JP7180645B2 - Method for estimating hydrogen concentration in molten steel and vacuum degassing refining method for molten steel - Google Patents

Method for estimating hydrogen concentration in molten steel and vacuum degassing refining method for molten steel Download PDF

Info

Publication number
JP7180645B2
JP7180645B2 JP2020128151A JP2020128151A JP7180645B2 JP 7180645 B2 JP7180645 B2 JP 7180645B2 JP 2020128151 A JP2020128151 A JP 2020128151A JP 2020128151 A JP2020128151 A JP 2020128151A JP 7180645 B2 JP7180645 B2 JP 7180645B2
Authority
JP
Japan
Prior art keywords
molten steel
refining
vacuum degassing
hydrogen concentration
degassing refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020128151A
Other languages
Japanese (ja)
Other versions
JP2021050415A (en
Inventor
圭介 溝端
晃史 原田
由枝 中井
令 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021050415A publication Critical patent/JP2021050415A/en
Application granted granted Critical
Publication of JP7180645B2 publication Critical patent/JP7180645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、減圧下で溶鋼中の水素を除去する真空脱ガス精錬が溶鋼に施される前の溶鋼中の水素濃度を推定する方法、及び、RH真空脱ガス装置などの真空脱ガス設備を用い、溶鋼を減圧下で精錬して溶鋼中の水素を除去する溶鋼の真空脱ガス精錬方法に関する。 The present invention provides a method for estimating the hydrogen concentration in molten steel before vacuum degassing refining for removing hydrogen in molten steel under reduced pressure, and a vacuum degassing equipment such as an RH vacuum degassing device. The present invention relates to a vacuum degassing refining method for molten steel in which hydrogen is removed from the molten steel by refining the molten steel under reduced pressure.

鉄鋼材料において水素は、毛割れ、白点、水素脆性、遅れ破壊などの原因となる有害元素である。そのため、製鋼工程では、溶鋼の水素含有量を低減することが望まれており、RH真空脱ガス装置、DH真空脱ガス装置、REDA真空脱ガス装置、VAD真空精錬設備など、種々の真空脱ガス設備において、溶鋼を減圧下で精錬して溶鋼中の水素を除去する溶鋼の真空脱ガス精錬(「脱水素処理」とも記す)が行われている。 In steel materials, hydrogen is a harmful element that causes hair cracks, white spots, hydrogen embrittlement, delayed fracture, and the like. Therefore, in the steelmaking process, it is desired to reduce the hydrogen content of molten steel. In the facility, vacuum degassing refining (also referred to as “dehydrogenation treatment”) of molten steel is performed to refine the molten steel under reduced pressure to remove hydrogen in the molten steel.

溶鋼の真空脱ガス精錬において、精錬後の溶鋼の水素濃度が目標水素濃度を下回るように管理する従来方法としては、(1)溶鋼の水素濃度をオンラインで直接測定し、溶鋼の水素濃度が目標水素濃度を下回ることを確認する方法、(2)溶鋼の水素濃度が目標水素濃度を下回るように、過去の実績に基づいて精錬時間を長めに設定する方法、(3)モデル式によって溶鋼の水素濃度を推定し、推定した溶鋼の水素濃度が目標水素濃度を下回る精錬時間を確保する方法の3つが大別して挙げられる。 In the vacuum degassing refining of molten steel, the conventional method of controlling the hydrogen concentration in the molten steel after refining to be below the target hydrogen concentration is as follows: (1) Direct measurement of the hydrogen concentration in the molten steel online, (2) a method of setting a longer refining time based on past performance so that the hydrogen concentration in molten steel is below the target hydrogen concentration; There are roughly three methods of estimating the concentration and securing a refining time in which the estimated hydrogen concentration of the molten steel is below the target hydrogen concentration.

しかし、溶鋼の水素濃度をオンラインで直接測定する方法では、水素濃度を測定する専用の測定装置が必要であり、この測定装置を設置するための費用が必要であるうえに、測定ごとに高価な消耗品の測定プローブが必要であり、真空脱ガス精錬コストが増加するという問題がある。また、真空脱ガス精錬の精錬時間を長めに設定する方法では、精錬時間が長くなることで、耐火物コスト、撹拌用ガスコスト及び電力コストが増加し、真空脱ガス精錬コストが増加するという問題がある。 However, the method of directly measuring the hydrogen concentration of molten steel online requires a dedicated measuring device for measuring the hydrogen concentration. There is a problem that a consumable measurement probe is required and the vacuum degassing refining cost increases. In addition, in the method of setting the refining time of vacuum degassing refining longer, the longer refining time increases the refractory cost, the gas cost for stirring, and the power cost, and the vacuum degassing refining cost increases. There is

そこで、これらの問題を解決するために、モデル式によって溶鋼の水素濃度を推定する方法が注目され、これまでに種々の提案がなされている。 Therefore, in order to solve these problems, a method of estimating the hydrogen concentration of molten steel using a model formula has attracted attention, and various proposals have been made so far.

例えば、特許文献1には、真空脱ガス精錬において、排ガス装置の運転パターンによって予測した排気量に基づいて真空槽内の真空度(圧力)を予測し、この予測した真空度に基づいて溶鋼中水素濃度を予め推定しておき、精錬開始後、実績としての真空度を前記予測した真空度と比較し、そのずれを補正することで真空度の推移を予測し、その予測値から溶鋼の水素濃度を推定する方法が提案されている。 For example, in Patent Document 1, in vacuum degassing refining, the degree of vacuum (pressure) in the vacuum tank is predicted based on the amount of exhaust gas predicted by the operation pattern of the exhaust gas device, and based on this predicted degree of vacuum, The hydrogen concentration is estimated in advance, and after the start of refining, the actual degree of vacuum is compared with the predicted degree of vacuum, and the deviation is corrected to predict the transition of the degree of vacuum. Methods for estimating concentration have been proposed.

しかしながら、特許文献1では、真空脱ガス精錬前の溶鋼中水素濃度、つまり、真空脱ガス精錬開始時の溶鋼中水素濃度を推定する方法が示されておらず、真空脱ガス精錬に先立って行われる製鋼精錬工程の種類や内容により、真空脱ガス精錬前の溶鋼中水素濃度が大きく変化する実操業においては、推定精度が不十分であるという問題がある。 However, Patent Document 1 does not show a method for estimating the hydrogen concentration in molten steel before vacuum degassing refining, that is, the hydrogen concentration in molten steel at the start of vacuum degassing refining. There is a problem that the estimation accuracy is insufficient in actual operation where the hydrogen concentration in molten steel before vacuum degassing refining changes greatly depending on the type and content of the steelmaking refining process used.

特許文献2には、オンライン水素迅速分析計によって真空脱ガス精錬前の溶鋼中の水素濃度を直接測定し、更に真空脱ガス精錬期間を3期に区分し、それぞれの期間での脱水素速度定数を事前測定によって溶鋼量に応じて定めることで、真空脱ガス精錬の精錬時間を推定する方法が提案されている。 In Patent Document 2, the hydrogen concentration in molten steel before vacuum degassing refining is directly measured by an on-line rapid hydrogen analyzer, and the vacuum degassing refining period is divided into three periods, and the dehydrogenation rate constant in each period is calculated. A method of estimating the refining time of vacuum degassing refining has been proposed by determining according to the amount of molten steel by prior measurement.

