JP7199585B1 - ocean current trimaran - Google Patents

ocean current trimaran Download PDF

Info

Publication number
JP7199585B1
JP7199585B1 JP2022077318A JP2022077318A JP7199585B1 JP 7199585 B1 JP7199585 B1 JP 7199585B1 JP 2022077318 A JP2022077318 A JP 2022077318A JP 2022077318 A JP2022077318 A JP 2022077318A JP 7199585 B1 JP7199585 B1 JP 7199585B1
Authority
JP
Japan
Prior art keywords
trimaran
power generation
generator unit
hard
propeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022077318A
Other languages
Japanese (ja)
Other versions
JP2023166671A (en
Inventor
勉 桐山
享 藤城
健一 栗原
順 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022077318A priority Critical patent/JP7199585B1/en
Application granted granted Critical
Publication of JP7199585B1 publication Critical patent/JP7199585B1/en
Priority to PCT/JP2023/009755 priority patent/WO2023218750A1/en
Publication of JP2023166671A publication Critical patent/JP2023166671A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/061Rigid sails; Aerofoil sails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/067Sails characterised by their construction or manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/08Connections of sails to masts, spars, or the like
    • B63H9/10Running rigging, e.g. reefing equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】強い風を硬翼帆で受けて帆走する船の航行によって生じる海流で船体の下に設けたプロペラを回転し発電機で電気を起こす海流発電用三胴船を提供する。【解決手段】先細の船首を持つ主胴船2の左右に一対のサイドフロート3、3を設けた硬翼帆51で帆走する三胴船1において、発電用プロペラ62を内蔵する円筒形ダクト4を主胴船2とサイドフロート3の間に設けた。発電用プロペラ62と発電機63は発電機ユニット容器61内に納められ、非発電時には発電機ユニット容器61は吃水上の船内の発電機ユニット収納室25に移動できるようにして、海水の抵抗を減らした。【選択図】図4A trimaran for ocean current power generation is provided in which a propeller provided under the hull is rotated by an ocean current generated by a ship sailing while receiving a strong wind with its hard sails, and electricity is generated by a generator. A trimaran 1 sailing with a hard sail 51 having a pair of side floats 3, 3 provided on the left and right sides of a main hull 2 having a tapered bow, and a cylindrical duct 4 containing a propeller 62 for power generation. was provided between the main hull 2 and the side float 3. The propeller 62 for power generation and the generator 63 are housed in the generator unit container 61, and when not generating power, the generator unit container 61 can be moved to the generator unit storage room 25 in the ship on the draft to reduce seawater resistance. reduced. [Selection drawing] Fig. 4

Description

本発明は海流発電用三胴船、特に台風や強風域での風のエネルギーを電気に変換するに適
した海流発電用三胴船に関する。
TECHNICAL FIELD The present invention relates to a trimaran for ocean current power generation, and more particularly to a trimaran for ocean current power generation suitable for converting wind energy in typhoons and strong wind regions into electricity.

台風等の強い風を硬翼帆で受けて帆走する船の航行によって生じる海流で船体の下に設け
たプロペラを回転させ発電機で電気を起こす発電船はすでに提案されている。
A power-generating ship has already been proposed in which a propeller installed under the hull is rotated by a current generated by a ship sailing against strong winds such as typhoons with hard sails to generate electricity with a generator.

特開2014-184935号公報JP 2014-184935 A

前記先行技術の特開2014-184935号公報に記載されている発電船は、単一の船
体の下にプロペラを突出させ、海流によってプロペラを回転させる構造になっている。そ
のために、(1)背の高い硬翼帆の船では風の勢いで船の横揺れが激しくなる。(2)周
りに囲い等の障害物がないプロペラが回転すると船の進行方向に直交するプロペラの先端
に渦流が発生し海流のエネルギーを吸収するので発電効率が悪くなる。(3)横波が流れ
ている場合はプロペラの回転効率が悪くなり発電効率が低下する等の欠点を有している。
The power generation ship described in the prior art JP 2014-184935 A has a structure in which a propeller protrudes under a single hull and is rotated by ocean currents. For this reason, (1) a tall ship with hard sails is subject to strong rolling due to the force of the wind. (2) When a propeller rotates without an obstacle such as an enclosure around it, a vortex is generated at the tip of the propeller perpendicular to the direction of travel of the ship, absorbing the energy of the ocean current, resulting in poor power generation efficiency. (3) When transverse waves are flowing, the propeller rotation efficiency is deteriorated, resulting in a decrease in power generation efficiency.

本発明は、発電船を三胴船構造にし、発電用のプロペラに円筒状の覆い(以下円筒形ダク
トと称する)を被せることによって前記欠点を除くことを目的としている。
すなわち、本発明は、先細の船首を持つ主胴船の左右に一対のサイドフロートを設けて硬
翼帆で帆走する三胴船において、主胴船と左右のサイドフロートの間の吃水下に一対の長
尺の円筒形ダクトを設け、該円筒形ダクト内に海流により回転する発電用のプロペラを設
けたことを特徴とする。
なお、水の抵抗をすくなくするために、前記サイドフロートの先端を内側に向けて斜めに
カットすることが好ましい。
It is an object of the present invention to eliminate the above drawbacks by making the power-generating ship a trimaran structure and covering the power-generating propeller with a cylindrical cover (hereinafter referred to as a cylindrical duct).
That is, the present invention provides a trimaran sailing with hard sails by providing a pair of side floats on the left and right sides of a main hull having a tapered bow, and a pair of side floats under the draft between the main hull and the left and right side floats. (1) is provided with a long cylindrical duct, and a propeller for power generation that is rotated by the ocean current is provided in the cylindrical duct.
In order to reduce water resistance, it is preferable that the tip of the side float is cut obliquely toward the inside.

さらに、海流により回転する発電用のプロペラを設けた円筒形ダクトの部分を円筒形ダク
ト本体から切り離した円筒形ダクト分離部と発電用プロペラの回転によって発電する発電
機とを一体化して独立した容器に収容して発電機ユニットを構成した。
円筒形ダクトの大きさは主胴船の大きさによっても異なるが、長さは10~200m、直
径は3~20mの範囲にするのが好ましい。
この発電機ユニットは、長尺の円筒形ダクトの先端に設ける以外に、必要に応じて両端、
さらには中間に設けてもよい。
In addition, the cylindrical duct separation part, which is separated from the cylindrical duct body with the propeller for power generation that rotates due to ocean currents, and the generator that generates power by rotating the propeller for power generation, are integrated into an independent container. The generator unit was constructed by accommodating it in
Although the size of the cylindrical duct varies depending on the size of the main hull, it is preferable that the length be in the range of 10 to 200m and the diameter be in the range of 3 to 20m.
In addition to installing this generator unit at the tip of the long cylindrical duct,
Furthermore, you may provide in the middle.

