JP7201589B2 - リチウム含有ガラス - Google Patents

リチウム含有ガラス Download PDF

Info

Publication number
JP7201589B2
JP7201589B2 JP2019523593A JP2019523593A JP7201589B2 JP 7201589 B2 JP7201589 B2 JP 7201589B2 JP 2019523593 A JP2019523593 A JP 2019523593A JP 2019523593 A JP2019523593 A JP 2019523593A JP 7201589 B2 JP7201589 B2 JP 7201589B2
Authority
JP
Japan
Prior art keywords
mol
glass
less
glass article
draw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019523593A
Other languages
English (en)
Other versions
JP2019534234A (ja
Inventor
マイケル グロス,ティモシー
グオ,シャオジュ
マリー スミス,シャーリーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2019534234A publication Critical patent/JP2019534234A/ja
Application granted granted Critical
Publication of JP7201589B2 publication Critical patent/JP7201589B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

関連出願の相互参照
本出願は、その内容の各々が依拠され、ここに全て引用される、2016年11月7日出願の米国仮特許出願第62/418367号、2017年1月30日出願の米国仮特許出願第62/452004号、及び2017年9月29日出願の米国仮特許出願第62/565190号の米国特許法第119条の下での優先権の利益を主張するものである。
本明細書は一般に、低粘度ガラス及びリチウム含有ガラスに関する。より具体的には、本明細書は、カバーガラスとして使用できる低粘度ガラス及びリチウム含有アルミノシリケートガラスの製造を対象とする。本明細書はまた、融合線(fusion line)を内包する低粘度及びリチウム含有アルミノシリケートガラスも対象とする。
スマートフォン、タブレット、ポータブルメディアプレイヤー、パーソナルコンピュータ及びカメラといったポータブルデバイスの可搬性により、これらのデバイスは、地面等の硬質表面への偶発的な落下を特に受けやすくなる。これらのデバイスは典型的にはカバーガラスを組み込んでおり、これは、硬質表面との衝突時に損傷し得る。これらのデバイスの多くにおいて、カバーガラスはディスプレイカバーとして機能し、またタッチ機能を組み込むことができ、これにより、カバーガラスが損傷すると、上記デバイスの使用にマイナスの影響がある。
関連するポータブルデバイスが硬質表面上に落下した場合のカバーガラスの破損モードは、主に2つ存在する。これらのモードのうちの一方は曲げ破損であり、これはデバイスが、硬質表面との衝突に由来する動的荷重を受けた場合に、ガラスの屈曲によって引き起こされる。もう一方のモードは鋭利接触破損であり、これはガラス表面への損傷の導入によって引き起こされる。ガラスが、アスファルト、グラナイト等といった硬質粗面と衝突すると、ガラス表面に鋭利な押込みが発生し得る。これらの押込みがガラス表面の破損部位となり、そこから割れが成長して伝播し得る。
ガラス表面に圧縮応力を誘発することを伴うイオン交換技法により、ガラスの曲げ破損に対する耐性を高めることができる。しかしながら、イオン交換済みガラスは依然として、鋭利接触に由来するガラス内の局所的押込みによって引き起こされる高い応力の集中により、動的な鋭利接触を受けやすい。
ガラスメーカー及びハンドヘルドデバイス製造元は、鋭利接触破損に対するハンドヘルドデバイスの耐性を改善するために、継続的に努力してきた。解決策は、カバーガラス上のコーティングから、デバイスが硬質表面上に落下した場合にカバーガラスが硬質表面に直接触れるのを防止するベゼルにまで及ぶ。しかしながら、審美的及び機能的要件の制約から、カバーガラスが硬質表面に触れるのを完全に防止するのは極めて困難である。
ポータブルデバイスを可能な限り薄くすることも望まれている。従って、強度に加えて、ポータブルデバイスのカバーガラスとして使用されることになるガラスを可能な限り薄くすることも望まれている。よって、カバーガラスの強度を向上させることに加えて、上記ガラスが、薄型ガラスシート等の薄型ガラス物品を作製できるプロセスによって成形できるような機械的特徴を有することも望まれている。
ガラス成形装置は一般に、LCDディスプレイ、ポータブルデバイス等のために使用されるガラスシートといった様々なガラス製品を成形するために使用される。これらのガラスシートは、溶融ガラスを、成形用ウェッジを越えて下向きに流すことで、連続したガラスリボンを形成することによって、製造できる。開発中の技術は、ますます低い液相粘度を有するガラス組成物を使用するものである。従って、溶融ガラスが成形用ウェッジを横断する際の、溶融ガラスの失透を防止するために、比較的高い成形温度を使用する。
従って、比較的低い液相粘度を有するガラスの失透を緩和するために、比較的高い成形温度を提供できる、ガラスリボンを成形するための代替的な方法及び装置に対して、需要が存在する。従って、イオン交換等によって強化でき、かつ薄型ガラス物品として成形できる機械的特性を有するガラスに対しても、需要が存在する。
いくつかの実施形態によると、ガラス物品は、酸化物基準で:60モル%以上74モル%以下のSiO;7モル%以上18モル%以下のAl;3モル%以上16モル%以下のB;0モル%超かつ6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;0.2モル%以下のSnO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含む。上記ガラス物品は、0.9以上のモル比Al:(RO+RO)を有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である。
いくつかの実施形態によると、ガラス物品は、酸化物基準で:60モル%以上66モル%以下のSiO;11.5モル%以上18モル%以下のAl;3モル%以上8モル%以下のB;2モル%以上6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含む。上記ガラス物品は、0.9以上のモル比Al:(RO+RO)を有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である。
いくつかの実施形態によると、ガラス物品は、酸化物基準で:65モル%以上74モル%以下のSiO;7モル%以上12モル%以下のAl;5モル%以上16モル%以下のB;0モル%以上4モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含む。上記ガラス物品は、0.9以上のモル比Al:(RO+RO)を有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である。
いくつかの実施形態によると、ガラス物品は、LiO、SiO、Alを含み、300kP以下の液相粘度を備え、RIannealed-RIas formedは0.0003以上であり、ここでRIannealedは、1時間にわたって上記ガラスのアニール点で加熱された上記ガラスの、589nmの波長における屈折率であり、RIas formedは、成形後すぐの上記ガラスの、589nmの波長における屈折率である。
いくつかの実施形態によると、消費者向け電子製品は:前面、背面及び側面を有するハウジング;少なくとも部分的に上記ハウジング内に設けられた電子部品であって、上記電子部品は、少なくともコントローラ、メモリ及びディスプレイを含み、上記ディスプレイは、上記ハウジングの上記前面に又は上記前面に隣接して設けられる、電子部品;並びに上記ディスプレイを覆うように配置されたカバー基板を備える。上記ハウジングの一部分又は上記カバー基板のうちの少なくとも一方は、上述の第1の実施形態、第2の実施形態、第3の実施形態又は第4の実施形態のうちのいずれの1つのガラス物品を含む。
更なる実施形態では、ガラス物品は、SiO、Al、B、LiO、SnO、及び融合線を含む。上記ガラス物品は、NaO又はPも含むことができる。いくつかの実施形態では、上記ガラス物品は、酸化物基準で:60モル%以上74モル%以下のSiO;7モル%以上18モル%以下のAl;3モル%以上16モル%以下のB;0モル%超かつ6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.2モル%以下のSnOを含む。いくつかの実施形態では、上記ガラス物品は、0.9以上のモル比Al:(RO+RO)を備え、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である。いくつかの実施形態では、上記ガラス物品は、300kP以下、100kP以下、50kP以下、又は25kP以下の液相粘度を備える。いくつかの実施形態では、上記ガラス物品は、イオン交換プロセスによって強化され、これにより上記ガラス物品の少なくとも1つの表面上に圧縮応力層が形成される。いくつかの実施形態では、上記ガラス物品は、0.15t以上の圧縮深さを備え、ここでtは上記ガラス物品の厚さである。いくつかの実施形態では、上記ガラス物品は、0.15t以上0.25t以下の圧縮深さ(DOC)を備え、ここでtは上記ガラス物品の厚さである。いくつかの実施形態では、上記ガラス物品は、30MPa以上150MPa以下の中央張力を備える。いくつかの実施形態では、上記ガラス物品は、上記ガラス物品にカリウムイオンを付加するイオン交換プロセスによって強化され、カリウム層深さ(DOL)は5μm以上30μm以下である。いくつかの実施形態では、上記ガラス物品は圧縮応力層を備え、上記圧縮応力層は、その表面において300MPa以上950MPa以下の圧縮応力を有する。いくつかの実施形態では、上記ガラス物品は、5N以上24N以下のヌープ引っかき横割れ閾値を備える。いくつかの実施形態では、上記ガラス物品は、15kgf(0.147kN)以上の押込み破壊閾値を備える。
更なる実施形態では、ガラス物品は、SiO、Al、及び100kP以下、50kP以下又は25kP以下の液相粘度を含む。いくつかの実施形態では、上記ガラス物品は、酸化物基準で:60モル%以上74モル%以下のSiO;7モル%以上18モル%以下のAl;3モル%以上16モル%以下のB;0モル%超かつ6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.2モル%以下のSnOを含む。いくつかの実施形態では、上記ガラス物品は、イオン交換プロセスによって強化され、これにより上記ガラス物品の少なくとも1つの表面上に圧縮応力層が形成される。いくつかの実施形態では、上記ガラス物品は、0.15t以上の圧縮深さを備え、ここでtは上記ガラス物品の厚さである。いくつかの実施形態では、上記ガラス物品は、0.15t以上0.25t以下の圧縮深さ(DOC)を備え、ここでtは上記ガラス物品の厚さである。いくつかの実施形態では、上記ガラス物品は、30MPa以上150MPa以下の中央張力を備える。いくつかの実施形態では、上記ガラス物品は、上記ガラス物品にカリウムイオンを付加するイオン交換プロセスによって強化され、カリウム層深さ(DOL)は5μm以上30μm以下である。いくつかの実施形態では、上記ガラス物品は圧縮応力層を備え、上記圧縮応力層は、その表面において300MPa以上950MPa以下の圧縮応力を有する。
更なる実施形態では、ガラス物品は、少なくともLiOと、SiO、Al、B及びSnOのうちの1つ以上とを含み、更に融合線を備える。いくつかの実施形態では、上記ガラス物品はNaO又はPを含む。いくつかの実施形態では、上記ガラス物品は、酸化物基準で:60モル%以上74モル%以下のSiO;7モル%以上18モル%以下のAl;3モル%以上16モル%以下のB;0モル%超かつ6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.2モル%以下のSnOを含む。いくつかの実施形態では、上記ガラス物品は、0.9以上のモル比Al:(RO+RO)を備え、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である。いくつかの実施形態では、上記ガラス物品は、300kP以下、100kP以下、50kP以下、又は25kP以下の液相粘度を備える。
更なる実施形態では、ガラス物品はSiO、Al、LiOを含み、更に100kP以下の液相粘度と、融合線とを備える。いくつかの実施形態では、上記ガラス物品は、50kP以下又は25kP以下の液相粘度を備える。いくつかの実施形態では、上記ガラス物品は、酸化物基準で:60モル%以上74モル%以下のSiO;7モル%以上18モル%以下のAl;3モル%以上16モル%以下のB;0モル%超かつ6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.2モル%以下のSnOを含む。いくつかの実施形態では、上記ガラス物品は、イオン交換プロセスによって強化され、これにより上記ガラス物品の少なくとも1つの表面上に圧縮応力層が形成される。
追加の特徴及び利点を、以下の「発明を実施するための形態」に記載するが、その一部は、「発明を実施するための形態」から、又は以下の「発明を実施するための形態」、特許請求の範囲及び添付の図面を含む本出願に記載の実施形態を実践することによって、当業者には容易に明らかになるだろう。
上述の「発明の概要」及び以下の「発明を実施するための形態」の両方は、様々な実施形態を説明するものであり、請求対象の主題の性質及び特徴を理解するための概観又は枠組みを提供することを意図したものであることを理解されたい。添付の図面は、これらの様々な実施形態の更なる理解を提供するために含まれており、また本明細書に組み込まれて本明細書の一部を構成する。これらの図面は、本明細書に記載の上記様々な実施形態を図示し、本記載と併せて、請求対象の主題の原理及び動作を説明する役割を果たす。
本明細書中に図示及び記載されている1つ以上の実施形態による、ガラスリボンを成形するための装置の概略図 図1の線3‐3の位置における概略断面斜視図 本明細書中に図示及び記載されている1つ以上の実施形態による、図2のガラスリボンを成形するための装置の概略正面斜視図 本明細書中に図示及び記載されている1つ以上の実施形態による、ガラスを作製するための装置において使用するための交換式加熱カートリッジの概略図 図4Aの線4B‐4Bに沿った、交換式加熱カートリッジの概略断面図 本明細書中に図示及び記載されている1つ以上の実施形態による、図4Aの交換式加熱カートリッジの背面斜視図 本明細書に記載の二ケイ化モリブデン加熱素子を含む加熱カートリッジに対する個別の電力の変化に対する、基部温度応答の数学的モデルのグラフ 本明細書中に図示及び記載されている1つ以上の実施形態による、ガラス製造装置の成形用容器の別の実施形態の概略図であり、加熱カートリッジが上記成形用容器のトラフの付近に配置されている 本明細書中に図示及び記載されている1つ以上の実施形態による、図7の成形用容器の線8‐8に沿って得られる断面の概略図 本明細書中に図示及び記載されている1つ以上の実施形態による、ガラス製造装置の成形用容器の別の実施形態の概略図であり、加熱カートリッジが上記成形用容器のトラフの付近に配置されている フュージョンダウンドロー装置の部分断面斜視図 縁部ロールのセットを備える、シートガラスをドロー加工するためのシステムのある実施形態の側面立面図 縁部ロールの第1のセット及び縁部ロールの第2のセットを備える、シートガラスをドロー加工するためのシステムのある実施形態の側面立面図 本開示のある例示的実施形態によるガラス製造装置 本開示のある例示的実施形態による図13のガラス製造装置の側面図 本開示のある例示的実施形態による図13のガラス製造装置の、第1の高さにおける上面図 本開示のある例示的実施形態による図13のガラス製造装置の、第2の高さにおける上面図 本開示のある例示的実施形態による図13のガラス製造装置の、第3の高さにおける上面図 本開示のある例示的実施形態によるガラス製造装置 本開示のある例示的実施形態による図18のガラス製造装置の、中間高さにおける上面図 本開示の例示的実施形態による、2つの異なる高さにおける独立した定常力入力制御の例示的なグラフ 本開示の例示的実施形態による、最下部のドローロールにおいて印加される力の例示的なグラフ 本開示の例示的実施形態による、最下部のドローロールの速度の例示的なグラフ 本明細書中で開示及び説明される実施形態による、表面上に圧縮応力層を有するガラスの概略断面図 本明細書中で開示及び説明される実施形態による、ガラス物品に関するヌープ引っかき横割れ閾値試験結果を示すグラフ 本明細書中で開示及び説明される実施形態による、ガラス物品に関する押込み破壊閾値試験結果を示すグラフ 本明細書で開示されるガラス物品のうちのいずれを組み込んだ例示的な電子デバイスの平面図 図26Aの例示的な電子デバイスの斜視図 図2のフュージョンダウンドロー装置の断面図の斜視図 図2のフュージョンダウンドロー装置の断面図の別の斜視図
これより、上述のような低粘度ガラス及びリチウム含有アルミノシリケートガラスを作製するための製造システム及びプロセスについて詳細に言及する。またこれより、様々な実施形態による低粘度ガラス及びリチウム含有アルミノシリケートガラスについて詳細に言及する。またこれより、融合線を内包する低粘度リチウム含有アルミノシリケートガラスについて詳細に言及する。
ガラス製造システム
これより、ガラスリボンを成形するための方法及び装置の実施形態について詳細に言及する。上記透明被加工物の例は添付の図面に図示されている。可能な限り、図面全体を通して、同一又は同様の部分を指すために同一の参照番号を使用する。ガラスリボンを作製するための装置の一実施形態が図1に示されており、これは全体を通して一般に参照番号10で表される。一実施形態によると、ガラスリボンを成形するための装置は、成形用ウェッジを含み、これはハウジング内に配置され、また基部において集束する下向きに傾斜した成形用表面部分のペアを備える。複数の加熱カートリッジを上記ハウジングのポート内に位置決めしてよい。各加熱カートリッジは、加熱カートリッジの底面に対して約90°超の角度で配向された、熱配向表面を含んでよい。上記熱配向表面は、上記熱配向表面に隣接して位置決めされた加熱素子を含んでよい。上記加熱カートリッジは、上記熱配向表面が上記成形用ウェッジと対面し、また上記熱配向表面の上縁部と上記加熱カートリッジの上面とが、上記成形用ウェッジの上記基部又は上記成形用ウェッジのトラフのうちの少なくとも一方の上方に位置決めされ、これにより上記加熱カートリッジの上記熱配向表面から上記成形用ウェッジの上記基部又は上記成形用ウェッジの上記トラフに向かって熱が配向されるように、位置決めしてよい。ガラスリボンを成形するための方法及び装置の様々な実施形態を、添付の図面を具体的に参照して、本明細書において更に詳細に説明する。
本明細書において、範囲は、「約」ある特定の値から、及び/又は「約」別の特定の値までとして表現され得る。このような範囲が表現されている場合、別の実施形態は、上記ある特定の値から、及び/又は上記別の特定の値までを含む。同様に、先行詞「約」を用いることにより、値が概数として表現されている場合、上記特定の値は別の実施形態を形成することが理解されるだろう。更に、各範囲の端点は、他方の端点との関連でも、他方の端点とは独立しても、重要であることが理解されるだろう。
本明細書中で使用される方向に関する用語、例えば上方、下方、右、左、前方、後方、頂部、底部は、ここで図示されている状態の図面に関してのみ使用され、絶対的な配向を暗示することを意図したものではない。
特段の記載がない限り、本明細書に記載のいずれの方法が、そのステップを特定の順序で実施すること、又はいずれの装置の特定の配向を必要とするものとして解釈されることは、全く意図されていない。従って、ある方法クレームが、そのステップが従うべき順序を実際に列挙していない場合、又はいずれの装置クレームが、個々の構成部品に関する順序若しくは配向を実際に列挙していない場合、又はステップをある特定の順序に限定するべきであることが、特許請求の範囲若しくは説明中で具体的に言明されていない場合、又は装置の構成部品に関する特定の順序又は配向が列挙されていない場合、いかなる点においても、順序又は配向が推定されることは全く意図されていない。これは:ステップの構成、動作フロー、構成部品の順序、又は構成部品の配向に関する論理の問題;文法的な編成又は句読点に由来する単純な意味;及び本明細書に記載の実施形態の数又はタイプを含む、解釈のためのいずれの可能な非明示的根拠にも当てはまる。
本明細書中で使用される場合、名詞は、文脈がそうでないことを明らかに指示していない限り、複数の対象を含む。従って例えば、「ある」構成部品に関する言及は、文脈がそうでないことを明らかに指示していない限り、2つ以上の上記構成部品を有する態様を含む。
ここで図1を参照すると、ガラスリボン12を成形するためのガラス成形装置10の一実施形態が概略図で示されている。ガラス成形装置10は一般に、貯蔵用蓋付き容器18からガラスバッチ材料16を受承するよう構成された溶融用容器15を含む。ガラスバッチ材料16は、モータ22によって動力供給されるバッチ送達デバイス20によって、溶融用容器15に導入できる。任意のコントローラ24を設けることにより、モータ22を起動してよく、また溶融ガラス液位プローブ28を用いて、スタンドパイプ30内のガラス溶融物の液位を測定し、測定された情報をコントローラ24に通信できる。
ガラス成形装置10は、清澄用チューブ等の清澄用容器38を含み、これは溶融用容器15から下流に配置され、第1の接続チューブ36によって溶融用容器15に連結される。撹拌チャンバ等の混合用容器42は、清澄用容器38から下流に配置される。ボウル等の送達用容器46は、混合用容器42から下流に配置してよい。図示されているように、第2の接続チューブ40は、清澄用容器38を混合用容器42に連結し、また第3の接続チューブ44は、混合用容器42を送達用容器46に連結する。更に図示されているように、下降管48は、ガラス溶融物を送達用容器46から成形用容器60のインレット50に送達するよう位置決めされる。
溶融用容器15は典型的には、耐火性(例えばセラミック)レンガ等の耐火性材料から作製される。ガラス成形装置10は更に、典型的には白金、又は白金‐ロジウム、白金‐イリジウム及びこれらの組み合わせといった白金含有金属から作製されるものの、モリブデン、パラジウム、レニウム、タンタル、チタン、タングステン、ルテニウム、オスミウム、ジルコニウム及びこれらの合金並びに/又は二酸化ジルコニウムといった耐火性金属も含んでよい、構成部品を含んでよい。この白金含有構成部品は、第1の接続チューブ36、清澄用容器38、第2の接続チューブ40、スタンドパイプ30、混合用容器42、第3の接続チューブ44、送達用容器46、下降管48、及びインレット50のうちの1つ以上を含むことができる。成形用容器60もまた、耐火性材料(例えば耐火性レンガ及び/又は耐火性金属)から作製でき、またこれは、ガラス溶融物をガラスリボン12に成形するよう設計される。
図2は、図1の線3‐3に沿った、ガラス成形装置10の概略断面斜視図である。図示されているように、成形用容器60は成形用ウェッジ62を含み、これは、上向きに(即ち図2に示す座標軸の+x方向に)開いたトラフ61と、成形用ウェッジ62の対向する端部64a、64bの間に延在する、下向きに(即ち図2に示す座標軸の-x方向に)傾斜した成形用表面部分66a、66bのペアとを備える。下向きに傾斜した成形用表面部分66a、66bは、下流方向68に沿って集束して基部70を形成する。ドロー平面72は、基部70を通って延在する。本明細書中で更に説明されるように、ガラスリボン12は、成形用ウェッジ62からドロー平面72に沿って下流方向68にドロー加工できる。図示されているように、ドロー平面72は、基部70を、基部70を通って、成形用容器60の概ね水平な長さ方向(図2に示す座標軸の+/-y方向)に二等分する。しかしながら、ドロー平面72は基部70に対して、上記基部を通って成形用容器60を二等分する配向以外の様々な配向で延在してよいことを理解されたい。図1及び2は、ガラス成形装置及び成形用容器の一実施形態を概略的に示しているが、他の様々な成形用容器の構成を有する本開示の態様を用いてよいことも理解されたい。
図1及び2を参照すると、特定の実施形態では、成形用容器60は、下向きに傾斜した成形用表面部分66a、66bのペアと交差する縁部配向器80a、80bを備えてよい。上記縁部配向器は、溶融ガラスを成形用容器60の基部70に近づくように配向することによって、所望のガラスリボン幅及び縁部特性の達成を支援する。更なる実施形態では、上記縁部配向器は下向きに傾斜した成形用表面部分66a、66bの両方と交差できる。更に、又はあるいは、特定の実施形態では、1つの縁部配向器を、成形用ウェッジ62の対向する端部64a、64bそれぞれに位置決めできる。例えば図1に示すように、縁部配向器80a、80bは、成形用ウェッジ62の対向する端部64a、64bそれぞれに位置決めでき、各縁部配向器80a、80bは、下向きに傾斜した成形用表面部分66a、66bの両方と交差するよう構成される。更に図示されているように、各縁部配向器80a、80bは互いに略同一である。しかしながら、代替実施形態では、上記縁部配向器は、ガラス成形装置の具体的な特徴に応じて、異なる構成及び/又はジオメトリを有してよいことを理解されたい。更に、様々な成形用ウェッジ及び縁部配向器の構成を、本開示の態様に応じて使用してよいことを理解されたい。例えば、米国特許第3,451,798号明細書、米国特許第3,537,834号明細書、米国特許第7,409,839号明細書、2014年5月15日出願の米国特許出願第14/278582号明細書、及び/又は2009年2月26日出願の米国仮特許出願第61/155,669号明細書に開示されている成形用ウェッジ及び縁部配向器の構成を有する本開示の態様を使用してよく、これらの文献はそれぞれ参照により本出願に援用される。
引き続き図1を参照すると、ガラス成形装置10は任意に、ガラスリボンを成形用容器60の基部70からドロー加工するための、少なくとも1つの縁部ローラ組立体(図示せず)を含むことができる。以下で更に詳細に議論されるように、様々な縁部ローラ組立体の構成を、本開示の態様に応じて使用してよいことを理解されたい。
ハウジング14は成形用容器60を取り囲む。ハウジング14は鋼鉄で形成してよく、成形用容器60と、成形用容器60内及びその周囲を流れる溶融ガラスとを、周囲環境から断熱するために、耐火性材料及び/又は断熱材を含有してよい。図示されていないが、ハウジング14は複数の冷却チューブ又はバヨネットを含んでよく、これらは、水又は他の熱交換媒体(例えば空気等)を利用して、成形用容器60の複数の部分からエネルギを抽出できる。このような冷却チューブ又はバヨネットは、例えば成形用容器60の堰の上方若しくは付近、又は成形用容器60の成形用表面の付近といった、ハウジング14の高い位置にあるほど、より急速に粘度を増すことができ、これにより、ガラスの剛度、及び大きな反りに対する耐性を改善できる。更に1ペア以上のこのような冷却チューブ又はバヨネットは、このような高い位置にあるほど、同一の厚さのガラスリボンに関して基部での粘度を低下させることができる。
ここで図1~2を参照すると、動作時、バッチ材料16、具体的にはガラスを形成するためのバッチ材料は、バッチ送達デバイス20によって、貯蔵用蓋付き容器18から溶融用容器15に供給される。バッチ材料16は溶融用容器15内で、溶融ガラスへと溶融される。上記溶融ガラスは、溶融用容器15から第1の接続チューブ36を通って清澄用容器38へと移動する。ガラスの欠陥を発生させ得る溶解した気体を、清澄用38内で溶融ガラスから除去する。次に溶融ガラスは、清澄用容器38から第2の接続チューブ40を通って混合用容器42へと移動する。混合用容器42は、撹拌等によって上記溶融ガラスを均質化し、均質化された溶融ガラスは、第3の接続チューブ44を通って送達用容器46へと移動する。送達用容器46は、均質化された溶融ガラスを、下降管48を通してインレット50へと吐出し、このインレット50は、均質化された溶融ガラスを、成形用容器60のトラフ61へと移動させる。
溶融ガラス17が、成形用ウェッジ62の上向きに開いたトラフ61を満たすと、溶融ガラス17はトラフ61から溢れ、傾斜した成形用表面部分66a、66bの上を流れて、成形用ウェッジ62の基部70において再び合わさり、これによってガラスリボン12が形成される。図2に示すように、ガラスリボン12は、基部70を通って延在するドロー平面72に沿って、下流方向68にドロー加工できる。
図1~2に示されているガラス成形装置に関して、有機発光ダイオード(OLED)を利用した高性能ディスプレイ(HPD)、又はカバーガラスディスプレイといった開発中の技術は、液相粘度が比較的低いガラス組成物及び/又はリチウム含有アルミノシリケートガラスといった、成形が困難なガラス組成物から利益を得ることが分かっている。このようなガラス組成物は典型的には、成形用容器60からドロー加工されたガラスリボン中の失透等の欠陥の形成を防止するために、比較的高い成形温度で作製される。本明細書に記載のガラス成形装置はまた、成形用容器60の基部付近に位置決めされた加熱カートリッジを利用して、溶融ガラスを比較的高い成形温度に維持することにより、シート成形プロセスを支援でき、またガラスリボン中の欠陥の形成を防止できる。
図1~3を再び詳細に参照すると、成形用容器60の基部70からドロー加工されるガラスリボン12中の溶融ガラスの比較的高い温度を維持するために、ガラス成形装置10は更に、ハウジング14及び/又はハウジング封止プレート136(図3)に形成された一連のポート112内に位置決めされた、複数の加熱カートリッジ110、111を含む。ハウジング封止プレート136は、ハウジング14の一部を形成する(図1~2)。図3に示すように、第1の列のポート112及び第2の列のポート(図示せず)は、第1の複数の加熱カートリッジ110及び第2の複数の加熱カートリッジ111が、基部70の対向する側部上に配置されるように配設され、これによりドロー平面72は、第1の複数の加熱カートリッジ110と第2の複数の加熱カートリッジ111との間に延在する。第1の複数の加熱カートリッジ110、及び第1の列のポート112について、更に詳細に説明する。しかしながら、第1の複数の加熱カートリッジ110及び第2の複数の加熱カートリッジ111は、互いに略同一であるか、又は同様の構造を有することを理解されたい。同様に、ポート112の各列は、互いに略同一であるか、又は同様の構造を有することを理解されたい。
図1~2に示すように、第1の列のポート112は、成形用容器60の幅(図1及び2に示す座標軸の+/-y方向)にわたって配列され、これにより第1の列のポート112は、ガラスリボン12がその上でドロー加工されるドロー平面72の幅(図1及び2に示す座標軸の+/-y方向)に広がる。従って、第1の複数の加熱カートリッジ110もまた、対応するポートに挿入された場合に、成形用容器60の幅にわたって配列され、ガラスリボン12のドロー平面72の幅にわたって延在することを理解されたい。いくつかの実施形態では、第1の列のポート112の各ポートは、上記成形用容器の幅にわたって、互いから横方向に(即ち図1及び2に示す座標軸の+/-y方向に)離間している。特定の実施形態では、第1の列のポート112の各ポートは、互いから横方向に等距離だけ離間させることができる。
第1の複数の加熱カートリッジ110は、基部70に向かって熱を配向することにより、基部70を、溶融ガラスの失透温度より高い温度等の所望の温度に維持し、ガラス中の欠陥の形成を緩和するよう、構成してよい。図2及び3に示すように、第1の列のポート112はハウジング14内に、第1の複数の加熱カートリッジ110が成形用容器60の基部70に隣接して位置決めされ、かつ基部70から-z方向に離間するように、配置できる。図3に示す実施形態では、第1の複数の加熱カートリッジ110は基部70から-z方向に離間しており、更に、各加熱カートリッジ110のある部分が基部70の上方(座標軸の+x方向)に位置し、かつある部分が基部70の下方に(座標軸の-x方向に)位置するように、位置決めされる。あるいは、図1に示す実施形態では、第1の列のポート112はハウジング14内に、第1の複数の加熱カートリッジ110全体が基部70の上方に位置決めされるように、配置できる。更に他の実施形態(図示せず)では、第1の列のポート112はハウジング14内に、第1の複数の加熱カートリッジ110が基部70の下方に位置決めされるように、配置できる。
図1~3は、5個の加熱カートリッジ110a、110b、110c、110d、110eを含む、第1の複数の加熱カートリッジ110を示す。よって図1~3は、これら5個の加熱カートリッジが、ハウジング14に形成された5個のポート112a、112b、112c、112d、112eを含む、第1の列のポート112内に位置決めされていることを示す。しかしながら、これは例示的な個数であること、並びに第1の複数の加熱カートリッジ110内の加熱カートリッジの数、及び第1の列のポート112内の対応するポートの数は、5より大きくても5より小さくてもよいことを理解されたい。同様に、加熱カートリッジの幅は、利用される加熱カートリッジの個数及び成形用容器の幅に左右される。例えば図1は、成形用容器の全幅にわたる5個の加熱カートリッジを示すが、図1は、成形用容器の成形用容器の全幅より小さい幅にわたる5個の加熱カートリッジを示す。本明細書では、複数の加熱カートリッジ110のうちの1つについて、更に詳細に説明する。しかしながら、第1の加熱カートリッジ110の各加熱カートリッジ110a、110b、110c、110d、110e、及び第2の複数の加熱カートリッジ111の各加熱カートリッジは、互いに略同一であるか、又は同様の構造を有することを理解されたい。
ここで図3~5を参照すると、複数の実施形態では、第1の複数の加熱カートリッジ110はそれぞれ、熱配向表面122を有するエンクロージャ120を含み、少なくとも1つの加熱素子124が、熱配向表面122の面上に又は面に隣接して位置決めされる。エンクロージャ120は、ガラス成形装置10に関連付けられた昇温条件での使用に好適な多様な材料から製作してよい。例えばエンクロージャ120、及び加熱カートリッジ110aの他の部分は、ガラス成形装置10に関連付けられた構造的及び/又は熱的パラメータを満たすために、高温ニッケル系合金、鋼鉄(例えばステンレス鋼)、又は他の合金若しくは材料(若しくは材料の組み合わせ)といった耐火性材料から形成できる。例えば一実施形態では、エンクロージャ120は、Haynes International, Inc.製のHaynes(登録商標)214(登録商標)ニッケル系合金等のニッケル系合金で作製してよい。
図3~5は、加熱カートリッジ110aを、エンクロージャを備えるものとして図示しているが、他の実施形態も考えられ、また実現可能であることを理解されたい。例えば、別個のエンクロージャ120を含むのではなく、金属/合金から形成された別個のエンクロージャを有する代わりに、熱配向表面122を耐火性材料のブロック(又は複数のブロック)に取り付けてよい。例えば限定するものではないが、複数の実施形態では、上記熱配向表面を、ANH refractories製のNA‐33耐火性ブロックから形成された本体に取り付ける。
一実施形態では、加熱カートリッジ110aの熱配向表面122は、低い放射率を有するセラミック耐火性バッカー材料から形成される。好適なセラミック耐火性材料としては、限定するものではないが、Zircar ceramicsから入手可能なSALIボードが挙げられる。ガラス成形装置10の高温に直接曝露されない加熱カートリッジ110aの部分は、比較的低い温度での用途に好適な材料から作製してよい。例えば加熱カートリッジ110aがエンクロージャを備える場合、エンクロージャ120の裏面125は、ガラス成形装置10に関連付けられた構造的及び/又は熱的パラメータを満たすために選択されたステンレス鋼、例えば420ステンレス鋼から作製してよい。
本明細書に記載の実施形態では、加熱カートリッジ110aの熱配向表面122は、加熱カートリッジ110aの底面126に対して角度αで配向される。本明細書に記載の実施形態では、角度αは90°より大きい。例えば特定の実施形態では、熱配向表面122の角度αは、加熱カートリッジ110aの底面126に対して約120°~約150°であってよい。他の実施形態では、熱配向表面122の角度αは、加熱カートリッジ110aの底面126に対して約130°~約140°であってよい。特定の実施形態では、熱配向表面122の角度αは、加熱カートリッジ110aの底面126に対して約135°であってよい。
いくつかの実施形態では、熱配向表面122の下向きの配向により、各交換式加熱カートリッジの熱配向表面122が成形用容器60の基部70に対面するような、ガラス成形装置10のハウジング14内での加熱カートリッジ110aの位置決めが容易になる。具体的には、熱配向表面122の下向きの配向により、熱配向表面122は、周囲環境への、特に基部70の上方の領域、例えば加熱カートリッジの上方の領域への熱の損失を最小にしながら、成形用容器60の基部70に向かって、及び基部70上に、熱を放射して配向できる。
