JP7197346B2 - ループ型ヒートパイプ - Google Patents

ループ型ヒートパイプ Download PDF

Info

Publication number
JP7197346B2
JP7197346B2 JP2018237703A JP2018237703A JP7197346B2 JP 7197346 B2 JP7197346 B2 JP 7197346B2 JP 2018237703 A JP2018237703 A JP 2018237703A JP 2018237703 A JP2018237703 A JP 2018237703A JP 7197346 B2 JP7197346 B2 JP 7197346B2
Authority
JP
Japan
Prior art keywords
metal layer
porous body
flow path
groove
bottomed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018237703A
Other languages
English (en)
Other versions
JP2020101296A (ja
Inventor
洋弘 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2018237703A priority Critical patent/JP7197346B2/ja
Priority to US16/711,006 priority patent/US11105562B2/en
Priority to EP19217560.2A priority patent/EP3671094B1/en
Priority to CN201911310211.4A priority patent/CN111336850B/zh
Publication of JP2020101296A publication Critical patent/JP2020101296A/ja
Application granted granted Critical
Publication of JP7197346B2 publication Critical patent/JP7197346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、ループ型ヒートパイプに関する。
電子機器に搭載されるCPU(Central Processing Unit)等の発熱部品を冷却するデバイスとして、ヒートパイプが知られている。ヒートパイプは、作動流体の相変化を利用して熱を輸送するデバイスである。
ヒートパイプの一例として、発熱部品の熱により作動流体を気化させる蒸発器と、気化した作動流体を冷却して液化する凝縮器とを備え、蒸発器と凝縮器とがループ状の流路を形成する液管と蒸気管で接続されたループ型ヒートパイプが挙げられる。ループ型ヒートパイプでは、作動流体はループ状の流路を一方向に流れる。
ループ型ヒートパイプには、例えば、液管内の中央部近傍に支柱状の多孔質体が設けられており、多孔質体に生じる毛細管力で液管内の作動流体を蒸発器に誘導し、蒸発器から液管に蒸気が逆流することを抑制している。多孔質体は、例えば、貫通孔が形成された金属層同士を、貫通孔が部分的に重複するように積層することにより形成される(例えば、特許文献1参照)。
特許第6146484号
しかしながら、液管内の中央部近傍に支柱状の多孔質体を設けると、液管内の流路が多孔質体により2分されて流路の空間断面積が狭くなり、作動流体が流れる際の圧力損失が増加し、作動流体の流れを阻害してしまう。
本発明は、上記の点に鑑みてなされたものであり、作動流体が流れる際の圧力損失を低減することが可能なループ型ヒートパイプを提供することを課題とする。
本ループ型ヒートパイプは、作動流体を気化させる蒸発器と、前記作動流体を液化する凝縮器と、前記蒸発器と前記凝縮器とを接続する液管と、前記液管内に設けられた多孔質体と、前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管と、を有し、前記液管は、複数の金属層の積層体の内部に設けられた流路を備え、複数の前記金属層は、前記金属層の積層方向を上下方向としたときに、前記流路の上側の壁面を構成する第1金属層と、前記流路の下側の壁面を構成する第2金属層と、前記第1金属層と前記第2金属層との間に積層され、前記流路の左右の壁面を構成する中間金属層と、を備え、前記多孔質体は、前記流路に面する前記第1金属層の一方の面側から窪む第1有底孔と、他方の面側から窪む第2有底孔と、前記第1有底孔と前記第2有底孔とが部分的に連通して形成された第1細孔と、を有する第1多孔質体と、前記流路に面する前記第2金属層の一方の面側から窪む第有底孔と、他方の面側から窪む第有底孔と、前記第有底孔と前記第有底孔とが部分的に連通して形成された第2細孔と、を有する第2多孔質体と、を含み、前記多孔質体は、前記中間金属層には設けられていないことを要件とする。
開示の技術によれば、作動流体が流れる際の圧力損失を低減することが可能なループ型ヒートパイプを提供できる。
第1実施形態に係るループ型ヒートパイプを例示する平面模式図である。 第1実施形態に係るループ型ヒートパイプの蒸発器及びその周囲の断面図である。 第1実施形態に係る液管内に設けられる流路及び多孔質体を例示する図(その1)である。 第1実施形態に係る液管内に設けられる流路及び多孔質体を例示する図(その2)である。 第1実施形態に係るループ型ヒートパイプの製造工程を例示する図(その1)である。 第1実施形態に係るループ型ヒートパイプの製造工程を例示する図(その2)である。 第1実施形態の変形例1に係る液管内に設けられる流路及び多孔質体を例示する図(その1)である。 第1実施形態の変形例1に係る液管内に設けられる流路及び多孔質体を例示する図(その2)である。 第1実施形態の変形例2に係る液管内に設けられる流路及び多孔質体を例示する図(その1)である。 第1実施形態の変形例2に係る液管内に設けられる流路及び多孔質体を例示する図(その2)である。 第1実施形態の変形例2に係る液管内に設けられる流路及び多孔質体を例示する図(その3)である。 第1実施形態の変形例3に係る液管内に設けられる流路及び多孔質体を例示する図である。 有底孔の断面形状の変形例を示す図である。 有底孔の大きさの変形例を示す図である。
以下、図面を参照して発明を実施するための形態について説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
〈第1実施形態〉
[第1実施形態に係るループ型ヒートパイプの構造]
まず、第1実施形態に係るループ型ヒートパイプの構造について説明する。図1は、第1実施形態に係るループ型ヒートパイプを例示する平面模式図である。
図1を参照すると、ループ型ヒートパイプ1は、蒸発器10と、凝縮器20と、蒸気管30と、液管40と、注入口60とを有する。ループ型ヒートパイプ1は、例えば、スマートフォンやタブレット端末等のモバイル型の電子機器2に収容することができる。
ループ型ヒートパイプ1において、蒸発器10は、作動流体Cを気化させて蒸気Cvを生成する機能を有する。凝縮器20は、作動流体Cの蒸気Cvを液化させる機能を有する。蒸発器10と凝縮器20は、蒸気管30及び液管40により接続されており、蒸気管30及び液管40によって作動流体C又は蒸気Cvが流れるループである流路50が形成されている。
