経路の領域部に配置したもので、図6に示す微細穴24を多数設けた多孔体22や、図7に示す金網のようなメッシュ体23で形成したものである。多孔体22としては、機械的に多数の孔を開けたパンチング板や、化学的に微細な多数の孔を開けたエッチング板などを利用することで、製造性を高めることができる。
このように、開口部18を多孔体22やメッシュ体23で形成したことで、微細な形状設定が可能となり、超音波の減衰の抑制と流れの安定化を両立できる。
また、内側流路および外側流路に接する仕切り板の開口部の数や形状の違いに使用することで、より微細な流れ状態の調節がなされて計測精度を向上できる。
以上の実施の形態1および実施の形態2で示したように、仕切り板は超音波の伝搬経路の領域に開口部18を設けたもので、開口部18を上記した構成とするとともに、計測流路17の対向する2面のいずれか1面の側である第1の面11に第1の超音波送受波器12、第2の超音波送受波器13が設置され、前記第1の超音波送受波器12、前記第2の超音波送受波器13のうちいずれか一方の超音波送受波器の発信した超音波が、前記第1の面11に対向する第2の面16において一回以上反射し他方の超音波送受波器が受信するように構成することで、計測可能な流量範囲が大きくコンパクトな流量計が提供できるとともに、多層流路10での超音波伝搬の低減が抑制と各分割流路での流れの均一性が向上して超音波の出力信号が安定し精度が高い超音波流量計を構築することができる。
以上、本発明の実施例において、一対の超音波送受波器の配置として、その超音波伝搬経路がV字型をなす構成にて説明したが、これに限るものではなく、伝搬経路が流れを一回だけよぎる、いわゆるZ字型、また、流れと平行なI字型等になるような構成であってもよい。
また、計測流路として、多層流路のすべての層を用いる構成を例示したが、サイズの大きい計測流路では、多層流路のうちの一部の一層を用いる構成でも良く、また超音波の伝搬面が複数層にまたがっても、同様の効果を得ることができるものである。
なお、図1では仕切り板すべてに開口部を設けているが、超音波の伝搬経路により減衰の抑制を確保できる条件を満たせば、最小枚数のみに開口部を設けても差し支えない。また、開口部の形状についても同様の条件を満たせば記載した限りではない。
以上のように、本発明の超音波流量計は、複数に分割した流路構成においても超音波の送受信信号の減衰を抑制することにより、超音波の伝播時間を精度よく計測できるため流量を精度よく測定することができる。
これにより、小流量の計測のみならず、大流量の計測においても、超音波信号を安定させることが実現できる。また、この方法の採用により、家庭用のガスメータのみならず、業務用の大型ガスメータや大流量用の計測器としての応用が可能となる。
1 超音波流量計
3、4、5 仕切り板
10 多層流路
11 第1の面
12、13 超音波送受波器
16 第2の面
17 計測流路
18 開口部
22 多孔体
23 メッシュ体
24 微細穴

Claims (1)

  1. 被計測流体が流れる矩形断面の計測流路を備え、前記計測流路に流れる前記被計測流体に超音波を伝搬させることにより前記被計測流体の流速を計測する超音波流量計であって、
    前記計測流路には、前記被計測流体の流れ方向に沿って平行となるように仕切り板を配置するとともに、前記仕切り板には、超音波の伝搬経路上に、複数の開口部を形成し、複数の前記開口部は、前記伝搬経路に平行な2辺と、前記被計測流体の流れ方向に平行な2辺で囲まれた形状で設けたことを特徴とする超音波流量計。
JP2018089001A 2018-05-07 2018-05-07 超音波流量計 Active JP7209139B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089001A JP7209139B2 (ja) 2018-05-07 2018-05-07 超音波流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089001A JP7209139B2 (ja) 2018-05-07 2018-05-07 超音波流量計

Publications (2)

Publication Number Publication Date
JP2019196905A JP2019196905A (ja) 2019-11-14
JP7209139B2 true JP7209139B2 (ja) 2023-01-20

Family

ID=68537918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089001A Active JP7209139B2 (ja) 2018-05-07 2018-05-07 超音波流量計

Country Status (1)

Country Link
JP (1) JP7209139B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415442B2 (en) 2020-10-30 2022-08-16 Honeywell International Inc. Ultrasonic flow tube having a plurality of outer pipes surrounding a center pipe positioned between an inlet wall and an outlet wall having transducers therein
US12018975B2 (en) 2021-03-11 2024-06-25 Honeywell International Inc. Ultrasound and thermal massflow in one flow channel
JP7550364B2 (ja) * 2021-03-25 2024-09-13 パナソニックIpマネジメント株式会社 超音波流量計

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251700A (ja) 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 流体計測装置
JP2005043207A (ja) 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd 流体の流れ計測装置
JP2009276132A (ja) 2008-05-13 2009-11-26 Ricoh Elemex Corp 超音波式流量計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251700A (ja) 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 流体計測装置
JP2005043207A (ja) 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd 流体の流れ計測装置
JP2009276132A (ja) 2008-05-13 2009-11-26 Ricoh Elemex Corp 超音波式流量計

Also Published As

Publication number Publication date
JP2019196905A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7209139B2 (ja) 超音波流量計
JP5974307B2 (ja) 超音波流量計
JP2014077679A (ja) 流量計
JP7285450B2 (ja) 超音波流量計
WO2020031622A1 (ja) 超音波流量計
JP5816831B2 (ja) 超音波流量計
JP3487307B1 (ja) 流体の流れ計測装置
JP6982737B2 (ja) 超音波流量計
JP2005257611A (ja) 流体の流れ計測装置
JP7550364B2 (ja) 超音波流量計
JP2008298560A (ja) 超音波流量計及び流量計測方法
JP7285453B2 (ja) 超音波流量計
JP6028215B2 (ja) 超音波流量計
JP3824236B2 (ja) 超音波流量計測装置
JP3935069B2 (ja) 流量計測装置
JP2000065613A (ja) 超音波流量計
JP2017181230A (ja) 流量計測装置
JP4092977B2 (ja) 流量計測装置
JP2008014833A (ja) 超音波流量計
JP6496905B2 (ja) 超音波流量計
JP3781424B2 (ja) 超音波流量計測装置
CN118696215A (zh) 超声波流量计
JP2001208585A (ja) 流量計
JP2019196968A (ja) 超音波流量計
JP2002107194A (ja) 超音波流量計

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220628

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220705

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R151 Written notification of patent or utility model registration

Ref document number: 7209139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151