再び図1~3を参照すると、いくつかの実施形態では、加熱カートリッジ110aは、ガラス成形装置10のハウジング14内に、熱配向表面122の上縁部123及び各加熱カートリッジ110aの上面127が基部70の上方に位置決めされるように、位置決めされる。この位置決めにより、加熱カートリッジ110aの熱配向表面122は、成形用容器60の基部70に向かって、及び基部70上に、熱を配向でき、これにより、基部70の温度と、基部70の範囲内において成形用容器60の上を流れる溶融ガラスの温度とを上昇させることができる。例えば図1に示すように、加熱カートリッジ110a全体を、基部70から上流に位置決めできる。代替実施形態では、図3に示すように、加熱カートリッジ110aの一部を基部70から上流に位置決めできる。例えば、加熱カートリッジ110aの上面127を基部70から上流に位置決めでき、その一方で加熱カートリッジ110aの底面126を基部70から下流に位置決めできる。加熱カートリッジ110aの一部を基部70から上流に位置決めすることにより、上記加熱カートリッジの角度付きの熱配向表面によって、基部70の上方の非標的領域への熱損失を低減しながら、溶融ガラスの失透を防止するために十分な加熱を基部70に提供できる。更に、加熱カートリッジ110aの一部を基部70から上流に位置決めすることにより、加熱カートリッジ、特に熱配向表面122を、基部70に近づけて位置決めすることが可能となり、従って、より多量の熱を基部70及び基部70上を流れる溶融ガラスに入射させることができる。
より具体的には、熱配向表面122の角度、及びハウジング14内での加熱カートリッジ110aの位置は、上記熱配向表面からの形態係数が、加熱カートリッジ110aの上面127の上方に位置する物体よりも、加熱カートリッジ110aの上面127の下方に位置する物体(例えば成形用容器60の基部70)に関して高くなるようなものである。用語「形態係数(view factor)」は、本明細書中で使用される場合、指定された表面に入射する熱配向表面122からの熱放射の相対比を指す。例えば、熱配向表面122からの形態係数が、加熱カートリッジ110aの上面127の上方に位置する物体よりも、加熱カートリッジ110aの上面127の下方に位置する物体(例えば成形用容器60の基部70)に関して高いため、加熱カートリッジ110aの上面127の下方に位置する物体は、加熱カートリッジ110aの上面127の上方に位置する物体よりも、加熱カートリッジ110aの熱配向表面122から多量の熱流を受け取ることになる。
いくつかの他の実施形態(図示せず)では、加熱カートリッジ110は、基部70の下流に(即ち-x方向に)位置決めしてよい。これらの実施形態では、熱は角度付きの熱配向表面に沿って上昇するため、加熱カートリッジの熱配向表面に、基部70に向かって角度を付けてよい。
本明細書に記載の実施形態では、加熱カートリッジ110aは:基部70を加熱するためのヒータ;並びに加熱カートリッジ110aの上方の領域を加熱カートリッジ110aの下方の領域から断熱して遮蔽することによって、基部70及び基部70の上を流れる溶融ガラスから成形用容器60の基部70の上方に位置する非標的領域への熱の損失を防止する、熱シールドの両方として機能できることを理解されたい。具体的には、上述のように、加熱カートリッジ110aの熱配向表面122は、加熱カートリッジ110aの底面126に対して、90°より大きな角度αで配向される。従って、加熱カートリッジ110aの上面127及び熱配向表面122の上縁部123は、加熱カートリッジ110aの下縁部129及び底面126の上に片持ち支持されている。熱配向表面122のこのような配置は、本明細書に記載されているような加熱カートリッジの形態係数を生み出す。更に、熱配向表面122の片持ち支持による配置は、熱配向表面122を、熱配向表面122と成形用容器60との間の間隙170を横断するように延在させ、成形用容器60と加熱カートリッジとの間の空間を減少させて、基部の下流の領域から、成形用容器60の基部70の上流に位置するガラス成形装置10の領域への熱の損失を遅延させる。従って加熱カートリッジ110aはまた、熱配向表面122の上方の領域を、熱配向表面122の下方の領域から熱的に遮蔽する。
引き続き図4~5を参照すると、熱配向表面122上に又は熱配向表面122に隣接して位置決めされた加熱素子124は、抵抗性加熱素子である。特定の実施形態では、抵抗性加熱素子の材料は、二ケイ化モリブデンとすることができる。いくつかの実施形態では、加熱素子124は、二ケイ化モリブデンから形成されたワイヤから構成してよい。例えば限定するものではないが、一実施形態では、加熱素子124は、曲がりくねった形状で熱配向表面122上に位置決めされた二ケイ化モリブデンから構成してよい。例えば限定するものではないが、二ケイ化モリブデンから形成された加熱素子124は、熱配向表面122上に位置決めされた巻線素子を含むことができる。加熱カートリッジ110aを通って延在する加熱素子124の端部は、熱配向表面122からの電力の損失を最小化するように選択された直径を有してよい。
本明細書に記載されているように加熱カートリッジを形成することにより、加熱カートリッジの加熱効率を大幅に改善できると判断された。これは、他の材料に比べて高い二ケイ化モリブデン加熱素子の電力搬送能力、並びに更なる耐火性材料の断熱及び角度付きの熱配向表面に起因し得る。更に、本明細書に記載の加熱カートリッジのようなセグメント化された加熱カートリッジと、二ケイ化モリブデンとの組み合わせにより、他の従来の加熱素子材料よりも高い、基部70における成形温度を実現できる。これにより例えば、比較的高い成形温度の使用が可能となり、これにより、溶融ガラスの失透が防止され、成形用容器60の基部70からドロー加工されたガラスリボン中の欠陥が緩和される。更に、基部70における成形温度を等しくする場合、二ケイ化モリブデン加熱素子は有利なことに、従来の加熱素子材料が使用するものよりも低い電力入力で、このような成形温度を達成する。
図4Aは、加熱カートリッジ110aの熱配向表面122上に位置決めされた単一の加熱素子124を図示しているが、他の構成も考えられ、また実現可能であることを理解されたい。例えばいくつかの実施形態では、加熱素子124は、それぞれ別個に給電及び制御できる2個以上の別個の加熱素子を含む、セグメント化された加熱素子であってよい。これにより、加熱カートリッジ110aの熱配向表面122を、独立して制御できる複数の独立した加熱ゾーンを有するように形成でき、これにより、熱配向表面122の温度プロファイルの、更に洗練された制御が提供される。
引き続き図4~5を参照すると、熱配向表面122の面の背後に位置するのは、耐火性材料128の1つ以上のブロックであり、これらは、熱配向表面122を、加熱カートリッジ110aの残りの部分から断熱する。これらの耐火性材料128のブロックは、図4及び5に示すように、エンクロージャ120内にあってよく、あるいはエンクロージャを用いずに、熱配向表面122に直接取り付けてよい。特定の実施形態では、耐火性材料128は、熱配向表面122からの熱伝達を最小化するように配向される。具体的には、特定の実施形態では、耐火性材料128は、交互になった垂直方向の積層体及び水平方向の積層体として配向される。というのは、耐火性材料128の交互になった垂直方向の積層体及び水平方向の積層体が、ブロック間の継ぎ目における熱の減少を支援できると考えられるためである。特定の実施形態では、耐火性材料128は、熱配向表面122の角度と概ね等しい角度で配向できる。熱配向表面122がSALIボード等の耐火性材料から形成されている場合等の、更に他の実施形態では、熱配向表面122の耐火性材料は、エンクロージャ内へと延在してよい。本明細書に記載の実施形態では、耐火性材料128は、SALIボード、Insulating Fire Brick(IFB)、DuraBoard(登録商標)3000及び/又はDuraBoard 2600を含むがこれらに限定されない、市販の耐火性材料であってよい。特定の実施形態では、耐火性ブロックは、SALIボードから形成された、熱配向表面122に最も近い第1の層と、IFBから形成された、上記第1の層の背後に位置する第2の層とを有してよい。
加熱カートリッジ110aを基部70に対して設置するために、多様な取り付け構造体を用いてよい。いくつかの実施形態では、加熱カートリッジ110aは、図3に示すように、ハウジング14及び/又はハウジング封止プレート136と係合したブラケット114上に設置してよい。更に、又はあるいは、加熱カートリッジ110aは、図2に示すように、ハウジング14及び/又はハウジング封止プレート136に取り付けられたT字型壁支持ブラケット116上に載置できる。いくつかの実施形態では、各加熱カートリッジは、ガラス成形装置10のハウジング14のポート内に、着脱可能に設置される。独立した加熱カートリッジはそれぞれ、独立して制御でき、これにより、複数の加熱カートリッジを用いて、成形用ウェッジの基部にわたって所望の温度分布に到達できる。更に、各加熱カートリッジが別個のものであるという性質により、故障した加熱素子、及び/又は加熱カートリッジの交換の影響が最小化される。即ち、ある1つの加熱素子が動作中に故障した場合、該加熱素子の故障は、全体の加熱のごく一部の損失しかもたらさない。更に、加熱カートリッジが別個に制御されるため、隣接する加熱カートリッジを独立して調整して、故障した加熱素子からの熱の損失を相殺できる。更に、加熱カートリッジがモジュール式であるという性質は、ある独立したカートリッジの交換が、提供される加熱全体のごく一部にしか影響せず、従って生産損失が低減されることを意味する。
特定の実施形態では、上記装置は更に、複数の加熱カートリッジ110、111に関連付けられた加熱を制御するよう構成された、コントローラ180を含んでよい。特定の実施形態では、コントローラ180は、図1に示すように、複数の加熱カートリッジ110、111の各加熱カートリッジに動作可能に接続できる。特定の実施形態では、複数の加熱カートリッジ110、111のうちの独立した1つ1つの制御をセグメント化できる。本明細書中で使用される場合、用語「セグメント化される(segmented)」は、製造中にガラスリボンの温度の管理された制御を提供するために、独立した加熱カートリッジそれぞれの温度を独立して制御及び調整できることを意味する。上記コントローラは、プロセッサと、コンピュータ可読かつ実行可能な命令を記憶するメモリとを含んでよく、上記命令は、上記プロセッサによって実行された場合に、各加熱カートリッジへの電力を独立して調節することにより、温度フィードバック又は他のプロセスパラメータに基づいて、各加熱カートリッジが提供する熱を独立して増減させる。従って、コントローラ180を用いて、基部70の幅及びガラスリボン12のドロー平面72の幅に広がる複数の加熱カートリッジ110、111のうちの各加熱カートリッジに供給される電力を差動的に調節できる。
特定の実施形態では、コントローラ180は、ガラス成形装置からの熱フィードバックに基づいて、複数の加熱カートリッジ110、111のうちの各加熱カートリッジを独立して操作するよう、構成できる。例えば一実施形態では、コントローラ180は、図1に示すように、熱センサ182から熱フィードバックを取得するよう構成される。上記熱センサから得られたフィードバックをコントローラ180が用いて、複数の加熱カートリッジ110、111のうちの各加熱カートリッジを独立して調整でき、これにより、ガラスリボンの製造が進行する際に、装置の熱的特性の管理された制御を提供できる。上記熱的特性としては、例えば:複数の加熱カートリッジ110、111のうちの各加熱カートリッジの熱配向表面122;縁部配向器80a、80bの一部分;成形用容器60の端部の一部分;溶融ガラスの部分;及び/又はガラス成形装置10の他の特徴部分といった、ガラス成形装置の一部分に関連付けられた温度及び/又は熱損失が挙げられる。
一実施形態では、熱センサ182は標的レベルを超えた温度を検出でき、コントローラ180は、上記標的領域に伝達される熱が少なくなるように、複数の加熱カートリッジ110、111のうちの少なくとも1つの加熱カートリッジへの電力を低減でき、これによって温度を、標的レベル温度が得られるまで低減する。あるいは特定の実施形態では、熱センサ182は標的レベル未満の温度を検出でき、コントローラ180は、複数の加熱カートリッジ110、111のうちの少なくとも1つの加熱カートリッジへの電力を増大させることができ、これによってより多くの熱を標的領域へ伝達して、標的レベル温度が得られるまで温度を上昇させる。
上述のように、また更なる実施形態において、1つ以上の加熱カートリッジ又は同様のデバイスを、縁部配向器80a、80b又はその一部分、及び成形用容器60の端部の一部分の付近に設けることができる。例えば図27及び28を参照すると、成形用容器60の第1の端部に、第1の縁部配向器80aを設けることができる。同様に、成形用容器60の反対側の第2の端部(図示せず)は、第2の縁部配向器80bを含むことができ、これはいくつかの実施形態では、第1の縁部配向器80aの鏡像とすることができる。第1の縁部配向器80aについて、図27を参照して説明する他、この説明は縁部配向器80bにも同様に又は全く同じように当てはまり得ることを理解されたい。実際には、いくつかの実施形態では、第2の縁部配向器80bは、第1の縁部配向器80aと同一とすることができる。いくつかの実施形態では、成形用容器60の少なくとも一部分又は全体を、所望の雰囲気条件の維持を補助するよう設計されたハウジング14(例えば図1を参照)内に格納してよい。例えばいくつかの実施形態では、ハウジング14は、雰囲気の温度を所望の温度範囲内に維持するのを補助するように設計してよい。いくつかの実施形態では、図28に隠れ線で概略的に示されているように、ハウジング14は、それを通してガラスリボン12をドロー加工するための開口202を基部70の下方に画定する、対向する下部扉142a、142bを有してよい。開口202の幅は、上記開口を通した熱損失を低減できるよう、十分に小さいものの、開口202を通してドロー加工されるガラスリボン12との干渉を防止できるよう、十分に大きくもあるものとすることができる。
いくつかの実施形態では、第1の縁部配向器80a及び第2の縁部配向器80bはそれぞれ、1ペアの下向きに傾斜した表面部分66a、66bのうちの少なくとも一方と交差する。実際には、図示されているように、第1の縁部配向器80aの第1の上側部分215aの第1の外向き接触面217aは、第1の縁部配向器80aの第1の下向きに傾斜した表面部分66aと交差でき、第2の縁部配向器80bの第2の上側部分215bの第2の外向き接触面217bは、第2の縁部配向器80bの第2の下向きに傾斜した表面部分66bと交差できる。本明細書に記載の実施形態は、付近の1つの縁部配向器の表面に対面する熱フットプリントを含む、加熱平面を含むことができる。図27及び28に示すように、1ペアの加熱平面を任意に、一方又は両方の縁部配向器80a、80bに設けてよい。例えば第1の縁部配向器80aに、第1の加熱平面225a及び第2の加熱平面225bを設けることができ、ここでいくつかの実施形態では、第2の縁部配向器80bにも、同様又は同一の第1及び第2の加熱平面を設けてよいことを理解されたい。各縁部配向器に1つの加熱平面を設けてよいが、図示されているように第1及び第2の加熱平面を設けることにより、上記複数の外向き接触面の加熱が可能となり、これらは互いから反対側を向いており、また上流の、例えば流れの縁部が縁部配向器の内縁部222から引き離されて1つに融合する箇所のすぐ上流等の、溶融材料の集束する流れの対応する部分に接触する。
図示されているように、いくつかの実施形態では、第2の加熱平面225bは、ガラスリボンのドロー平面72に関する、第1の加熱平面225aの鏡像であってよい。例えばいくつかの実施形態では、第2の加熱平面225bは、第1の加熱平面225aの同一の鏡像とすることができるが、更なる実施形態では、異なる構成を提供してもよい。従って、第1の加熱平面225aと、これに関連する、第1の縁部配向器80aの第1の外向き接触面221aに関連付けられた熱フットプリント227aとについて説明するが、これらの特徴部分及び配向の説明は、第2の加熱平面225bと、これに関連する、第1の縁部配向器80aの第2の外向き接触面221bに関連付けられた熱フットプリント227bとにも、同様に又は全く同じように適用され得ることを理解されたい。更にいくつかの実施形態では、第2の縁部配向器80bに関連する第1の加熱平面(図示せず)及び/又は第2の加熱平面(図示せず)は、第1の縁部配向器80aに関連する第1の加熱平面225a及び第2の加熱平面225bの鏡像であってよい。
いくつかの実施形態では、第1の加熱平面225aの第1の熱フットプリント227aは、少なくとも第1の縁部配向器80aの下側部分219の第1の外向き接触面221aに対面してよい。第1の熱フットプリント227a内の第1の加熱平面225aの第1の合成方向229aにおける、第1の熱フットプリント227aの投射228aは、斜線付き接触領域403aによって示されるように、第1の縁部配向器80aの第1の外向き接触面221aと交差できる。
これらの図において更に図示されているように、第2の加熱平面225bの第2の熱フットプリント227bは、少なくとも第1の縁部配向器80aの下側部分219の第2の外向き接触面221bに対面してよい。第2の熱フットプリント227b内の第2の加熱平面225bの第2の合成方向229bにおける、第2の熱フットプリント227bの投射228bは、斜線付き接触領域403bによって示されるように、第1の縁部配向器80aの第2の外向き接触面221bと交差できる。
第1の加熱平面225aに関連する第1の合成方向229aについて、図27を参照して説明するが、本開示の他の合成方向も、第1の合成方向229aと同様又は同一の特徴を有しえることを理解されたい。これらの合成方向は、熱フットプリント内の表面に対して垂直な全ての方向の、有効な方向と見なされる。例えば図27の第1の熱フットプリント227a内の第1の加熱平面225aは、平坦な平面として図示されている。従って合成方向は、上記平坦な平面に対して垂直な方向となる。しかしながら、熱フットプリント内の加熱平面は、いくつかの実施形態では、平面でなくてよい。例えば熱フットプリント内の加熱平面は、凹面を備えることもでき、このような実施形態では、合成方向は、熱フットプリント内の加熱平面上の各点における全ての垂直方向ベクトルの合計(即ち接線又は接平面における法線)とみなされる。同様に、各熱フットプリント内の加熱平面もまた、凹面を備える場合がある。このような実施形態では、合成方向は、熱フットプリント内の加熱平面上の各点における全ての垂直方向ベクトルの合計(即ち接線又は面における法線)とみなされる。
加熱平面225a、225bに異なる形状を設けることにより、加熱平面を、加熱対象の縁部配向器80a、80bの接触面により近づけて対面させるのを補助できる。いくつかの実施形態では、熱フットプリント内の加熱平面の全ての部分間の距離を、縁部配向器の対応する接触面から略同一の距離、又はある距離範囲内に位置決めできる。従って、熱フットプリントの全ての部分を、合成方向において、接触面の対応する部分に効果的に対面させることができ、これにより距離を最小化して、加熱平面から縁部配向器の接触面への放射熱伝達を最大化できる。例示的な加熱平面には、放射熱を提供するよう設計された加熱コイル等の加熱素子を設けてよい。この加熱コイルを加熱平面上に位置決めでき、加熱コイルの外周が熱フットプリントを画定する。加熱素子から合成方向に投射される放射熱は、縁部配向器の対面した接触面と交差し得る。他の実施形態では、加熱平面は、加熱プレート又は他の加熱素子を備えてよく、上記加熱プレート又は加熱素子の外周が、加熱平面の熱フットプリントを画定する。例えば加熱プレートの隠れた側部をトーチによって加熱してよく、熱は上記プレートを通って伝導し、プレートの対面している表面から放射されて、縁部配向器の接触面と交差する。このような構成により、高温ガス流への溶融材料の曝露(これは、接触面上の溶融材料の流れを妨げる場合がある)を回避できる。上述のような、図27及び28に示されている、溶融材料に接触した縁部配向器の表面に対する放射熱の標的化によって、溶融材料の他の部分及び/又は成形用容器の基部からドロー加工されたガラスリボンの縁部に対する不必要な熱の印加を削減することにより、低粘度ガラスリボンの幅の望ましくない減少を低減できる。
再び図2を参照すると、典型的には、ドロー平面72の中央の周囲環境への熱の損失に比べて、ガラスリボン12のドロー平面72の(成形用容器の幅方向、即ち+/-y方向の)2つの外側端部の周囲環境への熱の損失が大きい。従ってコントローラ180は、複数の加熱カートリッジ110、111のうち、ドロー平面72の中央に位置する加熱カートリッジよりも、ガラスリボン12のドロー平面72の縁部(図2に示す座標軸の+/-y方向)付近に位置する加熱カートリッジに対して、より多くの電力及び熱を供給することによって、これらの領域両方における熱損失を補償でき、またドロー平面72の縁部付近のガラスの比較的大きな厚さに対処できる。
特定の実施形態では、コントローラは、ガラス成形装置10からの熱フィードバックに基づいて、複数の加熱カートリッジ110、111のうちの各加熱カートリッジを独立して操作するよう、構成できる。例えば一実施形態では、コントローラは、図1に示すように、成形用容器60の基部70付近に位置決めされた少なくとも1つの熱センサ(図示せず)から熱フィードバックを取得するよう構成される。上記少なくとも1つの熱センサから得られたフィードバックをコントローラが用いて、複数の加熱カートリッジ110、111のうちの各加熱カートリッジを独立して調整でき、これにより、ガラスリボンの製造が進行する際に、装置の熱的特性の管理された制御を提供できる。上記熱的特性としては、例えば:加熱カートリッジ110aの熱配向表面122;基部70;成形用容器60の端部の一部分;溶融ガラスの部分;及び/又はガラス成形装置10の他の特徴部分といった、ガラス成形装置10の一部分に関連付けられた温度及び/又は熱損失が挙げられる。
一実施形態では、上記少なくとも1つの熱センサは標的レベルを超えた温度を検出でき、コントローラは、上記標的領域に伝達される熱が少なくなるように、複数の加熱カートリッジ110、111のうちの少なくとも1つの加熱カートリッジへの電力を独立して低減でき、これによって温度を、標的レベル温度が得られるまで低減する。あるいは特定の実施形態では、上記少なくとも1つの熱センサは標的レベル未満の温度を検出でき、コントローラは、複数の加熱カートリッジ110、111のうちの少なくとも1つの加熱カートリッジへの電力を独立して増大させることができ、これによってより多くの熱を標的領域へ伝達して、標的レベル温度が得られるまで温度を上昇させる。
図1~3は、加熱カートリッジ110a~110eが成形用ウェッジ62の基部70付近に位置決めされた、ガラス成形装置10の一実施形態を概略図で示しているが、他の実施形態も考えられ、また実現可能であることを理解されたい。例えば図4A~4B、5、7及び8を参照すると、一実施形態では、複数の加熱カートリッジを、成形用容器60のトラフ61付近に位置決めしてよい。具体的には、成形用容器60はハウジング(図示せず)内に位置決めされ、溶融ガラスを受承するためのトラフ61と、上述のように基部70において集束する1ペアの下向きに傾斜した成形用表面部分66a、66bとを含んでよい。上述のように、複数の加熱カートリッジ110a~110eは、ハウジングに形成されたポート内に着脱可能に位置決めでき、これにより、各加熱カートリッジの熱配向表面122が成形用容器60と対面し、また熱配向表面122の上縁部123及び加熱カートリッジの上面127が、成形用容器60のトラフ61の上方に位置決めされ、これにより、加熱カートリッジの熱配向表面122からの熱が、成形用容器60のトラフ61に向かって配向されることによって、成形用容器60のトラフ61の堰63の頂部のガラスを加熱して失透を防止する。
より具体的には、これらの実施形態において、各加熱カートリッジは、図4A~4B及び5に関して本明細書中で図示及び説明されているものと略同一の構造を有してよい。これらの実施形態では、加熱カートリッジ110aの底面126に対する加熱カートリッジ110aの熱配向表面122の角度αは、90°以上であってもよい。例えば特定の実施形態では、熱配向表面122の角度αは、加熱カートリッジ110aの底面126に対して約120°~約150°であってよい。他の実施形態では、配向表面122の角度αは、加熱カートリッジ110aの底面126に対して約130°~約140°であってよい。具体的実施形態では、配向表面122の角度αは、加熱カートリッジ110aの底面126に対して約135°であってよい。
いくつかの実施形態では、加熱カートリッジ110a~110eは、熱配向表面の下縁部129及び加熱カートリッジの底面126が堰63の頂部の下方に位置決めされるような、成形用容器60に対する高さに位置決めしてよい。これらの実施形態では、加熱カートリッジ110aの底面126に対する加熱カートリッジ110aの熱配向表面122の角度αは、90°以上であってよく、これにより加熱カートリッジからの熱が、成形用容器60のトラフ61に向かって配向される。他のいくつかの実施形態では、加熱カートリッジ110a~110eは、熱配向表面の下縁部129及び加熱カートリッジの底面126がトラフ61の上方に位置決めされるような、成形用容器60に対する高さに位置決めしてよい。これらの実施形態では、加熱カートリッジ110aの底面126に対する加熱カートリッジ110aの熱配向表面122の角度αは、90°超であってよく、これにより加熱カートリッジからの熱が、成形用容器60のトラフ61に向かって下向きに配向される。
複数の実施形態では、加熱カートリッジ110a~110eは図7に示すように、成形用容器60の幅にわたって配設してよい。いくつかの実施形態では、複数の加熱カートリッジ110a~110eのうちの各加熱カートリッジは、+/-X方向において略同一の高さに位置決めされる。しかしながらいくつかの実施形態では、複数の加熱カートリッジ110a~110eは図9に示すように、階段状構成で配設してよい。このような加熱カートリッジの構成は、堰63又はトラフ61の側壁が図9に示すような角度付き構成を有する場合に使用してよい。
複数の加熱カートリッジ110a~110eが、成形用容器60のトラフ61付近に位置決めされている実施形態では、複数の加熱カートリッジ110a~110eは、図2及び3に関して上述したように、成形用容器60を取り囲むハウジングのポート内に位置決めして、上記ハウジングに取り付けてよい。更に、複数の加熱カートリッジ110a~110eを、図2及び3に関して上述したように操作及び制御することによって、成形用容器60のトラフ61付近の溶融ガラスの温度を調節して、トラフ61内の、及び成形用容器60の上を流れる、溶融ガラスの失透を防止できる。
一例として、図6は、本明細書に記載の二ケイ化モリブデン加熱素子を備える加熱カートリッジに対する個別の電力の変化に対する、基部温度応答の数学的モデルのグラフを示す。このモデルは5個の交換式加熱カートリッジ(SL1、SL2、SL3、SL4、SL5)に基づいており、これらはそれぞれ、加熱カートリッジの底面126に対して約135°の角度αで配向された、熱配向表面122を有する。加熱カートリッジは、基部70に対して効果的に熱を配向するために、その全体が基部70から上流に位置決めされたものとしてモデル化した。加熱カートリッジは、成形用容器の幅にわたって広がるように構成した。このモデルの各加熱カートリッジを、二ケイ化モリブデン素子に供給される1000Wの電力増分によって、一度に調整した。このモデルにおける1000Wの増分電力変化からの温度応答を、成形用容器のインレットダム(即ち図1に示す成形用容器60の端部64a付近)から、インチ単位で測定した。
図6のデータは、各カートリッジに対する個別の電力調整により、基部の幅にわたる複数の局所的領域の温度の、管理された制御を提供できることを示す。加熱カートリッジへの増分電力変化による基部の温度応答は、調整された加熱カートリッジに最も近い基部の局所的領域において最高となる。調整された加熱カートリッジからの距離が増大するに従って、基部の温度応答は図6に示すように低下する。例えば、インレットダムに最も近い加熱カートリッジによる、インレットダムにおける温度応答(図6において曲線SL1として図示)は、インレットダムに最も近い位置で最大となり、インレットダムからの距離の増大に伴って低下する。更に図6に示すように、基部における温度の変動は、基部の幅にわたって離間させた複数の加熱カートリッジの使用によって緩和できる。例えば図6に示すように、加熱カートリッジを離間させることにより、各カートリッジの有効加熱領域を互いに重複させて、基部の幅にわたる「低温スポット(cool spot)」を緩和できる。即ち図6では、温度応答曲線SL1~SL5は、x軸上に示されているインレットダムからの距離によって示されるように、基部の幅方向において重複している。これは、成形用容器の基部のある領域にわたって発生する、いずれの厚さの影響又は温度偏差を、当該領域に対応して配置された加熱カートリッジへの電力を個別に調整/制御することによって、容易に補正できることを実証している。従ってこのデータは、複数のセグメント化された交換式加熱カートリッジを、基部にわたってドロー加工されるガラスのいずれの失透を効果的に低減するために、容易に調整できることを示している。
図1~3を引き続き参照し、また図10も参照すると、成形用容器60の基部70の下流に牽引ロール130を配置してよく、これを用いて、集束した成形用表面からガラスの成形済みリボンが離れる速度を調整することにより、完成品のシートの公称厚さの決定を補助できる。好適な牽引ロールは例えば米国特許第6,896,646号明細書に記載されており、上記文献の内容は参照によりその全体が本出願に援用される。
上記牽引ロールはガラスリボンに、その外縁部において、具体的には上記リボンのちょうど縁部に存在する厚くなったビードのすぐ内側の領域において、接触するよう設計してよい。上記牽引ロールが接触したガラスエッジ部分140は、シートから複数の基板を分割した後で上記基板から廃棄してよい。
図10に示すドロー加工装置では、ガラスシート(ガラスリボン)が上記装置のドロー加工部分から下に移動すると、シートは、物理的な寸法のみならず分子レベルでの、複雑な構造的変化を経る。例えば成形用ウェッジの基部における、柔軟ではあるが粘性のある液体の形状から、所望の厚さを有する硬質のガラスシートへの変化は、液体又は粘性状態から固体又は弾性状態への変化を完了するための機械的及び化学的要件の繊細なバランスを保つ、注意深く選択された温度範囲によって達成できる。
上述のフュージョン成形プロセスに対する1つの利点は、ガラス表面をいずれの耐火性成形用表面と接触させることなくガラスシートを成形できる点である。これにより、平滑で汚染のない表面が提供される。フュージョン成形プロセスはまた、成形用容器60の各側部の上を流れた2つのガラスリボンが出会って基部70の下方で1つに融合する「融合線」を有するガラスシートをもたらす。融合線は、流れる2つのガラスフィルムが1つに融合する場所で形成される。融合線の存在は、フュージョンドロー加工されたガラス物品を同定する1つの方法である。融合線は、ガラスを光学顕微鏡で見た場合に、光学歪みとして観察され得る。フュージョンドロー法は、チャネル上を流れる2つのガラスフィルムが1つに融合するため、結果として得られるガラス物品のいずれの外側も、装置のいずれの部分に接触しないという利点を提供する。よって、フュージョンドロー加工されたガラス物品の表面特性は、上述のような接触によって影響されず、またこのような例示的なフュージョン成形技法は、高い許容誤差内で平坦な薄型シートを成形できるものとなり得る。しかしながら、スロットドロー及びリドロー成形技法を含むがこれらに限定されない他の成形技法も、本開示から利益を得ることができる。スロットドロー技法では、溶融ガラスは、底部に機械加工されたスロットを有するトラフへと流れ込む。ガラスのシートは、スロットを通して引き下げることができる。ガラスの品質は特に、機械加工されたスロットの精度に依存し得る。リドロープロセスは一般に、ガラス組成物をブロックに予備成形するステップと、その後上記ガラスを再加熱して、より薄いシート製品にドロー加工するステップとを伴う。
本明細書に記載のシステム及び方法のいくつかの実施形態は、縁部ロールの1つ以上の組210を設けることによって、図10に示すドロー加工装置を改良でき、上記縁部ロールの組210は、ガラスリボンがドロー加工プロセスの粘性領域にある間にガラスリボンの縁部に接触するよう構成できる。当然のことながら、本明細書に記載の実施形態は、スロットドロープロセス、ダブルフュージョンプロセス、フロートプロセスといった他のガラス成形プロセスに適用可能であり、図示されているドロー加工プロセスに関するいくつかの実施形態の上記説明は、本明細書に添付された請求項の範囲を限定しないものとする。図11に示すように、縁部ロールの1つ以上の組のうちの少なくとも1つは、フュージョンドロープロセスの水平面から、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線から、角度αを形成する回転軸を提供するように配向してよい。
本明細書中で使用される場合、縁部ロールの各組210は、前面側及び背面側の両方に沿って、ガラスの粘性リボンの第1の外縁部に接触するよう構成された、縁部ロールのペア220、又は縁部ロールの第1のペアを備える。縁部ロールの第1のペア220は、ガラスリボンの前面側に接触するための縁部ロール、及びガラスリボンの背面側に接触するための縁部ロールを備える。
縁部ロールの各組210はまた、前面側及び背面側の両方に沿って、ガラスの粘性リボンの第2の(即ち反対側の)外縁部に接触するよう構成された、縁部ロールのペア230、又は縁部ロールの第2のペアも備えることができる。縁部ロールの第2のペア230は、ガラスリボンの前面側に接触するための縁部ロール、及びガラスリボンの背面側に接触するための縁部ロールを備える。
いくつかの実施形態では、縁部ロールの第1のペア220又は縁部ロールの第2のペア230のうちのいずれか一方を、フュージョンドロープロセスの水平面から、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線から、角度αを形成する回転軸を提供するように配向してよい。他の実施形態では、縁部ロールの第1のペア220又は縁部ロールの第2のペア230の両方を、フュージョンドロープロセスの水平面から、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線から、ある角度を形成する回転軸を提供するように配向してよい。更なる実施形態では、縁部ロールの第1のペア220又は縁部ロールの第2のペア230のいずれも、このような角度を形成する回転軸を提供するように配向されない。他の実施形態では、縁部ロールの第1のペア220又は縁部ロールの第2のペア230の両方を、それぞれが形成する角度αが略同一となるように配向してよい。
いくつかの実施形態では、角度αは、約0°~約55°、約0°~約45°、約0°~約40°、約0°~約35°、約0°~約30°、約0°~約25°、約0°~約15°、及びこれらの間の全ての部分範囲内であってよい。あるいはいくつかの実施形態では、角度αは、約3~7°と約55°との間、約3~7°と約45°との間、約3~7°と約40°との間、約3~7°と約35°との間、約3~7°と約30°との間、約3~7°と約25°との間、約5~7°と約15°との間、及びこれらの間の全ての部分範囲内であってよい。
縁部ロールの第1のペア220及び縁部ロールの第2のペア230は、フュージョンドロープロセスの基部の下方の第1の位置240において垂直方向に整列させてよく、又はガラスのシートの移動方向に沿って互いに整列させてよい。位置240は、例示的なフュージョンドロー加工の実施形態では、縁部ロールの第1のペア220の内側端部の中央と縁部ロールの第2のペア230の内側端部の中央との間に水平に延在する線に基づくものであってよく、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線に基づくものであってよい。位置240は、ガラスリボンが粘性状態となる領域内にあってよい。
いくつかの実施形態では、垂直位置240は基部70の付近に位置してよい。本明細書中で使用される場合、「基部70(root 70)」は、フュージョンドロー加工された実施形態において、別個のガラスの流れが集束して、表面が無傷のガラスのシート又はリボン121を形成する位置を指す。よって、米国特許第3,537,834号明細書(上記文献はその全体が参照により本出願に援用される)に記載されている種類のもの等の、傾斜して集束する表面部分66a、66bの底部の下方に延在する縁部配向器の突出部を備える実施形態では、基部70は、ガラスの別個の流れが融合線において集束する、縁部配向器の突出部の先端と考えることができる。
いくつかの実施形態では、例えば垂直又は水平部分240は、基部70の下方約3cm~約30cmであってよい。あるいは垂直又は水平部分240は、基部70の下方約3cm~約25cm、基部の下方約3cm~約20cm、基部の下方約3cm~約18cm、基部の下方約3cm~約16cm、基部の下方約3cm~約14cm、基部の下方約3cm~約12cm、基部の下方約3cm~約10cm、及びこれらの間の全ての部分範囲内であってよい。
