JP7186447B2 - ナノファイバー製造装置 - Google Patents

ナノファイバー製造装置 Download PDF

Info

Publication number
JP7186447B2
JP7186447B2 JP2019189715A JP2019189715A JP7186447B2 JP 7186447 B2 JP7186447 B2 JP 7186447B2 JP 2019189715 A JP2019189715 A JP 2019189715A JP 2019189715 A JP2019189715 A JP 2019189715A JP 7186447 B2 JP7186447 B2 JP 7186447B2
Authority
JP
Japan
Prior art keywords
molten resin
gas
port
gas injection
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019189715A
Other languages
English (en)
Other versions
JP2021063321A (ja
Inventor
信行 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashin Filter Corp
Original Assignee
Yamashin Filter Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashin Filter Corp filed Critical Yamashin Filter Corp
Priority to JP2019189715A priority Critical patent/JP7186447B2/ja
Publication of JP2021063321A publication Critical patent/JP2021063321A/ja
Application granted granted Critical
Publication of JP7186447B2 publication Critical patent/JP7186447B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本願は、ナノファイバー製造装置に関する。
特許文献1には、噴出ノズルから吐出した溶融ポリマーが、エアーノズルからの高速エアーにより延伸される構成のナノファイバーの製造装置が記載されている。
特開2016-156114号公報
特許文献1に記載の技術では、吐出された溶融ポリマーが高速エアーに単に合流されて延伸される構造であるが、実際に溶融ポリマーを延伸してナノファイバーを製造するにあたっては、ナノファイバーをより安定的に製造することが求められる。
本願では、ナノファイバーをより安定的に製造できるナノファイバー製造装置を得ることが目的である。
第一態様では、溶融樹脂を吐出口から吐出する樹脂吐出部材と、雰囲気よりも高温の保温気体を、前記吐出口から吐出された前記溶融樹脂に向けて保温気体噴射口から噴射する保温気体噴射部材と、雰囲気よりも高温の延伸気体を、前記溶融樹脂の吐出方向において前記保温気体噴射口と同位置の延伸気体噴射口から溶融樹脂に向けて噴射する延伸気体噴射部材と、を有する。
このナノファイバー製造装置では、樹脂吐出部材の吐出口から吐出された溶融樹脂に向けて、保温気体噴射部材の保温気体噴射口から保温気体を噴射し、延伸気体噴射部材の延伸気体噴射口から延伸気体を噴射する。保温気体は雰囲気よりも高温であり、この高温の保温気体が溶融樹脂に接触することで、溶融樹脂の粘度が低下された状態に維持される。延伸気体も雰囲気よりも高温であるので、溶融樹脂の粘度が低下された状態を維持しつつ熔融樹脂を延伸させることができる。
延伸気体は、延伸気体噴射口から噴射され、溶融樹脂に向かって接近する。保温気体は、保温気体噴射口から噴射され、溶融樹脂に向かって接近する。ここで、延伸気体噴射口は、溶融樹脂の吐出方向において保温気体噴射口と同位置にある。このため、保温気体及び延伸気体は、溶融樹脂の吐出方向で、実質的に同位置で接触する。すなわち、保温気体と延伸気体とが、溶融樹脂に対し、吐出方向で見て異なる位置(ずれた位置)で接触することを抑制できる。換言すれば、時間的には、保温気体及び延伸気体のいずれか一方が先に溶融樹脂に接触することを抑制できる。保温気体と延伸気体のうち先に溶融樹脂に接触してしまった気体の影響が支配的になることを抑制できるので、得られるナノファイバーの形状が安定する。
第二態様では、第一態様において、前記保温気体噴射口及び前記延伸気体噴射口がそれぞれ、前記吐出口からの前記溶融樹脂の吐出方向に見て前記吐出口を取り囲んでいる。
保温気体噴射口が吐出口を取り囲んでいるので、吐出口から吐出された溶融樹脂に対し、その周囲に保温気体を確実に接触させることができる。
延伸気体噴射口が吐出口を取り囲んでいるので、囲み領域を通過した溶融樹脂に対し、その周囲に延伸気体を吹き付けて溶融樹脂を延伸させることができる。
第三態様では、第二態様において、前記保温気体噴射口が前記延伸気体噴射口よりも前記吐出方向に沿って見て外側に位置している。
これにより、保温気体が、延伸気体及び熔融樹脂を取り囲むので、溶融樹脂だけでなく延伸気体も保温気体で保温できる。延伸気体は、保温気体よりも内側、すなわち溶融樹脂に近い位置で噴射されるので、延伸気体を溶融樹脂に確実に接触させて溶融樹脂を延伸することができる。
第四態様では、第一態様において、前記保温気体噴射口と前記延伸気体噴射口とを備える噴射口兼用ノズルを有する。
これにより、保温気体噴射口を備えるノズルと、延伸気体噴射口を備えるノズルとを別々に設ける必要がないため、ナノファイバー製造装置の構造の簡素化を図ることができる。また、噴射口兼用ノズルが保温気体噴射口と延伸気体噴射口とを有するので、保温気体噴射口と延伸気体噴射口との相対位置を一定に維持できる。
第五態様では、第一態様から第四態様のいずれか1つの態様において、前記延伸気体噴射口からの前記延伸気体の噴射方向が前記吐出口から吐出された前記溶融樹脂に漸近するように傾斜している。
これにより、吐出口から吐出された溶融樹脂に噴射気体が接近して接触するので、より細いナノファイバーを得ることが可能となる。