注入口60は、作動流体Cを液管40内に注入するための入り口であり、作動流体Cを注入後に気密封止されている。但し、本実施形態では、注入口60を液管40に接続しているが、注入口60を凝縮器20や蒸気管30に接続してもよい。この場合、凝縮器20や蒸気管30に注入された作動流体Cは、流路50内を流れて液管40内に移動する。
図2は、第1実施形態に係るループ型ヒートパイプの蒸発器及びその周囲の断面図である。図1及び図2に示すように、蒸発器10には、例えば4つの貫通孔10xが形成されている。蒸発器10に形成された各貫通孔10xと回路基板100に形成された各貫通孔100xにボルト150を挿入し、回路基板100の下面側からナット160で止めることにより、蒸発器10と回路基板100とが固定される。
回路基板100には、例えば、CPU等の発熱部品120がバンプ110により実装され、発熱部品120の上面が蒸発器10の下面と密着する。蒸発器10内の作動流体Cは、発熱部品120で発生した熱により気化し、蒸気Cvが生成される。
図1に示すように、蒸発器10に生成された蒸気Cvは、蒸気管30を通って凝縮器20に導かれ、凝縮器20において液化する。これにより、発熱部品120で発生した熱が凝縮器20に移動し、発熱部品120の温度上昇が抑制される。凝縮器20で液化した作動流体Cは、液管40を通って蒸発器10に導かれる。蒸気管30の幅Wは、例えば、8mm程度とすることができる。又、液管40の幅Wは、例えば、6mm程度とすることができる。蒸気管30の幅Wや液管40の幅Wは、これに限らず、例えば互いに等しくてもよい。
作動流体Cの種類は特に限定されないが、蒸発潜熱によって発熱部品120を効率的に冷却するために、蒸気圧が高く、かつ蒸発潜熱が大きい流体を使用することが好ましい。そのような流体としては、例えば、アンモニア、水、フロン、アルコール、及びアセトンを挙げることができる。
蒸発器10、凝縮器20、蒸気管30、液管40、及び注入口60は、例えば、金属層が複数積層された構造とすることができる。金属層は、例えば、熱伝導性に優れた銅層であって、固相接合等により互いに直接接合されている。金属層の各々の厚さは、例えば、50μm~200μm程度とすることができる。
なお、金属層は銅層には限定されず、ステンレス層やアルミニウム層、マグネシウム合金層等から形成してもよい。又、金属層の積層数は特に限定されない。
図3は、第1実施形態に係る液管内に設けられる流路及び多孔質体を例示する図(その1)であり、図3(a)は図1のA-A線近傍の部分平面図、図3(b)は図3(a)(図1)のA-A線に沿う断面図である。なお、図3(a)では、最外金属層である金属層81の図示を省略している。
図3に示すように、液管40は、金属層81~86の6層が積層された構造である。液管40において、金属層81及び86が最外金属層であり、金属層82~85が内層である。但し、液管40における金属層の積層数は6層には限定されず、最低5層以上の金属層が積層されていればよい。すなわち、2層の最外金属層の間に3層以上の内層が積層されていればよい。
金属層81及び86は、液管40を構成する金属層の積層構造の厚さ方向(Z方向)の両外側に位置し、金属層82~85は金属層81と金属層86との間に積層されている。
金属層81~86は、例えば、熱伝導性に優れた銅層であって、固相接合等により互いに直接接合されている。金属層81~86の各々の厚さは、例えば、50μm~200μm程度とすることができる。なお、金属層81~86は銅層には限定されず、ステンレス層やアルミニウム層、マグネシウム合金層等から形成してもよい。
液管40は、金属層81~86の積層体の内部に設けられた流路50を備えている。液管40は、1つの流路50のみを有することが好ましい。つまり、流路50は、液管40に設けられた唯一の流路であることが好ましい。これにより、作動流体Cを流れやすくすることができる。なお、空間断面積がAである1つの流路と、空間断面積がA/2である2つの流路とを比較した場合、空間断面積がAである1つの流路の方が作動流体Cが流れる際の圧力損失を低減できるため、作動流体Cが流れやすくなる。
以下、金属層の積層方向(Z方向)を上下方向(金属層81が上側)として説明を行う。又、金属層の幅方向(X方向)を左右方向として説明を行う場合がある。金属層81及び86は、孔や溝が形成されていないベタ状とされており、液管40の外壁の一部を構成している。金属層82は流路50の上側の壁面を構成しており、金属層85は流路50の下側の壁面を構成している。又、金属層82と金属層85との間に積層されている金属層83及び84は、流路50の左右の壁面を構成している。なお、流路50の上下の壁面を構成する金属層の間に積層された金属層を、中間金属層と称する場合がある。本実施形態では、金属層83及び84が中間金属層である。但し、中間金属層は、最低1層あればよい。
液管40は、流路50に面するように金属層82に設けられた第1多孔質体820と、流路50に面するように金属層85に設けられた第2多孔質体850とを有している。中間金属層には、多孔質体は設けられていない。すなわち、金属層83及び84には、多孔質体は設けられていない。
液管40の流路50のZ方向は、多孔質体が設けられた金属層82の下面と多孔質体が設けられた金属層85の上面で画定されている。又、液管40の流路50のX方向は、多孔質体が設けられていない金属層83の側面と多孔質体が設けられていない金属層84の側面で画定されている。
金属層82は、X方向において、略中央に第1多孔質体820、第1多孔質体820よりも外側に壁部82wを有している。第1多孔質体820は、壁部82wと連続して一体に形成されている。
金属層83は、厚さ方向に貫通する1つの貫通孔51、貫通孔51より外側に壁部83wを有している。貫通孔51は、流路50の開口となる。また、壁部83wは、流路50の左右の壁面となる。
金属層84は、厚さ方向に貫通する1つの貫通孔52、貫通孔52より外側に壁部84wを有している。貫通孔52は、金属層83の貫通孔51と連通し、流路50の開口となる。また、壁部84wは、金属層83の壁部83wと接し、流路50の左右の壁面となる。
金属層85は、X方向において、略中央に第2多孔質体850、第2多孔質体850よりも外側に壁部85wを有している。第2多孔質体850は、壁部85wと連続して一体に形成されている。金属層82の壁部82w及び金属層85の壁部85wは、それぞれ金属層83の壁部83w及び金属層84の壁部84wと接している。
第1多孔質体820は、金属層82の上面側から厚さ方向の略中央部にかけて窪む有底孔82xと、金属層82の下面側から厚さ方向の略中央部にかけて窪む有底孔82yとを有している。第1多孔質体820において、有底孔82xと有底孔82yは、それぞれ複数個形成され、互いに連通している。又、有底孔82yは、流路50と連通している。
有底孔82xと有底孔82yとは、平面視でX方向に交互に配置されている。又、有底孔82xと有底孔82yとは、平面視でY方向に交互に配置されている。X方向に交互に配置された有底孔82xと有底孔82yとは、平面視で部分的に重複しており、重複する部分は連通して細孔82zを形成している。又、Y方向に交互に配置された有底孔82xと有底孔82yとは、平面視で部分的に重複しており、重複する部分は連通して細孔82zを形成している。