縁部ロールの組210を基部70の付近に配置するのは、シート幅の変動を防止又は最小化するにあたって特に有利となり得る。というのは、基部70のすぐ下におけるガラスの縁部の横方向の収縮は、シート幅の変動を引き起こす主要な因子であると考えられるためである。従って、縁部ロールの組210を基部70の付近に配置することによって、シート幅の変動を最小化する、又は完全に防止することができる。従っていくつかの実施形態では、垂直又は水平位置240は、基部70の下方25cm未満、基部の下方20cm未満、基部の下方18cm未満、基部の下方16cm未満、基部の下方14cm未満、基部の下方12cm未満、基部の下方10cm未満、及びこれらの間の全ての部分範囲内であってよい。
いくつかの実施形態では、縁部ロールの2つ以上の組210を設けてよい。例えば図12に示すように、第1の縁部ロールの組210a及び第2の縁部ロールの組210bを設けてよい。図示されていないが、本明細書に記載のシステム及び方法の実施形態において、縁部ロールのいずれの個数の追加の組を設けてよいと考えられる。例えば実施形態は、縁部ロールの3つの組、縁部ロールの4つの組等を備えてよい。
縁部ロールの第1の組210aと同様に、縁部ロールの第2の組210bは、前面側及び背面側の両方に沿って、ガラスの粘性リボンの第1の外縁部に接触するよう構成された、縁部ロールのペア250、又は縁部ロールの第3のペアを備える。縁部ロールの第3のペア250は、ガラスリボンの前面側に接触するための縁部ロール、及びガラスリボンの背面側に接触するための縁部ロールを備える。
縁部ロールの第2の組210bはまた、前面側及び背面側の両方に沿って、ガラスの粘性リボンの第2の(即ち反対側の)外縁部に接触するよう構成された、縁部ロールのペア260、又は縁部ロールの第4のペアも備えることができる。縁部ロールの第4のペア260は、ガラスリボンの前面側に接触するための縁部ロール、及びガラスリボンの背面側に接触するための縁部ロールを備える。
縁部ロールの第3のペア250及び/又は縁部ロールの第4のペア260のうちのいずれか一方を、フュージョンドロープロセスの水平面から、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線から、角度βを形成する回転軸を提供するように配向してよい。いくつかの実施形態では、縁部ロールの第3のペア250又は縁部ロールの第4のペア260の両方を、フュージョンドロープロセスの水平面から、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線から、ある角度を形成する回転軸を提供するように配向してよい。他の実施形態では、縁部ロールの第3のペア250及び縁部ロールの第4のペア260のいずれも、このように配向されない。更なる実施形態では、縁部ロールの第3のペア250又は縁部ロールの第4のペア260の両方を、それぞれが形成する角度βが略同一となるように配向する。
いくつかの実施形態では、角度βは、約0°~約55°、約0°~約45°、約0°~約40°、約0°~約35°、約0°~約30°、約0°~約25°、約0°~約15°、及びこれらの間の全ての部分範囲内であってよい。他の実施形態では、角度βは、約3~7°と約55°との間、約3~7°と約45°との間、約3~7°と約40°との間、約3~7°と約35°との間、約3~7°と約30°との間、約3~7°と約25°との間、約3~7°と約15°との間、及びこれらの間の全ての部分範囲内であってよい。あるいは更なる実施形態では、角度βは、約15°~約55°、約15°~約45°、約15°~約40°、約15°~約35°、約15°~約30°、約15°~約25°、及びこれらの間の全ての部分範囲内であってよい。
いくつかの実施形態では、第2の縁部ロールの組210bが配向され得る角度βは、第1の縁部ロールの組210aが配向され得る角度αとは異なる。例えば、第2の縁部ロールの組210bを、角度αより大きくてよい角度βを形成するよう構成することが望ましい場合がある。いくつかの実施形態では、例えば第1の縁部ロールの組210aを、約3°~約20°の角度を形成するよう配向してよく、第2の縁部ロールの組210bを、約15°~約40°の角度を形成するよう配向してよい。あるいは第1の縁部ロールの組210aを、約3°~約12°の角度を形成するよう配向してよく、第2の縁部ロールの組210bを、約15°~約30°の角度を形成するよう配向してよい。当然のことながら、これらの実施形態は単なる例であり、本明細書に添付された請求項の範囲を限定するものではない。
縁部ロールの第3のペア250及び縁部ロールの第4のペア260は、フュージョンドロープロセスの第2の位置270において垂直方向に整列させてよく、又はガラスのシートの移動方向に沿って互いに整列させてよい。第2の位置270の位置は、例示的なフュージョンドロー加工の実施形態では、縁部ロールの第3のペア250の内側端部の中央と縁部ロールの第4のペア260の内側端部の中央との間に水平に延在する線に基づくものであってよく、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線に基づくものであってよい。第2の位置270の位置は、ガラスリボンが粘性状態となる領域内でありながら第1の位置240より下方にあってよい。
いくつかの実施形態では、第2の位置270は、基部70の下方約12cm~約50cm、基部70の下方約15cm~約50cm、基部の下方約15cm~約45cm、約15cm~約40cm、約15cm~約30cm、基部の下方約20cm~約45cm、基部の下方約20cm~約40cm、基部の下方約30cm~約45cm、基部の下方約30cm~約50cm、及びこれらの間の全ての部分範囲内であってよい。
いくつかの実施形態では、第2の位置270は、第1の位置240の下方24cm未満、第1の位置の下方22cm未満、第1の位置の下方20cm未満、第1の位置の下方18cm未満、第1の位置の下方16cm未満等であってよい。
縁部ロールの各組210は独立して、定常回転速度モード又は定常トルクモードで動作するよう構成してよい。例えばシート幅の変動/不安定が発生した場合、定常速度モードで動作する縁部ロールのトルクを、発振パターン及び周期に関してシート幅の変動と一致するように変化させることができる。従って、定常トルクモードを用いて、縁部ロールによって印加される張力を制御可能な方式で維持でき、またいくつかの実施形態では、第1の縁部ロールの組210aを定常トルクモードで動作させ、第2の縁部ロールの組210bを定常速度モードで動作させることが望ましい場合がある。
縁部ロールの各組210は独立して、略平滑な接触面又は刻み付き接触面を備えるよう構成してよい。例示的な縁部ロール上の刻みを用いて、ガラスシートを把持し、摺動を回避できる(及び更なる冷却を提供できる)。しかしながら本出願人は、縁部ロールの2つ以上のセットを使用する際には、両方の縁部ロールのセットが刻みパターンを有する場合、ガラスシートの把持は縁部ロールの第2のセットに関して困難になり得ることを指摘した。従っていくつかの実施形態では、第1の縁部ロールの組210a及び第2の縁部ロールの組210bのうちの一方に刻み付き表面を設け、第1の縁部ロールの組及び第2の縁部ロールの組のうちのもう一方に略平滑な表面を設けることが望ましい場合がある。
縁部ロールの1つ以上の組210の傾斜の角度及び位置を選択することによって、ドロー加工されたシートガラスのシート幅の減少を低減できる。ドロー加工されたシートガラスのシート幅の減少の低減は、得られるシートガラスの幅が、従来のように配向された縁部ロールを用いる又は縁部ロールを用いない場合よりも大きくなるように、ガラスリボンの横方向収縮の量が軽減されている状況において実施できる。しかしながら本明細書中で使用される場合、「ドロー加工されたシートガラスのシート幅の減少の低減」はまた:(a)得られるシートガラスの幅が、基部におけるガラスリボンの幅と略同一となるように、ガラスリボンの横方向収縮の量を完全に防止できる(即ちシート幅の減少がゼロである)状況;及び(b)得られるシートガラスの幅が、基部におけるガラスリボンの幅よりも大きくなるように、シートが引っ張られる状況においても、実施できる。
縁部ロールの1つ以上の組210の角度及び位置を選択することによって、基部における粘性ガラスリボンの幅の少なくとも約90%の幅を有するシートガラスを製造できる。あるいは、基部における粘性ガラスリボンの幅の少なくとも約92%の、基部における粘性ガラスリボンの幅の少なくとも約94%の、基部における粘性ガラスリボンの幅の少なくとも約95%の、基部における粘性ガラスリボンの幅の少なくとも約96%の、基部における粘性ガラスリボンの幅の少なくとも約97%の、基部における粘性ガラスリボンの幅の少なくとも約98%の、基部における粘性ガラスリボンの幅の少なくとも約99%の、又は基部における粘性ガラスリボンの幅と同一の幅を有するシートガラスを製造でき、これによってシート幅の減少を防止できる。
いくつかの実施形態では、縁部ロールの1つ以上の組210の傾斜の角度及び位置を選択することによって、基部における粘性ガラスリボンの幅より大きな幅を有するシートガラスを製造できる。シート幅の減少を効果的に防止するのに加えて、1つ以上の縁部ロールの組210の傾斜の角度及び位置の制御によって、シート幅を引っ張ることができる。例えば、基部における粘性ガラスリボンの幅の少なくとも約100%、少なくとも約102%、少なくとも約104%、又は基部における粘性ガラスリボンの幅の少なくとも約105%の幅を有するシートガラスを製造できる。
更に、縁部ロールの1つ以上の組210の傾斜の角度及び位置を選択することによって、ガラスシートの縁部に沿って形成されることが知られているビードの厚さを低減できる。上述のように、シートの安定性による多数の問題は、縁部ビードの厚さの増大、及び厚さの増大が原因となる、いずれの比較的遅い冷却に起因し得る。従って、縁部ビードの厚さの低減により、リボン及びガラスシートの安定性の上昇をもたらすことができる。
いくつかの実施形態では、ビードの厚さとシート中央部の厚さとの間の比を、ビード厚さが低減された度合いの指標として使用できる。本明細書に記載された開示の実施形態、縁部ロールの1つ以上の組210の傾斜の角度及び位置の選択を用いて、ビードの厚さとシート中央部の厚さとの間の比が12:1未満のガラスシートを製造できる。あるいは、ビードの厚さとシート中央部の厚さとの間の比が10:1未満、8:1未満、6:1未満、5:1未満、4:1未満、3:1未満、2.5:1未満、2:1未満、1.5:1、及びこれらの間の全ての部分範囲内のガラスシートを製造できる。
シート幅の変動は、縁部ロールの1つ以上の組210の傾斜の角度及び位置、並びに縁部ロールの異なる複数の組の間の相対距離及び縁部ロールの異なる複数の組の相対速度の選択によっても低減できる。例えば上述のように、縁部ロールの少なくとも1つの組210を基部付近に配置することにより、基部を越えてすぐの位置で発生するいずれの減少を防止することが望ましい場合が多く、これはシート幅の変動の重要な要因となり得る。別の例では、縁部ロールの第1の組の速度を、引っ張り速度ではなく基部の条件に対して適合させることにより、特に超薄型ガラス(例えば<200マイクロメートル、<100マイクロメートル等)の形成時に縁部配向器上のガラス流に関する流れの分離を引き起こし得る、基部の付近のガラスに対する過剰な張力を回避できる。縁部ロールの第2の組も用いて、縁部ロールの第1の組に対する牽引ロールのいずれの影響を遮断できる。
本明細書中で使用される場合、シート幅の変動の低減は、シート幅の変動が効果的に削減される実施形態を含むことができる。いくつかの実施形態では、シート幅の変動は例えば、シートの極めて外側の縁部の位置を記録するために、典型的にはドローの底部に設置されたカメラによって測定できる。シート幅の変動はまた、ドロー加工されているガラスリボン内の様々な位置において粘性ガラスの垂直方向速度を追跡することによって示すこともできる。これは例えば、様々な位置における垂直方向速度をプロットして、粘性領域内のガラスリボンの幅又は幅の一部分にわたる垂直方向速度の等速線を得ることによって、達成できる。当然のことながら、垂直方向速度を示すこれらのプロットは、水平な移動方向を有する実施形態(フロートプロセス)における水平方向速度についても同様である。垂直方向速度の等速線がガラスリボンの幅にわたって概ね平行に連続して増大している場合には、シート幅の変動を低減又は回避できている。
縁部ロールの1つ以上の組210の傾斜の角度及び位置の選択によって、ドロー加工プロセスの粘性領域内における概ね平行な複数の垂直方向速度の等速線を得ることができる。これらの等速線は、上記方向におけるガラスの速度の略なめらかで連続した上昇を示す。従って、縁部ロールの1つ以上の組210の傾斜の角度及び垂直位置の選択によって、シート幅の変動を低減又は排除できる。
また、縁部ロールに角度を付けなくても、第2の縁部ロールの組210bを第1の縁部ロールの組210aの下方のわずかな距離の位置に追加すること自体が、シート幅の減少、シート幅の変動及び縁部ビード形成の低減において有益となり得ることが分かっている。従っていくつかの実施形態では、第1の縁部ロールの組210a及び第2の縁部ロールの組210bのうちのいずれを、回転軸がフュージョンドロープロセスにおいて水平となるように、又は移動方向に対して垂直かつガラスのシートが形成する平面に対して平行な線上となるように、配向してよい。第2の縁部ロールの組210bを、最終的なシート幅及び/又は厚さが安定する前に位置決めすることにより、効果的なクロスドロー張力を生成できる。
ここで図13及び14を参照すると、本開示の複数の態様に従って使用できるガラス製造装置301のある例示的実施形態の概略正面図及び側面図が示されている。ガラス製造装置301はダウンドローフュージョン装置として図示されているが、更なる例では他の成形装置も使用してよい。一例として、ガラス製造装置301は、ガラスリボン121を製造するための成形用容器60を含むことができ、上記ガラスリボン121は、ガラスリボン121の第1のエッジ部分121aと第2のエッジ部分121bとの間に延在する幅「W」を含む。
図13及び14が更に示すように、ガラス製造装置301は、プルロールデバイス315及び分割デバイス319を含むことができる。ガラスリボン121の一部分は、成形用容器60の基部70から粘性ゾーン341へと引き出され、ここでガラスリボン121は最終的な厚さに向かって薄くなり始める。次にガラスリボン121の上記部分は、粘性ゾーン341から固化ゾーン343(粘弾性ゾーン)へと引き出される。固化ゾーン343では、ガラスリボン121の上記部分が粘性状態から所望のプロファイルを有する弾性状態へと固化する。続いてガラスリボン121の上記部分は、固化ゾーン343から弾性ゾーン345へと引き出される。弾性ゾーン345に入ると、ガラスリボン121を、ガラスリボン121のプロファイルを永久的に変化させることなく、限界範囲内で変形させることができる。
ガラスリボン121の上記部分が弾性ゾーン345に入った後、ある期間にわたってガラスリボン121から複数のガラスシート347a、347bを順次分割するために、分割デバイス319を設けてよい。分割デバイス319は、図示されている移動式アンビル機械を備えてよいが、更なる例では、更なる分割デバイスを設けてもよい。
ガラス製造装置301は更に、図13及び14に概略図で示されているプルロールデバイス315を含む。以下で更に詳細に説明するように、プルロールデバイス315は、基部70からのガラスリボン121のドロー加工を補助するために設けることができ、また弾性ゾーン345から固化ゾーン343へ、ガラスリボン121を上って来る力の伝達を分離できる。従って本開示のプルロールデバイスは、ガラスリボンを所望の厚さにドロー加工しながら、ガラスシート内の残留応力を低減することもできる。図示したように、プルロールデバイス315は、粘性ゾーン341、固化ゾーン343、及び弾性ゾーン345内に配置できる。実際には、図面に図示されているように、(以下で更に詳細に議論される)第1のプルロール装置を粘性ゾーン341内に配置するか、又は粘性ゾーン341に隣接した固化ゾーン343の頂部に配置してよい。(以下で更に詳細に議論される)第2のプルロール装置は、固化ゾーン343内に配置され、(以下で更に詳細に議論される)第3のプルロール装置は、弾性ゾーン345内に配置される。
図13、図14、及び図15は、本開示の例示的な一実施形態によるプルロールデバイス315の第1の例を示すが、更なる例では、他のプルロールデバイス315の構成を設けてもよい。プルロールデバイス315は第1のプルロール装置349を含むことができ、これは、ガラスリボン121の第1のエッジ部分121aを、成形用容器60から、ガラスリボン121の幅「w」を横断して延在するドロー経路353に沿ってドロー加工するよう構成された、ドローロールの第1の上流ペア351を含む。
図示されているように、ドローロールの第1の上流ペア351は、第1のプルロール部材355a及び第2のプルロール部材355bを含むことができる。第1のプルロール部材355a及び第2のプルロール部材355bはそれぞれ耐火性ロールカバー357a、357bを備えることができ、これらはその間にガラスリボン121の第1のエッジ部分121aを係合させるよう構成される。第1のプルロール部材355a及び第2のプルロール部材355bのうちの少なくとも一方には、モータ359a、359bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材355a及び第2のプルロール部材355bの両方に、モータ359a、359bをそれぞれ設ける。更なる例では、第1のプルロール部材355a及び第2のプルロール部材355bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材355a及び第2のプルロール部材355bのうちの一方のみが駆動される。
別の例では、ドローロールの第1の上流ペア351に加えて又はこれに代えて、第1のプルロール装置349は、ガラスリボン121の第2のエッジ部分121bを成形用容器70からドロー経路353に沿ってドロー加工するよう構成された、ドローロールの第2の上流ペア361を含むことができる。図示されているように、ドローロールの第2の上流ペア361は、第1のプルロール部材363a及び第2のプルロール部材363bを含むことができる。第1のプルロール部材363a及び第2のプルロール部材363bはそれぞれ耐火性ロールカバー365a、365bを備えることができ、これらはその間にガラスリボン121の第2のエッジ部分121bを係合させるよう構成される。第1のプルロール部材363a及び第2のプルロール部材363bのうちの少なくとも一方には、モータ367a、367bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材363a及び第2のプルロール部材363bの両方に、モータ367a、367bをそれぞれ設ける。更なる例では、第1のプルロール部材363a及び第2のプルロール部材363bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材363a及び第2のプルロール部材363bのうちの一方のみが駆動される。
図13、図14、及び図16に示すように、プルロールデバイス315は更に第2のプルロール装置369を含み、これは、ドローロールの第1の上流ペア351からドロー経路353に沿って下流に位置決めされたドローロールの第1の中流ペア371を含み、ここでドローロールの第1の中流ペア371は、ガラスリボン121の第1のエッジ部分121aをドロー経路353に沿って更にドロー加工するよう構成される。図示されているように、ドローロールの第1の中流ペア371は、第1のプルロール部材373a及び第2のプルロール部材373bを含むことができる。第1のプルロール部材373a及び第2のプルロール部材373bはそれぞれ耐火性ロールカバー375a、375bを備えることができ、これらはその間にガラスリボン121の第1のエッジ部分121aを係合させるよう構成される。第1のプルロール部材373a及び第2のプルロール部材373bのうちの少なくとも一方には、モータ377a、377bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材373a及び第2のプルロール部材373bの両方に、モータ377a、377bをそれぞれ設ける。更なる例では、第1のプルロール部材373a及び第2のプルロール部材373bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材373a及び第2のプルロール部材373bのうちの一方のみが駆動される。
別の例では、ドローロールの第1の中流ペア371に加えて又はこれに代えて、第2のプルロール装置369は、ドローロールの第2の上流ペア361からドロー経路353に沿って下流に位置決めされた、ドローロールの第2の中流ペア379を含むことができ、ここでドローロールの第2の中流ペア379は、ガラスリボン121の第2のエッジ部分121bをドロー経路353に沿って更にドロー加工するよう構成される。図示されているように、ドローロールの第2の中流ペア379は、第1のプルロール部材381a及び第2のプルロール部材381bを含むことができる。第1のプルロール部材381a及び第2のプルロール部材381bはそれぞれ耐火性ロールカバー383a、383bを備えることができ、これらはその間にガラスリボン121の第2のエッジ部分121bを係合させるよう構成される。第1のプルロール部材381a及び第2のプルロール部材381bのうちの少なくとも一方には、モータ385a、385bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材381a及び第2のプルロール部材381bの両方に、モータ385a、385bをそれぞれ設ける。更なる例では、第1のプルロール部材381a及び第2のプルロール部材381bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材381a及び第2のプルロール部材381bのうちの一方のみが駆動される。
図13、図14、及び図17に示すように、プルロールデバイス315は更に第3のプルロール装置387を含み、これは、ドローロールの第1の中流ペア371からドロー経路353に沿って下流に位置決めされたドローロールの第1の下流ペア389を含み、ここでドローロールの第1の下流ペア389は、ガラスリボン121の第1のエッジ部分121aをドロー経路353に沿って更にドロー加工するよう構成される。図示されているように、ドローロールの第1の下流ペア389は、第1のプルロール部材391a及び第2のプルロール部材391bを含むことができる。第1のプルロール部材391a及び第2のプルロール部材391bはそれぞれ耐火性ロールカバー393a、393bを備えることができ、これらはその間にガラスリボン121の第1のエッジ部分121aを係合させるよう構成される。第1のプルロール部材391a及び第2のプルロール部材391bのうちの少なくとも一方には、モータ395a、395bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材391a及び第2のプルロール部材391bの両方に、モータ395a、395bをそれぞれ設ける。更なる例では、第1のプルロール部材391a及び第2のプルロール部材391bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材391a及び第2のプルロール部材391bのうちの一方のみが駆動される。
別の例では、ドローロールの第1の下流ペア389に加えて又はこれに代えて、第3のプルロール装置387は、ドローロールの第2の中流ペア379からドロー経路353に沿って下流に位置決めされた、ドローロールの第2の下流ペア397を含むことができ、ここでドローロールの第2の下流ペア397は、ガラスリボン121の第2のエッジ部分121bをドロー経路353に沿って更にドロー加工するよう構成される。図示されているように、ドローロールの第2の下流ペア397は、第1のプルロール部材399a及び第2のプルロール部材399bを含むことができる。第1のプルロール部材399a及び第2のプルロール部材399bはそれぞれ耐火性ロールカバー401a、401bを備えることができ、これらはその間にガラスリボン121の第2のエッジ部分121bを係合させるよう構成される。第1のプルロール部材399a及び第2のプルロール部材399bのうちの少なくとも一方には、モータ403a、403bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材399a及び第2のプルロール部材399bの両方に、モータ403a、403bをそれぞれ設ける。更なる例では、第1のプルロール部材399a及び第2のプルロール部材399bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材399a及び第2のプルロール部材399bのうちの一方のみが駆動される。牽引ロールデバイス315は、縁部ロール402(402a、402b)及び404の任意の1つ以上のペア並びに/又はアイドルスタッブロール406、408の任意の1つ以上のペアも含んでよいことを理解されたい(図13、14及び18を参照)。
図18及び図19に示すように、プルロールデバイス315は更に、ドローロールの第1の中流ペア371からドロー経路353に沿って下流に、及びドローロールの第1の下流ペア389からドロー経路に沿って上流に位置決めされた、ドローロールの第1の中間ペア407を含む、中間プルロール装置405を含むことができる。ドローロールの第1の中間ペア407は、ガラスリボン121の第1のエッジ部分121aをドロー経路353に沿って更にドロー加工するよう構成される。図示されているように、ドローロールの第1の中間ペア407は、第1のプルロール部材409a及び第2のプルロール部材409bを含むことができる。第1のプルロール部材409a及び第2のプルロール部材409bはそれぞれ耐火性ロールカバー411a、411bを備えることができ、これらはその間にガラスリボン121の第1のエッジ部分121aを係合させるよう構成される。第1のプルロール部材409a及び第2のプルロール部材409bのうちの少なくとも一方には、モータ413a、413bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材409a及び第2のプルロール部材409bの両方に、モータ413a、413bをそれぞれ設ける。更なる例では、第1のプルロール部材409a及び第2のプルロール部材409bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材409a及び第2のプルロール部材409bのうちの一方のみが駆動される。
別の例では、ドローロールの第1の中間ペア407に加えて又はこれに代えて、中間プルロール装置405は、ドローロールの第2の中流ペア379からドロー経路353に沿って下流に、及びドローロールの第2の下流ペア397からドロー経路353に沿って上流に位置決めされた、ドローロールの第2の中間ペア415を含むことができる。ドローロールの第2の中流ペア415は、ガラスリボン121の第2のエッジ部分121bをドロー経路353に沿って更にドロー加工するよう構成される。図示されているように、ドローロールの第2の中間ペア415は、第1のプルロール部材417a及び第2のプルロール部材417bを含むことができる。第1のプルロール部材417a及び第2のプルロール部材417bはそれぞれ耐火性ロールカバー419a、419bを備えることができ、これらはその間にガラスリボン121の第2のエッジ部分121bを係合させるよう構成される。第1のプルロール部材417a及び第2のプルロール部材417bのうちの少なくとも一方には、モータ421a、421bをそれぞれ設けてよい。例えば、図示されているように、第1のプルロール部材417a及び第2のプルロール部材417bの両方に、モータ421a、421bをそれぞれ設ける。更なる例では、第1のプルロール部材417a及び第2のプルロール部材417bのうちの一方のみにモータを設け、もう一方のプルロール部材には軸受を設けてよく、これにより、第1のプルロール部材417a及び第2のプルロール部材417bのうちの一方のみが駆動される。
中間プルロール装置405は、第2のプルロール装置369と第3のプルロール装置387との間の第4の高さに位置決めされたものとして説明及び図示されているが、本開示はこれらの例示的実施形態に限定されない。中間プルロール装置405は、プルロールデバイス315の様々な高さに位置決めされ得る。更に中間プルロール装置405はモジュール式であってよく、従って複数のプルロール装置405がプルロールデバイス315に含まれてよく、ドロー経路353に沿って様々な高さに位置決めされ得る。
ドローロールの各ペアが第1及び第2のプルロール部材を含むものとして説明したが、第1及び第2のプルロール部材は、ドローロールのペアのうちの1つのドローロールを指すこともできる。
ガラス製造装置301のプルロールデバイス315は更に、ドローロールの第1の上流ペア351のうちの少なくとも1つが略一定のトルクで回転し、ドローロールの第1の中流ペア371のうちの少なくとも一方が略一定のトルクで回転し、ドローロールの第1の下流ペア389のうちの少なくとも一方が略一定の角速度で回転するように、第1のプルロール装置349、第2のプルロール装置369、及び第3のプルロール装置387を独立して操作するよう構成された、制御デバイス423(例えばプログラマブル論理コントローラ)を含むことができる。制御デバイス423は、ケーブル、無線ネットワーク、有線ネットワーク、これらの組み合わせ等を通して、プルロール装置349、369、387、405と通信425できる。本開示の目的に関して、第1のプルロール装置349、第2のプルロール装置369、及び第3のプルロール装置387の独立した操作は、上記第1、第2及び第3のプルロール装置のうちの1つを、上記第1、第2及び第3のプルロール装置のうちの他のものの操作に影響されないように操作できることを意味する。従って例えば、第1のプルロール装置349を制御デバイス423によって独立して操作することは、上記制御デバイスに、第2のプルロール装置369又は第3のプルロール装置387の動作パラメータの変化を考慮することなく、第1のプルロール装置349を操作できる状態を提供する。また、例えば、第2のプルロール装置369を制御デバイス423によって独立して操作することは、上記制御デバイスに、第1のプルロール装置349又は第3のプルロール装置387の動作パラメータの変化を考慮することなく、第2のプルロール装置369を操作できる状態を提供する。更に例えば、第3のプルロール装置387を制御デバイス423によって独立して操作することは、上記制御デバイスに、第1のプルロール装置349又は第2のプルロール装置369の動作パラメータの変化を考慮することなく、第3のプルロール装置387を操作できる状態を提供する。
上述のように、ドローロールの第1の上流ペア351は、第1のプルロール部材355a又は第2のプルロール部材355bのうちの一方に関連付けられた単一のモータを含むことができる。このような例では、制御デバイス423は上記単一のモータを、関連付けられた第1のプルロール部材355a又は第2のプルロール部材355bが略一定のトルクで回転するように、操作できる。更に上述したように、第1のプルロール部材355a及び第2のプルロール部材355bにはそれぞれ、対応するモータ359a、359bを設けてよい。このような例では、制御デバイス423はモータ359a、359bを、ドローロールの第1の上流ペア351のうちの少なくとも1つ、例えば両方が略一定のトルクで回転するように、操作してよい。ドローロールの第1の上流ペア351のプルロール部材359a、359b両方が略一定のトルクで回転することは、ガラスリボン121の第1のエッジ部分121aの両側部に等しく力を印加するために望ましい場合がある。
上述のように、第1のプルロール装置349は、任意のドローロールの第2の上流ペア361も含んでよい。このような例では、ドローロールの第2の上流ペア361は、第1のプルロール部材363a又は第2のプルロール部材363bのうちの一方に関連付けられた単一のモータを含むことができる。このような例では、制御デバイス423は上記単一のモータを、関連付けられた第1のプルロール部材363a又は第2のプルロール部材363bが略一定のトルクで回転するように、操作できる。更に上述したように、第1のプルロール部材363a及び第2のプルロール部材363bにはそれぞれ、対応するモータ367a、367bを設けてよい。このような例では、制御デバイス423はモータ367a、367bを、ドローロールの第2の上流ペア361のうちの少なくとも1つ、例えば両方が略一定のトルクで回転するように、操作してよい。ドローロールの第2の上流ペア361のプルロール部材363a、363b両方が略一定のトルクで回転することは、ガラスリボン121の第2のエッジ部分121bの両側部に等しく力を印加するために望ましい場合がある。
必須ではないが、いくつかの例では、制御デバイス423は、ドローロールの第1の上流ペア351に関連付けられたモータのうちの一方又は両方を、略一定の第1のトルクで動作させることができ、また同時に、ドローロールの第2の上流ペア361に関連付けられたモータのうちの一方又は両方を、上記第1のトルクと略等しい、略一定の第2のトルクで回転するよう操作できる。略等しい第1及び第2のトルクを提供することは、例えばガラスリボン121並びに第1のエッジ部分121a及び第2のエッジ部分121bに略同一の力を印加するために望ましい場合がある。
上述のように、第2のプルロール装置369は、任意のドローロールの第2の中流ペア379も含んでよい。このような例では、ドローロールの第2の中流ペア379は、第1のプルロール部材381a又は第2のプルロール部材381bのうちの一方に関連付けられた単一のモータを含むことができる。このような例では、制御デバイス423は上記単一のモータを、関連付けられた第1のプルロール部材381a又は第2のプルロール部材381bが略一定のトルクで回転するように、操作できる。更に上述したように、第1のプルロール部材381a及び第2のプルロール部材381bにはそれぞれ、対応するモータ385a、385bを設けてよい。このような例では、制御デバイス423はモータ385a、385bを、ドローロールの第2の中流ペア379のうちの少なくとも1つ、例えば両方が略一定のトルクで回転するように、操作してよい。ドローロールの第2の中流ペア379のプルロール部材381a、381b両方が略一定のトルクで回転することは、ガラスリボン121の第2のエッジ部分121bの両側部に等しく力を印加するために望ましい場合がある。
必須ではないが、いくつかの例では、制御デバイス423は、ドローロールの第1の中流ペア371に関連付けられたモータのうちの一方又は両方を、略一定の第1のトルクで動作させることができ、また同時に、ドローロールの第2の中流ペア379に関連付けられたモータのうちの一方又は両方を、上記第1のトルクと略等しい、略一定の第2のトルクで回転するよう操作できる。略等しい第1及び第2のトルクを提供することは、例えばガラスリボン121並びに第1のエッジ部分121a及び第2のエッジ部分121bに略同一の力を印加するために望ましい場合がある。
上述のように、ドローロールの第1の下流ペア389は、第1のプルロール部材391a又は第2のプルロール部材391bのうちの一方に関連付けられた単一のモータを含むことができる。このような例では、制御デバイス423は上記単一のモータを、関連付けられた第1のプルロール部材391a又は第2のプルロール部材391bが略一定の角速度で回転するように、操作できる。更に上述したように、第1のプルロール部材391a及び第2のプルロール部材391bにはそれぞれ、対応するモータ395a、395bを設けてよい。このような例では、制御デバイス423はモータ395a、395bを、ドローロールの第1の下流ペア389のうちの少なくとも1つ、例えば両方が略一定の角速度で回転するように、操作してよい。ドローロールの第1の下流ペア389のプルロール部材391a、391b両方が略一定の角速度で回転することは、ガラスリボン121の第1のエッジ部分121aの両側部において、ガラスリボンを等しくドロー加工するために望ましい場合がある。
上述のように、第3のプルロール装置387は、任意のドローロールの第2の下流ペア397も含んでよい。このような例では、ドローロールの第2の下流ペア397は、第1のプルロール部材399a又は第2のプルロール部材399bのうちの一方に関連付けられた単一のモータを含むことができる。このような例では、制御デバイス423は上記単一のモータを、関連付けられた第1のプルロール部材399a又は第2のプルロール部材399bが略一定のトルクで回転するように、操作できる。更に上述したように、第1のプルロール部材399a及び第2のプルロール部材399bにはそれぞれ、対応するモータ403a、403bを設けてよい。このような例では、制御デバイス423は、ドローロールの第2の下流ペア397のうちの少なくとも1つ、例えば両方を、略一定の角速度で回転するように操作してよい。ドローロールの第2の下流ペア397のプルロール部材399a、399b両方が略一定の角速度で回転することは、ガラスリボン121の第2のエッジ部分121bの両側部において、ガラスリボンを等しくドロー加工するために望ましい場合がある。
必須ではないが、いくつかの例では、制御デバイス423は、ドローロールの第1の下流ペア389に関連付けられたモータのうちの一方又は両方を、略一定の第1の角速度で動作させることができ、また同時に、ドローロールの第2の下流ペア397に関連付けられたモータのうちの一方又は両方を、上記第1の角速度と略等しい、略一定の第2の角速度で回転するよう操作できる。略等しい第1及び第2の角速度を提供することは、例えばガラスリボンを第1のエッジ部分121a及び第2のエッジ部分121bにおいて等しくドロー加工するために望ましい場合がある。