第六態様では、第一態様から第五態様のいずれか1つの態様において、前記保温気体噴射口からの前記保温気体の噴射方向が前記吐出口から吐出された前記溶融樹脂に漸近するように傾斜している。
これにより、吐出口から吐出された溶融樹脂に保温気体が接近して接触するので、溶融樹脂をより効果的に保温できる。
本願では、ナノファイバーを安定的に製造できる
図1は第一実施形態のナノファイバー製造装置を示す断面図である。 図2は第一実施形態のナノファイバー製造装置を備えたフィルタ製造装置を示す斜視図である。 図3は第一実施形態のナノファイバー製造装置を示す図1のIII-III線断面図である。 図4は第一実施形態のナノファイバー製造装置を図1の矢印IV方向に見た端面図である。 図5は第一実施形態のナノファイバー製造装置において溶融樹脂を吐出している状態を示す断面図である。 図6は第一実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ保温気体を噴射している状態を示す断面図である。 図7は第一実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ保温気体及び噴出気体を噴出している状態を示す断面図である。 図8は第二実施形態のナノファイバー製造装置を示す断面図である。 図9は第二実施形態のナノファイバー製造装置において溶融樹脂を吐出している状態を示す断面図である。 図10は第二実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ保温気体を噴射している状態を示す断面図である。 図11は第二実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ延伸気体及び保温気体を噴出している状態を示す断面図である。 図12は第三実施形態のナノファイバー製造装置を示す断面図である。 図13は第三実施形態のナノファイバー製造装置において溶融樹脂を吐出している状態を示す断面図である。 図14は第三実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ保温気体を噴射している状態を示す断面図である。 図15は第三実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ延伸気体及び保温気体を噴出している状態を示す断面図である。 図16は第四実施形態のナノファイバー製造装置を示す断面図である。 図17は第四実施形態のナノファイバー製造装置において溶融樹脂を吐出している状態を示す断面図である。 図18は第四実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ保温気体を噴射している状態を示す断面図である。 図19は第四実施形態のナノファイバー製造装置において溶融樹脂を吐出しつつ延伸気体及び保温気体を噴出している状態を示す断面図である。 図20は第一変形例のナノファイバー製造装置を図4と同様の方向で見た端面図である。 図21は第二変形例のナノファイバー製造装置を図4と同様の方向で見た端面図である。 図22は第一比較例のナノファイバー製造装置を示す断面図である。
以下、図面を参照して第一実施形態のナノファイバー製造装置112と、このナノファイバー製造装置112を備えたフィルタ製造装置82を説明する。
図1に示すように、ナノファイバー製造装置112は、吐出ユニット114を有している。図2に詳細に示すように、吐出ユニット114は、長尺状のブロック116を有している。ブロック116には、複数の樹脂吐出ノズル118がブロック116の長手方向(矢印L1方向)に一定の間隔で設けられている。
樹脂吐出ノズル118は、中心部分(中心線CL-1で示す)に上記した樹脂流路124を備えた筒状の部材である。
ブロック116には樹脂供給管120が接続されており、図示しない樹脂供給部材から、溶融樹脂MRが供給される。この溶融樹脂MRは、図5に示すように、樹脂吐出ノズル118の樹脂流路124を通って、下端の吐出口122から下方へ吐出される。樹脂流路124は、樹脂吐出ノズル118において、下方へ向かう直線状の空洞部分である。
以下において、単に「上流」及び「下流」というときは、吐出口122からの溶融樹脂MRの吐出方向における「上流」及び「下流」をそれぞれ意味する。図1における上側が上流側であり、下側が下流側である。
図1に詳細に示すように、第一実施形態のナノファイバー製造装置112は、複数の樹脂吐出ノズル118のそれぞれに対応して設けられた、第一筒状部材128、第二筒状部材130及び第三筒状部材132を有している。
第一筒状部材128は、樹脂吐出ノズル118と一対一で対応して設けられ、樹脂吐出ノズル118と同芯で固定されている。第一筒状部材128は、樹脂吐出ノズル118を取り囲む第一円筒部128Aと、この第一円筒部128Aの下端(下流端)から延出された第一円錐台部128Bと、を有している。
第一円筒部128Aは円筒状に形成されている。これに対し、第一円錐台部128Bは、第一円筒部128Aから下流側に延出されると共に、中心線CL-1に向かって円錐台状に傾斜する先細り形状である。
第一筒状部材128の第一円錐台部128Bは、樹脂吐出ノズル118の下流端118Cよりもさらに下流側に延在されており、樹脂吐出ノズル118の下流端118Cと第一円錐台部128Bとで囲まれる囲み領域142を形成している。
樹脂吐出ノズル118の外周面と第一円筒部128Aの内周面との間には間隙GP-1が構成されており、この間隙GP-1は、エアーノズル126となっている。エアーノズル126には、図2に示すエアー供給管134を通ってエアーが供給される。このエアーは、囲み領域142に噴射される。
第二筒状部材130は、第一筒状部材128及び樹脂吐出ノズル118と一対一で対応して設けられ、第一筒状部材128及び樹脂吐出ノズル118と同芯で固定されている。第二筒状部材130は、第一円筒部128Aを取り囲む第二円筒部130Aと、この第二円筒部130Aの下端(下流端)から延出された第二円錐台部130Bと、を有している。
第二円筒部130Aは円筒状に形成されている、これに対し、第二円錐台部130Bは、第二円筒部130Aから下流側に延出されると共に、中心線CL-1に向かって円錐台状に傾斜する先細り形状である。