しかしながら、特許文献2では、真空脱ガス精錬前の溶鋼中水素濃度を求めるために、毎回の真空脱ガス精錬前に溶鋼の水素濃度を測定する必要があり、一般に、オンライン水素迅速分析用のプローブは高価であり、却って真空脱ガス精錬コストが増加してしまうという問題がある。 However, in Patent Document 2, in order to determine the hydrogen concentration in molten steel before vacuum degassing refining, it is necessary to measure the hydrogen concentration of molten steel before each vacuum degassing refining. is expensive, and there is a problem that the vacuum degassing refining cost will rather increase.

また、特許文献3には、成分調整用の合金及びアルミニウムを溶鋼に投入して溶鋼中の自由酸素濃度を10質量ppm以下とした後、溶鋼中水素濃度を測定し、その測定結果と予め求めておいた脱水素速度定数とに基づく脱水素予測モデル式を用いて、脱水素のための精錬時間を算出する方法が提案されている。 In addition, in Patent Document 3, after an alloy for component adjustment and aluminum are put into molten steel to make the free oxygen concentration in the molten steel 10 ppm by mass or less, the hydrogen concentration in the molten steel is measured, and the measurement result and the previously obtained A method of calculating the refining time for dehydrogenation is proposed using a dehydrogenation prediction model formula based on the dehydrogenation rate constant set in advance.

しかしながら、特許文献3においても、溶鋼中水素濃度を求めるために、毎回の真空脱ガス精錬の都度、溶鋼中の自由酸素濃度を10質量ppm以下とした後に、プローブを用いた水素濃度測定を行う必要があり、真空脱ガス精錬コストが増加してしまうという問題がある。 However, even in Patent Document 3, in order to obtain the hydrogen concentration in molten steel, the hydrogen concentration is measured using a probe after the free oxygen concentration in molten steel is reduced to 10 ppm by mass or less each time vacuum degassing refining is performed. There is a problem that the vacuum degassing refining cost increases.

特開平9-209027号公報JP-A-9-209027 特開平5-70821号公報JP-A-5-70821 特開2018-109212号公報JP 2018-109212 A

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶鋼を減圧下で精錬して溶鋼中の水素を除去する溶鋼の真空脱ガス精錬を実施する際に、溶鋼の水素濃度を分析することによるコスト増加を招くことなく、真空脱ガス精錬前の溶鋼中の水素濃度を精度良く推定することのできる溶鋼中の水素濃度推定方法を提供することである。また、他の目的は、推定した真空脱ガス精錬前の溶鋼中の水素濃度に対して脱水素モデル式を適用し、これによって、真空脱ガス精錬の精錬時間を延長することなく、真空脱ガス精錬中の溶鋼中の水素濃度を高精度に推定することのできる溶鋼の真空脱ガス精錬方法を提供することである。 The present invention has been made in view of the above circumstances, and its object is to remove hydrogen from molten steel when performing vacuum degassing refining of molten steel by refining molten steel under reduced pressure to remove hydrogen in molten steel. To provide a method for estimating the concentration of hydrogen in molten steel, capable of accurately estimating the concentration of hydrogen in the molten steel before vacuum degassing refining without incurring an increase in cost due to analysis of the concentration. Another object is to apply the dehydrogenation model formula to the estimated hydrogen concentration in the molten steel before vacuum degassing refining, thereby achieving vacuum degassing without extending the refining time of vacuum degassing refining. An object of the present invention is to provide a method for vacuum degassing refining of molten steel, capable of estimating the hydrogen concentration in molten steel during refining with high accuracy.

本発明者らは、上記課題を解決すべく、鋭意、実験及び検討を行った。その結果、真空脱ガス精錬前の溶鋼中の水素濃度は、真空脱ガス精錬に先立つ製鋼精錬工程の操業条件に依存するとの知見を得た。 The present inventors diligently conducted experiments and studies in order to solve the above problems. As a result, it was found that the hydrogen concentration in molten steel before vacuum degassing refining depends on the operating conditions of the steelmaking refining process prior to vacuum degassing refining.

本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。 The present invention was made based on the above findings, and the gist thereof is as follows.

[1]減圧下で溶鋼中の水素を除去する真空脱ガス精錬が溶鋼に施される前の溶鋼中の水素濃度を推定する方法であって、
真空脱ガス精錬前の溶鋼中の水素濃度を、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定することを特徴とする、溶鋼中の水素濃度推定方法。
[1] A method for estimating the hydrogen concentration in molten steel before vacuum degassing refining for removing hydrogen in molten steel under reduced pressure is performed,
Hydrogen concentration estimation in molten steel, characterized in that the hydrogen concentration in molten steel before vacuum degassing refining is estimated using a function with the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining as a variable. Method.

[2]前記製鋼精錬工程における副原料の使用量を変数とする関数が、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計、のうちの少なくとも一つを変数として含む関数であることを特徴とする、上記[1]に記載の溶鋼中の水素濃度推定方法。 [2] The function with the amount of auxiliary raw materials used in the steelmaking refining process as a variable is the total amount of auxiliary raw materials added per unit mass of molten steel in refining in a converter or an electric furnace, the output steel from a converter or an electric furnace Total amount of auxiliary materials added per unit mass of molten steel in the steelmaking process from steel to before the start of vacuum degassing refining, and amount of auxiliary materials containing calcined lime added per unit mass of molten steel in refining in a converter or electric furnace total amount of auxiliary raw materials containing calcined lime per unit mass of molten steel in the steelmaking process from the output of converter or electric furnace to the start of vacuum degassing refining; The total amount of auxiliary materials that do not contain calcined lime per unit mass of molten steel, and does not contain calcined lime per unit mass of molten steel in the steelmaking refining process from the output steel from converter or electric furnace to the start of vacuum degassing refining The method for estimating the concentration of hydrogen in molten steel according to [1] above, wherein the function includes at least one of the total amount of auxiliary materials added as a variable.

[3]前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(1)式を使用することを特徴とする、上記[1]に記載の溶鋼中の水素濃度推定方法。
[H]=b×W+b×W+β ・・・(1)
ここで、(1)式において、[H]は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、Wは、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計(kg/ton)、Wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計(kg/ton)、b、bは、個々の副原料の種類や管理状態によって決まる影響係数、βは補正定数である。
[3] The method for estimating hydrogen concentration in molten steel according to [1] above, wherein the following formula (1) is used as a function with the amount of auxiliary raw materials used in the steelmaking refining process as a variable.
[H] 0 = b 1 ×W 1 +b 2 ×W 2 +β (1)
Here, in equation (1), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, W The total amount of raw materials added (kg/ton), W2 is the added amount of auxiliary materials per unit mass of molten steel in the steelmaking refining process from converter or electric furnace output steel to the start of vacuum degassing refining. Total (kg/ton), b 1 and b 2 are influence coefficients determined by the type and management state of individual sub-raw materials, and β is a correction constant.