そして、発電機ユニットを吃水上の船体内に設けられた発電機ユニット収納室に移動させ
る発電機ユニット移動装置を設けた。
A generator unit moving device is provided for moving the generator unit to a generator unit storage chamber provided in the hull above the draft.

この発電機ユニット移動装置としては、ロープにより発電機ユニットを懸垂して上下させ
る巻上機、パンタグラフ式上下移動装置、ピストンによる上下移動装置及びラックとピニ
オンによる上下移動装置等を単独又は組み合わせて使用することができる。
As this generator unit moving device, a hoist that suspends the generator unit up and down with a rope, a pantograph type vertical movement device, a vertical movement device with a piston, a vertical movement device with a rack and pinion, etc. can be used alone or in combination. can do.

前記発電用プロペラとしては単独のプロペラ以外にさらに効率を上げるために二重反転プ
ロペラを使用することもできる。二重反転プロペラとは、二組のプロペラを同軸に配置し
、各組を相互に逆回転で駆動させるもので、船体にかかるカウンタートルクを相殺でき、
1組では流れのねじれとして損失となるエネルギーが、相殺により無くなることで効率が
向上する等の利点がある。
In addition to a single propeller, a contra-rotating propeller can be used as the propeller for power generation in order to further increase the efficiency. Contra-rotating propellers are two sets of propellers that are coaxially arranged and driven in opposite directions to each other.
There is an advantage that the efficiency is improved by canceling out the energy that would be lost as the twist of the flow in one set.

前記硬翼帆としては折り畳み可能な硬翼帆を使用する。折り畳み可能な硬翼帆としてつづ
ら折りした硬翼帆を使用し、さらに、硬翼帆をハニカム構造に構成することが好ましい。
ハニカム構造体は、炭素繊維補強直交織物をエポキシ樹脂に含浸した平板とハニカム層を
交互に重ねて5層ないし9層、厚さ約5cmに積層する。
A foldable hard sail is used as the hard sail. It is preferred to use a serpentine hard sail as the foldable hard sail and further to configure the hard sail in a honeycomb structure.
The honeycomb structure is formed by alternately stacking flat plates impregnated with epoxy resin with carbon fiber reinforced orthogonal fabrics and honeycomb layers to form 5 to 9 layers with a thickness of about 5 cm.

三胴船の自主運行手段として、電気モーターで前記発電機ユニットのプロペラを回転させ
て推進させる方法、デーゼル機関によるスクリュー推進方法およびウオータージェット推
進方法のいずれか、又はその組み合わせを使用することができる。
As a means of independent operation of the trimaran, any one of a method of rotating the propeller of the generator unit with an electric motor to propel the propeller, a screw propulsion method with a diesel engine, and a water jet propulsion method, or a combination thereof can be used. .

三胴船の発電機ユニットで発電された電気エネルギーを蓄積する手段としては蓄電器を使
用することが、一般であるが、電気エネルギーを水素に変換して蓄積することにより、そ
の容量を減らすことができる。
It is common to use a capacitor as a means of storing the electrical energy generated by the generator unit of a trimaran, but its capacity can be reduced by converting the electrical energy to hydrogen and storing it. can.

さらに、三胴船の甲板上に垂直回転軸式風力発電装置を設け、風力を利用して発電を起こ
させることも可能である。
Furthermore, it is also possible to install a vertical rotating shaft type wind power generator on the deck of the trimaran and use wind power to generate power.

本発明は、主胴船の左右に一対のサイドフロートを設けて三胴船構造としたので、背の高
い硬翼帆で帆走しても横揺れを防止することができる。
In the present invention, a pair of side floats are provided on the left and right sides of the main hull to form a trimaran structure.

先細の船首を持つ主胴船と左右のサイドフロートの間の吃水下に一対の長尺の円筒形ダク
トを設け、該円筒形ダクト内に海流により回転する発電用のプロペラを設けたので、主胴
船の先細の船首とサイドフロートの先端との間に三角形の海域ができ、そこに海流が流れ
込み、いわゆるトランペット効果によって、海流が勢いよく円筒形ダクト内に流れ込むの
で円筒形ダクト内のプロペラの回転数を上げ、発電効率を上げることができる。又、横波
の場合でもサイドフロートが横波を止め、前記の三角形の海域で船の進行方向に海流を整
流化させて横波による円筒形ダクトに流入する海流の勢いを減らす作用を抑制することが
できる。
さらに、前記サイドフロートの先端を内側に向けて斜めにカットすることにより、前記ト
ランペット効果を助長することができる。
なお、円筒形ダクトは海流を整流化させプロペラ先端から発する渦流の発生を抑えるので
、効率よく海流のエネルギーをプロペラの回転に変換でき発電効率を高める。
A pair of long cylindrical ducts are installed under the draft between the main hull with a tapered bow and the left and right side floats, and a propeller for power generation that rotates due to the ocean current is installed in the cylindrical ducts. A triangular sea area is formed between the tapered bow of the hull and the tip of the side float, and the ocean current flows into it. You can increase the power generation efficiency by increasing the rotation speed. In addition, even in the case of transverse waves, the side floats stop the transverse waves, rectify the ocean currents in the direction of travel of the ship in the triangular sea area, and suppress the effect of reducing the momentum of the ocean currents flowing into the cylindrical duct due to the transverse waves. .
Furthermore, the trumpet effect can be promoted by cutting the tip of the side float obliquely toward the inside.
In addition, the cylindrical duct rectifies the ocean current and suppresses the generation of eddy currents generated from the tip of the propeller, so the energy of the ocean current can be efficiently converted into the rotation of the propeller, increasing the power generation efficiency.

海流により回転する発電用のプロペラを設けたダクトの部分を円筒形ダクト本体から切り
離した円筒形ダクト分離部を発電用プロペラの回転によって発電する発電機と一体化して
発電機ユニットを構成し、吃水上の船内に移動させる手段を設けたので、発電休止中は、
発電機ユニットを発電機ユニット収納室に待避させ水の抵抗を弱めることができる。また
、発電機ユニットのメンテナンスを吃水上の船内で行うことができる。
A generator unit is constructed by integrating the cylindrical duct separation part, which is separated from the cylindrical duct body with the propeller for power generation that rotates due to the ocean current, with the generator that generates power by the rotation of the propeller for power generation. Since we have provided a means to move it inside the ship on the water, during the power generation stop,
The generator unit can be retracted into the generator unit storage room to reduce water resistance. In addition, maintenance of the generator unit can be carried out onboard on the draft.