上述のように、制御デバイス423は、ドローロールの第1の上流ペア351及びドローロールの第2の上流ペア361のうちの少なくとも一方が略一定のトルクで回転するように、第1のプルロール装置349を独立して操作するよう構成できるが、実施形態はこのように限定されない。即ち制御デバイス423は、ある例示的実施形態では、ドローロールの第1の上流ペア351及びドローロールの第2の上流ペア361のうちの少なくとも一方が、一定のトルクではなく略一定の角速度で回転するように、第1のプルロール装置349を独立して操作するよう構成できる。更に制御デバイス423は、ドローロールの第1の中流ペア371及びドローロールの第2の中流ペア379のうちの少なくとも一方が、一定のトルクではなく略一定の角速度で回転するように、第2のプルロール装置369を独立して操作するよう構成できる。
制御デバイス423は更に、ドローロールの第1の中間ペア407及びドローロールの第2の中間ペア415のうちの少なくとも一方が略一定のトルクで回転するように、中間プルロール装置405を独立して操作するよう構成できる。あるいは制御デバイス423は、ドローロールの第1の中間ペア407及びドローロールの第2の中間ペア415のうちの少なくとも一方が、一定のトルクではなく略一定の角速度で回転するように、中間プルロール装置405を独立して操作するよう構成できる。
表1は、本開示の例示的実施形態による5個の異なる独立制御スキームを提供する。例えば表1に示すように、制御スキーム「A」は:ドローロールの第1の上流ペア351及びドローロールの第2の上流ペア361のうちの少なくとも一方が略一定のトルクで回転するように、第1のプルロール装置349を独立して操作し;ドローロールの第1の中流ペア371及びドローロールの第2の中流ペア379のうちの少なくとも一方が略一定のトルクで回転するように、第2のプルロール装置369を独立して操作し;ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397のうちの少なくとも一方が略一定の角速度で回転するように、第3のプルロール装置387を独立して操作し;中間プルロール装置405が設けられている場合に、ドローロールの第1の中間ペア407及びドローロールの第2の中間ペア415のうちの少なくとも一方が略一定のトルクで回転するように、又はドローロールの第1の中間ペア407及びドローロールの第2の中間ペア415のうちの少なくとも一方が、一定のトルクではなく略一定の角速度で回転するように、中間プルロール装置405を独立して操作するよう構成された、制御デバイス423を含む。
表1に示されている別の例として、制御スキーム「E」は:ドローロールの第1の上流ペア351及びドローロールの第2の上流ペア361のうちの少なくとも一方が略一定のトルクで回転するように、第1のプルロール装置349を独立して操作し;ドローロールの第1の中流ペア371及びドローロールの第2の中流ペア379のうちの少なくとも一方が略一定のトルクで回転するように、第2のプルロール装置369を独立して操作し;ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397のうちの少なくとも一方が略一定のトルクで回転するように、第3のプルロール装置387を独立して操作し;中間プルロール装置405が設けられている場合に、ドローロールの第1の中間ペア407及びドローロールの第2の中間ペア415のうちの少なくとも一方が略一定のトルクで回転するように、中間プルロール装置405を独立して操作するよう構成された、制御デバイス423を含む。
Figure 0007201589000001
いくつかの例では、本出願全体を通して議論されているドローロールのペアは、Andersonらによって2009年4月30日に公開された米国特許出願公開第2009/0107182号明細書に記載されたものと同様の構造及び配向を有してよく、上記文献はその全体が参照により本出願に援用される。例えば、ドローロールのいずれのペアは、ガラスリボンに対して垂直方向下向きに傾斜した、又は水平なロールであってよい。更に図15及び16に示すように、(水平な又は下向きに傾斜した)ロールのいずれのペアは、ガラスリボン121の各主表面427、429に対してロールの各面が位置決めされる所定の水平角度θを有するように位置決めできる。上記水平角度θは、適切なレベルのクロスドロー張力431を提供する、及び/又は通常のロールの摩耗中に発生し得るテーパ効果に適応するために、望ましいものとなり得る。
図13及び18は、ドローロールのペアの第1のプルロール部材355a、363a、373a、381a、391a、399a、409a、417aそれぞれが、ガラスリボン121に対して垂直方向下向きに傾斜したロールを備えることができる例を示す。ドローロールのペアの第2のプルロール部材355b、363b、373b、381b、391b、399b、409b、417bも同様に、ガラスリボン121に対して垂直方向下向きに傾斜したロールを備えることができる。ドローロールのいずれのペアの下向き傾斜角度は、プロセスの考慮条件に応じて、ドローロールの他のいずれのペアと異なっていても同一であってもよい。ドローロールの第1の上流ペア351及び/又はドローロールの第2の上流ペア361の下向き傾斜は、ドローロールの2つのペア351、361間に、所望のレベルのクロスドロー張力431を提供できる。ドローロールの第1の中流ペア371及び/又はドローロールの第2の中流ペア379の下向き傾斜は、ドローロールの2つのペア371、379間に、所望のレベルのクロスドロー張力433を提供できる。ドローロールの第1の下流ペア389及び/又はドローロールの第2の下流ペア397の下向き傾斜は、ドローロールの2つのペア389、397間に、所望のレベルのクロスドロー張力435を提供できる。同様に、ドローロールの第1の中間ペア407及び/又はドローロールの第2の中間ペア415の下向き傾斜は、ドローロールの2つのペア407、415間に、所望のレベルのクロスドロー張力437を提供できる。
いくつかの例では、制御デバイス423は、自動位置決め器(図示せず)を起動するよう構成されていてよく、又は手動機構を用いて、垂直方向下向きに傾斜したロールの下向き傾斜位置を調整することにより、ガラスリボン121にわたる平均クロスドロー張力431、433、435、437を制御(又は微調整)してよい。
更なる例では、ドローロールの1つ以上のペア351、361、371、379、389、397、407、415は、ガラスリボンに対して水平なロールであってよく、ここでドローロールの回転軸は、ガラスリボン121のドロー経路に対して略垂直に延在する。プルロールデバイスのロールのペアのうちの一方又は両方を水平なロールとして設けることは、ロールのペアに沿ったガラスリボンの幅にわたって横断方向の張力が必要ない場合に望ましいものであり得る。
これより、ガラスリボン121の製造方法を、図13~19に示すプルロールデバイス315に関して説明する。
図13、14及び15を参照すると、上記方法は、ドローロールの第1の上流ペア351を含む第1のプルロール装置349を提供するステップを含むことができる。別の例では、第1のプルロール装置349には、ドローロールの第2の上流ペア361を任意に設けてよい。
図13、14及び16を参照すると、上記方法は更に、ドローロールの第1の上流ペア351からドロー経路353に沿って下流に位置決めされたドローロールの第1の中流ペア371を含む、第2のプルロール装置369を提供するステップを含む。更なる例では、第2のプルロール装置369には、ドローロールの第2の上流ペア361からドロー経路353に沿って下流に位置決めされた、ドローロールの第2の中流ペア379を任意に設けてよい。
上記方法は更に、ドローロールの第1の中流ペア371からドロー経路353に沿って下流に位置決めされたドローロールの第1の下流ペア389を含む、第3のプルロール装置387を提供するステップを含む。更なる例では、第3のプルロール装置387には、ドローロールの第2の中流ペア379からドロー経路353に沿って下流に位置決めされた、ドローロールの第2の下流ペア397を任意に設けてよい。
任意に、上記方法は更に、ドローロールの第1の中流ペア371からドロー経路353に沿って下流に、及びドローロールの第1の下流ペア389からドロー経路353に沿って上流に位置決めされた、ドローロールの第1の中間ペア407を含む、中間プルロール装置405を提供するステップを含む。更なる例では、中間プルロール装置405には、ドローロールの第2の中流ペア379からドロー経路353に沿って下流に、及びドローロールの第2の下流ペア397からドロー経路353に沿って上流に位置決めされた、ドローロールの第2の中間ペア415を任意に設けてよい。
上記方法は更に、第1のエッジ部分105aと第2のエッジ部分121bとの間に延在する幅「W」を有するガラスリボン121を形成するステップを含む。第1のプルロール装置349は例えば、第2のプルロール装置369からの入力若しくは第3のプルロール装置387からの入力を用いずに、又はいずれの中間プルロール装置405が設けられている場合には中間プルロール装置405からの入力を用いずに、制御デバイス423によって独立して操作できる。例えば第1のプルロール装置349は、ドローロールの第1の上流ペア351の少なくとも1つのドローロール(プルロール部材355a、355b)が略一定のトルクで回転して、ガラスリボン121の第1のエッジ部分121aをドロー経路353に沿ってドロー加工するように、独立して操作できる。一例として、第1のプルロール装置349は、ドローロールの第1の上流ペア351の両方のドローロール(プルロール部材355a、355b)が略一定のトルクで回転するように、操作できる。
ドローロールの第2の上流ペア361が設けられている場合、これもまた、ドローロールの第2の上流ペア361の少なくとも1つのドローロール(プルロール部材363a、363b)が略一定のトルクで回転して、ガラスリボン121の第2のエッジ部分121bをドロー経路353に沿ってドロー加工するように、独立して操作できる。一例として、第1のプルロール装置349は、ドローロールの第2の上流ペア361の両方のドローロール(プルロール部材363a、363b)が略一定のトルクで回転するように、操作できる。従って、ドロー経路353に沿った所望の張力439を、基部70と第1のプルロール装置349との間のガラスリボン121において維持できる。
上記方法は更に、第2のプルロール装置369を、ドローロールの第1の中流ペア371の少なくとも1つのドローロール(プルロール部材373a、373b)が略一定のトルクで回転して、ガラスリボン121の第1のエッジ部分121aをドロー経路353に沿って更にドロー加工するように、独立して操作する。一例として、上記方法は、ドローロールの第1の中流ペア371の両方のドローロール(プルロール部材373a、373b)が略一定のトルクで回転するように、第2のプルロール装置369を操作するステップを含むことができる。
ドローロールの第2の中流ペア379が設けられている場合、これもまた、ドローロールの第2の中流ペア379の少なくとも1つのドローロール(プルロール部材381a、381b)が略一定のトルクで回転して、ガラスリボン121の第2のエッジ部分121bをドロー経路353に沿ってドロー加工するように、独立して操作できる。一例として、第2のプルロール装置369は、ドローロールの第2の中流ペア379の両方のドローロール(プルロール部材381a、381b)が略一定のトルクで回転するように、操作できる。従って、ドロー経路353に沿った所望の張力441を、第1のプルロール装置349と第2のプルロール装置369との間のガラスリボン121において維持できる。
上記方法は更に、第3のプルロール装置387を、ドローロールの第1の下流ペア389の少なくとも1つのドローロール(プルロール部材391a、391b)が略一定の角速度で回転して、ガラスリボン121の第1のエッジ部分121aをドロー経路353に沿って更にドロー加工するように、独立して操作する。一例として、上記方法は、ドローロールの第1の下流ペア389の両方のドローロール(プルロール部材391a、391b)が略一定の角速度で回転するように、第3のプルロール装置387を操作するステップを含むことができる。
ドローロールの第2の下流ペア397が設けられている場合、これもまた、ドローロールの第2の下流ペア397の少なくとも1つのドローロール(プルロール部材399a、399b)が略一定の角速度で回転して、ガラスリボン121の第2のエッジ部分121bをドロー経路353に沿って更にドロー加工するように、独立して操作できる。一例として、上記方法は、ドローロールの第2の下流ペア397の両方のドローロール(プルロール部材399a、399b)が略一定の角速度で回転するように、第3のプルロール装置387を操作するステップを含むことができる。従って、ドロー経路353に沿った所望の張力443を、第2のプルロール装置369と第3のプルロール装置387との間のガラスリボン121において維持できる。
上記方法は更に、中間プルロール装置405が設けられている場合、これを、ドローロールの第1の中間ペア407の少なくとも1つの(プルロール部材409a、409b)が略一定のトルクで回転して、ガラスリボン121の第1のエッジ部分121aをドロー経路353に沿って更にドロー加工する(図18及び19)ように、独立して操作する。一例として、上記方法は、ドローロールの第1の中間ペア407の両方のドローロール(プルロール部材409a、409b)が略一定のトルクで回転するように、中間プルロール装置405を操作するステップを含むことができる。
ドローロールの第2の中間ペア415が設けられている場合、これもまた、ドローロールの第2の中間ペア415の少なくとも1つのドローロール(プルロール部材417a、417b)が略一定のトルクで回転して、ガラスリボン121の第2のエッジ部分121bをドロー経路353に沿って更にドロー加工するように、独立して操作できる。一例として、上記方法は、ドローロールの第2の中間ペア415の両方のドローロール(プルロール部材417a、417b)が略一定のトルクで回転するように、中間プルロール装置405を操作するステップを含むことができる。従って、ドロー経路353に沿った所望の張力445を、第2のプルロール装置369と中間プルロール装置405との間のガラスリボン121において維持でき、またドロー経路353に沿った所望の張力447を、中間プルロール装置405と第3のプルロール装置387との間のガラスリボン121において維持できる。
例示的実施形態は、定常トルクモードで操作される第1のプルロール装置349、定常トルクモードで操作される第2のプルロール装置369、定常角速度モードで操作される第3のプルロール装置387、及び定常トルクモードで操作される中間プルロール装置405を説明しているが、本開示はこのように限定されない。即ち上記プルロール装置はそれぞれ、定常トルクモード又は定常角速度モードで操作できる。例えばこれらのプルロール装置は、表1の制御スキームで操作できる。例えば、表1の制御スキーム「C」において、第1のプルロール装置349は定常トルクモードで操作でき、第2のプルロール装置369は定常角速度モードで操作でき、第3のプルロール装置387は定常角速度モードで操作でき、そして中間プルロール装置405が設けられている場合には、これは定常角速度モードで操作できる。
上記方法は更に、ドローロールの第1の下流ペア389からドロー経路353に沿って下流の位置において、ある期間にわたってガラスリボン121から複数のガラスシート347a、347bを順次分割するステップを含むことができる。例えば図13及び14に示すように、分割デバイス319を周期的に起動して、ガラスリボン121が成形用容器60からドロー加工される際に複数のガラスシート347a、347bを順次分割してよい。
図20は、2つの異なる高さにおける一定の力を示し、例えば曲線449は、図13の粘性ゾーン341内の第1のプルロール装置349における一定の力を示し、曲線451は、図13の固化(粘弾性)ゾーン343内の第2のプルロール装置369における一定の力を示す。制御デバイス423は、ユーザによって、第1のプルロール装置349及び第2のプルロール装置369を長時間にわたって一定の力で独立して操作するよう構成できる。従ってガラスリボン121は、基部70から最下部のロール、即ち第3のプルロール装置387への、一定の垂直方向の力を受ける。
図13に示すように、最下部のロール、即ち第3のプルロール装置387は、マスターロールとして動作し、一定の速度で動作することによってガラスリボン121の速度を制御する。
図21は、ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397によってガラスリボン121に印加される力の例示的なグラフを示す。Y軸は力(ポンド)であり、X軸は時間(時:分)である。一方のプロット453は、第1のエッジ部分121aにおいてドローロールの第1の下流ペア389がガラスリボン121に印加している力を表し、他方のプロット455は、第2のエッジ部分121bにおいてドローロールの第2の下流ペア397がガラスリボン121に印加している力を表す。この力の図は、成長によるガラスリボン121の重量の漸次変化、及びガラスリボン121からのガラスシート347aの折り取りによるガラスリボン121の重量の急激な変化に関連付けられた、ノコギリの歯状のパターンを示す。第3のプルロール装置387は、粘性式(式1)が記述するように、粘弾性ゾーン343の下流に位置するため、図13に示す弾性ゾーン345では、ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397は、粘弾性(固化)ゾーン343に対する摂動の伝播を分離する。
Figure 0007201589000002
ここで速度(η)は単位がPa・sであり、剛性率(G)は単位がPaである。従ってη/Gの単位は時間である。
図20及び21に示すように、ある期間全体にわたって、ドローロールの第1の上流ペア351及びドローロールの第2の上流ペア361、並びにドローロールの第1の中流ペア371及びドローロールの第2の中流ペア379は、ガラスリボン121の第1のエッジ部分121a及び第2のエッジ部分121bに対して、ドロー経路353に沿って略一定の力を印加し、ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397は、ガラスリボン121の第1のエッジ部分121a及び第2のエッジ部分121bに、ドロー経路353に沿って変動する力を印加する。
図22は、最下部の(又はマスター)プルロール装置である第3のプルロール装置387の、ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397、時間(時:分)の関数としての速度を示し、また、一定の速度(各目盛りは0.2インチ/分(50.8mm/分)である)がガラスリボン121の厚さを制御して優れた属性を維持していることを示している。この速度は、厚さ等の所望の製品仕様を得るために、制御デバイス423によって容易に調整される。
図13に示すように、ガラスリボン121は、ドロー経路353に沿ってドロー方向457にドロー加工される。図20、21及び22に戻ると、上記期間全体を通して、ドローロールの第1の上流ペア351及びドローロールの第2の上流ペア361は、それぞれガラスリボン121の第1のエッジ部分121a及び第2のエッジ部分121bに対して、ドロー方向457と反対方向に、略一定の力(例えば8ポンド(3.62874kg))を印加する。上記期間全体を通して、ドローロールの第1の中流ペア371及びドローロールの第2の中流ペア379もまた、それぞれガラスリボン121の第1のエッジ部分121a及び第2のエッジ部分121bに対して、ドロー方向457と反対方向に、略一定の力(例えば6ポンド(2.72155kg))を印加する。更に図示されているように、ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397は、それぞれガラスリボン121の第1のエッジ部分121a及び第2のエッジ部分121bに、ドロー方向457の方向から(例えば約5ポンド(2.26796kg)から)ドロー方向457と反対方向まで(例えば約18ポンド(8.16466kg)まで)の、変動する力を印加する。従って第1のエッジ部分121aは、上記期間の間、ドローロールの第1の上流ペア351、ドローロールの第1の中流ペア371、及びドローロールの第1の下流ペア389の間において張力が一定に維持される。同様に、第2のエッジ部分121bは、上記期間の間、ドローロールの第2の上流ペア361、ドローロールの第2の中流ペア379、及びドローロールの第2の下流ペア397の間において張力が一定に維持される。更なる例では、両方の縁部121a、121bに対する全ての力は、装置の設定に応じてドロー方向457に対して正又は負の方向に作用してよい。
図21に更に示すように、ドローロールの第1の下流ペア389及びドローロールの第2の下流ペア397はそれぞれ、ドローロール389、397に関連付けられた一定の角速度により、変動する力を印加する。プロット453、455のパターン459、461は、ガラスリボン121の長さが増大するに従って変化する力を表し、パターン463、465は、ガラスリボン121からのガラスシート347aの分割中に発生する力の突然の変化を表す。同一の期間中に、ドローロールの第1の上流ペア351及びドローロールの第2の上流ペア361の一定のトルクは、ガラスリボン121に対する略一定の力を維持でき、またドローロールの第1の中流ペア371及びドローロールの第2の中流ペア379の一定のトルクも、ガラスリボン121に対する略一定の力を維持できる。従って、ガラスリボンから、望ましくないことに応力の集中及びそれに対応する表面欠陥がガラスリボン121内に固定される可能性がある固化ゾーン343へと、力の撹乱が伝達されるのを防止できる。
従って本開示の方法は、ドローロールの第1の上流ペア351がガラスリボン121の第1のエッジ部分121aに対してドロー経路353に沿って略一定の力を印加するように、第1のプルロール装置349をある期間にわたって独立して操作できる。上記方法は更に、ドローロールの第1の下流ペア371のうちの少なくとも一方がガラスリボン121の第1のエッジ部分121aに対してドロー経路353に沿って略一定の力を印加するように、第2のプルロール装置369をある期間にわたって独立して操作するステップを含むことができる。上記方法は更に、ドローロールの第1の下流ペア389のうちの少なくとも一方が一定の角速度で回転し、ドローロールの第1の下流ペア389がガラスリボン121の第1のエッジ部分121aに対してドロー経路353に沿って変動する力を印加するように、第3のプルロール装置387をある期間にわたって独立して操作するステップを含むことができる。上記方法は更に、ドローロールの第1の下流ペア389からドロー経路353に沿って下流の位置において、ガラスリボン121から複数のガラスシート347aをある期間にわたって順次分割するステップを含むことができる。
上述のように、第1のプルロール装置349には、ドローロールの第2の上流ペア361を設けることができる。このような例では、上記方法は更に、ドローロールの第2の上流ペア361がガラスリボン121の第2のエッジ部分121bに対してドロー経路353に沿って略一定の力を印加するように、第1のプルロール装置349を操作するステップを含むことができる。上述のように、第2のプルロール装置369は、ドローロールの第2の上流ペア361からドロー経路353に沿って下流に位置決めされた、ドローロールの第2の中流ペア379を含むことができる。上記方法は更に、ドローロールの第2の中流ペア379がガラスリボン121の第2のエッジ部分121bに対してドロー経路353に沿って略一定の力を印加するように、第2のプルロール装置369を操作するステップを含むことができる。また更に上述のように、第3のプルロール装置387は、ドローロールの第2の中流ペア379からドロー経路353に沿って下流に位置決めされた、ドローロールの第2の下流ペア397を含むことができる。このような例では、上記方法は更に、ドローロールの第2の下流ペア397のうちの少なくとも一方が略一定の角速度で回転し、ドローロールの第2の下流ペア397がガラスリボン121の第2のエッジ部分121bに対してドロー経路353に沿って変動する力を印加するように、第3のプルロール装置387を操作するステップを含むことができる。
上記方法は更に、中間プルロール装置405が設けられている場合に、ドローロールの第1の中間ペア407のうちの少なくとも一方がガラスリボン121の第1のエッジ部分121aに対してドロー経路353に沿って略一定の力を印加するように、ある期間にわたって中間プルロール装置405を独立して操作するステップを含むことができる。上述のように、中間プルロール装置405には、ドローロールの第2の中間ペア415を設けることができる。このような例では、上記方法は更に、ドローロールの第2の中間ペア415がガラスリボン121の第2のエッジ部分121bに対してドロー経路353に沿って略一定の力を印加するように、中間プルロール装置405を操作するステップを含むことができる。
プルロールデバイス315を用いて、ガラスリボンのクロスドロー張力及び/又はダウンドローシート張力の一貫性を改善でき、これは残留応力を低減して、製造されるガラスリボンに対してガラスの平坦度を改善する。より具体的には、プルロールデバイス315を用いて、ガラスリボンが固化ゾーン(ここで製品応力及び平坦度がガラスリボン中に設定される)を通過する領域における、クロスドロー張力及び/又はダウンドローシート張力の一貫性を制御及び改善できる。
比較対象となる例示的実施形態では、プルロールデバイスは、上側プルロール装置及び下側プルロール装置のみを有してよい。このような比較対象のプルロールデバイスでは、上側プルロール装置及び下側プルロール装置それぞれにおいて必要な一定のトルク又は一定の速度を達成するためのピンチ力は、重量が大きなガラスリボンに対して大きすぎるものとなるはずであり、これにより、ドローロールのペア間のピンチ力によってガラスリボンに割れが生じることになる。重量が大きなガラスリボンは、幅及び長さが大きく厚さが小さい大型ガラスシートの製造時に存在し得る。
更に、ドローロールの上流ペア、ドローロールの中流ペア、及びそれが設けられている場合にはドローロールの中間ペアを、本出願の例示的実施形態によって記載され、かつプロット449、451によって示された、略一定のトルクモードで操作することにより、ドローロールの上流ペア及びドローロールの中流ペアを略一定の角速度で操作することに勝る、更なる利点が提供される。第1に、ドローロールの上流及び中流ペア、並びにそれが設けられている場合にはドローロールの中間ペアの、一定の角速度は、これらのロールの異なる直径において異なる張力を提供し得る。対照的に、ドローロールの上流及び中流ペア、並びにそれが設けられている場合にはドローロールの中間ペアを、略一定のトルクで操作することにより、長時間にわたって一貫した垂直方向張力を実現できる。実際には、略一定のトルクでの操作により、ロールの摩耗が概ね補償される。一定のトルクにおいて、力はロールの摩耗に従ってわずかに変化するが、影響は極めて小さい。速度制御は、ロール直径に対してはるかに高い感受性を有する。第2に、ドローロールの上流及び中流ペア、並びにそれが設けられている場合にはドローロールの中間ペアの、一定の角速度は、ロールの直径が確定していないことにより、シートの速度と相関するのが困難である場合がある。対照的に、ドローロールの上流及び中流ペア、並びにそれが設けられている場合にはドローロールの中間ペアを、略一定のトルクで操作することにより、ローラの適切な角速度を得るために相関させる必要がなくなる。第3に、ドローロールの上流及び中流ペア、並びにそれが設けられている場合にはドローロールの中間ペアを、略一定のトルクで操作することにより、ロールの摩耗を補償するためにドローロールの上流又は中流ペア又はそれが設けられている場合にはドローロールの中間ペアの速度を調整しようとする際に発生し得る折れ又は割れのリスクを回避できる。第4に、ドローロールの上流及び中流ペア、並びにそれが設けられている場合にはドローロールの中間ペアを、略一定のトルクで操作することにより、上記一定の角速度が遅すぎる場合のロールのスキップのリスクを回避できる。第5に、ドローロールの上流及び中流ペア、並びにそれが設けられている場合にはドローロールの中間ペアを、略一定のトルクで操作することにより、定常角速度モードでのロールの振れによって発生し得る引っ張り力の過剰な変動性を回避できる。
よって本開示の例示的実施形態により、複数の高さの被駆動ロールの使用によってガラスリボンに対する牽引を増大させることができる。従って、より平坦な表面を有する、より大型でより重いシート、及びより薄型のシートを製造できる。本開示の例示的実施形態により、4つ以上の高さへと容易に延在するモジュール式設計の適用が可能となる。本開示の例示的実施形態により、粘弾性ゾーンを通して平坦なガラスリボンを維持するために必要な垂直方向及びクロスドロー力を提供するための、所望の複数の高さでの被駆動ロールの配置が可能となる。従って、より長くより幅広の粘弾性ゾーンを達成できる。本開示の例示的実施形態により、粘弾性ゾーンを通して基部からの一定の垂直方向力を維持するため、並びに下流の摂動、例えばリボンの成長及びリボンからシートへの折り取りの影響といった摂動から粘弾性ゾーンを隔離するために、粘弾性ゾーンの下方での最下部のロールの配置が可能となる。
本明細書に記載の制御デバイス等の機能ユニットの一部は、その実装の独立性を強調するために、モジュールとしてラベリングされている。例えばあるモジュールは、カスタムVLSI回路又はゲートアレイ、論理チップなどの既製の半導体、トランジスタ、又は他のディスクリート部品を備える、ハードウェア回路として実装してよい。またあるモジュールは、フィールドプログラマブルゲートアレイ、プログラマブルアレイ論理、プログラマブル論理デバイス等といったプログラマブルハードウェアデバイスで実装してよい。またあるモジュールは、弁、ピストン、歯車、接続部材及びバネ等を用いて実装してよい。
モジュールは、様々なタイプのプロセッサによる実行のために、ソフトウェアで実装してもよい。実行可能なコードの識別されたモジュールは例えば、コンピュータ命令の1つ以上の物理又は論理ブロックを含んでよく、これは例えばオブジェクト、手順又は機能として編成できる。それにもかかわらず、識別されたモジュールの複数の実行可能なコードは、物理的に一緒に配置する必要はなく、論理的に1つに結合された場合に上記モジュールを構成して、上記モジュールの言明された目的を達成する、異なる複数の場所に記憶された異種の命令を含んでよい。
実行可能なコードのモジュールは、単一の命令又は複数の命令であってよく、複数の異なるコードセグメントにわたって、異なるプログラム間で、及び複数のメモリデバイスにわたって、分散されていてさえよい。同様に、動作データは本明細書中においてモジュール内に識別及び図示されていてよく、またいずれの好適な形態で具現化されてよく、いずれのタイプのデータ構造内に編成されてよい。動作データは、単一のデータセットとして収集されていてよく、又は異なる場所にわたって、例えば異なる複数のストレージデバイスにわたって、分散されていてよい。
ガラス組成物
アルカリアルミノシリケートガラスは良好なイオン交換性を有し、またアルカリアルミノシリケートガラスにおいて高い強度及び高い靭性特性を達成するために、化学強化プロセスが使用されてきた。アルカリアルミノシリケートガラスは、高いガラス成形性及び品質を有する、イオン交換性が高いガラスである。シリケートガラスネットワーク中へのAlの置換により、イオン交換中の一価陽イオンの相互拡散性が上昇する。溶融塩浴(例えばKNO又はNaNO)中での化学強化により、高い強度、高い靭性、及び高い押込み割れ耐性を有するガラスを達成できる。
従って、良好な物理的特性、化学的耐久性及びイオン交換性を有するアルカリアルミノシリケートガラスは、カバーガラスとして、及び/又は消費者向け電子デバイスの一部分として、注目を集めてきた。特に、比較的低いアニール点及び軟化点、比較的低い熱膨張係数(CTE)値、並びに迅速なイオン交換性を有する、リチウム含有アルミノシリケートガラスが、本明細書中で提供される。異なる複数のイオン交換プロセスを通して、比較的高い中央張力(CT)、圧縮深さ(DOC)及び高い圧縮応力(CS)を達成できる。しかしながら、アルカリアルミノシリケートガラスにリチウムを添加すると、ガラスの融点又は軟化点が低下し得る。従って、ガラス組成物へのリチウムの添加の利益をガラスにとって実現可能とすることができるものの、ガラス組成物に負の影響を与えない、様々なガラス成分のバランスが、本明細書中で提供される。
本明細書に記載のガラス組成物の実施形態では、構成成分(例えばSiO、Al、LiO等)の濃度は、特段の記載がない限り酸化物基準のモルパーセント(モル%)で与えられる。複数の実施形態によるLi含有アルミノシリケートガラス組成物の成分について、以下において個別に議論する。ある成分について様々に記載される範囲のいずれを、他のいずれの成分に関して様々に記載される範囲のいずれと、独立して組み合わせることができることを理解されたい。
ある例示的なLi含有アルミノシリケートガラス組成物において、SiOは最大の構成要素であり、従ってSiOは、ガラス組成物から形成されるガラスネットワークの主要な構成要素である。純SiOは比較的低いCTEを有し、アルカリ非含有である。しかしながら、純SiOは高い融点を有する。従って、ガラス組成物中のSiOの濃度が高すぎると、SiOの比較的高い濃度によってガラスを溶融させる困難さが上昇し、これがガラスの成形性に悪影響を及ぼすため、ガラス組成物の成形性が低減され得る。複数の実施形態では、ガラス組成物は一般に、60%以上74モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のSiOを含む。いくつかの実施形態では、ガラス組成物は、62モル%以上、64モル%以上、66モル%以上、68モル%以上、70モル%以上、又は72モル%以上の量のSiOを含む。いくつかの実施形態では、ガラス組成物は、72モル%以下、70モル%以下、68モル%以下、66モル%以下、64モル%以下、又は62モル%以下の量のSiOを含む。他の実施形態では、ガラス組成物は、60モル%以上66モル%以下、又は65モル%以上74モル%以下、又は66モル%以上70モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のSiOを含む。
複数の実施形態のガラス組成物は更に、Alを含んでよい。AlはSiOと同様に、ガラスネットワーク形成剤として作用し得る。Alは、適切に設計されたガラス組成物から形成されたガラス溶融物中での四面体配位によって、ガラス組成物の粘度を上昇させることができ、Alの量が多すぎる場合にはガラス組成物の成形性が低下する。しかしながら、Alの濃度の、ガラス組成物中のSiOの濃度及びアルカリ酸化物の濃度に対するバランスを取ると、Alはガラス溶融物の液相線温度を低下させることができ、それによって液相粘度を増大させて、フュージョン成形プロセス等の特定の成形プロセスに対するガラス組成物の適合性を改善できる。複数の実施形態では、ガラス組成物は一般に、7モル%以上18モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の濃度のAlを含む。いくつかの実施形態では、ガラス組成物は、8モル%以上、9モル%以上、10モル%以上、11モル%以上、12モル%以上、13モル%以上、14モル%以上、15モル%以上、16モル%以上、又は17モル%以上の量のAlを含む。いくつかの実施形態では、ガラス組成物は、18モル%以下、17モル%以下、16モル%以下、15モル%以下、14モル%以下、13モル%以下、12モル%以下、11モル%以下、10モル%以下、9モル%以下、又は8モル%以下の量のAlを含む。他の実施形態では、ガラス組成物は、8モル%以上17モル%以下、例えば9モル%以上16モル%以下、10モル%以上15モル%以下、又は11モル%以上14モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のAlを含む。更なる他の実施形態では、ガラス組成物は、11.5モル%以上18モル%以下、又は7モル%以上12モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のAlを含む。
SiO及びAlと同様に、Pをネットワーク形成剤としてガラス組成物に添加することによって、ガラス組成物の溶融性及び成形性が低減され得る。よってPは、これらの特性を過剰に低減させない程度に添加してよい。複数の実施形態では、ガラス組成物は、0モル%以上5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のPを含んでよい。いくつかの実施形態では、ガラス組成物は、0.5モル%以上、1モル%以上、1.5モル%以上、2モル%以上、2.5モル%以上、3モル%以上、3.5モル%以上、4モル%以上、又は4.5モル%以上の量のPを含んでよい。他の実施形態では、ガラス組成物は、5モル%以下、4.5モル%以下、4モル%以下、3.5モル%以下、3モル%以下、2.5モル%以下、2モル%以下、1.5モル%以下、1モル%以下、0.5モル%以下の量のPを含んでよい。更に他の実施形態では、ガラス組成物は、0.5モル%以上4.5モル%以下、1モル%以上4モル%以下、1.5モル%以上3.5モル%以下、又は2モル%以上3モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のPを含んでよい