第一筒状部材128の外周面と第二筒状部材130の内周面との間には間隙GP-2が構成されており、この間隙GP-2は高速高温エアーノズル138となっている。高速高温エアーノズル138には、図2に示す高速高温エアー供給管140を通って高速高温エアーが供給される。高速高温エアーは、エアーノズル126に供給されるエアーよりも、流れの速さが高速であり、且つ、ナノファイバー製造装置112の周囲の気体(空気)よりも高温の気体である。
第一円錐台部128B及び第二円錐台部130Bはいずれも、中心線CL-1に向かって円錐台状に傾斜しているため、高速高温エアーノズル138も、下流側の部分では、中心線CL-1に向かって傾斜する形状である。
第二筒状部材130の下流端130Cは、第一筒状部材128の下流端128Cと、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において同位置にある。
第二筒状部材130の下流端130Cと第一筒状部材128の下流端128Cの間の領域は、高速高温エアーノズル138から高速高温エアーが延伸気体EAとして噴射される延伸気体噴射口144である。
延伸気体噴射口144は、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)に見て、吐出口を取り囲んでいる。そして、延伸気体噴射口144からの延伸気体EAの噴射方向は、吐出口122から吐出された溶融樹脂MR(図5参照)に漸近するように傾斜している。このため、延伸気体噴射口144から噴射された延伸気体EAは、吐出口122から吐出された溶融樹脂MRに対し、下流に向かうにしたがって接近する。
第三筒状部材132は、第二筒状部材130、第一筒状部材128及び樹脂吐出ノズル118と一対一で対応して設けられ、第二筒状部材130、第一筒状部材128及び樹脂吐出ノズル118と同芯で固定されている。第三筒状部材132は、第二円筒部130Aを取り囲む第三円筒部132Aと、この第三円筒部132Aの下端(下流端)から延出された第三円錐台部132Bと、を有している。
第三円筒部132Aは円筒状に形成されている。これに対し、第三円錐台部132Bは、第三円筒部132Aから下流側に延出されると共に、中心線CL-1に向かって円錐台状に傾斜する先細り形状である。
第二筒状部材130の外周面と第三筒状部材132の内周面との間には間隙GP-3が構成されており、この間隙GP-3は加熱水蒸気ノズル146となっている。加熱水蒸気ノズル146には、図2に示す加熱水蒸気供給管148を通って加熱水蒸気が供給される。加熱水蒸気は、高速高温エアーノズル138に供給される高速高温エアーよりも高湿であり、且つ、ナノファイバー製造装置112の周囲の気体(空気)よりも高温の気体である。そして、本実施形態では、延伸気体EAの噴射圧は、保温気体HAの噴射圧よりも高く設定されている。
第二円錐台部130B及び第三円錐台部132Bはいずれも、中心線CL-1に向かって円錐台状に傾斜しているため、加熱水蒸気ノズル146も、中心線CL-1に向かって傾斜する形状である。
第三筒状部材132の下流端132Cは、第二筒状部材130の下流端130Cと、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において同位置にある。
第三筒状部材132の下流端132Cと第二筒状部材130の下流端130Cの間の領域は、加熱水蒸気ノズル146から加圧水蒸気が保温気体HAとして噴射される保温気体噴射口136である。
保温気体噴射口136は、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)に見て、吐出口を取り囲んでいる。そして、保温気体噴射口136からの保温気体HAの噴射方向は、吐出口122から吐出された溶融樹脂MR(図5参照)に漸近するように傾斜している。したがって、保温気体噴射口136から噴射された保温気体HAは、吐出口122から吐出された溶融樹脂MRに対し、下流に向かうにしたがって接近する。
さらに、保温気体噴射口136は、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)に見て、延伸気体噴射口144よりも外側に位置している。
吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において、第三筒状部材132の下流端132C、第二筒状部材130の下流端130C及び第一筒状部材128の下流端128Cは、同位置にある。したがって、延伸気体噴射口144と、保温気体噴射口136と、に関しても、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において同位置にある。
図2に示すように、吐出ユニット114の下方には、無端ベルト84が配置され、複数の張架ローラ86に張架されている。なお、図2では無端ベルト84を部分的に示し、張架ローラ86を1つのみ示している。
無端ベルト84の平坦部分の上には、支持体88が配置されて、巻き取りロール90で巻き取られるようになっている。樹脂吐出ノズル118から吐出された細線状の溶融樹脂MRは、支持体88の矢印M1方向への移動に伴って、この支持体88上で織り込まれるようにして支持される。そして、支持体88上では、たとえば不織布状のフィルタが形成される。
次に、本実施形態の作用を説明する。
第一実施形態のナノファイバー製造装置112によりナノファイバーを製造するには、まず、図5に示すように、吐出口122から溶融樹脂MRを吐出する。この溶融樹脂MRは、囲み領域142を通り、吐出方向下流側、すなわち下側に向けて垂下する。
この状態で、図6に示すように、保温気体噴射口136から保温気体HAを噴射する。保温気体HAは、吐出口122から吐出された溶融樹脂MRに向かって接近する。このとき、保温気体HAの噴射方向は溶融樹脂MRに向かう方向であるが、保温気体HAは徐々に広がりつつ溶融樹脂MRに近づいて接触する。この保温気体HAにより、溶融樹脂MRは、温度低下が抑制されるので、粘度が低い状態が維持される。