[4]前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(2)式を使用することを特徴とする、上記[1]に記載の溶鋼中の水素濃度推定方法。
[H]=a×w+a×w+a×w+a×w+α ・・・(2)
ここで、(2)式において、[H]は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、wは、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、wは、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、a、a、a、aは、個々の副原料の種類や管理状態によって決まる影響係数、αは補正定数である。
[4] The method for estimating the concentration of hydrogen in molten steel according to [1] above, wherein the following formula (2) is used as a function with the amount of auxiliary material used in the steelmaking refining process as a variable.
[H] 0 = a 1 ×w 1 +a 2 ×w 2 +a 3 ×w 3 +a 4 ×w 4 +α (2)
Here, in equation (2), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, and w 1 is the calcination per unit mass of molten steel in refining in a converter or electric furnace. The total amount of lime-containing auxiliary materials added (kg/ton), w 2 is the content of calcined lime per unit mass of molten steel in the steelmaking refining process from converter or electric furnace tapped steel to before the start of vacuum degassing refining Total additive amount of auxiliary raw materials (kg/ton), w 3 is the total additive amount of auxiliary raw materials not containing calcined lime per unit mass of molten steel in refining in a converter or electric furnace (kg/ton), w 4 is the total addition amount of non-calcined lime-containing auxiliary materials per unit mass of molten steel (kg/ton) in the steelmaking refining process from converter or electric furnace output steel to before the start of vacuum degassing refining, a 1 , a 2 , a 3 , and a 4 are influence coefficients determined by the types and management conditions of individual sub-raw materials, and α is a correction constant.

[5]前記焼成石灰含有副原料は遊離石灰を含有する副原料であることを特徴とする、上記[4]に記載の溶鋼中の水素濃度推定方法。 [5] The method for estimating hydrogen concentration in molten steel according to [4] above, wherein the auxiliary raw material containing calcined lime is an auxiliary raw material containing free lime.

[6]過去の操業データを回帰分析することによって前記影響係数及び前記補正定数のうちの少なくとも1つを決定することを特徴とする、上記[3]から上記[5]のいずれかに記載の溶鋼中の水素濃度推定方法。 [6] Any one of the above [3] to [5], characterized in that at least one of the influence coefficient and the correction constant is determined by regression analysis of past operational data. Method for estimating hydrogen concentration in molten steel.

[7]溶鋼を減圧下で精錬して溶鋼中の水素を除去する溶鋼の真空脱ガス精錬方法であって、
真空脱ガス精錬前の溶鋼中の水素濃度を、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定し、
更に、真空脱ガス精錬中の溶鋼中の水素濃度を、脱水素モデル式を用いて逐次推定し、脱水素モデル式で推定した水素濃度が目標水素濃度未満になった時点で真空脱ガス精錬を終了することを特徴とする、溶鋼の真空脱ガス精錬方法。
[7] A method for vacuum degassing refining of molten steel for refining molten steel under reduced pressure to remove hydrogen in the molten steel, comprising:
Estimate the hydrogen concentration in the molten steel before vacuum degassing refining using a function with the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining as a variable,
Furthermore, the hydrogen concentration in the molten steel during vacuum degassing refining is estimated sequentially using the dehydrogenation model formula, and when the hydrogen concentration estimated by the dehydrogenation model formula becomes less than the target hydrogen concentration, vacuum degassing refining is started. A method for vacuum degassing refining of molten steel, characterized by finishing.

[8]前記製鋼精錬工程における副原料の使用量を変数とする関数が、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計、のうちの少なくとも一つを変数として含む関数であることを特徴とする、上記[7]に記載の溶鋼の真空脱ガス精錬方法。 [8] The function with the amount of auxiliary raw materials used in the steelmaking refining process as a variable is the total amount of auxiliary raw materials added per unit mass of molten steel in refining in a converter or an electric furnace, the output steel from a converter or an electric furnace Total amount of auxiliary materials added per unit mass of molten steel in the steelmaking process from steel to before the start of vacuum degassing refining, and amount of auxiliary materials containing calcined lime added per unit mass of molten steel in refining in a converter or electric furnace total amount of auxiliary raw materials containing calcined lime per unit mass of molten steel in the steelmaking process from the output of converter or electric furnace to the start of vacuum degassing refining; The total amount of auxiliary materials that do not contain calcined lime per unit mass of molten steel, and does not contain calcined lime per unit mass of molten steel in the steelmaking refining process from the output steel from converter or electric furnace to the start of vacuum degassing refining The method for vacuum degassing refining of molten steel according to [7] above, wherein the function includes at least one of the sum of the additive amounts of the auxiliary materials as a variable.

[9]前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(1)式を使用することを特徴とする、上記[7]に記載の溶鋼の真空脱ガス精錬方法。
[H]=b×W+b×W+β ・・・(1)
ここで、(1)式において、[H]は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、Wは、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計(kg/ton)、Wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計(kg/ton)、b、bは、個々の副原料の種類や管理状態によって決まる影響係数、βは補正定数である。
[9] The method for vacuum degassing refining of molten steel according to the above [7], wherein the following formula (1) is used as a function with the amount of auxiliary raw materials used in the steelmaking refining process as a variable.
[H] 0 = b 1 ×W 1 +b 2 ×W 2 +β (1)
Here, in equation (1), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, W The total amount of raw materials added (kg/ton), W2 is the added amount of auxiliary materials per unit mass of molten steel in the steelmaking refining process from converter or electric furnace output steel to the start of vacuum degassing refining. Total (kg/ton), b 1 and b 2 are influence coefficients determined by the type and management state of individual sub-raw materials, and β is a correction constant.

[10]前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(2)式を使用することを特徴とする、上記[7]に記載の溶鋼の真空脱ガス精錬方法。
[H]=a×w+a×w+a×w+a×w+α ・・・(2)
ここで、(2)式において、[H]は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、wは、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、wは、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、a、a、a、aは、個々の副原料の種類や管理状態によって決まる影響係数、αは補正定数である。
[10] The method for vacuum degassing refining of molten steel according to [7] above, characterized in that the following formula (2) is used as a function with the amount of the auxiliary raw material used in the steelmaking refining process as a variable.
[H] 0 = a 1 ×w 1 +a 2 ×w 2 +a 3 ×w 3 +a 4 ×w 4 +α (2)
Here, in equation (2), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, and w 1 is the calcination per unit mass of molten steel in refining in a converter or electric furnace. The total amount of lime-containing auxiliary materials added (kg/ton), w 2 is the content of calcined lime per unit mass of molten steel in the steelmaking refining process from converter or electric furnace tapped steel to before the start of vacuum degassing refining Total additive amount of auxiliary raw materials (kg/ton), w 3 is the total additive amount of auxiliary raw materials not containing calcined lime per unit mass of molten steel in refining in a converter or electric furnace (kg/ton), w 4 is the total addition amount of non-calcined lime-containing auxiliary materials per unit mass of molten steel (kg/ton) in the steelmaking refining process from converter or electric furnace output steel to before the start of vacuum degassing refining, a 1 , a 2 , a 3 , and a 4 are influence coefficients determined by the types and management conditions of individual sub-raw materials, and α is a correction constant.