SiO、Al及びPと同様に、Bをネットワーク形成剤としてガラス組成物に添加することによって、ガラス組成物の溶融性及び成形性が低減され得る。よってBは、これらの特性を過剰に低減させない程度に添加してよい。複数の実施形態では、ガラス組成物は、3モル%以上16モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のBを含んでよい。いくつかの実施形態では、ガラス組成物は、3.5モル%以上、4モル%以上、4.5モル%以上、5モル%以上、5.5モル%以上、6モル%以上、6.5モル%以上、7モル%以上、7.5モル%以上、8モル%以上、8.5モル%以上、9モル%以上、9.5モル%以上、10モル%以上、10.5モル%以上、11モル%以上、11.5モル%以上、12モル%以上、12.5モル%以上、13モル%以上、13.5モル%以上、14モル%以上、14.5モル%以上、15モル%以上、又は15.5モル%以上の量のBを含んでよい。他の実施形態では、ガラス組成物は、15.5モル%以下、15モル%以下、14.5モル%以下、14モル%以下、13.5モル%以下、13モル%以下、12.5モル%以下、12モル%以下、11.5モル%以下、11モル%以下、10.5モル%以下、10モル%以下、9.5モル%以下、9モル%以下、8.5モル%以下、8モル%以下、7.5モル%以下、7モル%以下、6.5モル%以下、6モル%以下、5.5モル%以下、5モル%以下、4.5モル%以下、4モル%以下、又は3.5モル%以下の量のBを含んでよい。更に他の実施形態では、ガラス組成物は、3.5モル%以上15.5モル%以下、4モル%以上15モル%以下、4.5モル%以上14.5モル%以下、5モル%以上14モル%以下、5.5モル%以上13.5モル%以下、6モル%以上13モル%以下、6.5モル%以上12.5モル%以下、7モル%以上12モル%以下、7.5モル%以上11.5モル%以下、8モル%以上11モル%以下、8.5モル%以上10.5モル%以下、9モル%以上10モル%以下、3モル%以上8モル%以下、5モル%以上16モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のBを含む。
ガラス組成物中のLiOの影響については既に議論されており、また以下で更に詳細に議論する。部分的には、ガラス中のリチウムの添加により、イオン交換プロセスをより良好に制御でき、またガラスの軟化点が更に低下する。複数の実施形態では、ガラス組成物は一般に、5モル%以上11モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のLiOを含む。いくつかの実施形態では、ガラス組成物は、5.5モル%以上、6モル%以上、6.5モル%以上、7モル%以上、7.5モル%以上、8モル%以上、8.5モル%以上、9モル%以上、9.5モル%以上、10モル%以上、又は10.5モル%以上の量のLiOを含む。いくつかの実施形態では、ガラス組成物は、10.5モル%以下、10モル%以下、9.5モル%以下、9モル%以下、8.5モル%以下、8モル%以下、7.5モル%以下、7モル%以下、6.5モル%以下、6モル%以下、又は5.5モル%以下の量のLiOを含む。更に他の実施形態では、ガラス組成物は、5.5モル%以上10.5モル%以下、例えば6モル%以上10モル%以下、6.5モル%以上9.5モル%以下、7モル%以上9モル%以下、又は7.5モル%以上8.5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のLiOを含む。
複数の実施形態によると、ガラス組成物は、LiO以外のアルカリ金属酸化物、例えばNaO及びKOも含んでよい。NaOはガラス組成物のイオン交換性を支援し、またガラス組成物の融点を上昇させ、ガラス組成物の成形性を改善する。しかしながら、あまりに多量のNaOをガラス組成物に添加すると、熱膨張係数(CTE)が低くなりすぎる場合があり、また融点が高くなりすぎる場合がある。複数の実施形態では、ガラス組成物は一般に、0モル%超かつ6モル%以下、又は0モル%以上6モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のNaOを含む。いくつかの実施形態では、ガラス組成物は、0.5モル%以上、1モル%以上、1.5モル%以上、2モル%以上、2.5モル%以上、3モル%以上、3.5モル%以上、4モル%以上、4.5モル%以上、5モル%以上、5.5モル%以上の量のNaOを含む。いくつかの実施形態では、ガラス組成物は、5.5モル%以下、5モル%以下、4.5モル%以下、4モル%以下、3.5モル%以下、3モル%以下、2.5モル%以下、2モル%以下、1.5モル%以下、1モル%以下、又は0.5モル%以下の量のNaOを含む。他の実施形態では、ガラス組成物は、0.5モル%以上5.5モル%以下、例えば1モル%以上5モル%以下、1.5モル%以上4.5モル%以下、2モル%以上4モル%以下、又は2.5モル%以上3.5モル%以下、2モル%以上6モル%以下、0モル%以上4モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のNaOを含む。
NaOと同様に、KOもまたイオン交換を促進し、圧縮応力層のDOCを増大させる。しかしながら、CTEが低くなりすぎる場合があり、また融点が高くなりすぎる場合がある。複数の実施形態では、ガラス組成物はカリウムを実質的に含まない。本明細書中で使用される場合、「実質的に含まない(substantially free)」は、ある成分が、最終的なガラス中に汚染物質として0.1モル%未満等のごく少量だけ存在し得るものの、バッチ材料の成分としては添加されないことを意味する。他の実施形態では、KOはガラス組成物中に、1モル%未満の量で存在し得る。
MgOはガラスの粘度を低下させ、これは成形性、歪み点及びヤング率を向上させ、またイオン交換性を改善し得る。しかしながら、あまりに多量のMgOがガラス組成物に添加されると、ガラス組成物の密度及びCTEが上昇する。複数の実施形態では、ガラス組成物は一般に、0モル%以上6.5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の濃度のMgOを含む。いくつかの実施形態では、ガラス組成物は、0.5モル%以上、1モル%以上、1.5モル%以上、2モル%以上、2.5モル%以上、3モル%以上、3.5モル%以上、4モル%以上、4.5モル%以上、5モル%以上、5.5モル%以上、又は6モル%以上の量のMgOを含む。いくつかの実施形態では、ガラス組成物は、6モル%以下、5.5モル%以下、5モル%以下、4.5モル%以下、4モル%以下、3.5モル%以下、3モル%以下、2.5モル%以下、2モル%以下、1.5モル%以下、又は1モル%以下の量のMgOを含む。他の実施形態では、ガラス組成物は、0.5モル%以上6モル%以下、例えば1モル%以上5.5モル%以下、1.5モル%以上5モル%以下、2モル%以上4.5モル%以下、2.5モル%以上4モル%以下、又は3モル%以上3.5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のMgOを含む。
CaOはガラスの粘度を低下させ、これは成形性、歪み点及びヤング率を向上させ、またイオン交換性を改善し得る。しかしながら、あまりに多量のCaOがガラス組成物に添加されると、ガラス組成物の密度及びCTEが上昇する。複数の実施形態では、ガラス組成物は一般に、0モル%以上5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の濃度のCaOを含む。いくつかの実施形態では、ガラス組成物は、0.5モル%以上、1モル%以上、1.5モル%以上、2モル%以上、2.5モル%以上、3モル%以上、3.5モル%以上、4モル%以上、又は4.5モル%の量のCaOを含む。いくつかの実施形態では、ガラス組成物は、4.5モル%以下、4モル%以下、3.5モル%以下、3モル%以下、2.5モル%以下、2モル%以下、1.5モル%以下、1モル%以下、又は0.5モル%以下の量のCaOを含む。他の実施形態では、ガラス組成物は、0.5モル%以上4.5モル%以下、例えば1モル%以上4モル%以下、1.5モル%以上3モル%以下、又は2モル%以上3モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のCaOを含む。
複数の実施形態では、ガラス組成物は任意に、1つ以上の清澄剤を含んでよい。いくつかの実施形態では、上記清澄剤は例えばSnOを含んでよい。このような実施形態では、SnOはガラス組成物中に、0.2モル%以下、例えば0モル%以上0.11モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量で存在してよい。他の実施形態では、SnOはガラス組成物中に、0モル%以上0.2モル%以下、又は0.1モル%以上0.2モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量で存在してよい。
ZnOは、例えばガラスの圧縮応力を上昇させることによって、ガラスのイオン交換性能を向上させる。しかしながら、あまりに多量のZnOを添加すると、密度が上昇して相分離を引き起こす場合がある。複数の実施形態では、ガラス組成物は、0モル%以上2モル%以下、例えば0.5モル%以上1.5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のZnOを含んでよい。いくつかの実施形態では、ガラス組成物は、0.5モル%以上、1モル%以上、又は1.5モル%以上の量のZnOを含んでよい。他の実施形態では、ガラス組成物は、1.5モル%以下、1モル%以下、又は0.5モル%以下の量のZnOを含んでよい。
SrOは、本明細書で開示されているガラス物品の液相線温度を低下させる。複数の実施形態では、ガラス組成物は、0.5モル%以上2モル%以下、例えば1モル%以上1.5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量のSrOを含んでよい。いくつかの実施形態では、ガラス組成物は、1モル%以上又は1.5モル%以上の量のSrOを含んでよい。他の実施形態では、ガラス組成物は、1.5モル%以下、1モル%以下、又は0.5モル%以下の量のSrOを含んでよい。
上述の個々の成分に加えて、本明細書で開示されている実施形態によるガラス組成物は、0.5モル%以上6.5モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量の、二価陽イオン酸化物を含んでよい。本明細書中で使用される場合、「二価陽イオン酸化物(divalent cation oxide)」は、MgO、CaO、SrO、BaO、FeO及びZnOを含むがこれらに限定されない。いくつかの実施形態では、ガラス組成物は、1モル%以上、1.5モル%以上、2モル%以上、2.5モル%以上、3モル%以上、3.5モル%以上、4モル%以上、4.5モル%以上、5モル%以上、5.5モル%以上、又は6モル%以上の量の二価陽イオン酸化物を含んでよい。他の実施形態では、ガラス組成物は、5.5モル%以下、5モル%以下、4.5モル%以下、4モル%以下、3.5モル%以下、3モル%以下、2.5モル%以下、2モル%以下、1.5モル%以下、又は1モル%以下の量の二価陽イオン酸化物を含んでよい。更に他の実施形態では、ガラス組成物は、1モル%以上6モル%以下、1.5モル%以上5.5モル%以下、2モル%以上5モル%以下、2.5モル%以上4.5モル%以下、又は3.2モル%以上3モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内の量の二価陽イオン酸化物を含んでよい。
複数の実施形態では、モル比LiO:ROは0.4以上であり、ここでROは、ガラス組成物中に存在するアルカリ金属酸化物の合計(例えばLiO+NaO+KO)である。ガラス組成物中のLiOの上記量は、CTを上昇させ、ガラス物品の圧縮応力プロファイルを改善し、これは損傷耐性の改善といった機械的性能の改善につながり得る。従って、0.4以上といった、他のアルカリ金属酸化物に対するLiOの比を高くすることによって、これらの改善が提供される。いくつかの実施形態では、モル比LiO:ROは、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、又は約1に等しい。いくつかの実施形態では、モル比LiO:ROは、1以下、0.9以下、0.8以下、0.7以下、0.6以下、又は0.5以下である。更に他の実施形態では、モル比LiO:ROは、0.4以上1以下、0.5以上1以下、0.6以上1以下、0.7以上1以下、0.8以上1以下、又は0.9以上1以下、並びに上述の値の間の全ての範囲及び部分範囲内である。更に他の実施形態では、モル比LiO:ROは、0.4以上0.9以下、0.4以上0.8以下、0.4以上0.7以下、0.4以上0.6以下、又は0.4以上0.5以下である。
複数の実施形態では、モル比Al:(RO+RO)は0.9以上であり、ここでROは二価陽イオン酸化物の合計であり、ROは、ガラス組成物中に存在するアルカリ金属酸化物の合計である。RO+ROに対するAlの比を高くすることによって、ガラス物品の液相線温度及び粘度が改善される。この比を0.9以上にすると、より密なガラスが得られ、これは脆性が低く、損傷耐性が高い。いくつかの実施形態では、モル比Al:(RO+ROは、1以上、1.1以上、1.2以上、1.3以上、1.4以上、又は1.5以上である。他の実施形態では、モル比Al:(RO+RO)は、1.5以下、1.4以下、1.3以下、1.2以下、1.1以下、又は1以下である。更に他の実施形態では、モル比Al:(RO+RO)は、0.9以上1.5以下、1以上1.5以下、1.1以上1.5以下、1.2以上1.5以下、1.3以上1.5以下、又は1.4以上1.5以下、並びに上述の値の間の全ての範囲及び部分範囲内である。更に他の実施形態では、モル比Al:(RO+RO)は、0.9以上1.4以下、0.9以上1.3以下、0.9以上1.2以下、0.9以上1.1以下、又は0.9以上1以下、並びに上述の値の間の全ての範囲及び部分範囲内である。
複数の実施形態では、ネットワーク形成成分の合計量Al+SiO+B+Pは、80モル%以上、例えば82モル%以上、84モル%以上、86モル%以上、88モル%以上、90モル%以上、92モル%以上、又は94モル%以上である。ネットワーク形成剤の量を多くすることにより、ガラスの密度が上昇し、これによりガラスの脆性が低くなり、損傷耐性が改善される。他の実施形態では、ネットワーク形成成分の合計量は、94モル%以下、92モル%以下、90モル%以下、88モル%以下、86モル%以下、84モル%以下、又は82モル%以下である。更に他の実施形態では、ネットワーク形成成分の合計量は、80モル%以上94モル%以下、82モル%以上92モル%以下、84モル%以上90モル%以下、又は86モル%以上88モル%以下、並びに上述の値の間の全ての範囲及び部分範囲内である。
上述の様々な成分それぞれから選択され得る組成を限定するものではないが、いくつかの実施形態では、ガラス組成物は:60モル%以上74モル%以下のSiO;7モル%以上18モル%以下のAl;3モル%以上16モル%以下のB;0モル%超かつ6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;0.2モル%以下のSnO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含んでよく、ここでモル比Al:(RO+RO)は0.9以上である。他の実施形態では、ガラス組成物は:60モル%以上66モル%以下のSiO;11.5モル%以上18モル%以下のAl;3モル%以上8モル%以下のB;2モル%以上6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含んでよく、ここでモル比Al:(RO+RO)は0.9以上である。更に他の実施形態では、ガラスは:65モル%以上74モル%以下のSiO;7モル%以上12モル%以下のAl;5モル%以上16モル%以下のB;0モル%以上4モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含んでよく、ここでモル比Al:(RO+RO)は0.9以上である。
複数の実施形態では、ガラス物品は、ヒ素及びアンチモンのうちの一方又は両方を実質的に含まなくてよい。他の実施形態では、上記ガラス物品は、ヒ素及びアンチモンのうちの一方又は両方を含まなくてよい。
ここまでに開示したLi含有アルミノシリケートガラス組成物の物理的特性について、これより議論する。以下で議論される特性は、アルミノシリケートガラス又はアルカリアルミノシリケートガラスへのリチウムの添加の結果を示す。これらの物理的特性は、実施例を参照して以下で更に詳細に議論されるように、Li含有アルミノシリケートガラス組成物の成分量を修正することによって、達成できる。現在まで、ガラス組成物の物理的特性に対してリチウムが有する影響は、はっきりとは理解されていなかった。
複数の実施形態によるガラス組成物は、2.20g/cm以上2.50g/cm以下、例えば2.25g/cm以上2.50g/cm以下、又は2.30g/cm以上2.50g/cm以下、2.35g/cm以上2.50g/cm以下、2.40g/cm以上2.50g/cm以下、又は2.45g/cm以上2.50g/cm以下の密度を有してよい。他の実施形態では、ガラス組成物は、2.20g/cm以上2.45g/cm以下、2.20g/cm以上2.40g/cm以下、2.20g/cm以上2.35g/cm以下、2.20g/cm以上2.30g/cm以下、又は2.20g/cm以上2.25g/cm以下、並びに上述の値の間の全ての範囲及び部分範囲内の密度を有してよい。一般に、アルカリアルミノシリケートガラス組成物中において、Na又はKといった比較的大きく密度が高いアルカリ金属陽イオンを、Liのような比較的小さなアルカリ金属陽イオンで置換すると、ガラス組成物の密度は低下する。従って、ガラス組成物中のリチウムの量が多いほど、ガラス組成物の密度は低くなる。本開示中に記載されている密度の値は、ASTM C693‐93(2013年)の浮力法によって測定された値を指す。
ガラス組成物の歪み点、アニール点、及び軟化点もまた、ガラス組成物中のリチウムの量に影響され得る。ガラス組成物中のリチウムの量が増加すると、Na及びKといった、比較的大きな他のアルカリ金属陽イオンの量が減少する。複数の実施形態では、ガラス組成物の歪み点は、450℃以上625℃以下、例えば475℃以上600℃以下、500℃以上575℃以下、515℃以上560℃以下、又は530℃以上550℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。他の実施形態では、ガラス組成物の歪み点は、500℃以上560℃以下、例えば510℃以上560℃以下、520℃以上560℃以下、530℃以上560℃以下、又は540℃以上560℃以下であってよい。更に他の実施形態では、ガラス組成物の歪み点は、500℃以上555℃以下、500℃以上550℃以下、500℃以上540℃以下、500℃以上530℃以下、又は500℃以上520℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。本開示中に記載されている歪み点の値は、ASTM C336‐71(2015年)のファイバ伸長法によって測定された値を指す。
複数の実施形態では、ガラス組成物のアニール点は、500℃以上675℃以下、例えば525℃以上650℃以下、550℃以上625℃以下、565℃以上615℃以下、580℃以上600℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。他の実施形態では、ガラス組成物のアニール点は、550℃以上625℃以下、例えば560℃以上625℃以下、570℃以上625℃以下、580℃以上625℃以下、又は590℃以上625℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。更に他の実施形態では、ガラス組成物のアニール点は、550℃以上615℃以下、550℃以上610℃以下、550℃以上600℃以下、550℃以上590℃以下、又は550℃以上580℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。本開示中に記載されているアニール点の値は、ASTM C336‐71(2015年)のファイバ伸長法によって測定された値を指す。
複数の実施形態では、ガラス組成物の軟化点は、725℃以上950℃以下、例えば750℃以上925℃以下、775℃以上900℃以下、800℃以上875℃以下、又は825℃以上850℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。他の実施形態では、ガラス組成物の軟化点は、750℃以上925℃以下、例えば775℃以上925℃以下、800℃以上925℃以下、825℃以上925℃以下、又は850℃以上925℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。更に他の実施形態では、ガラス組成物の軟化点は、725℃以上900℃以下、725℃以上875℃以下、725℃以上850℃以下、725℃以上825℃以下、又は725℃以上800℃以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。本開示中に記載されている軟化点の値は、ASTM C338‐93(2013年)のファイバ伸長法によって測定された値を指す。
ガラス組成物中のリチウムの量は、ガラス組成物の液相粘度にも影響を及ぼす。複数の実施形態では、液相粘度は、300kP以下、例えば275kP以下、250kP以下、225kP以下、200kP以下、175kP以下、又は150kP以下である。他の実施形態では、液相粘度は、100kP以上、125kP以上、150kP以上、175kP以上、200kP以上、225kP以上、250kP以上、又は275kP以上である。更に他の実施形態では、液相粘度は、100kP以上300kP以下、125kP以上275kP以下、150kP以上250kP以下、又は175kP以上225kP以下、並びに上述の値の間の全ての範囲及び部分範囲内である。液相粘度の値は、以下の方法で決定される。まず、ガラスの液相線温度を、ASTM C829‐81(2015年)「勾配炉法によるガラスの液相線温度の測定のための標準的技法(Standard Practice for Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method)」に従って測定する。次に上記液相線温度におけるガラスの粘度を、ASTM C965‐96(2012年)「軟化点を超えたガラスの粘度の測定のための標準的技法(Standard Practice for Measuring Viscosity of Glass Above the Softening Point)」に従って測定する。
ガラス組成物へのリチウムの添加は、ガラス組成物のヤング率、剛性率、及びポアソン比にも影響を及ぼす。複数の実施形態では、ガラス組成物のヤング率は、65GPa以上85GPa以下、例えば67GPa以上82GPa以下、70GPa以上80GPa以下、72GPa以上78GPa以下、又は74GPa以上76GPa以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。他の実施形態では、ガラス組成物のヤング率は、66GPa以上85GPa以下、68GPa以上85GPa以下、70GPa以上85GPa以下、72GPa以上85GPa以下、74GPa以上85GPa以下、76GPa以上85GPa以下、78GPa以上85GPa以下、80GPa以上85GPa以下、又は82GPa以上85GPa以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。更に他の実施形態では、ヤング率は、65GPa以上84GPa以下、65GPa以上82GPa以下、65GPa以上80GPa以下、65GPa以上78GPa以下、65GPa以上76GPa以下、65GPa以上74GPa以下、65GPa以上72GPa以下、65GPa以上70GPa以下、65GPa以上68GPa以下、又は65GPa以上66GPa以下、並びに上述の値の間の全ての範囲及び部分範囲内であってよい。本開示中に記載されているヤング率の値は、ASTM E2001‐13「金属部品及び非金属部品の両方において欠陥を検出するための共鳴超音波分光法に関する標準ガイド(Standard Guide for Resonant Ultrasound Spectroscopy for Defect Detection in Both Metallic and Non‐metallic Parts)」に記載された、一般的なタイプの共鳴超音波分光技法によって測定された値を指す。
いくつかの実施形態によると、ガラス組成物は、25GPa以上35GPa以下、例えば26GPa以上34GPa以下、27GPa以上33GPa以下、28GPa以上32GPa以下、又は29GPa以上31GPa、並びに上述の値の間の全ての範囲及び部分範囲内の剛性率を有してよい。他の実施形態ではガラス組成物は、26GPa以上35GPa以下、27GPa以上35GPa以下、28GPa以上35GPa以下、29GPa以上35GPa以下、30GPa以上35GPa以下、31GPa以上35GPa以下、32GPa以上35GPa以下、33GPa以上35GPa以下、又は34GPa以上35GPa以下、並びに上述の値の間の全ての範囲及び部分範囲内の剛性率を有してよい。更に他の実施形態では、ガラス組成物は、25GPa以上34GPa以下、25GPa以上33GPa以下、25GPa以上32GPa以下、25GPa以上31GPa以下、25GPa以上30GPa以下、25GPa以上29GPa以下、25GPa以上28GPa以下、25GPa以上27GPa以下、又は25GPa以上26GPa以下、並びに上述の値の間の全ての範囲及び部分範囲内の剛性率を有してよい。本開示中に記載されている剛性率の値は、ASTM E2001‐13「金属部品及び非金属部品の両方において欠陥を検出するための共鳴超音波分光法に関する標準ガイド(Standard Guide for Resonant Ultrasound Spectroscopy for Defect Detection in Both Metallic and Non‐metallic Parts)」に記載された、一般的なタイプの共鳴超音波分光技法によって測定された値を指す。
1つ以上の実施形態では、本明細書に記載のガラス物品は、非晶質微小構造を示してよく、結晶又は微結晶を実質的に含まなくてよい。換言すれば、ガラス物品はガラスセラミック材料を除外する。
いくつかの実施形態では、589nmの波長で測定された、本明細書で開示されている成形後すぐのガラスの屈折率(「RIasformed」)は、アニール点で1時間加熱した場合のガラスの、589nmの波長での屈折率(「RIannealed」)より小さい。いくつかの実施形態では、RIannealed-RIasformedは、0.0003以上、0.0004以上、0.0005以上、0.0006以上、0.0007以上、0.0008以上、0.0009以上である。いくつかの実施形態では、RIannealed-RIasformedは、0.0003~0.001、0.0003~0.0009、0.0003~0.0008、0.0003~0.0007、0.0003~0.0006、0.0003~0.0005、0.0003~0.0004、0.0004~0.001、0.0004~0.0009、0.0004~0.0008、0.0004~0.0007、0.0004~0.0006、0.0004~0.0005、0.0005~0.001、0.0005~0.0009、0.0005~0.0008、0.0005~0.0007、0.0005~0.0006、0.0006~0.001、0.0006~0.0009、0.0006~0.0008、0.0006~0.0007、0.0007~0.001、0.0007~0.0009、0.0007~0.0008、0.0008~0.001、0.0008~0.0009、又は0.0009~0.001である。本明細書中で使用される場合、「成形後すぐの(as formed)」は、成形後(即ちフロートプロセス又はダウンドロープロセス後)であるものの、ガラスに対して追加の熱処理を実施する前の、ガラスを指す。
上述のように、複数の実施形態では、Li含有アルミノシリケートガラス組成物をイオン交換等によって強化して、限定するものではないがディスプレイカバー用のガラスといった用途のための、損傷耐性を有するガラスを作製できる。図23を参照すると、ガラスは、ガラスの表面から圧縮深さ(DOC)まで延在する、圧縮応力下の第1の領域(例えば図23の第1の圧縮層520及び第2の圧縮層522)と、ガラスのDOCから中央又は内部領域へと延在する、引張応力又は中央張力(CT)下の第2の領域(例えば図23の中央領域530)とを有する。本明細書中で使用される場合、DOCは、ガラス物品内の応力が圧縮応力から引張応力に変化する深さを指す。DOCでは、応力が正の(圧縮)応力から負の(引張)応力に遷移するため、応力は応力値0を示す。
当該技術分野において通常用いられてきた慣例によると、圧縮又は圧縮応力は負(<0)の応力として表され、張力又は引張応力は正(>0)の応力として表される。しかしながら本記載全体を通して、CSは正の値又は絶対値として表される。即ち本明細書中に記載される場合、CS=|CS|である。圧縮応力(CS)はガラスの表面において最大値を有し、CSは、ある関数に従って、表面からの距離dと共に変化する。図23を再び参照すると、第1のセグメント520は、第1の表面510から深さdまで延在し、第2のセグメント522は、第2の表面512から深さdまで延在する。これらのセグメントは合わせて、ガラス500の圧縮又はCSを画定する。(表面CSを含む)圧縮応力は、折原製作所(日本)製FSM‐6000等の市販の機器を用いて、表面応力メータ(FSM)で測定される。表面応力測定は、応力光係数(stress optical coefficient:SOC)の正確な測定に依存し、これはガラスの複屈折に関係する。SOCは、ASTM規格C770‐16「ガラスの応力光係数の測定のための標準試験法(Standard Test Method for Measurement of Glass Stress‐Optical Coefficient)」(その内容全体は参照により本出願に援用される)に記載された手順C(ガラスディスク法)に従って測定される。
いくつかの実施形態では、CSは、300MPa以上950MPa以下、例えば325MPa以上950MPa以下、350MPa以上950MPa以下、は375MPa以上950MPa以下、400MPa以上950MPa以下、425MPa以上950MPa以下、450MPa以上950MPa以下、475MPa以上950MPa以下、500MPa以上950MPa以下、525MPa以上950MPa以下、550MPa以上950MPa以下、575MPa以上950MPa以下、600MPa以上950MPa以下、625MPa以上950MPa以下、650MPa以上950MPa以下、又は675MPa以上950MPa以下、並びに上述の値の間の全ての範囲及び部分範囲内である。他の実施形態では、CSは、300MPa以上925MPa以下、300MPa以上900MPa以下、300MPa以上875MPa以下、300MPa以上850MPa以下、300MPa以上825MPa以下、300MPa以上800MPa以下、300MPa以上775MPa以下、300MPa以上750MPa以下、300MPa以上725MPa以下、300MPa以上700MPa以下、300MPa以上675MPa以下、300MPa以上650MPa以下、300MPa以上625MPa以下、300MPa以上600MPa以下、300MPa以上575MPa以下、300MPa以上550MPa以下、又は300MPa以上525MPa以下、並びに上述の値の間の全ての範囲及び部分範囲内である。
1つ以上の実施形態では、Na+及びK+イオンをガラス物品中へと交換し、Na+イオンは、K+イオンに比べてガラス物品中の更に深い深さまで拡散する。K+イオンの侵入の深さ(「カリウムDOL」)は、イオン交換プロセスの結果としてのカリウムの侵入の深さを表すため、DOCから区別される。いくつかの実施形態では、カリウムDOLは典型的には、本明細書に記載の物品に関するDOCより小さい。カリウムDOLは、折原製作所(日本)製の市販のFSM‐6000表面応力メータ等の表面応力メータを用いて測定され、これは、CS測定に関して上述されているように、応力光係数(SOC)の正確な測定に依存している。いくつかの実施形態では、第1の圧縮層520及び第2の圧縮層522それぞれのカリウムDOLは、5μm以上30μm以下、例えば6μm以上25μm以下、7μm以上20μm以下、8μm以上15μm以下、又は9μm以上10μm以下、並びに上述の値の間の全ての範囲及び部分範囲内である。他の実施形態では、第1の圧縮層520及び第2の圧縮層522それぞれのカリウムDOLは、6μm以上30μm以下、又は10μm以上30μm以下、15μm以上30μm以下、20μm以上30μm以下、又は25μm以上30μm以下、並びに上述の値の間の全ての範囲及び部分範囲内である。更に他の実施形態では、第1の圧縮層520及び第2の圧縮層522それぞれのカリウムDOLは、5μm以上25μm以下、5μm以上20μm以下、5μm以上15μm以下、又は5μm以上10μm以下、並びに上述の値の間の全ての範囲及び部分範囲内である。
両方の主面(図23の510、512)の圧縮応力は、ガラスの中央領域(530)に貯蔵された張力と平衡する。最大中央張力(CT)及びDOC値は、当該技術分野において公知の散乱光偏光器(SCALP)を用いて測定される。屈折近接場(RNF)法又はSCALPを用いて、応力プロファイルを測定してよい。RNF法を利用して応力プロファイルを測定する場合、SCALPによって提供される最大CT値をRNF法において利用する。特に、RNFによって測定される応力プロファイルは、SCALP測定によって提供される最大CT値に対して平衡化及び較正された力である。RNF法は、米国特許第8,854,623号明細書「(ガラス試料のプロファイル特徴を測定するためのシステム及び方法(Systems and methods for measuring a profile characteristic of a glass sample)」に記載されており、この文献はその全体が参照により本出願に援用される。特にRNF法は:ガラス物品を基準ブロックに隣接させて配置するステップ;1Hz~50Hzの速度において直交偏光間で切り替えられる、偏光切り替え光ビームを生成するステップ;偏光切り替え光ビームの出力の量を測定するステップ;及び偏光切り替え基準信号を生成するステップを含み、直交偏光それぞれにおいて測定された出力の量は、互いの50%以内である。上記方法は更に:上記偏光切り替え光ビームを、ガラス試料及び基準ブロックを通して、ガラス試料中の異なる複数の深さまで伝送するステップ;次に、伝送された上記偏光切り替え光ビームを、中継用光学系を用いて、信号光検出器へと中継するステップを含み、上記信号光検出器は、偏光切り替え検出器信号を生成する。上記方法はまた:上記検出器信号を基準信号で除算して、正規化検出器信号を形成するステップ;及びガラス試料のプロファイル特徴を、上記正規化検出器信号から決定するステップを含む。
複数の実施形態では、ガラス組成物は、30MPa以上150MPa以下、例えば35MPa以上125MPa以下、40MPa以上120MPa以下、45MPa以上115MPa以下、50MPa以上110MPa以下、55MPa以上105MPa以下、60MPa以上100MPa以下、65MPa以上95MPa以下、又は70MPa以上90MPa以下、並びに上述の値の間の全ての範囲及び部分範囲内の、最大CTを有してよい。他の実施形態では、ガラス組成物は、30MPa以上150MPa以下、35MPa以上150MPa以下、40MPa以上150MPa以下、45MPa以上150MPa以下、50MPa以上150MPa以下、55MPa以上150MPa以下、60MPa以上150MPa以下、65MPa以上150MPa以下、70MPa以上150MPa以下、75MPa以上150MPa以下、80MPa以上150MPa以下、85MPa以上150MPa以下、90MPa以上150MPa以下、95MPa以上150MPa以下、100MPa以上150MPa以下、105MPa以上150MPa以下、110MPa以上150MPa以下、115MPa以上150MPa以下、120MPa以上150MPa以下、又は125MPa以上150MPa以下、並びに上述の値の間の全ての範囲及び部分範囲内の、最大CTを有してよい。更に他の実施形態では、ガラス組成物は、30MPa以上125MPa以下、30MPa以上120MPa以下、30MPa以上115MPa以下、30MPa以上110MPa以下、30MPa以上105MPa以下、30MPa以上100MPa以下、30MPa以上95MPa以下、30MPa以上90MPa以下、30MPa以上85MPa以下、30MPa以上80MPa以下、30MPa以上75MPa以下、30MPa以上70MPa以下、30MPa以上65MPa以下、30MPa以上60MPa以下、30MPa以上55MPa以下、30MPa以上50MPa以下、30MPa以上45MPa以下、30MPa以上40MPa以下、又は30MPa以上35MPa以下、並びに上述の値の間の全ての範囲及び部分範囲内の、最大CTを有してよい。更なる実施形態では、ガラス組成物は、30MPa以上100MPa以下、並びに上述の値の間の全ての範囲及び部分範囲内の、最大CTを有してよい。また更なる実施形態では、ガラス組成物70MPa以上150MPa以下、又は75MPa以上150MPa以下、並びに上述の値の間の全ての範囲及び部分範囲内の、最大CTを有してよい。