さらに、図7に示すように、延伸気体噴射口144からは、延伸気体EAを噴射する。延伸気体EAは、吐出口122から吐出された溶融樹脂MRに向かって接近する。このとき、延伸気体EAの噴射方向は溶融樹脂MRに向かう方向であるが、延伸気体EAは徐々に広がりつつ溶融樹脂MRに近づいて接触する。この延伸気体EAにより、溶融樹脂MRが下流側に延伸されてナノファイバーが形成される。形成されたナノファイバーは、支持体88(図2参照)上で支持される。
ここで、図22には、第一比較例のナノファイバー製造装置32が示されている。比較例のナノファイバー製造装置32では、溶融樹脂MRを吐出する吐出口34と、延伸気体EAを噴射する噴射口36と、を有しているが、保温気体HA(図6及ぶ図7参照)を噴射する噴射口は設けられていない。したがって、比較例のナノファイバー製造装置32では、保温気体を噴射することもない。
第一比較例のナノファイバー製造装置32では、吐出口34から吐出された溶融樹脂MRに対し、延伸気体EAのみが吹き付けられる。吐出口34から吐出された溶融樹脂MRに保温気体を吹き付けないので、溶融樹脂MRの粘度が高い状態で延伸気体EAを吹き付けてしまう場合には、溶融樹脂MRを効果的に延伸させてナノファイバーを細くするには限界がある。
これに対し、第一実施形態のナノファイバー製造装置112では、吐出口122から細長く垂下した溶融樹脂MRに対し、延伸気体EAだけでなく保温気体HAも噴射している。保温気体HAにより、溶融樹脂MRの温度低下が抑制され、溶融樹脂MRの粘度が低下された状態が維持される。そして、このように粘度が低下された溶融樹脂MRに延伸気体EAが噴射されるので、粘度が低下されない状態で延伸気体EAが噴射される構成と比較して、溶融樹脂MRをより細く延伸させることができ、より細いナノファイバーを形成することが可能である。
しかも、本実施形態では、延伸気体EAも、ナノファイバー製造装置112の周囲の気体より高温である。したがって、延伸気体EAがたとえばナノファイバー製造装置112の周囲の気体と同温度である構成と比較して、溶融樹脂MRの温度低下を抑制し、粘度が低い状態に維持しやすい。
本実施形態では、吐出口122からの溶融樹脂MRの吐出方向で、延伸気体噴射口144が保温気体噴射口136と同位置にある。ここで、たとえば、吐出口122からの溶融樹脂MRの吐出方向で、延伸気体噴射口が保温気体噴射口よりも上流側にある構成を第二比較例として想定する。第二比較例の構成では、溶融樹脂に対し、延伸気体が保温気体よりも、溶融樹脂の吐出方向の上流側で接触する。換言すれば、溶融樹脂に対し、延伸気体が保温気体よりも時間的に先に接触する。すなわち、溶融樹脂の粘度が十分に低下していない状態で延伸気体が溶融樹脂に接触する可能性があり、溶融樹脂を効果的に延伸させてナノファイバーを細くするには限界がある。
また、第三比較例として、吐出口122からの溶融樹脂MRの吐出方向で、保温気体噴射口が延伸気体噴射口よりも上流側にある構成を想定する。第三比較例の構成では、溶融樹脂に対し、保温気体が延伸気体よりも、溶融樹脂の吐出方向の上流側で接触する。換言すれば、溶融樹脂に対し、保温気体が延伸気体よりも時間的に先に接触する。このように、保温気体が延伸気体よりも先に溶融樹脂に接触すると、保温気体によって溶融樹脂の粘度が低下されてから、延伸気体によって延伸されるまでの間に時間が経過するので、溶融樹脂をどのように延伸させるか、という点で制御が難しい場合がある。
すなわち、上記第二比較例及び第三比較例のように、吐出口122からの溶融樹脂MRの吐出方向で、延伸気体噴射口と保温気体噴射口とが同位置にない構成では、先に(溶融樹脂の吐出方向の上流側で)溶融樹脂MRに接触した気体の影響が支配的になる。そしてこれにより、溶融樹脂を効果的に延伸させることが難しい場合がある。しかし、本実施形態では、吐出口122からの溶融樹脂MRの吐出方向で、延伸気体噴射口144が保温気体噴射口136と同位置にあり、溶融樹脂MRに対し延伸気体EAと保温気体HAとが実質的に同時に接触する。このため、溶融樹脂MRに対し、先に接触した気体の影響が支配的になることを抑制して、溶融樹脂MRを効果的に延伸させる効果、すなわちナノファイバーを細くする効果が高い。
なお、溶融樹脂MRの吐出方向において、延伸気体噴射口144が保温気体噴射口136と「同位置」にある、とは、上記したように、吐出口122から吐出された溶融樹脂MRに対し、吐出方向において実質的に同じ位置で延伸気体EAと保温気体HAとが接触する程度に「同位置」であればよい。
次に、第二実施形態のナノファイバー製造装置について説明する。第二実施形態において、第一実施形態と同様の要素、部材等については同一符号を付して詳細な説明を省略する。また、第二実施形態のナノファイバー製造装置を備えたフィルタ製造装置は、第一実施形態と同様の構造なので、図示を省略する。
図8に示すように、第二実施形態のナノファイバー製造装置212では、吐出ユニット214のブロック216が、上下に分割されている。図8に示す例では上ブロック216U、第一中間ブロック216M1、第二中間ブロック216M2及び下ブロック216Lの3つに分割されているが、4つ以上に分割されていてもよい。
第一中間ブロック216M1、第二中間ブロック216M2及び下ブロック216Lには、上下方向(厚み方向)に貫通する貫通孔216F、216G、216Hが形成されている。貫通孔216Gは、貫通孔216Fと同芯であり、且つ、貫通孔216Fよりも内径が大きい。貫通孔216Hは、貫通孔216Gと同芯であり、且つ、貫通孔216Gよりも内径が大きい。
第二実施形態では、樹脂吐出ノズル118が第一中間ブロック216M1の上部から延出されている。樹脂吐出ノズル118は、貫通孔216F、216G、216H内に配置されており、樹脂吐出ノズル118の下流端118Cは、下ブロック216Lの厚み方向(矢印T2方向)の中間部に位置している。
樹脂吐出ノズル118の上端には樹脂吐出ノズル118を部分的に拡径したフランジ部118Fが設けられている。フランジ部118Fは、第一中間ブロック216M1に形成された凹部216Pに収容されており、これによって樹脂吐出ノズル118が第一中間ブロック216M1に対し位置決めされている。
また、第二実施形態では、第一筒状部材128が、第二中間ブロック216M2の上部から延出されている。第一筒状部材128は、貫通孔216G、216H内に配置されており、第一筒状部材128の下流端128Cは、下ブロック216Lの下面216Cと同じ高さ位置にある。