[11]前記焼成石灰含有副原料は遊離石灰を含有する副原料であることを特徴とする、上記[10]に記載の溶鋼の真空脱ガス精錬方法。 [11] The method for vacuum degassing refining of molten steel according to [10] above, wherein the auxiliary material containing calcined lime is an auxiliary material containing free lime.

[12]過去の操業データを回帰分析することによって前記影響係数及び前記補正定数のうちの少なくとも1つを決定することを特徴とする、上記[9]から上記[11]のいずれかに記載の溶鋼の真空脱ガス精錬方法。 [12] Any one of the above [9] to [11], characterized in that at least one of the influence coefficient and the correction constant is determined by regression analysis of past operational data. Vacuum degassing refining method for molten steel.

[13]前記脱水素モデル式として、下記の(3)式及び(4)式を使用することを特徴とする、上記[7]から上記[12]のいずれかに記載の溶鋼の真空脱ガス精錬方法。
[H]={[H]-[H]}×exp(-K×t)+[H] ・・・(3)
[H]=10-(1905/T)-1.591×P1/2 ・・・(4)
ここで、(3)式において、[H]は、真空脱ガス精錬中の溶鋼中の水素濃度(質量ppm)、[H]は、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定した、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、tは、真空脱ガス精錬の開始からの経過時間(min)であり、(4)式において、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Tは、真空脱ガス精錬時の溶鋼温度(K)、Pは、真空槽内の圧力(atm)である。
[13] Vacuum degassing of molten steel according to any one of [7] to [12] above, wherein the following equations (3) and (4) are used as the dehydrogenation model equations. smelting method.
[H]={[H] 0 −[H] e }×exp(−K H ×t)+[H] e (3)
[H] e = 10 - (1905/T) - 1.591 x P 1/2 (4)
Here, in the formula (3), [H] is the hydrogen concentration (mass ppm) in the molten steel during vacuum degassing refining, [H] 0 is the use of auxiliary raw materials in the steelmaking refining process prior to vacuum degassing refining. Hydrogen concentration (mass ppm) in molten steel before vacuum degassing refining estimated using a function with quantity as a variable, [H] e is the equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum tank, K H is the dehydrogenation rate constant (1/min) in vacuum degassing refining, t is the elapsed time (min) from the start of vacuum degassing refining, and in equation (4), [H] e is The equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum chamber, T is the molten steel temperature (K) during vacuum degassing refining, and P is the pressure (atm) in the vacuum chamber.

[14]前記真空脱ガス精錬は、RH真空脱ガス装置における真空脱ガス精錬であって、前記脱水素速度定数(K)を、下記の(5)式、(6)式及び(7)式を使用して決定することを特徴とする、上記[13]に記載の溶鋼の真空脱ガス精錬方法。
=(Q/V)×{ak/(Q+ak)} ・・・(5)
Q=11.4×G1/3×D4/3×{ln(P/P)}1/3/ρ ・・・(6)
ak=2500×D 1/2×(G×10-31/2×d/2 ・・・(7)
ここで、(5)式、(6)式及び(7)式において、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、Qは、真空槽への溶鋼環流量(m/min)、Vは、真空脱ガス精錬対象の溶鋼の体積(m)、akは、脱水素反応容量係数(m/min)、Gは、環流用ガスの流量(NL/min)、Dは上昇側浸漬管の内径(m)、Pは、大気圧(atm)、Pは、真空槽内の圧力(atm)、ρは、溶鋼の密度(ton/m)、Dは、溶鋼中水素の拡散係数(m/min)、dは、真空槽の内径(m)である。
[14] The vacuum degassing refining is vacuum degassing refining in an RH vacuum degassing apparatus, and the dehydrogenation rate constant (K H ) is expressed by the following equations (5), (6) and (7) The method for vacuum degassing refining of molten steel according to the above [13], characterized in that the determination is made using the formula.
KH =(Q/V)×{ak/(Q+ak)} (5)
Q=11.4×G1 /3 ×D4 /3 ×{ln( P1 /P)} 1/3 / ρL (6)
ak=2500× DH1 /2 ×(G× 10-3 ) 1/2 × dL /2 (7)
Here, in equations (5), (6) and (7), KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, Q is the molten steel circulation flow rate to the vacuum tank (m 3 /min), V is the volume of molten steel to be vacuum degassed (m 3 ), ak is the dehydrogenation reaction capacity coefficient (m 3 /min), and G is the flow rate of reflux gas (NL/min). , D is the inner diameter of the ascending immersion tube (m), P 1 is the atmospheric pressure (atm), P is the pressure in the vacuum chamber (atm), ρ L is the density of molten steel (ton/m 3 ), D H is the diffusion coefficient of hydrogen in molten steel (m 2 /min), and dL is the inner diameter (m) of the vacuum chamber.

[15]当該真空脱ガス精錬よりも以前の真空脱ガス精錬中に溶鋼の水素濃度を測定し、測定した水素濃度から水素濃度の経時変化を求め、求めた水素濃度の経時変化に基づいて脱水素速度定数(K)を予め決定しておき、予め決定した脱水素速度定数(K)を用いて真空脱ガス精錬中の溶鋼中の水素濃度を逐次推定することを特徴とする、上記[13]に記載の溶鋼の真空脱ガス精錬方法。 [15] Measure the hydrogen concentration of molten steel during vacuum degassing refining prior to the vacuum degassing refining, determine the change in hydrogen concentration over time from the measured hydrogen concentration, and dehydrate based on the determined change in hydrogen concentration over time. An elementary rate constant (K H ) is determined in advance, and the hydrogen concentration in molten steel during vacuum degassing refining is sequentially estimated using the predetermined dehydrogenation rate constant (K H ). The vacuum degassing refining method for molten steel according to [13].

[16]溶鋼を減圧下で精錬して溶鋼中の水素を除去する溶鋼の真空脱ガス精錬方法であって、
真空脱ガス精錬前の溶鋼中の水素濃度を、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定し、
前記真空脱ガス精錬を、前記推定された真空脱ガス精錬前の溶鋼中の水素濃度と真空脱ガス精錬後の溶鋼中の水素濃度の目標値とから得られる下記(8)式の条件を満たす時点で終了することを特徴とする、溶鋼の真空脱ガス精錬方法。
t≧(1/K)×ln{([H]-[H])/([H]-[H])}・・・(8)
ここで、(8)式において、tは、真空脱ガス精錬の開始からの経過時間(min)、[H]は、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定した、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、[H]は、真空脱ガス精錬後の溶鋼中の水素濃度の目標値(質量ppm)、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、lnは、自然対数である。
[16] A method for vacuum degassing refining of molten steel for refining molten steel under reduced pressure to remove hydrogen in the molten steel,
Estimate the hydrogen concentration in the molten steel before vacuum degassing refining using a function with the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining as a variable,
The vacuum degassing refining is performed by satisfying the following formula (8) obtained from the estimated hydrogen concentration in the molten steel before vacuum degassing refining and the target value of the hydrogen concentration in the molten steel after vacuum degassing refining. A method for vacuum degassing refining of molten steel, characterized in that it ends at a point in time.
t≧(1/K H )×ln{([H] 0 −[H] e )/([H] f −[H] e )} (8)
Here, in formula (8), t is the elapsed time (min) from the start of vacuum degassing refining, and [H] 0 is the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining. The hydrogen concentration in the molten steel before vacuum degassing refining (mass ppm), [H ] , estimated using the function to H] e is the equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum chamber, KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, ln is the natural logarithm.