有底孔82x及び82yの平面形状は、例えば、直径が100~300μm程度の円形とすることができるが、楕円形や多角形等の任意の形状として構わない。有底孔82x及び82yの深さは、例えば、金属層82の厚さの半分程度とすることができる。X方向に隣接する有底孔82xの間隔Lは、例えば、100~400μm程度とすることができる。Y方向に隣接する有底孔82xの間隔についても同様である。X方向に隣接する有底孔82yの間隔Lは、例えば、100~400μm程度とすることができる。Y方向に隣接する有底孔82yの間隔についても同様である。
有底孔82x及び82yは、例えば、内壁面が湾曲面からなる凹形状とすることができる。内壁面が湾曲面からなる凹形状としては、例えば、断面形状が略半円形や略半楕円形となる凹形状が挙げられる。ここで、略半円形とは、真円を二等分した半円のみでなく、例えば、半円よりも円弧が長いものや短いものも含む。又、略半楕円形とは、楕円を二等分した半楕円のみでなく、例えば、半楕円よりも円弧が長いものや短いものも含む。
細孔82zの短手方向の幅Wは、例えば、10~50μm程度とすることができる。又、細孔82zの長手方向の幅Wは、例えば、50~150μm程度とすることができる。
金属層82に形成された細孔82zは、第1多孔質体820内に二次元的に広がっている。そのため、作動流体Cは、毛細管力により、二次元的に広がることができる。
第2多孔質体850は、金属層85の上面側から厚さ方向の略中央部にかけて窪む有底孔85xと、金属層85の下面側から厚さ方向の略中央部にかけて窪む有底孔85yとを有している。第2多孔質体850において、有底孔85xと有底孔85yは、それぞれ複数個形成され、互いに連通している。又、有底孔85xは、流路50と連通している。
有底孔85xと有底孔85yとは、平面視でX方向に交互に配置されている。又、有底孔85xと有底孔85yとは、平面視でY方向に交互に配置されている。X方向に交互に配置された有底孔85xと有底孔85yとは、平面視で部分的に重複しており、重複する部分は連通して細孔85zを形成している。又、Y方向に交互に配置された有底孔85xと有底孔85yとは、平面視で部分的に重複しており、重複する部分は連通して細孔85zを形成している。有底孔85x及び85y、細孔85zの形状等は、例えば、有底孔82x及び82y、細孔82zの形状等と同様とすることができる。
金属層85に形成された細孔85zは、第2多孔質体850内に二次元的に広がっている。そのため、作動流体Cは、毛細管力により、二次元的に広がることができる。
但し、図3では、有底孔82xと有底孔85x、及び有底孔82yと有底孔85yが平面視で重複する形態を例示しているが、これには限定されない。すなわち、細孔82zが第1多孔質体820内に二次元的に広がり、かつ細孔85zが第2多孔質体850内に二次元的に広がる形態であれば、有底孔82xと有底孔85xとは必ずしも平面視で重複しなくてもよい。同様に、有底孔82yと有底孔85yとは必ずしも平面視で重複しなくてもよい。
図4は、第1実施形態に係る液管内に設けられる流路及び多孔質体を例示する図(その2)であり、図3(a)に対応する部分平面図である。図4に示すように、液管40が屈曲又は湾曲している場合には、液管40に沿って第1多孔質体820及び第2多孔質体850を設けることができる。
[第1実施形態に係るループ型ヒートパイプの製造方法]
次に、第1実施形態に係るループ型ヒートパイプの製造方法について、多孔質体の製造工程を中心に説明する。図5及び図6は、第1実施形態に係るループ型ヒートパイプの製造工程を例示する図であり、図3(b)に対応する断面を示している。
まず、図5(a)に示す工程では、図1の平面形状に形成された金属シート82Sを準備する。そして、金属シート82Sの上面にレジスト層310を形成し、金属シート82Sの下面にレジスト層320を形成する。金属シート82Sは、最終的に金属層82となる部材であり、例えば、銅、ステンレス、アルミニウム、マグネシウム合金等から形成することができる。金属シート82Sの厚さは、例えば、50μm~200μm程度とすることができる。レジスト層310及び320としては、例えば、感光性のドライフィルムレジスト等を用いることができる。
次に、図5(b)に示す工程では、金属シート82Sの第1多孔質体820を形成する領域において、レジスト層310を露光及び現像して、金属シート82Sの上面を選択的に露出する開口部310xを形成する。又、レジスト層320を露光及び現像して、金属シート82Sの下面を選択的に露出する開口部320xを形成する。開口部310xの形状及び配置は、図3に示した有底孔82xの形状及び配置に対応するように形成する。又、開口部320xの形状及び配置は、図3に示した有底孔82yの形状及び配置に対応するように形成する。
次に、図5(c)に示す工程では、開口部310x内に露出する金属シート82Sを金属シート82Sの上面側からハーフエッチングすると共に、開口部320x内に露出する金属シート82Sを金属シート82Sの下面側からハーフエッチングする。これにより、金属シート82Sの上面側に有底孔82xが形成され、下面側に有底孔82yが形成される。又、表裏でX方向及びY方向に交互に配置された開口部310xと開口部320xとは、平面視で部分的に重複しているため、重複する部分が連通して細孔82zが形成される。金属シート82Sのハーフエッチングには、例えば、塩化第二鉄溶液を用いることができる。
次に、図5(d)に示す工程では、レジスト層310及び320を剥離液により剥離する。これにより、X方向において、略中央に第1多孔質体820、第1多孔質体820よりも外側に壁部82wを有する金属層82が完成する。
次に、図6(a)に示す工程では、孔や溝が形成されていないベタ状の金属層81及び86を準備する。又、金属シートを準備し、流路50となる領域をエッチングにより除去して、厚さ方向に貫通する1つの貫通孔51、貫通孔51より外側に壁部83wを有する金属層83を形成する。又、金属シートを準備し、流路50となる領域をエッチングにより除去して、厚さ方向に貫通する1つの貫通孔52、貫通孔52より外側に壁部84wを有する金属層84を形成する。又、金属層82と同様の方法により、X方向において、略中央に第2多孔質体850、第2多孔質体850よりも外側に壁部85wを有する金属層85を形成する。金属層85に形成される有底孔及び細孔の位置は、例えば、図3に示した通りである。
次に、図6(b)に示す工程では、図6(a)に示す順番で各金属層を積層し、加圧及び加熱により固相接合を行う。これにより、隣接する金属層同士が直接接合され、蒸発器10、凝縮器20、蒸気管30、及び液管40を有するループ型ヒートパイプ1が完成する。又、貫通孔51と貫通孔52とが連通し、液管40内に流路50が形成される。その後、真空ポンプ等を用いて液管40内を排気した後、注入口60から液管40内に作動流体Cを注入し、その後注入口60を封止する。
ここで、固相接合とは、接合対象物同士を溶融させることなく固相(固体)状態のまま加熱して軟化させ、更に加圧して塑性変形を与えて接合する方法である。なお、固相接合によって隣接する金属層同士を良好に接合できるように、金属層81~86の全ての材料を同一にすることが好ましい。
このように、ループ型ヒートパイプ1の液管40では、流路50の上側の壁面を構成する金属層82に第1多孔質体820を設け、流路50の下側の壁面を構成する金属層85に第2多孔質体850を設けている。すなわち、従来のループ型ヒートパイプのように、液管内の中央部近傍に流路を2分する支柱状の多孔質体を設けていない。