第一筒状部材128の上端には、第一円筒部128Aを部分的に拡径したフランジ部128Fが設けられている。フランジ部128Fは、第二中間ブロック216M2に形成された凹部216Qに収容されており、これによって第一筒状部材128が第二中間ブロック216M2に対し位置決めされている。
さらに、第二実施形態では、第二筒状部材130が、下ブロック216Lの上部から延出されている。第二筒状部材130は、貫通孔216H内に配置されており、第二筒状部材130の下流端130Cは、下ブロック216Lの下面216Cと同じ高さ位置にある。
第二筒状部材130の上端には、第二円筒部130Aを部分的に拡径したるフランジ部130Fが設けられている。フランジ部130Fは、下ブロック216Lに形成された凹部216Rに収容されており、これによって第二筒状部材130が、下ブロック216Lに対し位置決めされている。
第二実施形態では、第二筒状部材130の外周面と、貫通孔216Hの内周面との間隙GP-4が加熱水蒸気ノズル146となっている。実質的に、下ブロック216Lが、第一実施形態における第三筒状部材132を兼ねている構成である。そして、下ブロック216Lに複数の貫通孔216Hが並べて設けられているので、下ブロック216Lが複数の第三筒状部材132を一体的に備えている構造でもある。
第二実施形態においても、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)で、延伸気体噴射口144が保温気体噴射口136と同位置にある。
このような構成とされた第二実施形態のナノファイバー製造装置212においても、第一実施形態のナノファイバー製造装置112と同様にして、ナノファイバーを製造することが可能である。
すなわち、まず、図9に示すように、吐出口122から溶融樹脂MRを吐出する。この溶融樹脂MRは、吐出方向下流側、すなわち下側に向けて垂下する。そして、図10に示すように、保温気体噴射口136から保温気体HAを噴射し、溶融樹脂MRを粘度が低下された状態とする。さらに、図11に示すように、延伸気体噴射口144からは、延伸気体EAを噴射し、溶融樹脂MRを下流側に延伸させて、ナノファイバーが形成される。
第二実施形態のナノファイバー製造装置212においても、吐出口122からの溶融樹脂MRの吐出方向で、延伸気体噴射口144が保温気体噴射口136と同位置にある。溶融樹脂MRに対し延伸気体EAと保温気体HAとが実質的に同時に接触するため、溶融樹脂MRに対し、先に接触した気体の影響が支配的になることを抑制できる。そして、第二実施形態においても、溶融樹脂MRを効果的に延伸させる効果、すなわちナノファイバーを細くする効果が高い。
第一実施形態及び第二実施形態において、保温気体噴射口136及び延伸気体噴射口144は、吐出口122からの溶融樹脂MRの吐出方向に見て吐出口122を取り囲んでいる。したがって、吐出口122から吐出された溶融樹脂MRに対し、周囲から保温気体HA及び延伸気体EAを取り囲んで接触させることができる。
しかも、第一実施形態及び第二実施形態において、保温気体噴射口136は、延伸気体噴射口144よりも、吐出口122からの溶融樹脂MRの吐出方向に見て、外側に位置している。保温気体HAが、溶融樹脂MRだけでなく延伸気体EAを取り囲むので、溶融樹脂MRだけでなく延伸気体EAも保温できる。
また、延伸気体噴射口144は、保温気体噴射口136よりも吐出方向に見て内側に位置している。延伸気体EAは保温気体HAよりも溶融樹脂MRに近い位置で噴射されるので、延伸気体EAを溶融樹脂MRに接触させて溶融樹脂MRを延伸させる効果が高く発揮される。
次に、第三実施形態のナノファイバー製造装置について説明する。第三実施形態において、第一実施形態と同様の要素、部材等については同一符号を付して詳細な説明を省略する。また、第三実施形態のナノファイバー製造装置を備えたフィルタ製造装置は、第一実施形態と同様の構造なので、図示を省略する。
第三実施形態のナノファイバー製造装置312は、図12に示すように、吐出ユニット314を有している。吐出ユニット314は、図2の矢印L1方向を長手方向とする長尺状のブロック316を有している。
ブロック316には樹脂供給管120が接続されており、図示しない樹脂供給部材から、溶融樹脂MRが供給されるようになっている。
ブロック316には、樹脂供給管120と連通する樹脂供給路318が長手方向に沿って形成されると共に、複数の樹脂吐出ノズル118がブロック316の長手方向(矢印L1方向)に一定の間隔で設けられている。この溶融樹脂MRは、図13に示すように、樹脂吐出ノズル118の樹脂流路124を通って、下端の吐出口122から下方へ吐出される。樹脂流路124は、樹脂吐出ノズル118において、下方へ向かう直線状の空洞部分である。
第三実施形態では、ブロック316は、幅方向(矢印W1方向)で2つの部分に分割された構造である。図12に示す例では、ブロック316は、幅方向右側の右ブロック316Rと、幅方向左側の左ブロック316Lの3つを有している。樹脂吐出ノズル118は、右ブロック316Rから下方に延出されている。
左ブロック316Lには、厚み方向に貫通する貫通孔316Gが形成されている。そして、左ブロック316Lには、樹脂吐出ノズル118に対し幅方向(矢印W1方向)で離間した位置に、気体噴射部材320が設けられている。気体噴射部材320は、内側筒状部材322及び外側筒状部材324を有している。
内側筒状部材322は、貫通孔316Gと同芯で左ブロック316Lに固定されている。
内側筒状部材322は、円筒状に形成された内側円筒部322Aと、この内側円筒部322Aから延出された内側円錐台部322Bと、を有している。貫通孔316G及び内側筒状部材322の内側部分は、高速高温エアーを延伸気体EAとして噴射する高速高温エアーノズル138になっている。
内側円錐台部322Bは、内側円筒部322Aから、延伸気体EAの噴射方向(矢印T2方向)に向かって円錐台状に傾斜する先細り形状である。したがって、第三実施形態の高速高温エアーノズル138では、延伸気体EAの噴射方向に向かってノズル径が漸減する(次第に絞られる)形状である。
外側筒状部材324は、内側筒状部材322と一対一で対応して向けられ、内側筒状部材322と同芯で固定されている。外側筒状部材324は、内側円筒部322Aを取り囲む外側円筒部324Aと、内側円錐台部322Bを取り囲む外側円錐台部324Bと、を有している。