前記発電用プロペラとしては単独のプロペラ以外にさらに効率を上げるために二重反転プ
ロペラを使用することにより、発電効率を上げることができる。
Power generation efficiency can be increased by using a contra-rotating propeller as the propeller for power generation in order to further increase efficiency in addition to a single propeller.

硬翼帆としては折り畳み可能な硬翼帆を使用したので、風の強弱に応じて帆の面積を変え
ることができる。また、無風時自主運行する場合、帆を完全に折りたたむことにより、風
の抵抗をなくすことができる。さらに、つづら折りした硬翼帆を使用することにより簡単
な構造で、伸縮可能になり、さらに、硬翼帆を炭素繊維ハニカム構造にしたので、軽量で
しかも堅牢で帆の伸縮操作を容易にし、長期使用にも耐えうる効果を有する。
A foldable hard sail was used as the hard sail, so the sail area can be changed according to the strength of the wind. In addition, when operating independently in no wind, wind resistance can be eliminated by completely folding the sails. In addition, the use of a zigzag hard sail makes it possible to extend and retract the sail with a simple structure, and the carbon fiber honeycomb structure of the hard sail makes it lightweight and robust, making it easy to extend and retract the sail. It has an effect that can withstand use.

三胴船の自主運行手段として、電気モーターで前記発電機ユニットのプロペラを回転させ
て推進させる方法、デーゼル機関によるスクリュー推進方法およびウオータージェット推
進機関を設けたので、台風消滅後速やかに所定の場所に運行することができる。
As a means of independent operation of the trimaran, a method of rotating the propeller of the generator unit with an electric motor to propel it, a screw propulsion method with a diesel engine, and a water jet propulsion system were provided, so that it can be quickly moved to a predetermined place after the typhoon disappears. can operate to

三胴船の発電機ユニットで発電された電気エネルギーを蓄積する手段としては蓄電器を使
用する以外に、電気エネルギーを水素に変換して蓄積する手段を設けたことにより、蓄積
容量を減らすことができる。
In addition to using a capacitor as a means of storing the electrical energy generated by the generator unit of the trimaran, the storage capacity can be reduced by providing a means of converting the electrical energy into hydrogen and storing it. .

さらに、三胴船の甲板上に台風に強い垂直回転軸式風力発電装置を設けたので、追加的に
風力を利用して発電を起こさせることができる。
In addition, since a typhoon-resistant vertical rotating shaft wind power generator is installed on the deck of the trimaran, additional wind power can be used to generate power.

本発明の一実施例の海流発電用三胴船の斜視図。1 is a perspective view of a trimaran for ocean current power generation according to an embodiment of the present invention; FIG. 図1の平面図。FIG. 2 is a plan view of FIG. 1; 図1の裏面図。FIG. 2 is a back view of FIG. 1; 図1の正面図。FIG. 2 is a front view of FIG. 1; 図4のA-A線断面図。FIG. 5 is a cross-sectional view along the line AA of FIG. 4; 発電機ユニットの正面図。The front view of a generator unit. 図6のB-B線断面図。FIG. 7 is a cross-sectional view along the line BB of FIG. 6; 発電機ユニットの斜視図Perspective view of generator unit 硬翼帆の部分斜視図。Partial perspective view of a rigid sail. 折り畳み構造の硬翼帆の使用方法を説明するための説明図。Explanatory drawing for demonstrating the usage method of the hard wing sail of a folding structure. 本発明の他の実施例の硬翼帆の正面図。FIG. 4 is a front view of a hard sail according to another embodiment of the present invention; 図11の硬翼帆を若干折り畳んだ状態を示す側面図。Fig. 12 is a side view showing a slightly folded state of the hard sail of Fig. 11; 図12のC-C線断面図。CC line sectional view of FIG. 台風の進路と本発明の海流発電用三胴船の進路を表す説明図。Explanatory drawing showing the course of a typhoon and the course of the trimaran for ocean current power generation of the present invention.

以下、図面を参照して本発明の実施形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は実施例1の海流発電用三胴船の斜視図を示し、図2はその平面図、図3はその裏面
図を示すものである。
先細の船首20を持つ主胴船2の両脇に一対のサイドフロート3、3が設けられている。
主胴船2及び一対のサイドフロート3,3の間で甲板22の下に一対の発電用の円筒形ダ
クト4,4が設けられている。
このように先細の船首20を持つ主胴船2と一対のサイドフロート3、3の間に一対の発
電用の円筒形ダクト4,4を設けたので、先細の主胴船の船首20とサイドフロート3の
間に略三角形の海域ができ、船の進行に従って海流が圧縮され急速な流れとなって発電用
の円筒形ダクト4の中に流れ込むので円筒形ダクト4内に設けられた発電用プロペラの回
転数を高め発電効率を向上させることができる。この効果をさらに高めるためには、サイ
ドフロート3の先端の内側を図2に示すように斜めにカットすることが好ましい。
FIG. 1 shows a perspective view of a trimaran for ocean current power generation of Example 1, FIG. 2 shows its plan view, and FIG. 3 shows its rear view.
A pair of side floats 3, 3 are provided on both sides of a main hull 2 having a tapered bow 20. - 特許庁
A pair of cylindrical ducts 4, 4 for power generation are provided below the deck 22 between the main hull 2 and the pair of side floats 3, 3.
Since the pair of cylindrical ducts 4, 4 for power generation are provided between the main hull 2 having the tapered bow 20 and the pair of side floats 3, 3, the bow 20 and the side floats of the tapered main hull are provided. A substantially triangular sea area is formed between the floats 3, and as the ship advances, the sea current is compressed and becomes a rapid flow and flows into the cylindrical duct 4 for power generation. It is possible to increase the rotation speed of the motor and improve the power generation efficiency. In order to further enhance this effect, it is preferable to cut the inside of the tip of the side float 3 obliquely as shown in FIG.

主胴船2の前方及び後方には風力推進用の硬翼帆51が2個ずつ計4個取り付けられてい
る。主胴船2の前には前方操舵室23が、後方には後方操舵室24が設けられている。甲
板22の4隅には円筒形ダクト内のプロペラ62を非発電時に収容するための発電機ユニ
ット収納室25が設けられている。
発電機ユニット収納室25の裏には発電機ユニットのメンテナンス用の開閉扉が設けられ
ている。
甲板22上に左右4個ずつの垂直回転軸型風力発電機7が設けられている。さらに、左右
のサイドフロート3上には2個ずつの垂直回転軸型風力発電機7が設けられている。
A total of four hard sails 51 for wind propulsion are attached to the front and rear of the main hull 2, two each. A front steering room 23 is provided in front of the main hull 2, and a rear steering room 24 is provided behind it. At the four corners of the deck 22 are provided generator unit storage chambers 25 for storing the propellers 62 in the cylindrical ducts during non-power generation.
An opening/closing door for maintenance of the generator unit is provided on the back side of the generator unit storage chamber 25 .
Four vertical rotating shaft wind power generators 7 are provided on each side of the deck 22 . Furthermore, two vertical rotating shaft wind power generators 7 are provided on each of the left and right side floats 3 .