これにより、液管40内において、流路50となる空間を一本化でき、流路50の空間断面積が広がるため、作動流体Cが流れる際の圧力損失を低減することが可能となり、作動流体Cの流動性を向上できる。
又、従来のループ型ヒートパイプのように支柱状の多孔質体を設ける構造では、液管内の流路の幅が狭い場合、多孔質体の配置可能領域を十分に確保することができない。これに伴い、液管内の作動流体の還流が滞り、ループ型ヒートパイプは正常に動作しなくなる。これに対し、ループ型ヒートパイプ1の液管40では、支柱状の多孔質体を設けていないため、流路50の幅を狭く設計する必要がある場合でも、多孔質体の配置可能領域を十分に確保できる。その結果、流路50の空間断面積の確保と多孔質体による還流効果の確保を両立することが可能となり、ループ型ヒートパイプ1を正常に動作させることができる。
又、従来のループ型ヒートパイプのように支柱状の多孔質体を設ける構造では、必ず所定箇所で支柱状の多孔質体と管壁との接点をもたせるための釣り手を設ける必要がある。釣り手を設けることは、各金属層の設計自由度を阻害するばかりでなく、流路の空間断面積を減少させ、圧力損失を増加させる。これに対し、ループ型ヒートパイプ1の液管40では、支柱状の多孔質体を設けていないため、釣り手を設ける必要がない。その結果、釣り手がない分、流路50の空間断面積が広がるため、作動流体Cが流れる際の圧力損失を低減することが可能となり、作動流体Cの流動性を向上できる。
又、液管内が全部多孔質体であり流路が形成されていないループ型ヒートパイプも提案されているが、液管内が全部多孔質体である場合、作動流体を引き込む力は大きくなるが、流路が存在しないと圧力損失が増加するため、作動流体が移動し難くなる。本実施形態に係る液管40のように、液管40内に第1多孔質体820等に加えて流路50を形成することで、作動流体を引き込む力を一定以上にできると共に、圧力損失を低減できるため、作動流体が流れやすくなる。
〈第1実施形態の変形例1〉
第1実施形態の変形例1では、多孔質体を部分的に配置する例を示す。なお、第1実施形態の変形例1において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図7は、第1実施形態の変形例1に係る液管内に設けられる流路及び多孔質体を例示する図(その1)である。
図7に示す液管40Aは、流路50に面するように金属層82に設けられた第1多孔質体820Aと、流路50に面するように金属層85に設けられた第2多孔質体850Aとを有している。中間金属層には、多孔質体は設けられていない。すなわち、金属層83及び84には、多孔質体は設けられていない。
第1多孔質体820Aは、金属層82の流路50に面する領域に部分的に配置されている。具体的には、第1多孔質体820Aは、金属層82に互いに離間して配置された第1領域821、第2領域822、及び第3領域823を備えている。又、金属層82において、第1領域821と第2領域822との間には、多孔質体が形成されていない第4領域824が設けられている。又、金属層82において、第2領域822と第3領域823との間には、多孔質体が形成されていない第5領域825が設けられている。
第1領域821、第2領域822、及び第3領域823は、それぞれ、金属層82の上面側から厚さ方向の略中央部にかけて窪む有底孔82xと、金属層82の下面側から厚さ方向の略中央部にかけて窪む有底孔82yとを有している。第1領域821、第2領域822、及び第3領域823において、有底孔82xと有底孔82yは、それぞれ複数個形成され、互いに連通している。又、有底孔82yは、流路50と連通している。
第2多孔質体850Aは、金属層85の流路50に面する領域に部分的に配置されている。具体的には、第2多孔質体850Aは、金属層85に互いに離間して配置された第1領域851、第2領域852、及び第3領域853を備えている。又、金属層85において、第1領域851と第2領域852との間には、多孔質体が形成されていない第4領域854が設けられている。又、金属層85において、第2領域852と第3領域853との間には、多孔質体が形成されていない第5領域855が設けられている。
第1領域851、第2領域852、及び第3領域853は、それぞれ、金属層85の上面側から厚さ方向の略中央部にかけて窪む有底孔85xと、金属層85の下面側から厚さ方向の略中央部にかけて窪む有底孔85yとを有している。第1領域851、第2領域852、及び第3領域853において、有底孔85xと有底孔85yは、それぞれ複数個形成され、互いに連通している。又、有底孔85xは、流路50と連通している。
図8は、第1実施形態の変形例1に係る液管内に設けられる流路及び多孔質体を例示する図(その2)である。
図8に示す液管40Bは、第2多孔質体850Aが第2多孔質体850Bに置換された点が、液管40A(図7参照)と相違する。
第2多孔質体850Bは、金属層85に互いに離間して配置された第1領域861及び第2領域862を備えている。又、金属層85において、第1領域861の紙面左側(X軸負方向)には、多孔質体が形成されていない第3領域863が設けられている。又、金属層85において、第1領域861と第2領域862との間には、多孔質体が形成されていない第4領域864が設けられている。又、金属層85において、第2領域862の紙面右側(X軸正方向)には、多孔質体が形成されていない第5領域865が設けられている。第1領域861及び第2領域862に設けられた有底孔85x及び85y並びに細孔85zについては、第2多孔質体850Aの場合と同様の構造である。
図7及び図8に示したように、第1多孔質体820Aは、金属層82の流路50に面する領域に部分的に配置されてもよい。又、第2多孔質体850A(又は第2多孔質体850B)は、金属層85の流路50に面する領域に部分的に配置されてもよい。この場合にも、第1多孔質体820A及び第2多孔質体850A(又は第2多孔質体850B)が、作動流体の還流を誘導することができる。又、金属層82及び85において多孔質体が配置されていない領域は、液管40の変形を防止するための補強となる。
なお、多孔質体をどの位置に部分的に配置するかは、任意に決定することができる。例えば、図7に示すように、金属層82と金属層85の同じ位置に多孔質体を配置してもよいし、図8に示すように、金属層82と金属層85の異なる位置に多孔質体を配置してもよい。又、金属層82及び85に、多孔質体が配置されていない領域を各々何カ所ずつ配置するかは、要求する補強の程度等に応じて任意に決定することができる。
又、必要に応じ、金属層82と金属層85の一方では多孔質体を全体に配置し、他方では多孔質体を部分的に配置する構造としてもよい。
〈第1実施形態の変形例2〉
第1実施形態の変形例2では、中間金属層に流路を左右方向に拡幅する溝を形成する例を示す。なお、第1実施形態の変形例2において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図9は、第1実施形態の変形例2に係る液管内に設けられる流路及び多孔質体を例示する図(その1)であり、図9(a)は図3(b)に対応する断面図、図9(b)は図9(a)の溝831近傍の部分斜視図である。
図9に示す液管40Cは、金属層83に溝831が形成され、金属層84に溝841が形成された点が、液管40(図3参照)と相違する。なお、金属層83及び84には溝が設けられているが、多孔質体は設けられていない。