内側筒状部材322の外周と外側筒状部材324の内周との間には、間隙GP-4が構成されており、この間隙GP-4が、第三実施形態では、この間隙GP-4が加熱水蒸気ノズル146となっている。
外側円筒部324Aは円筒状に形成されている。これに対し、外側円錐台部324Bは、内側筒状部材322の中心線CL-2に向かって円錐台状に傾斜する先細り形状である。したがって、第三実施形態では、保温気体噴射口136からの保温気体HAの噴射方向は、延伸気体噴射口144から噴射された延伸気体EAに対し、この延伸気体EAの流れ方向で下流に向かうにしたがって接近する。
第三実施形態では、高速高温エアーノズル138と加熱水蒸気ノズル146と兼ねた気体噴射部材320が、本願における噴射口兼用ノズルの一例となっている。
気体噴射部材320は、樹脂吐出ノズル118からの樹脂の吐出方向に対し、所定の傾斜角θで溶融樹脂MRに向かう方向に傾斜している。
そして、第三実施形態においても、内側筒状部材322の下流端322Cと、外側筒状部材324の下流端324Cとは、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において同位置にある。したがって、延伸気体噴射口144と、保温気体噴射口136との関係も、吐出口122からの溶融樹脂MRの吐出方向において同位置にある。
このような構成とされた第三実施形態のナノファイバー製造装置312によりナノファイバーを製造するには、まず、図13に示すように、吐出口122から溶融樹脂MRを吐出する。この溶融樹脂MRは、吐出方向下流側、すなわち下側に向けて垂下する。
この状態で、図14に示すように、保温気体噴射口136から保温気体HAを噴射する。保温気体HAにより、溶融樹脂MRは、その粘度が低下された状態となる。さらに、図15に示すように、延伸気体噴射口144からは、延伸気体EAを噴射する。溶融樹脂MRは延伸気体EAによって下流側に延伸されて、ナノファイバーが形成される。形成されたナノファイバーは、支持体88(図2参照)上で支持される。
第三実施形態のナノファイバー製造装置312においても、延伸気体噴射口144と、保温気体噴射口136と、は、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において同位置にある。溶融樹脂MRに対し延伸気体EAと保温気体HAとが実質的に同時に接触するので、溶融樹脂MRに対し、先に接触した気体の影響が支配的になることを抑制できる。そして、溶融樹脂MRを効果的に延伸させる効果、すなわちナノファイバーを細くする効果が高い。
次に、第四実施形態のナノファイバー製造装置について説明する。第四実施形態において、第一~第三実施形態と同様の要素、部材等については同一符号を付して詳細な説明を省略する。また、第四実施形態のナノファイバー製造装置を備えたフィルタ製造装置は、第一四施形態と同様の構造なので、図示を省略する。
第四実施形態のナノファイバー製造装置412は、図16に示すように、吐出ユニット414を有している。吐出ユニット414は、図2の矢印L1方向を長手方向とする長尺状のブロック416を有している。ブロック416には、樹脂供給路318から連続する複数の樹脂流路124が形成されている。第四実施形態では、これら複数の樹脂流路124が、樹脂吐出ノズル118を形成している。
ブロック416に対し、幅方向(W1方向)で接触して、ブロック418が設けられている。図16に示す例では、ブロック418は、上ブロック418Uと下ブロック418Lの2つに分割されている。
上ブロック418U及び下ブロック418Lには、それぞれを厚み方向に貫通する貫通孔418G、418Hが形成されている。貫通孔418Hは、貫通孔418Gと同芯であり、且つ、貫通孔418Gよりも内径が大きい。
下ブロック418Lの貫通孔418Hには、内側筒状部材322が収容されている。内側筒状部材322の下流端322Cは、下ブロック418Lの下面418Cと同じ位置にある。内側筒状部材322の外周面と、貫通孔418Hの内周面との間には間隙GP-5が構成されており、この間隙GP-5が加熱水蒸気ノズル146となっている。したがって、第四実施形態では、下ブロック418Lが、複数の外側筒状部材324を兼ねている構造である。そして、第四実施形態においても、延伸気体噴射口144と、保温気体噴射口136と、は、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において同位置にある。
このような構成とされた第四実施形態のナノファイバー製造装置412によりナノファイバーを製造するには、第三実施形態のナノファイバー製造装置312と同様に、図17に示すように、吐出口122から溶融樹脂MRを吐出する。この溶融樹脂MRは、吐出方向下流側、すなわち下側に向けて垂下する。
そして、図18に示すように、保温気体噴射口136から保温気体HAを噴射し、溶融樹脂MRを粘度が低下された状態とする。さらに、図19に示すように、延伸気体噴射口144からは、延伸気体EAを噴射し、溶融樹脂MRを下流側に延伸させて、ナノファイバーが形成される。
第四実施形態のナノファイバー製造装置412においても、延伸気体噴射口144と、保温気体噴射口136と、は、吐出口122からの溶融樹脂MRの吐出方向(矢印T1方向)において同位置にある。溶融樹脂MRに対し延伸気体EAと保温気体HAとが実質的に同時に接触するので、溶融樹脂MRに対し、先に接触した気体の影響が支配的になることを抑制できる。そして、溶融樹脂MRを効果的に延伸させる効果、すなわちナノファイバーを細くする効果が高い。
第三実施形態及び第四実施形態では、高速高温エアーノズル138と加熱水蒸気ノズル146とが、気体噴射部材320として兼用されている。したがって、高速高温エアーノズル138と加熱水蒸気ノズル146とを別々の部材として設けた構成と比較して、部品点数を少なくできる。
しかも、高速高温エアーノズル138と加熱水蒸気ノズル146とを一体化することで、延伸気体噴射口144と保温気体噴射口136とが実質的に同じ位置にある構造を容易に実現できる。延伸気体噴射口144と保温気体噴射口136とが同じ位置にあるので、溶融樹脂MRに対しても、同じ位置で延伸気体EA及び保温気体HAが接触する。したがって、延伸気体EA及び保温気体HAが溶融樹脂MRに対し異なる位置で接触する構造と比較して、延伸気体EA又は保温気体HAのいずれか一方の影響が延伸気体EAに作用することを抑制できる。