図2は、海流発電用三胴船1の平面図で、主胴船2の船首20は先細をしている。又主胴
船2の左右に1対のサイドフロート3,3が設けられている。甲板22上には4隅に発電
機ユニット収納室25が設けられている。主胴船2の前方には前方操舵室23が、後方に
は後方操舵室24がそれぞれ設けられている。
又主胴船2の前方には硬翼帆51を取り付けた1本の支柱52がターンテーブル21に取
り付けられている。
甲板22上及びサイドフロート3上には、垂直回転軸型風力発電機7が設けられている。
FIG. 2 is a plan view of the trimaran 1 for ocean current power generation, and the bow 20 of the main hull 2 is tapered. A pair of side floats 3, 3 are provided on the left and right sides of the main hull 2. Generator unit storage rooms 25 are provided at four corners on the deck 22 . A front steering room 23 and a rear steering room 24 are provided at the front and rear of the main hull 2, respectively.
A single strut 52 to which a hard sail 51 is attached is attached to the turntable 21 in front of the main hull 2 .
A vertical rotating shaft wind power generator 7 is provided on the deck 22 and the side float 3 .

図3は、海流発電用三胴船1の裏面図で、主胴船2の左右に1対のサイドフロート3,3
が設けられている。主胴船2と一対のサイドフロート3の間には1対の発電用の円筒形ダ
クト4が取り付けられている。円筒形ダクト4は円筒形ダクト固定用U字板43によって
主胴船2及びサイドフロート3のそれぞれの側面に固定されている。船尾には自力推進用
のスクリュー8が設けられている。
FIG. 3 is a rear view of the trimaran 1 for ocean current power generation.
is provided. A pair of cylindrical ducts 4 for power generation are attached between the main hull 2 and the pair of side floats 3 . The cylindrical duct 4 is fixed to each side surface of the main hull 2 and the side float 3 by U-shaped plates 43 for fixing the cylindrical duct. A screw 8 for self-propulsion is provided at the stern.

円筒形ダクト4の前端及び後端には発電機ユニット6が円筒形ダクト4の本体とは分離可
能に設けられている。図3の右側の円筒形ダクト4の下には発電機ユニット6が下に下が
り過ぎないようにストッパー44が設けられている。
図3の左側の円筒形ダクトは断面図で示されている。円筒形ダクト4の前後に発電機ユニ
ット6が分離可能に設けられ、その中に発電用の二重反転プロペラ62が設けられている
。円筒形ダクト4を主胴船2及びサイドフロート3に固定するための固定用U字板43の
前端及び後端は発電機ユニット6が下がり過ぎるのを防止するためのストッパー44とし
て機能している。
Generator units 6 are provided at the front and rear ends of the cylindrical duct 4 so as to be separable from the body of the cylindrical duct 4 . A stopper 44 is provided below the cylindrical duct 4 on the right side of FIG. 3 to prevent the generator unit 6 from falling too far.
The cylindrical duct on the left side of FIG. 3 is shown in cross section. A generator unit 6 is separably provided before and after the cylindrical duct 4, and a contra-rotating propeller 62 for power generation is provided therein. The front and rear ends of the fixing U-shaped plate 43 for fixing the cylindrical duct 4 to the main hull 2 and the side floats 3 function as stoppers 44 for preventing the generator unit 6 from being lowered too much. .

図4は海流発電用三胴船の正面図で、主胴船2の左右に一対のサイドフロート3,3があ
り、その間に一対の発電用円筒形ダクト4,4が存在する。
主胴船2の上には前方操舵室23,硬翼帆51が設けられ、主胴船2の甲板22を貫通し
て発電機ユニット収納室25が設けられている。甲板22の上には垂直回転軸型風力発電
機7が設けられている。各発電機で発電された電力は主胴船2の蓄電器保管庫28内の蓄
電器に充電される。
FIG. 4 is a front view of a trimaran for ocean current power generation. A pair of side floats 3, 3 are provided on the left and right sides of a main hull 2, and a pair of cylindrical ducts 4, 4 for power generation are present between them.
A forward steering room 23 and a hard sail 51 are provided on the main hull 2 , and a generator unit storage room 25 is provided through the deck 22 of the main hull 2 . A vertical rotating shaft wind power generator 7 is provided on the deck 22 . The electric power generated by each generator is charged in a battery in the battery storage 28 of the main hull ship 2 .

図5は図4のA-A線断面図で、発電機ユニット用容器61の前は前板612で塞がれて
いる。円筒形ダクトの本体41の前の部分は切り離されて円筒形ダクト分離部42を構成
している。前後の二重反転プロペラ621,622、前後の発電機631,632を内蔵
する発電機ユニット用容器61全体を発電機ユニット6と総称する。
即ち、発電ユニットは、図8に示されるように、前後の二重反転発電用プロペラ621,
622を内蔵した円筒形ダクト分離部42と、仕切り板614上の前後の発電機631,
632とが発電機ユニット用容器61に収納されて独立した箱体として構成されている。
なお、図中613は容器61の上板である。
図5に示されるように、発電機ユニット6は発電機ユニット収納室25内を上下に移動で
きるように構成されている。即ち、発電機ユニット6は巻上機26にロープ27で繋引さ
れて、発電機ユニット収納室25内を上下に移動できる。
主胴船2とサイドフロート3とは円筒形ダクト固定用U字板43で接続されている。この
U字板43の前端部は上下に移動する発電機ユニット6のストッパー44としても機能す
る。
FIG. 5 is a cross-sectional view taken along line AA of FIG. The front portion of the cylindrical duct body 41 is cut away to form a cylindrical duct separation 42 . The entire generator unit container 61 containing the front and rear contra-rotating propellers 621 and 622 and the front and rear generators 631 and 632 is collectively referred to as a generator unit 6 .
That is, as shown in FIG. 8, the power generation unit includes front and rear contra-rotating propellers 621,
Cylindrical duct separation part 42 with built-in 622, and front and rear generators 631 on partition plate 614,
632 are accommodated in the generator unit container 61 to form an independent box.
In addition, 613 in the figure is the upper plate of the container 61 .
As shown in FIG. 5, the generator unit 6 is configured to be vertically movable within the generator unit storage chamber 25 . That is, the generator unit 6 is tethered to the hoist 26 by the rope 27 and can move up and down in the generator unit storage chamber 25 .
The main hull 2 and the side float 3 are connected by a U-shaped plate 43 for fixing the cylindrical duct. The front end of the U-shaped plate 43 also functions as a stopper 44 for the generator unit 6 that moves up and down.