上述のように、DOCは、当該技術分野において公知の散乱光偏光器(SCALP)を用いて測定される。DOCは本明細書では、ガラス物品の厚さ(t)の一部分として提供される。複数の実施形態では、ガラス組成物は、0.15t以上0.25t以下、例えば0.17t以上0.23t以下、又は0.19t以上0.21t以下、並びに上述の値の間の全ての範囲及び部分範囲内の、圧縮深さ(DOC)を有してよい。他の実施形態では、ガラス組成物は、0.16以上0.2t以下、0.17t以上0.25t以下、0.18t以上0.25t以下、0.19t以上0.25t以下、0.20t以上0.25t以下、0.21t以上0.25t以下、0.22t以上0.25t以下、0.23t以上0.25t以下、又は0.24t以上0.25t以下、並びに上述の値の間の全ての範囲及び部分範囲内の、DOCを有してよい。更に他の実施形態では、ガラス組成物は、0.15t以上0.24t以下、0.15t以上0.23t以下、0.15t以上0.22t以下、0.15t以上0.21t以下、0.15t以上0.20t以下、0.15t以上0.19t以下、0.15t以上0.18t以下、0.15t以上0.17t以下、又は0.15t以上0.16t以下、並びに上述の値の間の全ての範囲及び部分範囲内の、DOCを有してよい。
圧縮応力層は、ガラスをイオン交換溶液に曝露することによって、ガラス中に形成できる。複数の実施形態では、イオン交換溶液は溶融硝酸塩であってよい。いくつかの実施形態では、イオン交換溶液は、溶融KNO、溶融NaNO、又はこれらの組み合わせであってよい。特定の実施形態では、イオン交換溶液は、約100%の溶融KNO、約90%の溶融KNO、約80%の溶融KNO、約70%の溶融KNO、又は約60%の溶融KNOを含んでよい。特定の実施形態では、イオン交換溶液は、約10%の溶融NaNO、約20%の溶融NaNO、約30%の溶融NaNO、又は約40%の溶融NaNOを含んでよい。他の実施形態では、イオン交換溶液は、約80%の溶融KNO及び約20%の溶融NaNO、約75%の溶融KNO及び約25%の溶融NaNO、約70%の溶融KNO及び約30%の溶融NaNO、約65%の溶融KNO及び約35%の溶融NaNO、又は約60%の溶融KNO及び約40%の溶融NaNO、並びに上述の値の間の全ての範囲及び部分範囲内を含んでよい。複数の実施形態では、例えば亜硝酸ナトリウム若しくはカリウム、リン酸ナトリウム若しくはカリウム、又は硫酸ナトリウム若しくはカリウムといった、他のナトリウム及びカリウム塩を、イオン交換溶液中で使用してよい。
ガラス組成物は:上記ガラス組成物から作製されたガラス物品をイオン交換溶液の浴中に浸漬させること;イオン交換溶液を、上記ガラス組成物から作製されたガラス物品に噴霧すること;又はイオン交換溶液を、上記ガラス組成物から作製されたガラス物品に、他の手段で物理的に塗布することによって、イオン交換溶液に曝露してよい。ガラス組成物への曝露時、イオン交換溶液は、複数の実施形態によると、400℃以上500℃以下、例えば410℃以上490℃以下、420℃以上480℃以下、430℃以上470℃以下、又は440℃以上460℃以下、並びに上述の値の間の全ての範囲及び部分範囲内の温度であってよい。複数の実施形態では、ガラス組成物は、4時間以上48時間以下、例えば8時間以上44時間以下、12時間以上40時間以下、16時間以上36時間以下、20時間以上32時間以下、又は24時間以上28時間以下、並びに上述の値の間の全ての範囲及び部分範囲内の持続時間にわたって、イオン交換溶液に曝露してよい。
イオン交換プロセスは、例えば米国特許出願公開第2016/0102011号明細書(この文献はその全体が参照により本出願に援用される)で開示されているような、改善された圧縮応力プロファイルを提供する加工条件下の、イオン交換溶液中で実施してよい。
本明細書で開示されているガラス物品は、他のガラスに比べて改善された引っかき耐性を有する。本明細書中で使用される場合、ヌープ引っかき横割れ閾値は、(5回の押込みイベントのうち3回以上での)横方向の割れの発生である。ヌープ引っかき横割れ閾値試験では、ガラス物品の試料をまずヌープ圧子を用いて、動的な又は傾斜付き荷重下で引っかき、この試料集団に関する横方向割れの発生荷重範囲を同定した。適用可能な荷重範囲が同定された後、一連の増加する定常荷重での引っかき(荷重1種類につき最低3回以上)を実施して、ヌープ引っかき閾値を同定する。ヌープ引っかき閾値範囲は、試験片を以下の3つの破損モードのうちの1つと比較することによって決定できる:1)溝の幅の2倍を超えて持続する、横方向表面割れ;2)損傷が溝の中に内包されているが、溝の幅の2倍未満の横方向表面割れが存在し、裸眼で視認できる損傷が存在する;又は3)溝の幅の2倍を超える大きな表面下横方向割れの存在、及び/若しくは引っかきの頂点に中央割れが存在する。
複数の実施形態では、ガラス物品は、5N以上24N以下、例えば6N以上22N以下、8N以上20N以下、10N以上18N以下、又は12N以上16N以下、並びに上述の値の間の全ての範囲及び部分範囲内の、ヌープ引っかき横割れ閾値を有してよい。他の実施形態では、ガラス物品は、6N以上24N以下、7N以上24N以下、8N以上24N以下、9N以上24N以下、10N以上24N以下、11N以上24N以下、12N以上24N以下、13N以上24N以下、14N以上24N以下、15N以上24N以下、16N以上24N以下、17N以上24N以下、18N以上24N以下、19N以上24N以下、20N以上24N以下、21N以上24N以下、22N以上24N以下、23N以上24N以下、並びに上述の値の間の全ての範囲及び部分範囲内の、ヌープ引っかき横割れ閾値を有してよい。更に他の実施形態では、5N以上23N以下、5N以上22N以下、5N以上21N以下、5N以上20N以下、5N以上19N以下、5N以上18N以下、5N以上17N以下、5N以上16N以下、5N以上15N以下、5N以上14N以下、5N以上13N以下、5N以上12N以下、5N以上11N以下、5N以上10N以下、5N以上9N以下、5N以上8N以下、5N以上7N以下、5N以上6N以下、並びに上述の値の間の全ての範囲及び部分範囲内の、ヌープ引っかき横割れ閾値を有してよい。
本明細書で開示されているガラス物品は、他のガラスに対して改善された押込み耐性を有する。押込み破壊閾値(又はビッカース割れ開始閾値)は、ビッカース圧子によって測定される。押込み破壊閾値は、ガラスの押込み損傷耐性の尺度である。この試験では、ビッカース圧子と呼ばれる、面と面の間の角度が136°の正四角錐ダイヤモンド圧子を使用した。ビッカース圧子は、標準微小硬度試験(ASTM‐E384‐11を参照)で使用されるものと同一であった。5個の試験片のうち最小のものを選択して、関心対象のガラスのタイプ及び/又は系統を示した。各試験片に関して、試験片表面に、5個の圧子の複数の組を導入した。5個の圧子の各組は、所与の荷重で導入され、個々の押込みはそれぞれ、最小5mmだけ隔てられ、また試験片の縁部に対して5mm以内に近接させなかった。試験荷重≧2kgに関して50kg/分の圧子荷重印加/荷重解放速度を用いた。試験荷重<2kgに関して、5kg/分の速度を用いた。標的負荷において10秒の滞留(即ち保持)時間を使用した。この滞留期間中、機械は荷重制御を維持した。少なくとも12時間の期間の後、倍率500倍の複合顕微鏡を用いて、押込みを反射光の下で検査した。中央/径方向割れ又は試験片の破損の存在又は不在を、各押込みに関して記録した。なお、中央/径方向割れの形成又は試験片の破損がこの試験の関心の対象であるため、横方向の割れの形成は、閾値挙動が示されたことの指標とは見なさなかった。試験片の閾値は、閾値を満たす個々の押込みのうちの50%超をブラケティングする最小連続押込み荷重の中点として定義される。例えば、個々の試験片内において、5kgの荷重で誘発される5回の押込みのうちの2回(40%)が閾値を超え、6kgの荷重で誘発される5回の押込みのうち3回(60%)が閾値を超えた場合、試験片閾値は、5kgと6kgとの中点、即ち5.5kgとして画定される。試料平均閾値は、個々の試験片閾値全ての算術平均として定義される。平均と共に、全ての試験片の中点の範囲(最小値~最大値)を各試料に関して報告した。試験前、試験中及び試験後環境を、23±2℃及び50±5%RHに制御することにより、ガラス試験片の疲労(応力腐食)挙動の変動を最小化した。なお、最初に未知の組成物又は系統を試験する際、必要な押込み荷重及びブラケティングの増分を、「反復探索(iterative search)」を実施することによって決定した。試料の性能が分かったら、予想された閾値に近いこれらの閾値のみを試験した後、必要な場合にのみ追加の押込み荷重を「挿入する(filling in)」ことによって、将来の試験を合理化できる。
複数の実施形態では、押込み破壊閾値は、15kgf(0.147kN)以上、例えば15.5kgf(0.152kN)以上、16kgf(0.157kN)以上、16.5kgf(0.162kN)以上、17kgf(0.167kN)以上、17.5kgf(0.172kN)以上、18kgf(0.177kN)以上、18.5kgf(0.181kN)以上、19kgf(0.186kN)以上、19.5kgf(0.191kN)以上、20kgf(0.196kN)以上、15.5kgf(0.152kN)以上、20.5kgf(0.201kN)以上、21kgf(0.206kN)以上、21.5kgf(0.211kN)以上、22kgf(0.216kN)以上、22.5kgf(0.221kN)以上、並びに上述の値の間の全ての範囲及び部分範囲内である。いくつかの実施形態では、押込み破壊閾値は、28kgf(0.275kN)以下、27.5kgf(0.27kN)以下、27kgf(0.265kN)以下、26.5kgf(0.26kN)以下、26kgf(0.255kN)以下、又は25.5kgf(0.25kN)以下、並びに上述の値の間の全ての範囲及び部分範囲内である。更に他の実施形態では、押込み破壊閾値は、15kgf(0.147kN)以上28kgf(0.275kN)以下、16kgf(0.157kN)以上28kgf(0.275kN)以下、17kgf(0.167kN)以上28kgf(0.275kN)以下、18kgf(0.177kN)以上28kgf(0.275kN)以下、19kgf(0.186kN)以上28kgf(0.275kN)以下、20kgf(0.196kN)以上28kgf(0.275kN)以下、21kgf(0.206kN)以上28kgf(0.275kN)以下、22kgf(0.216kN)以上28kgf(0.275kN)以下、23kgf(0.226kN)以上28kgf(0.275kN)以下、24kgf(0.235kN)以上28kgf(0.275kN)以下、25kgf(0.245kN)以上28kgf(0.275kN)以下、26kgf(0.255kN)以上28kgf(0.275kN)以下、又は27kgf(0.265kN)以上28kgf(0.275kN)以下、並びに上述の値の間の全ての範囲及び部分範囲内である。更に他の実施形態では、押込み破壊閾値は、15kgf(0.147kN)以上27kgf(0.265kN)以下、15kgf(0.147kN)以上26kgf(0.255kN)以下、15kgf(0.147kN)以上25kgf(0.245kN)以下、15kgf(0.147kN)以上24kgf(0.235kN)以下、15kgf(0.147kN)以上23kgf(0.226kN)以下、15kgf(0.147kN)以上22kgf(0.216kN)以下、15kgf(0.147kN)以上21kgf(0.206kN)以下、15kgf(0.147kN)以上20kgf(0.196kN)以下、15kgf(0.147kN)以上19kgf(0.186kN)以下、15kgf(0.147kN)以上18kgf(0.177kN)以下、17kgf(0.167kN)以上26kgf(0.255kN)以下、又は15kgf(0.147kN)以上16kgf(0.157kN)以下、並びに上述の値の間の全ての範囲及び部分範囲内である。
本明細書で開示されているガラス物品は、ディスプレイを備えた物品(即ちディスプレイ物品)(例えば携帯電話、タブレット、コンピュータ、ナビゲーションシステム等を含む消費者向け電子機器)、建築用物品、輸送用物品(例えば自動車、鉄道、航空機、船舶等)、家電物品、又はある程度の透明性、耐擦傷性、耐摩擦性若しくはこれらの組み合わせを必要とするいずれの物品といった、別の物品に組み込むことができる。本明細書で開示されているガラス物品のいずれを組み込んだ例示的な物品を、図26A及び26Bに示す。具体的には、図26A及び26Bは:前面504、背面506及び側面508を有するハウジング502;少なくとも部分的に又は全体的に上記ハウジング内にある、少なくともコントローラ、メモリ及びディスプレイ510を上記ハウジングの前面に又は前面に隣接して含む、電子構成部品(図示せず);並びに上記ハウジングの前面に又は前面全体にわたり、上記ディスプレイを覆うように配置されたカバー基板512を含む、消費者向け電子デバイス500を示す。いくつかの実施形態では、ハウジング502の一部分又はカバー基板512のうちの少なくとも一方は、本明細書で開示されてガラス物品のいずれを含んでよい。
上述のように、複数の実施形態によるガラス組成物は、スロット成形、フロート成形、圧延プロセス、フュージョン成形プロセス等といったいずれの好適な方法で成形してよい。
例示的なガラス物品は、成形方法によって特性決定できる。例えばガラス物品は、フロート成形可能である(即ちフロートプロセスによって成形される)こと、ダウンドロー可能であること、及び特にフュージョン成形可能であるか又はスロットドロー可能である(即ちフュージョンドロープロセス又はスロットドロープロセスによって成形される)ことを特徴としてよい。
本明細書に記載のガラス物品のいくつかの実施形態は、ダウンドロープロセスで成形してよい。ダウンドロープロセスは、比較的美しい状態の表面を有する均一な厚さのガラス物品を生成する。ガラス物品の平均曲げ強度は、表面の傷の量及びサイズによって制御されるため、接触が最小限である美しい状態の表面は、比較的高い初期強度を有する。更に、ダウンドロー加工されたガラス物品は、極めて平坦で平滑な表面を有し、これはその最終的な用途において、コストがかかる研削及び研磨を行うことなく使用できる。
ガラス物品のいくつかの実施形態は、フュージョン成形可能(即ちフュージョンドロープロセスを用いて成形可能)なものとして記述され得る。フュージョンプロセスは、溶融ガラス原材料を受け入れるためのチャネルを有する、ドロー加工用タンクを使用する。このチャネルは、チャネルの両側に、チャネルの長さに沿って、頂部で開口した堰を有する。チャネルが溶融材料で満たされると、溶融ガラスはこの堰からあふれる。溶融ガラスは重力によって、ドロー加工用タンクの外側表面を、2つの流動ガラスフィルムとして流れ落ちる。ドロー加工用タンクのこれらの外側表面は、下方かつ内向きに延在して、ドロー加工用タンクの下方の縁部において接合する。これら2つの流動ガラスフィルムはこの縁部で接合して融合し、単一の流動ガラス物品を形成する。融合線が形成され、ここで2つの流動ガラスフィルムが1つに融合する。融合線の存在は、フュージョンドロー加工されたガラス物品を同定する1つの方法である。融合線は、ガラスを光学顕微鏡下で観察した場合に、光学的な歪みとして確認できる。フュージョンドロー法は、チャネルを越えて流れる2つのガラスフィルムが1つに融合するため、結果として得られるガラス物品の外側表面が装置のいずれの部分にも接触しないという利点を提供する。従ってフュージョンドロー加工されたガラス物品の表面特性は、このような接触に影響されない。
ガラス物品のいくつかの実施形態は、スロットドロープロセスで成形してよい。スロットドロープロセスは、フュージョンドロー法とは異なっている。スロットドロープロセスでは、溶融原材料ガラスをドロー加工用タンクに供給する。ドロー加工用タンクの底部は開放スロットを有し、これは、上記スロットの長さに沿って延在するノズルを備える。溶融ガラスはこのスロット/ノズルを通って流れ、連続したガラス系物品として、アニーリング領域内に向かって下方へと流れる。
第1の条項は、酸化物基準で:60モル%以上74モル%以下のSiO;7モル%以上18モル%以下のAl;3モル%以上16モル%以下のB;0モル%超かつ6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;0.2モル%以下のSnO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含むガラス物品であって、モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品を含む。
第2の条項は、酸化物基準で:60モル%以上66モル%以下のSiO;11.5モル%以上18モル%以下のAl;3モル%以上8モル%以下のB;2モル%以上6モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含むガラス物品であって、モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品を含む。
第3の条項は、酸化物基準で:65モル%以上74モル%以下のSiO;7モル%以上12モル%以下のAl;5モル%以上16モル%以下のB;0モル%以上4モル%以下のNaO;0モル%以上5モル%以下のP;5モル%以上11モル%以下のLiO;及び0.5モル%以上6.5モル%以下の二価陽イオン酸化物を含むガラス物品であって、モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品を含む。
第4の条項は、前記ガラス物品が0.2モル%以下のSnOを含む、条項2から3のいずれか1つのガラス物品を含む。
第5の条項は、前記ガラス物品が、300kP以下の液相粘度を有する、いずれかの先の条項のガラス物品を含む。
第6の条項は、前記ガラス物品が、0.4以上のモル比LiO:ROを有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計である、いずれかの先の条項のガラス物品を含む。
第7の条項は、前記ガラス物品が、80モル%以上のAl+SiO+B+Pを含む、いずれかの先の条項のガラス物品を含む。
第8の条項は、前記ガラス物品が、0.5モル%以上2モル%以下のSrOを含む、いずれかの先の条項のガラス物品を含む。
第9の条項は、前記ガラス物品が、フュージョンプロセスにより形成される、いずれかの先の条項のガラス物品を含む。
第10の条項は、前記ガラス物品が、イオン交換プロセスによって強化され、これにより、そのガラス物品の少なくとも1つの表面上に圧縮応力層が形成される、いずれかの先の条項のガラス物品を含む。
第11の条項は、圧縮深さ(DOC)が0.15t以上であり、ここでtは前記ガラス物品の厚さである、条項10のガラス物品を含む。
第12の条項は、圧縮深さ(DOC)が0.15t以上0.25t以下であり、ここでtは前記ガラス物品の厚さである、条項10または11のガラス物品を含む。
第13の条項は、前記ガラス物品が、30MPa以上150MPa以下の中央張力を有する、条項10から12のいずれか1つのガラス物品を含む。
第14の条項は、前記ガラス物品が、70MPa以上150MPa以下の中央張力を有する、条項13のガラス物品を含む。
第15の条項は、前記ガラス物品が、30MPa以上100MPa以下の中央張力を有する、条項13のガラス物品を含む。
第16の条項は、前記ガラス物品が、そのガラス物品にカリウムイオンを付加するイオン交換プロセスによって強化され、カリウム層深さ(DOL)は5μm以上30μm以下である、条項10から15のいずれか1つのガラス物品を含む。
第17の条項は、前記圧縮応力層が、表面において、300MPa以上950MPa以下の圧縮応力を有する、条項10から16のいずれか1つのガラス物品を含む。
第18の条項は、前記ガラス物品が、5N以上24N以下のヌープ引っかき横割れ閾値を有する、いずれかの先の条項のガラス物品を含む。
第19の条項は、前記ガラス物品が、15kgf(0.147kN)以上の押込み破壊閾値を有する、いずれかの先の条項のガラス物品を含む。
第20の条項は、前記ガラス物品が0モル%以上6.5モル%以下のMgOを含む、いずれかの先の条項のガラス物品を含む。
第21の条項は、前記ガラス物品が0モル%以上5モル%以下のCaOを含む、いずれかの先の条項のガラス物品を含む。
第22の条項は、前記ガラス物品が0モル%以上2モル%以下のZnOを含む、いずれかの先の条項のガラス物品を含む。
第23の条項は、LiO、SiO、Alを含み、300kPの以下の液相粘度を有するガラス物品であって、RIannealed-RIas formedは0.0003以上であり、ここでRIannealedは、1時間にわたって上記ガラスのアニール点で加熱された上記ガラスの、589nmの波長における屈折率であり、RIas formedは、成形後すぐの上記ガラスの、589nmの波長における屈折率である、ガラス物品を含む。
第24の条項は、融合線をさらに含む、条項23のガラス物品を含む。
第25の条項は、RIannealed-RIas formedが0.0003~0.001の範囲にある、条項23または24のガラス物品を含む。
第26の条項は、RIannealed-RIas formedが0.0005~0.001の範囲にある、条項23または24のガラス物品を含む。
第27の条項は、RIannealed-RIas formedが0.0005以上である、条項23または24のガラス物品を含む。
第28の条項は、少なくとも1つのアルカリ金属酸化物(RO)または二価陽イオン酸化物(RO)を含み、モル比Al:(RO+RO)が0.9以上である、条項23から27のいずれか1つのガラス物品を含む。
第29の条項は、前記ガラス物品が、0.4以上のモル比LiO:ROを有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計である、条項23から28のいずれか1つのガラス物品を含む。
第30の条項は、前記ガラス物品が、80モル%以上のAl+SiO+B+Pを含む、条項23から29のいずれか1つのガラス物品を含む。
第31の条項は、前面、背面及び側面を有するハウジング;少なくとも部分的に前記ハウジング内に設けられた電子部品であって、その電子部品は、少なくともコントローラ、メモリ及びディスプレイを含み、そのディスプレイは、前記ハウジングの前面に又は前面に隣接して設けられる、電子部品;並びに前記ディスプレイを覆うように配置されたカバー基板を備える消費者向け電子製品であって、前記ハウジングの一部またはカバー基板の少なくとも一方は、いずれかの先の条項のガラス物品から作られる、消費者向け電子製品を含む。
以下の実施例によって実施形態を更に明らかにする。これらの実施例は、上述の実施形態に対する限定ではないことを理解されたい。
以下の表2に列挙された成分を有するガラス組成物を調製した。表2では、全ての成分はモル%を単位とする。
Figure 0007201589000003
Figure 0007201589000004
Figure 0007201589000005
Figure 0007201589000006
Figure 0007201589000007
Figure 0007201589000008
上述の技法に従って、密度、歪み点、アニール点、軟化点、応力光係数、ヤング率、及び剛性率を測定した。0~300℃の温度範囲にわたる線形の熱膨張係数(CTE)を、ASTM E228‐11に準拠したプッシュロッド膨張計を用いて決定した。ポアソン比を、ASTM E2001‐13「金属部品及び非金属部品の両方において欠陥を検出するための共鳴超音波分光法に関する標準ガイド」に記載された、一般的なタイプの共鳴超音波分光技法によって測定した。
以下の表3は、上の表2で提供された様々なガラス組成物の特性を示す。イオン交換溶液の組成、温度、及びイオン交換プロセスの持続時間も、表3で提供する。表3に記録されているCT、DOC、CS、及びカリウムDOLは、上述の測定技法を用いて決定した。
Figure 0007201589000009
以上のデータに加えて、上の表2中に開示されているガラス49に関して、ヌープ引っかき横割れ閾値を試験した。ヌープ引っかき横割れ閾値試験の結果を図24に示す。この図に示されているように、ヌープ引っかき横割れ閾値は、ガラス49において、比較用のリチウム含有ガラスより高い。ガラス49によるガラス物品を、430℃の20重量%NaNO及び80重量%KNO溶融塩浴中で、10時間イオン交換した。比較用ガラス1は、430℃の20%NaNO及び80%KNO溶融塩浴中で、16時間イオン交換した。比較用ガラス2は、380℃の49重量%NaNO及び51重量%KNO溶融塩浴中で、3.75時間イオン交換した。各ガラスを0.8mm厚のガラスシートに成形した。比較用ガラス1及び比較用ガラス2の組成を、以下の表4に、モル%を単位として提供する。
Figure 0007201589000010
更に、上の表2中に開示されているガラス49に関して、押込み破壊閾値を試験した。ヌープ引っかき横割れ閾値試験の結果を図25に示す。この図に示されているように、押込み破壊閾値は、ガラス49において、比較用のリチウム含有ガラスより高い。ガラス49によるガラス物品を、430℃の20重量%NaNO及び80重量%KNO溶融塩浴中で、10時間イオン交換した。比較用ガラス1は、430℃の20重量%NaNO及び80重量%KNO溶融塩浴中で、16時間イオン交換した。比較用ガラス2は、380℃の49重量%NaNO及び51重量%KNO溶融塩浴中で、3.75時間イオン交換した。各ガラスを0.8mm厚のガラスシートに成形した。
請求対象の主題の精神及び範囲から逸脱することなく、本明細書に記載の実施形態に対して様々な修正及び変形を実施できることは、当業者には理解されるだろう。よって本明細書は、本明細書に記載の様々な実施形態に対する上記修正及び変形が、添付の請求項及びその均等物の範囲内である限りにおいて、上記修正及び変形を包含することを意図している。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
酸化物基準で:
60モル%以上74モル%以下のSiO
7モル%以上18モル%以下のAl
3モル%以上16モル%以下のB
0モル%超かつ6モル%以下のNaO;
0モル%以上5モル%以下のP
5モル%以上11モル%以下のLiO;
0.2モル%以下のSnO;及び
0.5モル%以上6.5モル%以下の二価陽イオン酸化物
を含むガラス物品であって、
モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品。
実施形態2
酸化物基準で:
60モル%以上66モル%以下のSiO
11.5モル%以上18モル%以下のAl
3モル%以上8モル%以下のB
2モル%以上6モル%以下のNaO;
0モル%以上5モル%以下のP
5モル%以上11モル%以下のLiO;及び
0.5モル%以上6.5モル%以下の二価陽イオン酸化物
を含むガラス物品であって、
モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品。
実施形態3
酸化物基準で:
65モル%以上74モル%以下のSiO
7モル%以上12モル%以下のAl
5モル%以上16モル%以下のB
0モル%以上4モル%以下のNaO;
0モル%以上5モル%以下のP
5モル%以上11モル%以下のLiO;及び
0.5モル%以上6.5モル%以下の二価陽イオン酸化物
を含むガラス物品であって、
モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品。
実施形態4
前記ガラス物品が0.2モル%以下のSnOを含む、実施形態2または3に記載のガラス物品。
実施形態5
前記ガラス物品が、300kP以下の液相粘度を有する、実施形態1~4のいずれか1つに記載のガラス物品。
実施形態6
前記ガラス物品が、0.4以上のモル比LiO:ROを有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計である、実施形態1~5のいずれか1つに記載のガラス物品。
実施形態7
前記ガラス物品が、80モル%以上のAl+SiO+B+Pを含む、実施形態1~6のいずれか1つに記載のガラス物品。
実施形態8
前記ガラス物品が、0.5モル%以上2モル%以下のSrOを含む、実施形態1~7のいずれか1つに記載のガラス物品。
実施形態9
前記ガラス物品が、フュージョンプロセスにより形成される、実施形態1~8のいずれか1つに記載のガラス物品。
実施形態10
前記ガラス物品が、イオン交換プロセスによって強化され、これにより、該ガラス物品の少なくとも1つの表面上に圧縮応力層が形成される、実施形態1~9のいずれか1つに記載のガラス物品。
実施形態11
圧縮深さが0.15t以上であり、ここでtは前記ガラス物品の厚さである、実施形態10に記載のガラス物品。
実施形態12
圧縮深さ(DOC)が、0.15t以上0.25t以下であり、ここでtは前記ガラス物品の厚さである、実施形態10又は11に記載のガラス物品。
実施形態13
前記ガラス物品が、30MPa以上150MPa以下の中央張力を有する、実施形態10~12のいずれか1つに記載のガラス物品。
実施形態14
前記ガラス物品が、70MPa以上150MPa以下の中央張力を有する、実施形態13に記載のガラス物品。
実施形態15
前記ガラス物品が、30MPa以上100MPa以下の中央張力を有する、実施形態13に記載のガラス物品。
実施形態16
前記ガラス物品が、該ガラス物品にカリウムイオンを付加するイオン交換プロセスによって強化され、カリウム層深さ(DOL)は5μm以上30μm以下である、実施形態10~15のいずれか1つに記載のガラス物品。
実施形態17
前記圧縮応力層が、表面において、300MPa以上950MPa以下の圧縮応力を有する、実施形態10~16のいずれか1つに記載のガラス物品。
実施形態18
前記ガラス物品が、5N以上24N以下のヌープ引っかき横割れ閾値を有する、実施形態1~17のいずれか1つに記載のガラス物品。
実施形態19
前記ガラス物品が、15kgf(0.147kN)以上の押込み破壊閾値を有する、実施形態1~18のいずれか1つに記載のガラス物品。
実施形態20
前記ガラス物品が0モル%以上6.5モル%以下のMgOを含む、実施形態1~19のいずれか1つに記載のガラス物品。
実施形態21
前記ガラス物品が0モル%以上5モル%以下のCaOを含む、実施形態1~20のいずれか1つに記載のガラス物品。
実施形態22
前記ガラス物品が0モル%以上2モル%以下のZnOを含む、実施形態1~21のいずれか1つに記載のガラス物品。
実施形態23
LiO;
SiO
Al
を含み、
300kPの以下の液相粘度
を有するガラス物品であって、
RIannealed-RIas formedは0.0003以上であり、ここでRIannealedは、1時間にわたって前記ガラスのアニール点で加熱された該ガラスの、589nmの波長における屈折率であり、RIas formedは、成形後すぐの前記ガラスの、589nmの波長における屈折率である、ガラス物品。
実施形態24
融合線をさらに含む、実施形態23に記載のガラス物品。
実施形態25
RIannealed-RIas formedが0.0003~0.001の範囲にある、実施形態23又は24に記載のガラス物品。
実施形態26
RIannealed-RIas formedが0.0005~0.001の範囲にある、実施形態23又は24に記載のガラス物品。
実施形態27
RIannealed-RIas formedが0.0005以上である、実施形態23又は24に記載のガラス物品。
実施形態28
少なくとも1つのアルカリ金属酸化物(RO)または二価陽イオン酸化物(RO)を含み、
モル比Al:(RO+RO)が0.9以上である、実施形態23~27のいずれか1つに記載のガラス物品。
実施形態29
前記ガラス物品が、0.4以上のモル比LiO:ROを有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計である、実施形態23~28のいずれか1つに記載のガラス物品。
実施形態30
前記ガラス物品が、80モル%以上のAl+SiO+B+Pを含む、実施形態23~29のいずれか1つに記載のガラス物品。
実施形態31
前面、背面及び側面を有するハウジング;
少なくとも部分的に前記ハウジング内に設けられた電子部品であって、該電子部品は、少なくともコントローラ、メモリ及びディスプレイを含み、該ディスプレイは、前記ハウジングの前面に又は前面に隣接して設けられる、電子部品;並びに
前記ディスプレイを覆うように配置されたカバー基板
を備える消費者向け電子製品であって、
前記ハウジングの一部または前記カバー基板の少なくとも一方は、実施形態1~30のいずれか1つに記載のガラス物品から作られる、消費者向け電子製品。
10 ガラス成形装置
12 ガラスリボン
14 ハウジング
15 溶融用容器
16 ガラスバッチ材料
17 溶融ガラス
18 貯蔵用蓋付き容器
20 バッチ送達デバイス
22 モータ
24 コントローラ
28 溶融ガラス液位プローブ
30 スタンドパイプ
36 第1の接続チューブ
38 清澄用容器
40 第2の接続チューブ
42 混合用容器
44 第3の接続チューブ
46 送達用容器
48 下降管
50 インレット
60 成形用容器
61 トラフ
62 成形用ウェッジ
63 堰
64a、64b 成形用ウェッジ62の端部
66a、66b 成形用表面部分
68 下流方向
70 基部
72 ドロー平面
80a 縁部配向器、第1の縁部配向器
80b 縁部配向器、第2の縁部配向器
110 第1の複数の加熱カートリッジ
110a、110b、110c、110d、110e 加熱カートリッジ
111 第2の複数の加熱カートリッジ
112、112a、112b、112c、112d、112e ポート
114 ブラケット
116 T字型壁支持ブラケット
120 エンクロージャ
121 ガラスのシート又はリボン、ガラスリボン
121a 第1のエッジ部分
121b 第2のエッジ部分
122 熱配向表面
123 上縁部
124 加熱素子
125 エンクロージャ120の裏面
126 底面
127 上面
128 耐火性材料
129 下縁部
130 牽引ロール
136 ハウジング封止プレート
140 ガラスエッジ部分
142a、142b 下部扉
170 間隙
180 コントローラ
182 熱センサ
202 開口
215a 第1の上側部分
215b 第2の上側部分
217a 第1の外向き接触面
217b 第2の外向き接触面
219 下側部分
210 縁部ロールの組
210a 第1の縁部ロールの組
210b 第2の縁部ロールの組
220 縁部ロールの第1のペア
221a 第1の外向き接触面
221b 第2の外向き接触面
222 内縁部
225a 第1の加熱平面
225b 第2の加熱平面
227a 第1の熱フットプリント
227b 第2の熱フットプリント
228a、228b 投射
229a 第1の合成方向
229b 第2の合成方向
230 縁部ロールの第2のペア
240 第1の位置、垂直位置、水平位置
250 縁部ロールの第3のペア
260 縁部ロールの第4のペア
270 第2の位置
301 ガラス製造装置
315 プルロールデバイス
319 分割デバイス
341 粘性ゾーン
343 固化ゾーン
345 弾性ゾーン
347a、347b ガラスシート
349 第1のプルロール装置
351 ドローロールの第1の上流ペア
353 ドロー経路
355a、363a、373a、381a、391a、399a、409a、417a 第1のプルロール部材
355b、363b、373b、381b、391b、399b、409b、417b 第2のプルロール部材
357a、357b、365a、365b、375a、375b、383a、383b、393a、393b、401a、401b、411a、411b、419a、419b 耐火性ロールカバー
359a、359b、367a、367b、377a、377b、385a、385b、395a、395b、403a、403b、413a、413b、421a、421b モータ
361 ドローロールの第2の上流ペア
369 第2のプルロール装置
371 ドローロールの第1の中流ペア
379 ドローロールの第2の中流ペア
387 第3のプルロール装置
389 ドローロールの第1の下流ペア
397 ドローロールの第2の下流ペア
402、402a、402b、404 縁部ロール
405 中間プルロール装置
406、408 アイドルスタッブロール
407 ドローロールの第1の中間ペア
415 ドローロールの第2の中間ペア
423 制御デバイス
425 通信
427、429 主表面
431、433、435、437 クロスドロー張力
439、441、443、445、447 張力
449、451 曲線
453、455 プロット
457 ドロー方向
459、461、463、465 パターン
500 ガラス
500 消費者向け電子デバイス
502 ハウジング
504 ハウジング502の前面
506 ハウジング502の背面
508 ハウジング502の側面
510 第1の表面
510 ディスプレイ
512 第2の表面
512 カバー基板
520 第1の圧縮層、第1のセグメント
522 第2の圧縮層、第2のセグメント
530 中央領域