第三実施形態及び第四実施形態では、気体噴射部材320は、樹脂吐出ノズル118からの樹脂の吐出方向に対し、所定の傾斜角θで溶融樹脂MRに向かう方向に傾斜している。すなわち、延伸気体噴射口144からの延伸気体EAの噴射方向(矢印T2方向)が、吐出口122から吐出される溶融樹脂MRに漸近するように傾斜している。したがって、たとえば、延伸気体EAの噴射方向が、吐出口122からの溶融樹脂MRの吐出方向と直交している構成と比較して、溶融樹脂MRを延伸させて、より細いナノファイバーを得る効果が高い。
また、保温気体噴射口136からの保温気体HAの噴射方向(矢印T2方向)も、吐出口122から吐出される溶融樹脂MRに漸近するように傾斜している。したがってたとえば、保温気体HAも噴射方向が、吐出口122からの溶融樹脂MRの吐出方向と直交している構成と比較して、溶融樹脂MRを広い範囲に渡って保温できる。
第一及び第二上記各実施形態では、図3に示すように、保温気体噴射口136は、矢印IV方向(図1参照)に見て周方向に連続する環状である。また、図4に示すように、延伸気体噴射口144も、矢印IV方向(図1参照)に見て周方向に連続する環状である。これにより、周方向で均等に保温気体HA及び延伸気体EAを噴射することができる。ただし、保温気体噴射口136及び延伸気体噴射口144は、周方向に連続している必要はない。たとえば、第一実施形態の変形例として図20に示すように、延伸気体噴射口144が、周方向で複数(図20に示す例では4つ)に分割された分割噴射孔144Dで構成されていてもよい。同様に、保温気体噴射口136も、周方向で複数に分割された分割噴射孔136Dで構成されていてもよい。
さらには、図21に示すように、延伸気体噴射口144として、周方向に一定の間隔で、小孔状の噴射細孔144Hが並べて配置されている構造でもよい。同様に、保温気体噴射口136も、周方向に一定の間隔で並べて配置された小孔状の噴射細孔136Hで構成されていてもよい。
上記各実施形態において、保温気体HAとしては、大気を加熱することで所定の温度範囲に昇温した空気を用いることが可能であるが、さらに、この空気を加湿して所定の湿度範囲とした空気を用いることが可能である。保温気体HAが所定の湿度範囲にあれば、吐出口122から吐出される溶融樹脂MRが細い繊維状のナノファイバーになる際に、不用意な結合や絡まりを抑制できる。特に、上記各実施形態では、保温気体HAとして、加熱水蒸気を用いている。大気より高湿となる水蒸気により、溶融樹脂MRが細長く垂れて繊維状になった状態で、この繊維どうしの結合や丸まり、絡まり等を抑制する効果が、大気を保温気体として用いが場合よりも高い。
112 ナノファイバー製造装置
114 吐出ユニット
118 樹脂吐出ノズル
118C 下流端
120 樹脂供給管
122 吐出口
124 樹脂流路
126 エアーノズル
128 第一筒状部材
128C 下流端
130 第二筒状部材
130C 下流端
132 第三筒状部材
132C 下流端
136 保温気体噴射口
136D 分割噴射孔
136H 噴射細孔
138 高速高温エアーノズル
140 高速高温エアー供給管
144 延伸気体噴射口
146 加熱水蒸気ノズル
212 ナノファイバー製造装置
214 吐出ユニット
312 ナノファイバー製造装置
320 気体噴射部材
412 ナノファイバー製造装置
414 吐出ユニット

Claims (5)

  1. 溶融樹脂を吐出口から吐出する樹脂吐出部材と、
    前記吐出口からの前記溶融樹脂の吐出方向に見て前記吐出口を環状に取り囲むと共に前記溶融樹脂の吐出方向において前記吐出口よりも下流側にある延伸気体噴射口を有し、 雰囲気よりも高温の延伸気体を、前記吐出口から吐出された前記溶融樹脂に向けて、前記延伸気体噴射口から噴射する延伸気体噴射部材と、
    前記延伸気体噴射口を環状に取り囲むと共に前記環状の中心が前記溶融樹脂の吐出方向において前記延伸気体噴射口の環状の中心と同位置にある保温気体噴射口を有し、 雰囲気よりも高温で且つ前記延伸気体の噴射圧よりも低い噴射圧の保温気体を、前記吐出口から吐出された前記溶融樹脂に向けて、前記保温気体噴射口から噴射する保温気体噴射部材と、
    を有するナノファイバー製造装置。
  2. 溶融樹脂を吐出口から吐出する樹脂吐出部材と、
    前記吐出口からの前記溶融樹脂の吐出方向に対し傾斜すると共に前記溶融樹脂の吐出方向において前記吐出口よりも下流側にある延伸気体噴射口を有し、 雰囲気よりも高温の延伸気体を、前記吐出口から吐出された前記溶融樹脂に向けて、前記延伸気体噴射口から噴射する延伸気体噴射部材と、
    前記延伸気体噴射口を環状に取り囲むと共に前記環状の中心が前記溶融樹脂の吐出方向において前記延伸気体噴射口の中心と同位置にある保温気体噴射口を有し、 雰囲気よりも高温で且つ前記延伸気体の噴射圧よりも低い噴射圧の保温気体を、前記吐出口から吐出された前記溶融樹脂に向けて、前記保温気体噴射口から噴射する保温気体噴射部材と、
    を有するナノファイバー製造装置。
  3. 前記保温気体噴射口と前記延伸気体噴射口とを備える噴射口兼用ノズルを有する請求項1又は請求項2に記載のナノファイバー製造装置。
  4. 前記延伸気体噴射口からの前記延伸気体の噴射方向が前記吐出口から吐出された前記溶融樹脂に漸近するように傾斜している請求項1から請求項3のいずれか1項に記載のナノファイバー製造装置。
  5. 前記保温気体噴射口からの前記保温気体の噴射方向が前記吐出口から吐出された前記溶融樹脂に漸近するように傾斜している請求項1から請求項4のいずれか1項に記載のナノファイバー製造装置。
JP2019189715A 2019-10-16 2019-10-16 ナノファイバー製造装置 Active JP7186447B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019189715A JP7186447B2 (ja) 2019-10-16 2019-10-16 ナノファイバー製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019189715A JP7186447B2 (ja) 2019-10-16 2019-10-16 ナノファイバー製造装置