主胴船2の甲板22を貫通して設けられた発電機ユニット収納室25内に巻上機26にロ
ープ27で懸垂された発電機ユニット6が上下に移動できる構成が図示されている。
即ち、底が解放された発電機ユニット収納室25の底に発電機ユニット6の上部が挿入さ
れ、ロープ27を巻上機26で巻き上げると発電機ユニット6は吃水面9よりも上の位置
に移動できる。ロープ27を下げると発電機ユニット6は下降し、円筒形ダクト固定用U
字板43の前端にあるストッパー44の位置で固定される。
A configuration is shown in which the generator unit 6 suspended by the rope 27 from the hoist 26 in the generator unit storage chamber 25 provided through the deck 22 of the main hull ship 2 can move up and down.
That is, when the upper part of the generator unit 6 is inserted into the bottom of the generator unit storage chamber 25 whose bottom is open, and the rope 27 is hoisted up by the hoist 26, the generator unit 6 is positioned above the draft surface 9. can move. When the rope 27 is lowered, the generator unit 6 is lowered, and the cylindrical duct fixing U
It is fixed at the position of the stopper 44 at the front end of the dial 43 .

図6は、発電機ユニット6及びそれを納めた発電機ユニット収納室25の正面図で、図7
は図6のB-B線断面図である。発電機ユニット6の上部は発電機ユニット収納室25の
解放された底部に挿入されている。発電機ユニット6の下部は、円筒形ダクトの本体を主
胴船及びサイドフロートの側面に固定するための円筒形ダクト固定用U字板43の前端に
接続されたストッパー44によってそれ以上下方に移動するのを防止している。発電機ユ
ニット収納室25の後ろは上に持ち上げた発電機ユニット6のメンテナンスを行うために
スライド式の開閉扉252が設けられている(図7参照)。
二重反転プロペラ62は円筒形ダクト分離部42に設けられた軸受用支柱615に設けら
れた回転軸616に取り付けられている。
図7に示されるように、発電機ユニット6内には二重反転プロペラが内蔵され、前のプロ
ペラ621の回転力はベベルギア64によって垂直回転軸617,ベベルギア65を経て
前の発電機631に伝えられる。後ろのプロペラ622の回転力はベベルギア64によっ
て垂直回転軸617,ベベルギア65を経て後ろの発電機632に伝えられ。発電機63
1,632で発電された電力は蓄電器保管庫28内の蓄電器に蓄電される。
FIG. 6 is a front view of the generator unit 6 and the generator unit storage chamber 25 in which it is housed, and FIG.
6 is a cross-sectional view taken along line BB of FIG. The upper portion of the generator unit 6 is inserted into the open bottom of the generator unit storage chamber 25 . The lower part of the generator unit 6 is moved further downward by a stopper 44 connected to the front end of a cylindrical duct fixing U-shaped plate 43 for fixing the main body of the cylindrical duct to the sides of the main hull and side floats. prevent you from doing so. A sliding door 252 is provided behind the generator unit storage chamber 25 for maintenance of the generator unit 6 lifted upward (see FIG. 7).
The contra-rotating propeller 62 is attached to a rotating shaft 616 provided on a bearing strut 615 provided in the cylindrical duct separation portion 42 .
As shown in FIG. 7, a contra-rotating propeller is built in the generator unit 6, and the rotational force of the front propeller 621 is transmitted by the bevel gear 64 to the front generator 631 via the vertical rotation shaft 617 and the bevel gear 65. be done. The rotational force of the rear propeller 622 is transmitted by the bevel gear 64 to the rear generator 632 via the vertical rotary shaft 617 and the bevel gear 65 . generator 63
The electric power generated at 1,632 is stored in the capacitor in the capacitor storage 28 .

図9は硬翼帆の構造を説明するための部分的斜視図である。
金属、ガラス繊維強化プラスチック又は炭素繊維補強ハニカム構造体等で形成された硬翼
帆板511の上下端にそれぞれ上向き突起軸受512と下向き突起軸受513が設けられ
ている。この硬翼帆板511を6枚回転軸514で連結して、一つの硬翼帆51を形成する
。その際、連結する硬翼帆板511の突起軸受の一つおきに摺動リング515のパイプ5
16を突起軸受の中央の空間部に挿入して回転軸514を通しナット518で固定する。
支柱52に硬翼帆51を取り付けるために、図10で示す様に硬翼帆51の最上端、第2
、第3の硬翼帆板511の継ぎ目、第4、第5の硬翼帆板511の継ぎ目に摺動リング5
15が取り付けられる。摺動リング515には支柱52との滑りをよくするためにその表
面にシリコン樹脂が塗布されている。
FIG. 9 is a partial perspective view for explaining the structure of the hard sail.
An upward protrusion bearing 512 and a downward protrusion bearing 513 are provided at the upper and lower ends of a hard wing sail plate 511 formed of metal, glass fiber reinforced plastic, carbon fiber reinforced honeycomb structure, or the like. The six hard sail plates 511 are connected by rotating shafts 514 to form one hard sail 51 . At that time, the pipe 5 of the slide ring 515 is attached to every other protrusion bearing of the hard blade sail plate 511 to be connected.
16 is inserted into the space in the center of the projection bearing, the rotating shaft 514 is passed through and fixed with a nut 518 .
In order to attach the hard sail 51 to the strut 52, as shown in FIG.
, the third hard wing sail plate 511 , and the joints of the fourth and fifth hard wing sail plates 511 .
15 is attached. The surface of the sliding ring 515 is coated with silicon resin to improve the sliding with the strut 52 .

図10は折り畳み構造の硬翼帆の使用方法を説明するための説明図で、同図(A)に示す
様に支柱52に6枚連結の硬翼帆板511が折りたたまれた状態で取り付けられている。
支柱52はターンテーブル521に立設されている。ターンテーブル521はボールベア
リング522を介して甲板22上に固定された座金523上に回転自在に取り付けられて
いる。ターンテーブル521の下に固定された回転軸538は座金523を貫通してベベ
ルギア524に結合される。ベベルギア524はスタンド525の上にボールベアリング
522bを介して回転自在に支承されている。
連結された最上端の硬翼帆板511にロープ527を連結し、滑車526を介して巻上機
528で巻き上げると図(B)のように連結された硬翼帆板511は広がってゆき、図(
C)のように展開される。
展開された硬翼帆板511を下ろすには巻上機528のロックを外せば自重によって折り
たたまれるが、摩擦で降下しない場合は巻取機529でロープ527bを巻き取り強制的に
折りたたむこともできる。
FIG. 10 is an explanatory diagram for explaining how to use the folding hard sail. As shown in FIG. ing.
The support 52 is erected on the turntable 521 . The turntable 521 is rotatably mounted on a washer 523 fixed on the deck 22 via a ball bearing 522 . A rotary shaft 538 fixed under the turntable 521 passes through the washer 523 and is connected to the bevel gear 524 . Bevel gear 524 is a ball bearing on stand 525
It is rotatably supported via 522b.
When a rope 527 is connected to the hard wing plate 511 at the top end and hoisted by a hoisting machine 528 through a pulley 526, the hard wing plate 511 is spread as shown in FIG. figure(
C) is expanded.
To lower the unfolded hard wing sail plate 511, the hoisting machine 528 is unlocked so that it can be folded by its own weight. .