Claims (14)

  1. 酸化物基準で:
    60モル%以上74モル%以下のSiO
    7モル%以上18モル%以下のAl
    モル%以上16モル%以下のB
    モル%超かつ6モル%以下のNaO;
    0モル%以上5モル%以下のP
    5モル%以上11モル%以下のLiO;
    0.2モル%以下のSnO;及び
    0.5モル%以上6.5モル%以下の二価陽イオン酸化物
    を含むガラス物品であって、
    モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品。
  2. 酸化物基準で:
    60モル%以上66モル%以下のSiO
    11.5モル%以上18モル%以下のAl
    3モル%以上8モル%以下のB
    2モル%以上6モル%以下のNaO;
    0モル%以上5モル%以下のP
    5モル%以上11モル%以下のLiO;及び
    0.5モル%以上6.5モル%以下の二価陽イオン酸化物
    を含むガラス物品であって、
    モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品。
  3. 酸化物基準で:
    65モル%以上74モル%以下のSiO
    7モル%以上12モル%以下のAl
    5モル%以上16モル%以下のB
    モル%以上4モル%以下のNaO;
    0モル%以上5モル%以下のP
    5モル%以上11モル%以下のLiO;及び
    0.5モル%以上6.5モル%以下の二価陽イオン酸化物
    を含むガラス物品であって、
    モル比Al:(RO+RO)が0.9以上であり、ここでROはモル%を単位とするアルカリ金属酸化物の合計であり、ROはモル%を単位とする二価陽イオン酸化物の合計である、ガラス物品。
  4. 前記ガラス物品が、300kP以下の液相粘度を有する、請求項1~3のいずれか1項に記載のガラス物品。
  5. 前記ガラス物品が、0.4以上のモル比LiO:ROを有し、ここでROはモル%を単位とするアルカリ金属酸化物の合計である、請求項1~4のいずれか1項に記載のガラス物品。
  6. 前記ガラス物品が、80モル%以上のAl+SiO+B+Pを含む、請求項1~5のいずれか1項に記載のガラス物品。
  7. 前記ガラス物品が、0.5モル%以上2モル%以下のSrOを含む、請求項1~6のいずれか1項に記載のガラス物品。
  8. 前記ガラス物品が、イオン交換プロセスによって強化され、これにより、該ガラス物品の少なくとも1つの表面上に圧縮応力層が形成され、圧縮深さが0.15t以上であり、ここでtは前記ガラス物品の厚さである、請求項1~7のいずれか1項に記載のガラス物品。
  9. 前記ガラス物品が、該ガラス物品にカリウムイオンを付加するイオン交換プロセスによって強化され、カリウム層深さ(DOL)は5μm以上30μm以下である、請求項8に記載のガラス物品。
  10. 前記圧縮応力層が、表面において、300MPa以上950MPa以下の圧縮応力を有する、請求項8又は9に記載のガラス物品。
  11. 前記ガラス物品が、5N以上24N以下のヌープ引っかき横割れ閾値を有する、請求項~10のいずれか1項に記載のガラス物品。
  12. 前記ガラス物品が、15kgf(0.147kN)以上の押込み破壊閾値を有する、請求項~11のいずれか1項に記載のガラス物品。
  13. 0モル%超かつ5モル%以下のPを含む、請求項1~12のいずれか1項に記載のガラス物品
  14. 前面、背面及び側面を有するハウジング;
    少なくとも部分的に前記ハウジング内に設けられた電子部品であって、該電子部品は、少なくともコントローラ、メモリ及びディスプレイを含み、該ディスプレイは、前記ハウジングの前面に又は前面に隣接して設けられる、電子部品;並びに
    前記ディスプレイを覆うように配置されたカバー基板
    を備える消費者向け電子製品であって、
    前記ハウジングの一部または前記カバー基板の少なくとも一方は、請求項1~13のいずれか1項に記載のガラス物品から作られる、消費者向け電子製品。
JP2019523593A 2016-11-07 2017-10-31 リチウム含有ガラス Active JP7201589B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662418367P 2016-11-07 2016-11-07
US62/418,367 2016-11-07
US201762452004P 2017-01-30 2017-01-30
US62/452,004 2017-01-30
US201762565190P 2017-09-29 2017-09-29
US62/565,190 2017-09-29
PCT/US2017/059315 WO2018085278A2 (en) 2016-11-07 2017-10-31 Lithium containing glasses