[17]前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(1)式を使用することを特徴とする、上記[16]に記載の溶鋼の真空脱ガス精錬方法。
[H]=b×W+b×W+β ・・・(1)
ここで、(1)式において、[H]は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、Wは、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計(kg/ton)、Wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計(kg/ton)、b、bは、個々の副原料の種類や管理状態によって決まる影響係数、βは補正定数である。
[17] The method for vacuum degassing refining of molten steel according to [16] above, characterized in that the following formula (1) is used as a function with the amount of the auxiliary raw material used in the steelmaking refining process as a variable.
[H] 0 = b 1 ×W 1 +b 2 ×W 2 +β (1)
Here, in equation (1), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, W The total amount of raw materials added (kg/ton), W2 is the added amount of auxiliary materials per unit mass of molten steel in the steelmaking refining process from converter or electric furnace output steel to the start of vacuum degassing refining. Total (kg/ton), b 1 and b 2 are influence coefficients determined by the type and management state of individual sub-raw materials, and β is a correction constant.

[18]前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(2)式を使用することを特徴とする、上記[16]に記載の溶鋼の真空脱ガス精錬方法。
[H]=a×w+a×w+a×w+a×w+α ・・・(2)
ここで、(2)式において、[H]は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、wは、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、wは、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、wは、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、a、a、a、aは、個々の副原料の種類や管理状態によって決まる影響係数、αは補正定数である。
[18] The method for vacuum degassing refining of molten steel according to [16] above, characterized in that the following formula (2) is used as a function with the amount of auxiliary materials used in the steelmaking refining process as a variable.
[H] 0 = a 1 ×w 1 +a 2 ×w 2 +a 3 ×w 3 +a 4 ×w 4 +α (2)
Here, in equation (2), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, and w 1 is the calcination per unit mass of molten steel in refining in a converter or electric furnace. The total amount of lime-containing auxiliary materials added (kg/ton), w 2 is the content of calcined lime per unit mass of molten steel in the steelmaking refining process from converter or electric furnace tapped steel to before the start of vacuum degassing refining Total additive amount of auxiliary raw materials (kg/ton), w 3 is the total additive amount of auxiliary raw materials not containing calcined lime per unit mass of molten steel in refining in a converter or electric furnace (kg/ton), w 4 is the total addition amount of non-calcined lime-containing auxiliary materials per unit mass of molten steel (kg/ton) in the steelmaking refining process from converter or electric furnace output steel to before the start of vacuum degassing refining, a 1 , a 2 , a 3 , and a 4 are influence coefficients determined by the types and management conditions of individual sub-raw materials, and α is a correction constant.

[19]前記真空脱ガス精錬は、RH真空脱ガス装置における真空脱ガス精錬であって、前記脱水素速度定数(K)を、下記の(5)式、(6)式及び(7)式を使用して決定することを特徴とする、上記[16]から上記[18]のいずれかに記載の溶鋼の真空脱ガス精錬方法。
=(Q/V)×{ak/(Q+ak)} ・・・(5)
Q=11.4×G1/3×D4/3×{ln(P/P)}1/3/ρ ・・・(6)
ak=2500×D 1/2×(G×10-31/2×d/2 ・・・(7)
ここで、(5)式、(6)式及び(7)式において、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、Qは、真空槽への溶鋼環流量(m/min)、Vは、真空脱ガス精錬対象の溶鋼の体積(m)、akは、脱水素反応容量係数(m/min)、Gは、環流用ガスの流量(NL/min)、Dは上昇側浸漬管の内径(m)、Pは、大気圧(atm)、Pは、真空槽内の圧力(atm)、ρは、溶鋼の密度(ton/m)、Dは、溶鋼中水素の拡散係数(m/min)、dは、真空槽の内径(m)である。
[19] The vacuum degassing refining is vacuum degassing refining in an RH vacuum degassing apparatus, and the dehydrogenation rate constant (K H ) is expressed by the following equations (5), (6) and (7) The method for vacuum degassing refining of molten steel according to any one of [16] to [18] above, characterized in that the determination is made using a formula.
KH =(Q/V)×{ak/(Q+ak)} (5)
Q=11.4×G1 /3 ×D4 /3 ×{ln( P1 /P)} 1/3 / ρL (6)
ak=2500× DH1 /2 ×(G× 10-3 ) 1/2 × dL /2 (7)
Here, in equations (5), (6) and (7), KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, Q is the molten steel circulation flow rate to the vacuum tank (m 3 /min), V is the volume of molten steel to be vacuum degassed (m 3 ), ak is the dehydrogenation reaction capacity coefficient (m 3 /min), and G is the flow rate of reflux gas (NL/min). , D is the inner diameter of the ascending immersion tube (m), P 1 is the atmospheric pressure (atm), P is the pressure in the vacuum chamber (atm), ρ L is the density of molten steel (ton/m 3 ), D H is the diffusion coefficient of hydrogen in molten steel (m 2 /min), and dL is the inner diameter (m) of the vacuum chamber.

本発明によれば、真空脱ガス精錬のコスト増加を招くことなく、真空脱ガス精錬前の溶鋼中の水素濃度を精度良く推定することができる。また、推定した真空脱ガス精錬前の溶鋼中の水素濃度に対して、脱水素モデル式を適用した場合には、真空脱ガス精錬の精錬時間を延長することなく、真空脱ガス精錬中の溶鋼中の水素濃度を高精度に推定することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the hydrogen concentration in the molten steel before vacuum degassing refining can be accurately estimated, without causing the cost increase of vacuum degassing refining. In addition, when the dehydrogenation model formula is applied to the estimated hydrogen concentration in the molten steel before vacuum degassing refining, the molten steel during vacuum degassing refining can be obtained without extending the refining time of vacuum degassing refining. It is possible to estimate the hydrogen concentration in the medium with high accuracy.

RH真空脱ガス装置の一例の概略縦断面図である。1 is a schematic longitudinal sectional view of an example of an RH vacuum degasser; FIG.

以下、本発明に係る溶鋼中の水素濃度推定方法及び溶鋼の真空脱ガス精錬方法を具体的に説明する。 Hereinafter, the method for estimating hydrogen concentration in molten steel and the vacuum degassing refining method for molten steel according to the present invention will be specifically described.

本発明に係る溶鋼の真空脱ガス精錬方法を行うことができる真空脱ガス設備には、RH真空脱ガス装置、DH真空脱ガス装置、REDA真空脱ガス装置、VAD真空精錬設備などがあるが、それらの中で最も代表的なものは、RH真空脱ガス装置である。そこで、先ず、RH真空脱ガス装置における真空脱ガス精錬方法を説明する。 Vacuum degassing equipment that can perform the vacuum degassing refining method for molten steel according to the present invention includes RH vacuum degassing equipment, DH vacuum degassing equipment, REDA vacuum degassing equipment, VAD vacuum refining equipment, etc. The most representative of them is the RH vacuum degasser. Therefore, first, the vacuum degassing refining method in the RH vacuum degassing apparatus will be described.