実施例2として、二本柱の支柱を有する硬翼帆を使用する海流発電用三胴船につて説明す
る。図11は二本柱の支柱を有する硬翼帆の正面図である。
二本柱の硬翼帆53は、二本の支柱54に6枚の硬翼帆板531が連結された硬翼帆が摺
動枠534で取り付けられている。又、第1層の硬翼帆板には2本の補強片535が取り
付けられている。二本の支柱54,54はその上端で支柱固定片541により連結され、
下端はターンテーブル537に固定されている。
第1層の硬翼帆板531の上には摺動枠534を取り付けるための接続板533が取り作
られている。第1層硬翼帆板と第2層硬翼帆板とは連結板532で屈曲自在に連結されて
いる。第2層硬翼帆板と第3層硬翼帆板の間は摺動枠の付いた接続板533で屈曲自在に
連結されている。
以下同様に第3層の硬翼帆板と第4層の硬翼帆板は連結板532で接続され、第4層の硬
翼帆板と第5層の硬翼帆板は摺動枠用接続板533で接続され、第5層の硬翼帆板と第6
層の硬翼帆板は連結板532で接続されている。
最下端の第6層の硬翼帆板531は2本の補強片535で補強され、その下端はターンテ
ーブル537に固定されている。
As Example 2, a trimaran for ocean current power generation using hard sails having two struts will be described. FIG. 11 is a front view of a hard sail with double post struts.
The two-pillar hard sail 53 is attached with a sliding frame 534 by connecting six hard sail plates 531 to two struts 54 . Also, two reinforcing pieces 535 are attached to the hard wing sail plate of the first layer. The two struts 54, 54 are connected at their upper ends by a strut fixing piece 541,
The lower end is fixed to the turntable 537 .
A connecting plate 533 for attaching a sliding frame 534 is prepared on the first layer hard wing sail plate 531 . The first layer hard wing sail plate and the second layer hard wing sail plate are connected by a connecting plate 532 so as to be flexible. A connecting plate 533 with a sliding frame is connected between the second layer hard wing sail plate and the third layer hard wing sail plate so as to be flexible.
Similarly, the third layer hard sail plate and the fourth layer hard sail plate are connected by a connecting plate 532, and the fourth layer hard sail plate and the fifth layer hard sail plate are used for sliding frames. Connected by a connecting plate 533, the fifth layer hard sail plate and the sixth layer
The hard sails of the layers are connected by connecting plates 532 .
The hard wing sail board 531 of the sixth layer at the bottom end is reinforced with two reinforcing pieces 535, and its lower end is fixed to the turntable 537. As shown in FIG.

硬翼帆板531はエポキシ含浸した炭素繊維補強直交織物の平板で形成され、この平板の
間にガラス繊維補強エポキシ樹脂で形成された昭和飛行機製ハニカム層を積層し、さらに
この積層体を2~9層積層して構成する。
エポキシ含浸した炭素繊維補強ハニカム構造体を有する硬翼帆は、三菱化学製のグリシジ
ルアミン型エポキシ樹脂と三菱化学製のジシアンジアミド硬化剤を含侵させて東邦テナッ
クス製の炭素繊維にて直交織物(W-3101)を作り、昭和飛行機製のハニカムと積層
接着させて熱炉内にて硬化プレス成形して厚さ約5mmの3層構造の硬翼帆の素材を作成
する。
次に、ポリエステル樹脂から成り内部に発砲スチロールが充填された断面が台形の長尺成
形芯体を成形し、次に三菱化学製のグリシジルアミン型エポキシ樹脂と三菱化学製のジシ
アンジアミド硬化剤をコーティングした東邦テナックス製の炭素繊維HTS40-12K
をワインディング技術により周囲表面を補強し大型炉内にて熱硬化させて、エポキシ樹脂
で硬化した炭素繊維補強の台形補強構造体を作り、硬帆のつなぎ部分の補強体を製造する
(ワインディング技術は特許6663626号公報および特開平01-113227公報
参照)。
また、摺動枠534はエポキシ樹脂含浸炭素繊維補強ワインディングで成形し、接続片5
6とは強力接着剤で接合する。
The hard wing sail plate 531 is formed of flat plates of carbon fiber reinforced orthogonal fabric impregnated with epoxy, and honeycomb layers made of glass fiber reinforced epoxy resin made by Showa Aircraft Co., Ltd. are laminated between the flat plates. It is constructed by laminating nine layers.
A hard sail with an epoxy-impregnated carbon fiber reinforced honeycomb structure is impregnated with Mitsubishi Chemical's glycidylamine type epoxy resin and Mitsubishi Chemical's dicyandiamide curing agent, and is cross-woven with Toho Tenax's carbon fiber (W -3101), laminated and bonded with a honeycomb manufactured by Showa Aircraft Co., Ltd., and cured and press-molded in a hot furnace to create a material for a three-layer hard sail with a thickness of about 5 mm.
Next, a long molded core made of polyester resin and filled with expanded polystyrene and having a trapezoidal cross section was formed, and then coated with a glycidylamine type epoxy resin manufactured by Mitsubishi Chemical and a dicyandiamide curing agent manufactured by Mitsubishi Chemical. Carbon fiber HTS40-12K made by Toho Tenax
The surrounding surface is reinforced by winding technology and heat-cured in a large furnace to create a trapezoidal reinforcing structure with carbon fiber reinforcement that is cured with epoxy resin, and to manufacture the reinforcing body for the joining part of the hard sail (winding technology is See Japanese Patent No. 6663626 and Japanese Unexamined Patent Publication No. 01-113227).
In addition, the sliding frame 534 is molded with epoxy resin-impregnated carbon fiber reinforced winding, and the connecting piece 5
6 is joined with a strong adhesive.