溝831は、液管40の流路50に沿って延びる線状の溝で形成されている。溝831は、金属層83の上面側から下面側に貫通する貫通溝で形成されている。溝831は、例えば、流路50の壁面を構成する金属層83の壁部83wの幅(X方向の長さ)を変えることにより形成されている。図9(a)に示す変形例では、金属層83の壁部83wの幅を金属層84の壁部84wの幅よりも小さくすることにより、溝831を形成している。言い換えれば、流路50に露出する金属層83の壁部83wの側面は、流路50に露出する金属層84の壁部84wの側面よりも凹んだ位置にある。溝831は流路50と連通し、流路50を右方向(X軸正方向)に拡幅している。溝831の断面形状は、例えば、矩形とすることができる。溝831は、例えば、プレス加工やエッチングにより形成できる。
溝841は、液管40の流路50に沿って延びる線状の溝で形成されている。溝841は、金属層84の上面側から下面側に貫通する貫通溝で形成されている。溝841は、例えば、流路50の壁面を構成する金属層84の壁部84wの幅(X方向の長さ)を変えることにより形成されている。図9(a)に示す変形例では、金属層84の壁部84wの幅を金属層83の壁部83wの幅よりも小さくすることにより、溝841を形成している。言い換えれば、流路50に露出する金属層84の壁部84wの側面は、流路50に露出する金属層83の壁部83wの側面よりも凹んだ位置にある。溝841は流路50と連通し、流路50を左方向(X軸負方向)に拡幅している。溝841の断面形状は、例えば、矩形とすることができる。溝841は、例えば、プレス加工やエッチングにより形成できる。溝831及び溝841の形成は、適宜変更することができる。
なお、溝831及び溝841は、多孔質体のように複数の有底孔が連通して形成されたものではなく、流路50の壁面に沿って連続的に形成された1つの凹部である。後述の他の溝(図10又は図11に示す溝832、833、834、835、842、843、844、845)についても同様である。
このように、液管40Cにおいて、金属層83に溝831が形成され、金属層84に溝841が形成されることで、流路50を液管40(図3(b)参照)よりも左右方向に拡幅することができる。これにより、流路50に作動流体Cが流れる際の圧力損失を低減できる。又、溝831及び841は、第1多孔質体820及び第2多孔質体850と同様に、作動流体Cを吸い上げる機能を有するため、作動流体Cを誘導する能力を向上できる。
図10は、第1実施形態の変形例2に係る液管内に設けられる流路及び多孔質体を例示する図(その2)であり、図3(b)に対応する断面図である。
図10に示す液管40Dは、金属層83に溝832及び833が形成され、金属層84に溝842及び843が形成され点が、液管40(図3参照)と相違する。なお、金属層83及び84には溝が設けられているが、多孔質体は設けられていない。
溝832は、金属層83の上面側から下面側に窪む有底溝であり、流路50の右の壁面(X方向の一方の壁面)に沿って線状に形成されている。溝832は流路50と連通し、流路50を右方向(X軸正方向)に拡幅している。溝832は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝832の断面形状は、例えば、半円形や半楕円形とすることができる。溝832は、例えば、ハーフエッチングにより形成できる。
溝833は、金属層83の上面側から下面側に窪む有底溝であり、流路50の左の壁面(X方向の他方の壁面)に沿って線状に形成されている。溝833は流路50と連通し、流路50を左方向(X軸負方向)に拡幅している。溝833は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝833の断面形状は、例えば、半円形や半楕円形とすることができる。溝833は、例えば、ハーフエッチングにより形成できる。
溝842は、金属層84の上面側から下面側に窪む有底溝であり、流路50の右の壁面(X方向の一方の壁面)に沿って線状に形成されている。溝842は流路50と連通し、流路50を右方向(X軸正方向)に拡幅している。溝842は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝842の断面形状は、例えば、半円形や半楕円形とすることができる。溝842は、例えば、ハーフエッチングにより形成できる。
溝843は、金属層83の上面側から下面側に窪む有底溝であり、流路50の左の壁面(X方向の他方の壁面)に沿って線状に形成されている。溝843は流路50と連通し、流路50を左方向(X軸負方向)に拡幅している。溝843は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝843の断面形状は、例えば、半円形や半楕円形とすることができる。溝843は、例えば、ハーフエッチングにより形成できる。
このように、液管40Dにおいて、金属層83に溝832及び833が形成され、金属層84に溝842及び843が形成されることで、流路50を液管40(図3(b)参照)よりも左右方向(X方向)に拡幅することができる。これにより、流路50に作動流体Cが流れる際の圧力損失を低減できる。又、溝832及び833並びに溝842及び843は、第1多孔質体820及び第2多孔質体850と同様に、作動流体Cを吸い上げる機能を有するため、作動流体Cを誘導する能力を向上できる。
図11は、第1実施形態の変形例2に係る液管内に設けられる流路及び多孔質体を例示する図(その3)であり、図3(b)に対応する断面図である。
図11に示す液管40Eは、金属層83に溝832、833、834、及び835が形成され、金属層84に溝842、843、844、及び845が形成された点が、液管40(図3参照)と相違する。なお、金属層83及び84には溝が設けられているが、多孔質体は設けられていない。
溝832、833、842、及び843の構造は、液管40D(図10参照)の場合と同様である。
溝834は、金属層83の下面側から上面側に窪む有底溝であり、流路50の右の壁面(X方向の一方の壁面)に沿って線状に形成されている。溝834は流路50と連通し、流路50を右方向(X軸正方向)に拡幅している。又、溝834は、溝832及び842と連通している。溝834は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝834の断面形状は、例えば、半円形や半楕円形とすることができる。溝834は、例えば、ハーフエッチングにより形成できる。
溝835は、金属層83の下面側から上面側に窪む有底溝であり、流路50の左の壁面(X方向の他方の壁面)に沿って線状に形成されている。溝835は流路50と連通し、流路50を左方向(X軸負方向)に拡幅している。又、溝835は、溝833及び843と連通している。溝835は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝835の断面形状は、例えば、半円形や半楕円形とすることができる。溝835は、例えば、ハーフエッチングにより形成できる。
溝844は、金属層84の下面側から上面側に窪む有底溝であり、流路50の右の壁面(X方向の一方の壁面)に沿って線状に形成されている。溝844は流路50と連通し、流路50を右方向(X軸正方向)に拡幅している。又、溝844は、溝842と連通している。溝844は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝844の断面形状は、例えば、半円形や半楕円形とすることができる。溝844は、例えば、ハーフエッチングにより形成できる。