図1に、RH真空脱ガス装置の一例の概略縦断面図を示す。図1において、符号1はRH真空脱ガス装置、2は取鍋、3は溶鋼、4はスラグ、5は真空槽、6は上部槽、7は下部槽、8は上昇側浸漬管、9は下降側浸漬管、10は環流用ガス吹き込み管、11はダクト、12は原料投入口、13は上吹きランス、Dは上昇側浸漬管の内径、dは真空槽の内径である。真空槽5は、上部槽6と下部槽7とから構成され、また、上吹きランス13は、真空槽内の溶鋼に酸素ガスや媒溶剤を吹き付けて添加する装置であり、真空槽5の上部に設置され、真空槽5の内部で上下移動が可能となっている。 FIG. 1 shows a schematic longitudinal sectional view of an example of an RH vacuum degassing apparatus. In FIG. 1, 1 is a RH vacuum degassing device, 2 is a ladle, 3 is molten steel, 4 is slag, 5 is a vacuum tank, 6 is an upper tank, 7 is a lower tank, 8 is an ascending dip tube, and 9 is 10 is a circulating gas blowing pipe, 11 is a duct, 12 is a raw material inlet, 13 is a top blowing lance, D is the inside diameter of the rising side dipping pipe, and dL is the inside diameter of the vacuum chamber. The vacuum chamber 5 is composed of an upper chamber 6 and a lower chamber 7. A top blowing lance 13 is a device for blowing and adding oxygen gas or a solvent to the molten steel in the vacuum chamber. , and can move up and down inside the vacuum chamber 5 .

RH真空脱ガス装置1では、溶鋼3を収容した取鍋2を昇降装置(図示せず)にて上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋内の溶鋼3に浸漬させる。そして、真空槽5の内部をダクト11に連結される排気装置(図示せず)にて排気して真空槽5の内部を減圧するとともに、環流用ガス吹き込み管10から上昇側浸漬管8の内部に環流用ガスを吹き込む。真空槽5の内部が減圧されると、取鍋内の溶鋼3は、大気圧と真空槽内の圧力(真空度)との差に比例して上昇し、真空槽内に流入するとともに、環流用ガス吹き込み管10から吹き込まれる環流用ガスによるガスリフト効果によって、環流用ガスとともに上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を経由して取鍋2に戻る流れ、所謂、環流を形成してRH真空脱ガス精錬が施される。溶鋼3は、真空槽内で減圧下の雰囲気に曝され、溶鋼中の水素が真空槽内の雰囲気に移動し、溶鋼3の脱水素反応が進行する。 In the RH vacuum degassing apparatus 1, a ladle 2 containing molten steel 3 is raised by a lifting device (not shown), and an ascending immersion tube 8 and a descending immersion tube 9 are immersed in the molten steel 3 in the ladle. . Then, the inside of the vacuum chamber 5 is evacuated by an exhaust device (not shown) connected to the duct 11 to decompress the inside of the vacuum chamber 5, and the inside of the rising side immersion pipe 8 from the reflux gas blowing pipe 10 is discharged. Reflux gas is blown into the When the pressure inside the vacuum chamber 5 is reduced, the molten steel 3 in the ladle rises in proportion to the difference between the atmospheric pressure and the pressure (degree of vacuum) in the vacuum chamber, flows into the vacuum chamber, and flows back into the vacuum chamber. Due to the gas lift effect of the circulating gas blown from the gas blowing pipe 10, the rising side immersion pipe 8 rises together with the circulating gas and flows into the vacuum chamber 5. RH vacuum degassing refining is performed by forming a flow returning to the pot 2, the so-called reflux. The molten steel 3 is exposed to an atmosphere under reduced pressure in the vacuum tank, hydrogen in the molten steel moves to the atmosphere in the vacuum tank, and the dehydrogenation reaction of the molten steel 3 proceeds.

本発明者らは、RH真空脱ガス装置などの真空脱ガス設備を用いた、溶鋼を減圧下で精錬して溶鋼中の水素を除去する、溶鋼の真空脱ガス精錬(脱水素処理)において、真空脱ガス精錬前の溶鋼中の水素濃度を精度良く推定すること、更に、推定した真空脱ガス精錬前の溶鋼中水素濃度に対して脱水素モデル式を適用することによって真空脱ガス精錬中の溶鋼中の水素濃度を推定することを、研究及び検討した。その結果、真空脱ガス精錬前の溶鋼中水素濃度は、真空脱ガス精錬に先立つ製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量に大きく左右され、副原料の使用量を変数とする関数を用いて精度良く推定できることを見出した。 In the vacuum degassing refining (dehydrogenation treatment) of molten steel in which the hydrogen in the molten steel is removed by refining the molten steel under reduced pressure using a vacuum degassing facility such as an RH vacuum degassing apparatus, the present inventors By estimating the hydrogen concentration in molten steel before vacuum degassing refining with high accuracy, and applying the dehydrogenation model formula to the estimated hydrogen concentration in molten steel before vacuum degassing refining, the hydrogen concentration during vacuum degassing refining Research and consideration have been made on estimating the concentration of hydrogen in molten steel. As a result, the hydrogen concentration in molten steel before vacuum degassing refining is greatly affected by the amount of auxiliary materials added per unit mass of molten steel in the steelmaking process prior to vacuum degassing refining, and the amount of auxiliary materials used is a variable. We found that it is possible to estimate with high accuracy using a function.

本発明者らの調査の結果、真空脱ガス精錬前の溶鋼中の水素濃度([H];質量ppm)は、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定できることがわかった。 As a result of investigation by the present inventors, the hydrogen concentration ([H] 0 ; mass ppm) in the molten steel before vacuum degassing refining is variable with the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining. It turns out that it can be estimated using a function.

真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数としては、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計、のうちの少なくとも一つを変数として含む関数を用いることができる。 As a function of the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining as a variable, the total amount of auxiliary raw materials added per unit mass of molten steel in refining in a converter or an electric furnace, Total amount of auxiliary materials added per unit mass of molten steel in the steelmaking process from electric furnace tapping to vacuum degassing refining, auxiliary materials containing calcined lime per unit mass of molten steel in refining in converter or electric furnace the total amount of added calcined lime-containing auxiliary materials per unit mass of molten steel in the steelmaking refining process from the output of converter or electric furnace to the start of vacuum degassing refining, converter or electric furnace calcination per unit mass of molten steel in the refining process, calcination per unit mass of molten steel in the steel refining process from converter or electric furnace output to vacuum degassing refining A function containing as variables at least one of the total added amount of non-lime-containing adjuncts can be used.

例えば、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計をW(kg/ton)とし、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計をW(kg/ton)とすると、真空脱ガス精錬前の溶鋼中の水素濃度([H];質量ppm)は、下記の(1)式で表されることがわかった。 For example, the total amount of auxiliary materials added per unit mass of molten steel in refining in a converter or electric furnace is W 1 (kg/ton), and from the steel output from the converter or electric furnace to the start of vacuum degassing refining If the total amount of auxiliary materials added per unit mass of molten steel in the steelmaking refining process is W 2 (kg/ton), the hydrogen concentration ([H] 0 ; mass ppm) in the molten steel before vacuum degassing refining is , is expressed by the following formula (1).