図12は硬翼帆を引き延ばす状態を示す説明図である。支柱固定片541に取り付けられ
た滑車526にロープ527をかけ、ロープ527を巻上機(図示せず)で巻き上げ、硬
翼帆53を引き上げる。各硬翼帆板531と接続板533,硬翼帆板531と連結板53
2の間は蝶番539で接続されているので各硬翼帆板は図のように折り曲げられる。摺動
枠用接続板533には摺動枠534が接続片56を介して接続され、摺動枠534は支柱
54に嵌められ上下に摺動できるように構成されている。
FIG. 12 is an explanatory diagram showing a state in which the hard sail is extended. A rope 527 is hung on a pulley 526 attached to a column fixing piece 541 , and the rope 527 is hoisted up by a hoist (not shown) to pull up the hard sail 53 . Each hard wing sail plate 531 and connecting plate 533, hard wing sail plate 531 and connecting plate 53
2 are connected by hinges 539, each hard wing plate is bent as shown in the figure. A sliding frame 534 is connected to the sliding frame connecting plate 533 via a connecting piece 56, and the sliding frame 534 is fitted to the support 54 so as to slide up and down.

図13は図12のC-C線断面図で摺動枠534の詳細図である。
十字型をした摺動枠534の内部の四角の空白部に四角の支柱54を嵌める。摺動枠53
4には、四角の支柱54の各面に接触するゴムローラ55が軸受552に支承された回転
軸551によって回動自在に取り付けられている。
摺動枠534は接続片56、それに接続された摺動枠取付板57で硬翼帆の摺動枠用接続
板533に結合されている。摺動枠用接続板533は摺動枠取付板57とそれとは独立し
た摺動枠取付板58で挟み付け止め金581で固定されている。図中537は二本の支柱
54が立設されたターンテーブルである。
なお、図13に示されている摺動枠は1枚の金属板を折り曲げ加工して2つの摺動枠53
4,接続片56,摺動枠取付板57を一体化して製造することも可能である。
13 is a cross-sectional view taken along line CC of FIG. 12 and is a detailed view of the sliding frame 534. As shown in FIG.
A square post 54 is fitted into a square blank inside the cross-shaped sliding frame 534 . sliding frame 53
4, rubber rollers 55 are rotatably mounted on rotating shafts 551 supported by bearings 552. The rubber rollers 55 are in contact with the respective surfaces of the square support 54. As shown in FIG.
The sliding frame 534 is connected to the sliding frame connecting plate 533 of the hard sail by means of the connecting piece 56 and the sliding frame mounting plate 57 connected thereto. The sliding frame connecting plate 533 is clamped between the sliding frame mounting plate 57 and the sliding frame mounting plate 58 independent therefrom and fixed with a clasp 581 . Reference numeral 537 in the drawing denotes a turntable on which two pillars 54 are erected.
The sliding frame shown in FIG. 13 is formed by bending one metal plate into two sliding frames 53.
4. The connecting piece 56 and the sliding frame mounting plate 57 can be manufactured integrally.

図14は、台風の進路と本発明の海流発電三胴船の進路及び硬翼帆の角度を示す説明図で
ある。
台風R1(R2は台風の目)は右回りに風力が段々強くなる。従って、台風の勢力が強い
場合S1では、台風の後ろ左の位置に発電用三胴船T1を位置させ、硬翼帆の角度を5時
-11時方向に向け、台風の進路方向Pと同じ方向Qに向けて帆走し海流発電を行う。風
がやや強い場合S2の時は、三胴船をT2の位置に置き、硬翼帆の角度を4時-10時の
方向に向け、台風の進路方向Qに向けて帆走し海流発電を行う。風がやや弱いS3の場合
は三胴船をT3に位置させ、硬翼帆の角度を3時-9時に方向に向ける。
このような三胴船を50隻~1000隻単位で並べて帆走し、台風の勢力を吸収し台風の
勢いを弱めながら発電させる。
台風の発電を中止した場合は、自力推進用スクリュー8を使用して母港ないしは潮流発電
を行う場所に移動して、繋留状態で発電を行う。この自力推進の場合は、発電機ユニット
6は発電機ユニット収納室25に引き上げて、発電機ユニット6による海流の抵抗を軽減
させる。
FIG. 14 is an explanatory diagram showing the course of a typhoon, the course of the ocean current power generation trimaran of the present invention, and the angles of the hard sails.
Typhoon R1 (R2 is the eye of the typhoon) rotates clockwise and the wind force gradually increases. Therefore, when the force of the typhoon is strong in S1, the trimaran for power generation T1 is positioned behind and to the left of the typhoon, and the angle of the hard sail is directed in the direction of 5 o'clock to 11 o'clock, which is the same as the course direction P of the typhoon. It sails in direction Q and generates ocean current power. If the wind is a little strong, at S2, place the trimaran at T2, turn the angle of the hard sails in the direction of 4 o'clock to 10 o'clock, and sail in the direction of the typhoon's course Q to generate power from the ocean current. . For slightly less wind S3, position the trimaran at T3 with the hard sail angled in the direction of 3 o'clock to 9 o'clock.
Approximately 50 to 1,000 such trimarans are lined up and sailed to absorb the force of the typhoon and generate electricity while weakening the force of the typhoon.
When the power generation of the typhoon is stopped, the self-propulsion screw 8 is used to move to the home port or the place where the tidal current power generation is performed, and the power generation is performed in the moored state. In the case of self-propulsion, the generator unit 6 is lifted into the generator unit storage room 25 to reduce the resistance of the ocean current caused by the generator unit 6 .

1.海流発電用三胴船
2.主胴船
3.サイドフロート
4.円筒形ダクト
51.硬翼帆
6.発電機ユニット
7.垂直回転軸型風力発電機
8.推進用スクリュー
1. Trimaran for ocean current power generation2. Main hull 3 . side float4. Cylindrical duct 51 . Hard sail6. generator unit 7 . Vertical rotary shaft type wind power generator8. propulsion screw

Claims (6)