溝845は、金属層84の下面側から上面側に窪む有底溝であり、流路50の左の壁面(X方向の他方の壁面)に沿って線状に形成されている。溝845は流路50と連通し、流路50を左方向(X軸負方向)に拡幅している。又、溝845は、溝843と連通している。溝845は、例えば、流路50と連通する側が最も深く、流路50から離れるに従って浅くなるように形成することができる。溝845の断面形状は、例えば、半円形や半楕円形とすることができる。溝845は、例えば、ハーフエッチングにより形成できる。
このように、液管40Eにおいて、金属層83に溝832、833、834、及び835が形成され、金属層84に溝842、843、844、及び845が形成されることで、流路50を液管40(図3(b)参照)よりも左右方向(X方向)に拡幅することができる。これにより、流路50に作動流体Cが流れる際の圧力損失を低減できる。又、溝832、833、834、及び835並びに溝842、843、844、及び845は、第1多孔質体820及び第2多孔質体850と同様に、作動流体Cを吸い上げる機能を有するため、作動流体Cを誘導する能力を向上できる。
なお、浅い溝が多数存在するほど作動流体Cを吸い上げる機能が強くなる。すなわち、液管40C(図9)よりも液管40D(図10)の方が作動流体Cを吸い上げる機能が強くなり、液管40E(図11)は液管40D(図10)よりも更に作動流体Cを吸い上げる機能が強くなる。
〈第1実施形態の変形例3〉
第1実施形態の変形例3では、多孔質体が金属層の流路に面する領域から流路に面しない領域に延在する例を示す。なお、第1実施形態の変形例3において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図12は、第1実施形態の変形例3に係る液管内に設けられる流路及び多孔質体を例示する図であり、図3(b)に対応する断面図である。
図12に示す液管40Fは、第1多孔質体820が第1多孔質体820Fに置換され、第2多孔質体850が第2多孔質体850Fに置換された点が、液管40(図3参照)と相違する。
第1多孔質体820Fは、第1多孔質体820と同様に有底孔82x及び82y並びに細孔82zにより構成されているが、第1多孔質体820とは異なり金属層82の流路50に面する領域から流路50に面しない領域(金属層83の壁部83wの側面よりも外側の領域)に延在している。
第2多孔質体850Fは、第2多孔質体850と同様に有底孔85x及び85y並びに細孔85zにより構成されているが、第2多孔質体850とは異なり金属層85の流路50に面する領域から流路50に面しない領域(金属層84の壁部84wの側面よりも外側の領域)に延在している。
このように、第1多孔質体820F及び第2多孔質体850Fを、流路50に面する領域から流路50に面しない領域に延在させてもよい。或いは、第1多孔質体820F及び第2多孔質体850Fの何れか一方のみを、流路50に面する領域から流路50に面しない領域に延在させてもよい。
これにより、第1多孔質体820F及び/又は第2多孔質体850Fの形成領域が増えるため、作動流体Cを誘導する能力を向上できる。
〈第1実施形態の変形例4〉
第1実施形態の変形例4では、有底孔の断面形状や大きさのバリエーションの例を示す。なお、第1実施形態の変形例4において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図13は、有底孔の断面形状の変形例を示す図である。第1実施形態及び変形例1~3では、有底孔82x及び82y並びに有底孔85x及び85yの断面形状を略半円形や略半楕円形となる凹形状とする例を示したが、これには限定されない。
図13(a)に示すように、例えば、有底孔82x及び82yは、断面形状が底面側から開口側に向かって拡幅する略台形となる凹形状としてもよい。有底孔85x及び85yについても同様である。
又、図13(b)に示すように、例えば、有底孔82x及び82yは、内壁が底面にかけて円弧状に連続する形状としてもよい。有底孔85x及び85yについても同様である。
図14は、有底孔の大きさの変形例を示す図である。第1実施形態及び変形例1~3では、有底孔82x及び82y並びに有底孔85x及び85yの大きさが略同一である例を示したが、これには限定されない。
図14に示すように、例えば、金属層82において、有底孔82xの大きさを有底孔82yの大きさよりも大きくし、複数の有底孔82yを平面視で有底孔82xの周囲に配置してもよい。このように、一部の有底孔のサイズを大型化することで、空間体積が広くなるため、有底孔内を流れる作動流体Cの圧力損失を低減できる。有底孔85x及び85yについても同様である。
以上、好ましい実施形態について詳説したが、上述した実施形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態に種々の変形及び置換を加えることができる。
例えば、最外金属層である金属層81の内面側(流路50に近い側)にハーフエッチングにより金属層82側に開口する有底孔を形成し、金属層82に形成された有底孔82xと連通させてもよい。同様に、最外金属層である金属層86の内面側(流路50に近い側)にハーフエッチングにより金属層85側に開口する有底孔を形成し、金属層85に形成された有底孔85yと連通させてもよい。これらの場合、多孔質体の形成領域が増えるため、作動流体Cを誘導する能力を向上できる。
又、金属層の積層数を増やし、連続して積層された複数の金属層に多孔質体を設けてもよい。この場合も、多孔質体の形成領域が増えるため、作動流体Cを誘導する能力を向上できる。
1 ループ型ヒートパイプ
2 電子機器
10 蒸発器
10x 貫通孔
20 凝縮器
30 蒸気管
40、40A、40B、40C、40D、40E、40F 液管
50 流路
51、52 貫通孔
60 注入口
81、82、83、84、85、86 金属層
82w、83w、84w、85w 壁部
82x、82y、85x、85y 有底孔
82z、85z 細孔
100 回路基板
100x 貫通孔
110 バンプ
120 発熱部品
150 ボルト
160 ナット
820、820A、820F 第1多孔質体
821、851、861 第1領域
822、852、862 第2領域
823、853、863 第3領域
824、854、864 第4領域
825、855、865 第5領域
831、832、833、834、835、841、842、843、844、845 溝
850、850A、850B 第2多孔質体

Claims (10)

  1. 作動流体を気化させる蒸発器と、
    前記作動流体を液化する凝縮器と、
    前記蒸発器と前記凝縮器とを接続する液管と、
    前記液管内に設けられた多孔質体と、
    前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管と、を有し、
    前記液管は、複数の金属層の積層体の内部に設けられた流路を備え、
    複数の前記金属層は、前記金属層の積層方向を上下方向としたときに、
    前記流路の上側の壁面を構成する第1金属層と、
    前記流路の下側の壁面を構成する第2金属層と、
    前記第1金属層と前記第2金属層との間に積層され、前記流路の左右の壁面を構成する中間金属層と、を備え、