[H]=b×W+b×W+β ・・・(1)
ここで、(1)式において、b、bは、個々の副原料の種類や管理状態によって決まる影響係数、βは補正定数である。
[H] 0 = b 1 ×W 1 +b 2 ×W 2 +β (1)
Here, in the formula (1), b 1 and b 2 are influence coefficients determined by the type and management state of each sub-material, and β is a correction constant.

(1)式、影響係数及び補正定数は、それぞれの真空脱ガス精錬において、真空脱ガス精錬に先立つ製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の実績値と、真空脱ガス精錬前の溶鋼中水素濃度の測定結果との回帰分析によって求められる。特に、過去の操業データを回帰分析することによって影響係数及び補正定数を決定することが好ましい。本発明者らが実施した種々の実験の結果によれば、b、bの値は、0.02≦b≦0.05、0.07≦b≦1.3、-3≦β≦3であった。 (1) Formula, the influence coefficient and the correction constant are the actual value of the additive amount of the auxiliary material per unit mass of molten steel in the steelmaking process prior to the vacuum degassing refining in each vacuum degassing refining, and the vacuum degassing refining It is obtained by regression analysis with the previous measurement result of hydrogen concentration in molten steel. In particular, it is preferable to determine the influence coefficient and the correction constant by regression analysis of past operational data. According to the results of various experiments conducted by the present inventors, the values of b 1 and b 2 are 0.02≦b 1 ≦0.05, 0.07≦b 2 ≦1.3, −3≦ β≦3.

また、Wに関して、「転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前まで」とは、転炉または電気炉からの出鋼開始時点から真空脱ガス設備での真空脱ガス精錬が開始されるまでの期間を表し、具体的には、出鋼時の取鍋内への副原料の添加や、出鋼後から真空脱ガス精錬が開始されるまでの期間に行われる取鍋精錬炉での精錬における副原料の添加などを指す。 In addition, with regard to W2 , "from the steel output from the converter or electric furnace until before the start of vacuum degassing refining" means from the time when steel output from the converter or electric furnace is started to the vacuum degassing refining in the vacuum degassing equipment. Specifically, it refers to the addition of auxiliary materials into the ladle during tapping, and the ladle that takes place during the period from tapping to the start of vacuum degassing refining. Refers to the addition of auxiliary materials in refining in a smelting furnace.

また、本発明者らが実施した実験の結果より求められた影響係数において、転炉または電気炉における精錬での溶鋼単位質量当たりの副原料の添加量の合計(W)よりも、出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの副原料の添加量の合計(W)の影響が大きい理由は、出鋼後においては、脱水素処理の施される鋼種は基本的に溶鋼が脱酸されているので、後述する(10)式における右向きの反応、つまり、溶鋼への吸水素反応が進行しやすいことによる。 In addition, in the influence coefficient obtained from the results of experiments conducted by the present inventors, the total amount of auxiliary materials added per unit mass of molten steel (W 1 ) in refining in a converter or an electric furnace The reason why the total amount of auxiliary materials added per unit mass of molten steel (W 2 ) in the steelmaking refining process from the start of vacuum degassing refining to the start of vacuum degassing refining has a large effect is that dehydrogenation treatment is performed after tapping. Since molten steel is basically deoxidized, the rightward reaction in equation (10) described later, that is, the hydrogen absorption reaction in molten steel tends to proceed.

更に、副原料を焼成石灰含有副原料及び焼成石灰非含有副原料に分類し、それぞれの使用量を変数とする関数を用いることで、真空脱ガス精錬前の溶鋼中の水素濃度をより精度良く推定できることを見出した。 Furthermore, by classifying the auxiliary raw materials into auxiliary raw materials containing calcined lime and auxiliary raw materials not containing calcined lime, and using a function with the usage amount of each as a variable, the hydrogen concentration in the molten steel before vacuum degassing refining can be determined more accurately. I found out that it can be estimated.

ここで、焼成石灰含有副原料についてその機構を説明する。焼成石灰含有副原料中のCaOの一部は、下記の(9)式の水和反応により、大気中の水蒸気(HO(g))を吸収して消石灰(Ca(OH))として存在し、そのため、焼成石灰含有副原料が溶鋼上に添加された際に、下記の(10)式の分解反応が起こり、消石灰中の水分が溶鋼中に移動して溶鋼の水素濃度が上昇することによる。 Here, the mechanism of the auxiliary raw material containing calcined lime will be described. Part of the CaO in the calcined lime-containing auxiliary raw material absorbs water vapor (H 2 O (g)) in the atmosphere and converts it into slaked lime (Ca(OH) 2 ) by the hydration reaction of the following formula (9). Therefore, when the auxiliary raw material containing calcined lime is added to the molten steel, the decomposition reaction of the following formula (10) occurs, the moisture in the slaked lime moves into the molten steel, and the hydrogen concentration of the molten steel increases It depends.

CaO+HO(g)→Ca(OH) ・・・(9)
Ca(OH)→CaO+2H+O ・・・(10)
焼成石灰非含有副原料については、焼成石灰非含有副原料の表面に付着した水分が、下記の(11)式の反応により溶鋼中に移動して溶鋼の水素濃度が上昇することによる。
CaO+H 2 O (g)→Ca(OH) 2 (9)
Ca(OH) 2 →CaO+2H+O (10)
With regard to the calcined lime-free auxiliary raw material, this is because the moisture adhering to the surface of the calcined lime-free auxiliary raw material moves into the molten steel by the reaction of the following formula (11), increasing the hydrogen concentration of the molten steel.

O(l)→2H+O ・・・(11)
本発明者らの調査の結果、真空脱ガス精錬前の溶鋼中の水素濃度([H];質量ppm)は、真空脱ガス精錬に先立つ製鋼精錬工程における焼成石灰含有副原料及び焼成石灰非含有副原料の使用量を変数とする関数を用いることで、より精度良く推定できることがわかった。即ち、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計をw(kg/ton)とし、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計をw(kg/ton)とし、また、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計をw(kg/ton)とし、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計をw(kg/ton)とすると、真空脱ガス精錬前の溶鋼中の水素濃度([H];質量ppm)は、下記の(2)式で表されることがわかった。
H 2 O (l)→2H+O (11)
As a result of investigation by the present inventors, the hydrogen concentration ([H] 0 ; mass ppm) in molten steel before vacuum degassing refining is It was found that more accurate estimation can be achieved by using a function with the used amount of the contained auxiliary material as a variable. That is, the total amount of auxiliary raw materials containing calcined lime per unit mass of molten steel in refining in a converter or an electric furnace is w 1 (kg/ton), and vacuum degassing refining is performed from the output steel from the converter or electric furnace. Let w 2 (kg/ton) be the total amount of auxiliary raw materials containing calcined lime added per unit mass of molten steel in the steelmaking refining process before the start, and w 2 (kg/ton) per unit mass of molten steel in refining in a converter or electric furnace Let w 3 (kg/ton) be the total additive amount of auxiliary raw materials that do not contain calcined lime, and the sintering per unit mass of molten steel in the steelmaking refining process from the steel output from the converter or electric furnace to the start of vacuum degassing refining Assuming that the total amount of lime-free auxiliary materials added is w 4 (kg/ton), the hydrogen concentration ([H] 0 ; mass ppm) in molten steel before vacuum degassing refining is given by the following equation (2): found to be represented.