Publications (2)

Publication Number Publication Date
JP2019534234A JP2019534234A (ja) 2019-11-28
JP7201589B2 true JP7201589B2 (ja) 2023-01-10

Family

ID=60302488

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019523592A Pending JP2019532906A (ja) 2016-11-07 2017-10-31 低粘度ガラス並びに製造方法及びシステム
JP2019523593A Active JP7201589B2 (ja) 2016-11-07 2017-10-31 リチウム含有ガラス

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019523592A Pending JP2019532906A (ja) 2016-11-07 2017-10-31 低粘度ガラス並びに製造方法及びシステム

Country Status (7)

Country Link
US (2) US10968134B2 (ja)
EP (2) EP3535220B1 (ja)
JP (2) JP2019532906A (ja)
KR (3) KR102515600B1 (ja)
CN (2) CN110167894A (ja)
TW (2) TWI789367B (ja)
WO (2) WO2018085274A2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3134362B1 (en) * 2014-04-25 2019-02-27 Corning Incorporated Apparatus and method of manufacturing composite glass articles
KR102515600B1 (ko) 2016-11-07 2023-03-29 코닝 인코포레이티드 리튬 함유 유리
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses
TWI791517B (zh) * 2017-04-28 2023-02-11 美商康寧公司 包括內部加熱元件的邊緣導向器
NL2020914B1 (en) * 2018-05-11 2019-11-18 Corning Inc Glasses having high fracture toughness
WO2019191480A1 (en) * 2018-03-29 2019-10-03 Corning Incorporated Glasses having high fracture toughness
EP3863979B1 (en) * 2018-10-09 2023-04-26 Corning Incorporated Method for preventing baggy warp defect
JP2022512405A (ja) * 2018-12-12 2022-02-03 コーニング インコーポレイテッド イオン交換可能なリチウム含有アルミノケイ酸塩ガラス
KR20220047297A (ko) * 2019-08-05 2022-04-15 쇼오트 아게 시트형의 화학적으로 강화되거나 화학적으로 강화 가능한 유리 물품, 및 이의 제조 방법
DE102019121146A1 (de) 2019-08-05 2021-02-11 Schott Ag Heißgeformter chemisch vorspannbarer Glasartikel mit geringem Kristallanteil, insbesondere scheibenförmiger chemisch vorspannbarer Glasartikel, sowie Verfahren und Vorrichtung zu seiner Herstellung
DE102019121147A1 (de) * 2019-08-05 2021-02-11 Schott Ag Scheibenförmiger, chemisch vorgespannter Glasartikel und Verfahren zu dessen Herstellung
JPWO2023276922A1 (ja) * 2021-06-30 2023-01-05

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132546A (ja) 2008-12-08 2010-06-17 Schott Ag 低い密度を有する透明なガラスセラミック
JP2012504548A (ja) 2008-10-06 2012-02-23 コーニング インコーポレイテッド 中間的な熱膨張係数を有するガラス
JP2013536155A (ja) 2010-08-26 2013-09-19 コーニング インコーポレイテッド ガラスを強化する二段階法
US20150376054A1 (en) 2014-06-30 2015-12-31 Corning Incorporated WHITE, OPAQUE,ß-SPODUMENE GLASS-CERAMIC ARTICLES WITH INHERENT DAMAGE RESISTANCE AND METHODS FOR MAKING THE SAME
US20160102011A1 (en) 2014-10-08 2016-04-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451798A (en) 1966-04-04 1969-06-24 Corning Glass Works Sheet glass edge control device
JPS486608B1 (ja) * 1966-08-03 1973-02-27
US3537834A (en) 1968-08-07 1970-11-03 Corning Glass Works Maintaining sheet glass width
JPS50732B1 (ja) * 1969-04-15 1975-01-11
US4192688A (en) * 1972-07-07 1980-03-11 Owens-Illinois, Inc. Product and process for forming same
JPS5838967B2 (ja) 1975-05-14 1983-08-26 日本電気株式会社 タダンチヨクケツガタサドウゾウフクキ
GB1504568A (en) 1977-03-16 1978-03-22 Glacier Metal Co Ltd Structural bearing
JPS53135206A (en) 1977-04-30 1978-11-25 Nippon Telegr & Teleph Corp <Ntt> Telephone repeating system
JPS61286236A (ja) * 1985-06-07 1986-12-16 Olympus Optical Co Ltd ガラス光学素子の徐冷方法
JPH0859289A (ja) * 1994-08-22 1996-03-05 Asahi Glass Co Ltd 高輝度光源用紫外線シャープカットガラスの製造法
DE19721737C1 (de) * 1997-05-24 1998-11-12 Schott Glas Blei- und cadmiumfreie Glaszusammensetzung zum Glasieren, Emaillieren und Dekorieren von Gläsern oder Glaskeramiken sowie Verfahren zur Herstellung einer damit beschichteten Glaskeramik
DE69902839T2 (de) 1998-04-28 2003-05-28 Asahi Glass Co Ltd Flachglas und Substratglas für die Elektronik
US6391444B1 (en) * 2000-03-14 2002-05-21 Johns Manville International, Inc. Core-sheath glass fibers
CN101560048B (zh) 2002-03-22 2011-06-01 康宁股份有限公司 用于制造片状玻璃的方法
JP4530618B2 (ja) 2002-09-27 2010-08-25 コニカミノルタオプト株式会社 ガラス組成物及びガラス基板
US7409839B2 (en) 2005-04-29 2008-08-12 Corning Incorporated Method and apparatus for making a glass sheet
WO2008044694A1 (en) 2006-10-10 2008-04-17 Nippon Electric Glass Co., Ltd. Reinforced glass substrate
JP4692500B2 (ja) * 2007-03-07 2011-06-01 旭硝子株式会社 光学ガラス素子の製造方法及びガラス成形品の屈折率の微調整方法
JP5467490B2 (ja) 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
US8627684B2 (en) 2007-10-29 2014-01-14 Corning Incorporated Pull roll apparatus and method for controlling glass sheet tension
CN105776849B (zh) * 2007-11-29 2020-04-14 康宁股份有限公司 具有改进的韧性和抗刮性的玻璃
JP2010005903A (ja) * 2008-06-26 2010-01-14 Canon Inc 記録装置
JP5867953B2 (ja) 2008-06-27 2016-02-24 日本電気硝子株式会社 強化ガラスおよび強化用ガラス
JP5614607B2 (ja) * 2008-08-04 2014-10-29 日本電気硝子株式会社 強化ガラスおよびその製造方法
JP5622069B2 (ja) 2009-01-21 2014-11-12 日本電気硝子株式会社 強化ガラス、強化用ガラス及び強化ガラスの製造方法
JP5551190B2 (ja) 2009-02-26 2014-07-16 コーニング インコーポレイテッド 縁部誘導器を有するガラス成形装置および方法
DE102010009584B4 (de) 2010-02-26 2015-01-08 Schott Ag Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben
US9540278B2 (en) * 2010-05-27 2017-01-10 Corning Incorporated Ion exchangeable glasses
US8778820B2 (en) * 2010-05-27 2014-07-15 Corning Incorporated Glasses having low softening temperatures and high toughness
JP5732758B2 (ja) * 2010-07-13 2015-06-10 旭硝子株式会社 固体撮像装置用カバーガラス
JP5838967B2 (ja) 2010-08-24 2016-01-06 旭硝子株式会社 フラットパネルディスプレイ用カバーガラスおよび製造方法
US8835007B2 (en) 2011-01-19 2014-09-16 Nippon Electric Glass Co., Ltd. Tempered glass and tempered glass sheet
TWI572480B (zh) * 2011-07-25 2017-03-01 康寧公司 經層壓及離子交換之強化玻璃疊層
US8556637B2 (en) 2011-10-25 2013-10-15 Corning Incorporated Method and apparatus for forming a writable erasable area on an object
IN2014DN07444A (ja) * 2012-02-29 2015-04-24 Corning Inc
US8664130B2 (en) * 2012-04-13 2014-03-04 Corning Incorporated White, opaque β-spodumene/rutile glass-ceramic articles and methods for making the same
US20150004390A1 (en) 2012-06-08 2015-01-01 Nippon Electric Glass Co., Ltd. Tempered glass, tempered glass plate, and glass for tempering
US9139469B2 (en) * 2012-07-17 2015-09-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
WO2014025068A2 (ja) 2012-08-09 2014-02-13 日本電気硝子株式会社 強化ガラスの製造方法及び強化ガラス基板
US8854623B2 (en) 2012-10-25 2014-10-07 Corning Incorporated Systems and methods for measuring a profile characteristic of a glass sample
JP2014141363A (ja) * 2013-01-23 2014-08-07 Konica Minolta Inc 化学強化可能なガラス,ガラス板及び化学強化カバーガラス
JP5704767B2 (ja) 2013-04-26 2015-04-22 日本電気硝子株式会社 強化ガラス及びその製造方法
JP6394110B2 (ja) 2013-07-08 2018-09-26 日本電気硝子株式会社 強化ガラスの製造方法
CN113860730A (zh) * 2013-08-27 2021-12-31 康宁股份有限公司 具有高热膨胀系数的耐损坏的玻璃
EP3105195A1 (en) 2014-02-13 2016-12-21 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
WO2015162845A1 (ja) * 2014-04-24 2015-10-29 日本板硝子株式会社 ガラス組成物、化学強化用ガラス板、強化ガラス板およびディスプレイ用強化ガラス基板
US9512025B2 (en) 2014-05-15 2016-12-06 Corning Incorporated Methods and apparatuses for reducing heat loss from edge directors
EP3228601A4 (en) 2014-12-02 2018-06-27 Asahi Glass Company, Limited Glass plate and heater using same
JP6497576B2 (ja) 2014-12-17 2019-04-10 日本電気硝子株式会社 太陽電池用ガラス板
US11104602B2 (en) 2015-06-26 2021-08-31 Corning Incorporated Glass with high surface strength
EP3313795B1 (en) 2015-06-26 2019-04-03 Corning Incorporated Glass with high surface strength
WO2017120424A1 (en) * 2016-01-08 2017-07-13 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
JP6902042B2 (ja) * 2016-04-08 2021-07-14 コーニング インコーポレイテッド 2つの領域を含む応力プロファイルを含むガラス系物品および製造方法
KR102413902B1 (ko) 2016-05-27 2022-06-28 코닝 인코포레이티드 내파단성 및 내스크래치성 유리 물품
KR102515600B1 (ko) 2016-11-07 2023-03-29 코닝 인코포레이티드 리튬 함유 유리
US11111173B2 (en) * 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504548A (ja) 2008-10-06 2012-02-23 コーニング インコーポレイテッド 中間的な熱膨張係数を有するガラス
JP2010132546A (ja) 2008-12-08 2010-06-17 Schott Ag 低い密度を有する透明なガラスセラミック
JP2013536155A (ja) 2010-08-26 2013-09-19 コーニング インコーポレイテッド ガラスを強化する二段階法
US20150376054A1 (en) 2014-06-30 2015-12-31 Corning Incorporated WHITE, OPAQUE,ß-SPODUMENE GLASS-CERAMIC ARTICLES WITH INHERENT DAMAGE RESISTANCE AND METHODS FOR MAKING THE SAME
US20160102011A1 (en) 2014-10-08 2016-04-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient

Also Published As

Publication number Publication date
KR102515600B1 (ko) 2023-03-29
TWI763731B (zh) 2022-05-11
KR20190078626A (ko) 2019-07-04
EP3535220B1 (en) 2021-11-17
KR20230141939A (ko) 2023-10-10
KR20190078612A (ko) 2019-07-04
CN110167895A (zh) 2019-08-23
JP2019534234A (ja) 2019-11-28
WO2018085274A3 (en) 2018-06-14
US20180127302A1 (en) 2018-05-10
US11945747B2 (en) 2024-04-02
US10968134B2 (en) 2021-04-06
EP3535219B1 (en) 2022-05-04
WO2018085278A3 (en) 2018-06-21
JP2019532906A (ja) 2019-11-14
KR102584317B1 (ko) 2023-10-04
TW201825427A (zh) 2018-07-16
TW201823175A (zh) 2018-07-01
KR102640112B1 (ko) 2024-02-27
EP3535219A2 (en) 2019-09-11
TWI789367B (zh) 2023-01-11
US20210238080A1 (en) 2021-08-05
EP3535220A2 (en) 2019-09-11
WO2018085278A2 (en) 2018-05-11
CN110167895B (zh) 2022-07-15
WO2018085274A2 (en) 2018-05-11
CN110167894A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
JP7201589B2 (ja) リチウム含有ガラス
US11932574B2 (en) Lithium containing glasses
JP7225329B2 (ja) 薄厚熱強化及び化学強化ガラス系物品
EP3717424B1 (en) Glasses with low excess modifier content
EP3802451B1 (en) Fracture resistant stress profiles in glasses
TWI839488B (zh) 耐刮擦及抗損傷的疊層玻璃製品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210916

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221222

R150 Certificate of patent or registration of utility model

Ref document number: 7201589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150