    前記多孔質体は、
    前記流路に面する前記第1金属層の一方の面側から窪む第1有底孔と、他方の面側から窪む第2有底孔と、前記第1有底孔と前記第2有底孔とが部分的に連通して形成された第1細孔と、を有する第1多孔質体と、
    前記流路に面する前記第2金属層の一方の面側から窪む第有底孔と、他方の面側から窪む第有底孔と、前記第有底孔と前記第有底孔とが部分的に連通して形成された第2細孔と、を有する第2多孔質体と、を含み、
    前記多孔質体は、前記中間金属層には設けられていないループ型ヒートパイプ。
  2. 前記第1多孔質体は、前記第1金属層の前記流路に面する領域に部分的に配置されている請求項1に記載のループ型ヒートパイプ。
  3. 前記第2多孔質体は、前記第2金属層の前記流路に面する領域に部分的に配置されている請求項1又は2に記載のループ型ヒートパイプ。
  4. 前記中間金属層に、前記流路を左右方向に拡幅する溝が形成されている請求項1乃至3の何れか一項に記載のループ型ヒートパイプ。
  5. 前記溝は、前記中間金属層の上面側から下面側に窪む有底溝である請求項4に記載のループ型ヒートパイプ。
  6. 前記溝は、前記中間金属層の上面側から下面側に窪む有底溝と、前記中間金属層の下面側から上面側に窪む有底溝とが互いに連通して形成されている請求項4に記載のループ型ヒートパイプ。
  7. 前記溝は、前記中間金属層の上面側から下面側に貫通する貫通溝である請求項4に記載のループ型ヒートパイプ。
  8. 前記第1多孔質体は、前記第1金属層の前記流路に面する領域から前記流路に面しない領域に延在している請求項1乃至7の何れか一項に記載のループ型ヒートパイプ。
  9. 前記第2多孔質体は、前記第2金属層の前記流路に面する領域から前記流路に面しない領域に延在している請求項1乃至8の何れか一項に記載のループ型ヒートパイプ。
  10. 前記流路は、前記液管に設けられた唯一の流路である請求項1乃至9の何れか一項に記載のループ型ヒートパイプ。
JP2018237703A 2018-12-19 2018-12-19 ループ型ヒートパイプ Active JP7197346B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018237703A JP7197346B2 (ja) 2018-12-19 2018-12-19 ループ型ヒートパイプ
US16/711,006 US11105562B2 (en) 2018-12-19 2019-12-11 Loop-type heat pipe
EP19217560.2A EP3671094B1 (en) 2018-12-19 2019-12-18 Loop-type heat pipe
CN201911310211.4A CN111336850B (zh) 2018-12-19 2019-12-18 环路式热管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237703A JP7197346B2 (ja) 2018-12-19 2018-12-19 ループ型ヒートパイプ

Publications (2)

Publication Number Publication Date
JP2020101296A JP2020101296A (ja) 2020-07-02
JP7197346B2 true JP7197346B2 (ja) 2022-12-27

Family

ID=68965623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237703A Active JP7197346B2 (ja) 2018-12-19 2018-12-19 ループ型ヒートパイプ

Country Status (4)

Country Link
US (1) US11105562B2 (ja)
EP (1) EP3671094B1 (ja)
JP (1) JP7197346B2 (ja)
CN (1) CN111336850B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6943786B2 (ja) * 2018-02-05 2021-10-06 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2024079859A (ja) * 2021-03-29 2024-06-12 株式会社フジクラ 放熱モジュール
JP7525438B2 (ja) * 2021-04-26 2024-07-30 新光電気工業株式会社 ループ型ヒートパイプ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039693A (ja) 2000-07-21 2002-02-06 Toufuji Denki Kk フラット型ヒートパイプ
JP2008281275A (ja) 2007-05-10 2008-11-20 Toshiba Corp ループヒートパイプ、冷却装置、電子機器
JP2018036012A (ja) 2016-09-01 2018-03-08 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA824373B (en) 1981-07-20 1984-02-29 Ppg Industries Inc Ungelled polyepoxide-polyoxyalkylenepolyamine resins,aqueous dispersions thereof,and their use in cationic electrodeposition
US7051793B1 (en) * 1998-04-20 2006-05-30 Jurgen Schulz-Harder Cooler for electrical components
JP4423792B2 (ja) * 2000-09-14 2010-03-03 株式会社デンソー 沸騰冷却装置
US6843308B1 (en) * 2000-12-01 2005-01-18 Atmostat Etudes Et Recherches Heat exchanger device using a two-phase active fluid, and a method of manufacturing such a device
US20020135979A1 (en) * 2001-03-20 2002-09-26 Motorola, Inc Two-phase cooling module and method of making the same
US7556086B2 (en) * 2001-04-06 2009-07-07 University Of Maryland, College Park Orientation-independent thermosyphon heat spreader
JP2003161594A (ja) * 2001-09-14 2003-06-06 Denso Corp 沸騰冷却装置
WO2003073032A1 (en) * 2002-02-26 2003-09-04 Mikros Manufacturing, Inc. Capillary evaporator