Publications (2)

Publication Number Publication Date
JP2021063321A JP2021063321A (ja) 2021-04-22
JP7186447B2 true JP7186447B2 (ja) 2022-12-09

Family

ID=75487717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019189715A Active JP7186447B2 (ja) 2019-10-16 2019-10-16 ナノファイバー製造装置

Country Status (1)

Country Link
JP (1) JP7186447B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098455A (ja) 1999-09-30 2001-04-10 Nippon Petrochem Co Ltd 横配列ウェブ、横配列ウェブの製造方法および製造装置
JP2011241510A (ja) 2010-05-19 2011-12-01 Toyota Boshoku Corp 溶融紡糸方法及び溶融紡糸装置
JP2014088639A (ja) 2012-10-30 2014-05-15 Kasen Nozuru Seisakusho:Kk 極細繊維不織布の製造装置
WO2015165272A1 (zh) 2014-04-30 2015-11-05 崔建中 熔融静电纺丝方法以及该方法制备的纳米纤维
WO2016013052A1 (ja) 2014-07-21 2016-01-28 ゼプト株式会社 高分子材料製ナノファイバーの製造方法
JP2017150112A (ja) 2016-02-25 2017-08-31 株式会社綿谷製作所 極細繊維製造装置および極細繊維製造方法
WO2018030530A1 (ja) 2016-08-10 2018-02-15 ナノマトリックス株式会社 微細繊維の製造方法及び微細繊維の製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098455A (ja) 1999-09-30 2001-04-10 Nippon Petrochem Co Ltd 横配列ウェブ、横配列ウェブの製造方法および製造装置
JP2011241510A (ja) 2010-05-19 2011-12-01 Toyota Boshoku Corp 溶融紡糸方法及び溶融紡糸装置
JP2014088639A (ja) 2012-10-30 2014-05-15 Kasen Nozuru Seisakusho:Kk 極細繊維不織布の製造装置
WO2015165272A1 (zh) 2014-04-30 2015-11-05 崔建中 熔融静电纺丝方法以及该方法制备的纳米纤维
WO2016013052A1 (ja) 2014-07-21 2016-01-28 ゼプト株式会社 高分子材料製ナノファイバーの製造方法
JP2017150112A (ja) 2016-02-25 2017-08-31 株式会社綿谷製作所 極細繊維製造装置および極細繊維製造方法
WO2018030530A1 (ja) 2016-08-10 2018-02-15 ナノマトリックス株式会社 微細繊維の製造方法及び微細繊維の製造装置

Also Published As

Publication number Publication date
JP2021063321A (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
KR100560589B1 (ko) 냉풍 멜트블로운 장치 및 방법
US4627811A (en) Apparatus for producing a spunbond
TW591135B (en) Spinning device and method with cool air quenching
CN111194363B (zh) 用于丝的挤压和纺粘织物生产的设备
US9388511B2 (en) Spinneret for spinning threads and spinning device for spinning threads
JP5652167B2 (ja) 溶融紡糸装置及び溶融紡糸方法
JP5946569B1 (ja) メルトブロー用口金及び極細繊維製造装置
JPH11350238A (ja) 繊度の均一性が高いミクロフィラメント糸を熱可塑性ポリマ―から製造する装置および方法
US3705227A (en) Process and apparatus for quenching melt spun filaments
JP7186447B2 (ja) ナノファイバー製造装置
JP4946111B2 (ja) 合成繊維の溶融紡糸装置および合成繊維の製造方法
JP5428979B2 (ja) 紡糸パックおよびフィラメント糸の製造方法
JP2002309431A (ja) 紡糸装置
KR920703889A (ko) 마이크로 필라멘트를 제조하기 위한 방법 및 스피닝 장치
JP2017203233A (ja) メルトブロー用ダイ
TW561204B (en) Molten yarn take-up device
JP2020050986A (ja) ナノファイバー製造装置
JP2020050987A (ja) ナノファイバー製造装置
JPS61201005A (ja) 溶融紡糸装置
JP3668004B2 (ja) 溶融紡糸装置
JP2018080405A (ja) 樹脂ファイバの製造方法、これに用いられるノズルヘッド及び製造装置
KR20150055859A (ko) 온도 구배 제어가 가능한 건식방사장치
JPH0480137B2 (ja)
JP2734459B2 (ja) 糸条の熱処理装置
JP4058227B2 (ja) メルトブロー装置用ダイ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7186447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150