先細の船首を持つ主胴船の左右に一対のサイドフロートを有し、硬翼帆で帆走する三胴船
において、主胴船とサイドフロートの間の吃水下に一対の長尺の円筒形ダクトを設け、該
円筒形ダクト内に海流により回転する発電用プロペラを設けると共に、該発電用プロペラ
を設けた円筒形ダクト部分を円筒形ダクト本体から切り離した円筒形ダクト分離部と発電
用プロペラによって発電する発電機とを一体化した発電機ユニットを吃水上の船体内に移
動させる発電機ユニット移動手段を設けたことを特徴とする強風に適した海流発電用三胴
船。
A trimaran sailing with hard sails, having a pair of side floats on either side of a main hull with a tapered bow, a pair of long cylindrical ducts under the draft between the main hull and the side floats. is provided, a propeller for power generation that rotates due to ocean currents is provided in the cylindrical duct, and the propeller for power generation
Cylindrical duct separating part and power generation
A generator unit integrated with a generator that generates electricity with a propeller is moved inside the hull above the draft.
A trimaran for ocean current power generation suitable for strong winds, characterized in that it is provided with generator unit moving means for moving.
前記発電機ユニット移動手段として、ロープにより発電機ユニットを懸垂して上下させる
巻上機、パンタグラフ式上下移動装置、ピストンによる上下移動装置及びラックとピニオ
ンによる上下移動装置の群から選ばれた1種を使用する又は2種以上を併用することを
特徴とする請求項1に記載の強風に適した海流発電用三胴船。
As the generator unit moving means, one type selected from the group of a hoist that suspends and moves the generator unit up and down with a rope, a pantograph type vertical movement device, a vertical movement device that uses a piston, and a vertical movement device that uses a rack and pinion. or two or more of them in combination.
前記発電用プロペラとして二重反転プロペラを使用することを特徴とする請求項1に記載
の強風に適した海流発電用三胴船。
The trimaran suitable for strong winds according to claim 1, characterized in that contra-rotating propellers are used as said propellers for power generation.
前記硬翼帆として折り畳み可能な硬翼帆を使用することを特徴とする請求項1に記載の強
風に適した海流発電用三胴船。
A trimaran suitable for strong winds as claimed in claim 1, characterized in that a foldable hard sail is used as said hard sail.
前記折り畳み可能な硬翼帆としてつづら折りした硬翼帆を使用することを特徴とする請求
4に記載の強風に適した海流発電用三胴船。
5. The trimaran suitable for strong winds as claimed in claim 4 , wherein a serpentine hard sail is used as the foldable hard sail.
前記硬翼帆を炭素繊維補強ハニカム構造に構成することを特徴とする請求項1、請求項4及
請求項5のいずれか1項に記載の強風に適した海流発電用三胴船。
Claims 1, 4 and 4, characterized in that the hard sail is configured in a carbon fiber reinforced honeycomb structure.
6. A trimaran for ocean current power suitable for high winds according to any one of claims 1 and 5 .
JP2022077318A 2022-05-10 2022-05-10 ocean current trimaran Active JP7199585B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022077318A JP7199585B1 (en) 2022-05-10 2022-05-10 ocean current trimaran
PCT/JP2023/009755 WO2023218750A1 (en) 2022-05-10 2023-03-14 Trimaman for ocean current power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022077318A JP7199585B1 (en) 2022-05-10 2022-05-10 ocean current trimaran

Publications (2)

Publication Number Publication Date
JP7199585B1 true JP7199585B1 (en) 2023-01-05
JP2023166671A JP2023166671A (en) 2023-11-22

Family

ID=84784191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022077318A Active JP7199585B1 (en) 2022-05-10 2022-05-10 ocean current trimaran

Country Status (2)

Country Link
JP (1) JP7199585B1 (en)
WO (1) WO2023218750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039850A (en) * 2023-02-16 2023-05-02 哈尔滨工程大学 Independent power supply platform on water of channel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7553167B1 (en) 2024-04-23 2024-09-18 株式会社ノワール Tidal power generation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050000400A1 (en) 2003-07-03 2005-01-06 Kingsbury Robert P. Boat hull design
JP2013100013A (en) 2011-11-08 2013-05-23 Yamaha Motor Co Ltd Marine vessel propulsion device
JP2014525368A (en) 2011-08-31 2014-09-29 リィ,ソン−ウ Power generation device comprising a buoyant body, ship propulsion device, and wing portion having a net-like structure that can be provided in the power generation device
JP2015009785A (en) 2013-07-02 2015-01-19 スズキ株式会社 Sailboat
CN107150760A (en) 2017-06-01 2017-09-12 浙江大学 Supercavitating hydrofoil trimaran
CN108639236A (en) 2018-05-15 2018-10-12 武汉理工大学 A kind of airfoil type high speed trimaran structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050000400A1 (en) 2003-07-03 2005-01-06 Kingsbury Robert P. Boat hull design
JP2014525368A (en) 2011-08-31 2014-09-29 リィ,ソン−ウ Power generation device comprising a buoyant body, ship propulsion device, and wing portion having a net-like structure that can be provided in the power generation device
JP2013100013A (en) 2011-11-08 2013-05-23 Yamaha Motor Co Ltd Marine vessel propulsion device
JP2015009785A (en) 2013-07-02 2015-01-19 スズキ株式会社 Sailboat
CN107150760A (en) 2017-06-01 2017-09-12 浙江大学 Supercavitating hydrofoil trimaran
CN108639236A (en) 2018-05-15 2018-10-12 武汉理工大学 A kind of airfoil type high speed trimaran structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039850A (en) * 2023-02-16 2023-05-02 哈尔滨工程大学 Independent power supply platform on water of channel

Also Published As

Publication number Publication date
WO2023218750A1 (en) 2023-11-16
JP2023166671A (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP7199585B1 (en) ocean current trimaran
CN106741584B (en) Lift-type high speed ocean robot
CN107499487A (en) Propulsion and generating integration device are driven to runner edge based on shaftless
US20150027125A1 (en) Process for harvesting, storing, and using renewable energy to propel and power boats and ships, and maximize their average speed
CN102356023B (en) Set of stowable rigid sails
US20170264100A1 (en) System for storing electrical power
JP5518383B2 (en) Electric propulsion system for small ships
CN104369852B (en) Sail auxiliary propulsion binary solar energy ship
CN108408010A (en) A kind of underwater glider wing and its control and working method
JP2014525368A (en) Power generation device comprising a buoyant body, ship propulsion device, and wing portion having a net-like structure that can be provided in the power generation device
CN108248803A (en) A kind of propulsion device for being capable of two-sided water suction
CN101837827A (en) Electrical propulsion green ship combined with power generation of wind power and solar energy
KR20130033769A (en) Switchable wind-power generating system
JP6796076B2 (en) Sail with variable profile
CN108995776A (en) It is a kind of to utilize the small-sized from navigation generation platform of water surface wave power technology
CN204310028U (en) A kind of dirigible two-axle interlocking screw propeller vector propulsion device
JPH05236698A (en) Water surface sailing power generating device
CN108639266B (en) A kind of small-waterplane-area binary leisure room ship with Multifunction diving pillar body
CN201484652U (en) Ship power system
CN208102299U (en) A kind of propulsion device for capableing of two-sided water suction
CN205770095U (en) A kind of energy-conserving and environment-protective boats and ships
CN108128431A (en) A kind of single-shot airscrew air ship
CN108909984B (en) New forms of energy life raft for boats and ships
CN209064324U (en) A kind of bilayer gaily-painted pleasure-boat ship
EP4342787A1 (en) Rotor sail system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221220

R150 Certificate of patent or registration of utility model

Ref document number: 7199585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150