US7188662B2 (en) * 2004-06-04 2007-03-13 Cooligy, Inc. Apparatus and method of efficient fluid delivery for cooling a heat producing device
CA2574200A1 (en) * 2004-07-21 2006-01-26 Xiao Huang Hybrid wicking materials for use in high performance heat pipes
US7770631B2 (en) * 2008-03-19 2010-08-10 Chin-Wen Wang Method for manufacturing supporting body within an isothermal plate and product of the same
JP2010151352A (ja) * 2008-12-24 2010-07-08 Sony Corp 熱輸送デバイスの製造方法及び熱輸送デバイス
DE102009038019B4 (de) * 2009-08-12 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3D Mikro-Strukturierung zur Erzeugung von Misch- und Kanalstrukturen in Multilayertechnologie zur Verwendung in oder zum Aufbau von Reaktoren
JP5714836B2 (ja) * 2010-04-17 2015-05-07 モレックス インコーポレイテドMolex Incorporated 熱輸送ユニット、電子基板、電子機器
KR20120065575A (ko) * 2010-12-13 2012-06-21 한국전자통신연구원 압출로 제작되는 박막형 히트파이프
CN202403583U (zh) * 2012-01-04 2012-08-29 中国电子科技集团公司第三十八研究所 一种紧凑型回路热管装置
US20140138057A1 (en) * 2012-11-18 2014-05-22 Chin-Hsing Horng Structure of low-profile heat pipe
TWI513069B (zh) * 2013-05-21 2015-12-11 Subtron Technology Co Ltd 散熱板
JP6190349B2 (ja) * 2013-12-05 2017-08-30 株式会社神戸製鋼所 熱交換器
JP6146484B2 (ja) 2013-12-13 2017-06-14 富士通株式会社 ループ型ヒートパイプとその製造方法、及び電子機器
US10288330B2 (en) * 2016-04-18 2019-05-14 Qcip Holdings, Llc Microchannel evaporators with reduced pressure drop
JP6691467B2 (ja) * 2016-11-18 2020-04-28 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US10352626B2 (en) * 2016-12-14 2019-07-16 Shinko Electric Industries Co., Ltd. Heat pipe
JP6799503B2 (ja) * 2016-12-14 2020-12-16 新光電気工業株式会社 ヒートパイプ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039693A (ja) 2000-07-21 2002-02-06 Toufuji Denki Kk フラット型ヒートパイプ
JP2008281275A (ja) 2007-05-10 2008-11-20 Toshiba Corp ループヒートパイプ、冷却装置、電子機器
JP2018036012A (ja) 2016-09-01 2018-03-08 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法

Also Published As

Publication number Publication date
JP2020101296A (ja) 2020-07-02
US11105562B2 (en) 2021-08-31
CN111336850B (zh) 2023-01-10
CN111336850A (zh) 2020-06-26
US20200200485A1 (en) 2020-06-25
EP3671094A1 (en) 2020-06-24
EP3671094B1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6291000B2 (ja) ループ型ヒートパイプ及びその製造方法
JP6400240B1 (ja) ループ型ヒートパイプ及びその製造方法
JP7197346B2 (ja) ループ型ヒートパイプ
JP6233125B2 (ja) ループ型ヒートパイプとその製造方法、及び電子機器
JP6691467B2 (ja) ループ型ヒートパイプ及びその製造方法
JP6799503B2 (ja) ヒートパイプ及びその製造方法
JP6943786B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7153515B2 (ja) ループ型ヒートパイプ
JP7146524B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7184594B2 (ja) ループ型ヒートパイプ
JP7204374B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7236825B2 (ja) ループ型ヒートパイプ及びその製造方法
CN109839019B (zh) 热管及其制造方法
JP7305512B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7027253B2 (ja) ループ型ヒートパイプ及びその製造方法
JP2019138491A (ja) ループ型ヒートパイプ
JP7353132B2 (ja) ループ型ヒートパイプ及びその製造方法
JP2019015420A (ja) ヒートパイプ及びヒートパイプの製造方法
JP2020197331A (ja) ループ型ヒートパイプ
JP7336416B2 (ja) ループ型ヒートパイプ
JP7390252B2 (ja) ループ型ヒートパイプ
JP2021148330A (ja) ループ型ヒートパイプ及びその製造方法
JP2024103226A (ja) ループ型ヒートパイプ及びループ型ヒートパイプの製造方法
JP2021173421A (ja) ループ型ヒートパイプ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R150 Certificate of patent or registration of utility model

Ref document number: 7197346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150