[H]=a×w+a×w+a×w+a×w+α ・・・(2)
ここで、(2)式において、a、a、a、aは、個々の副原料の種類や管理状態によって決まる影響係数、αは補正定数である。
[H] 0 = a 1 ×w 1 +a 2 ×w 2 +a 3 ×w 3 +a 4 ×w 4 +α (2)
Here, in the formula (2), a 1 , a 2 , a 3 , and a 4 are influence coefficients determined by the types and management conditions of individual auxiliary materials, and α is a correction constant.

(2)式、影響係数及び補正定数は、それぞれの真空脱ガス精錬において、真空脱ガス精錬に先立つ製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料及び焼成石灰非含有副原料の添加量の実績値と、真空脱ガス精錬前の溶鋼中水素濃度の測定結果との回帰分析によって求められる。特に、過去の操業データを回帰分析することによって影響係数及び補正定数を決定することが好ましい。本発明者らが実施した種々の実験の結果によれば、a、a、a、aの値は、0.01≦a≦0.1、0.1≦a≦0.5、0≦a≦0.05、0≦a≦0.25、-3≦α≦3であった。 (2) The formula, the influence coefficient and the correction constant are the addition of auxiliary raw materials containing calcined lime and auxiliary raw materials not containing calcined lime per unit mass of molten steel in the steelmaking process prior to vacuum degassing refining in each vacuum degassing refining It is obtained by regression analysis between the actual value of the amount and the measurement result of hydrogen concentration in molten steel before vacuum degassing refining. In particular, it is preferable to determine the influence coefficient and the correction constant by regression analysis of past operational data. According to the results of various experiments conducted by the present inventors, the values of a 1 , a 2 , a 3 and a 4 are 0.01≦a 1 ≦0.1 and 0.1≦a 2 ≦0. .5, 0≦a 3 ≦0.05, 0≦a 4 ≦0.25, −3≦α≦3.

また、w及びwに関して、「転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前まで」とは、転炉または電気炉からの出鋼開始時点から真空脱ガス設備での真空脱ガス精錬が開始されるまでの期間を表し、具体的には、出鋼時の取鍋内への焼成石灰含有副原料及び焼成石灰非含有副原料の添加や、出鋼後から真空脱ガス精錬が開始されるまでの期間に行われる取鍋精錬炉での精錬における焼成石灰含有副原料及び焼成石灰非含有副原料の添加などを指す。 In addition, regarding w2 and w4 , "from the steel output from the converter or the electric furnace until the start of vacuum degassing refining" means that from the time when the steel output from the converter or electric furnace starts to the vacuum degassing equipment. It represents the period until the start of degassing refining. Refers to the addition of auxiliary raw materials containing calcined lime and auxiliary raw materials not containing calcined lime in the refining in the ladle smelting furnace before the start of refining.

本発明者らが実施した実験の結果より求められた影響係数において、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(w)よりも、出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(w)の影響が大きい理由は、出鋼後においては、脱水素処理の施される鋼種は基本的に溶鋼が脱酸されているので、(10)式における右向きの反応、つまり、溶鋼への吸水素反応が進行しやすいことによる。 In the influence coefficient obtained from the results of the experiments conducted by the present inventors, the output The reason why the total addition amount (w 2 ) of auxiliary raw materials containing calcined lime per unit mass of molten steel in the steelmaking refining process from steel to before the start of vacuum degassing refining has a large effect is that after tapping, dehydrogenation treatment Since molten steel is basically deoxidized in the type of steel to which is applied, the rightward reaction in the equation (10), that is, the hydrogen absorption reaction in the molten steel tends to proceed.

また、本発明者らが実施した実験の結果より求められた影響係数において、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(w)よりも、出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(w)の影響が大きいことも、同様の理由による。 In addition, in the influence coefficient obtained from the results of the experiments conducted by the present inventors, the total addition amount (w 3 ) of auxiliary raw materials not containing calcined lime per unit mass of molten steel in refining in a converter or an electric furnace It is also for the same reason that the total addition amount (w 4 ) of non-calcined lime-containing auxiliary materials per unit mass of molten steel in the steel refining process from tapping to before the start of vacuum degassing refining has a large effect.

更に、影響係数a及び影響係数aが0を含む値となるのは、多くの場合、焼成石灰非含有副原料の表面に付着した水分は無視できるほど少ないことを示している。 Furthermore, the fact that the influence coefficient a3 and the influence coefficient a4 are values including 0 indicates that in many cases, the amount of water adhering to the surface of the auxiliary material not containing calcined lime is so small that it can be ignored.

ここで、焼成石灰含有副原料の添加量とは、CaOを成分として10質量%以上含有する副原料の真空脱ガス精錬前に添加された添加量の総和である。具体的には、焼成石灰(生石灰)、焼成ドロマイト、軽焼ドロマイト、リサイクルスラグなどの副原料の群から、対象となる焼成石灰含有副原料を予め選定し、決定しておく。対象となる焼成石灰含有副原料の選定及び決定に際しては、遊離石灰を含有するか否かで判断することが好ましい。つまり、遊離石灰を含有する副原料を焼成石灰含有副原料として選定することが好ましい。上記に例示した副原料以外でも、遊離石灰を含有する副原料であれば、焼成石灰含有副原料として選定する。 Here, the additive amount of the calcined lime-containing auxiliary material is the sum of the additive amounts added before vacuum degassing refining of the auxiliary material containing 10% by mass or more of CaO as a component. Specifically, the target calcined lime-containing auxiliary material is selected and determined in advance from a group of auxiliary materials such as calcined lime (quicklime), calcined dolomite, lightly burned dolomite, and recycled slag. When selecting and determining the auxiliary raw material containing calcined lime to be targeted, it is preferable to determine whether or not it contains free lime. That is, it is preferable to select an auxiliary material containing free lime as the auxiliary material containing calcined lime. In addition to the auxiliary raw materials exemplified above, any auxiliary raw material containing free lime is selected as the auxiliary raw material containing calcined lime.

遊離石灰の含有の有無は、例えば、使用する副原料から採取した試料の示差熱分析を行ない、下記の(12)式で示す反応で生じる吸熱反応が検知されるか否かで判断すればよい。つまり、吸熱反応が検知される場合に、遊離石灰を含有していると判断すればよい。 The presence or absence of free lime may be determined, for example, by performing differential thermal analysis of a sample taken from the auxiliary raw material to be used and detecting an endothermic reaction caused by the reaction shown in the following formula (12). . That is, when an endothermic reaction is detected, it can be determined that free lime is contained.

Ca(OH)→CaO+HO(g) ・・・(12)
また、焼成石灰非含有副原料の添加量とは、焼成石灰含有副原料に該当しない副原料の、真空脱ガス精錬前に添加された添加量の総和である。CaOを成分として10質量%以上含有していても、遊離石灰を含有せず、焼成石灰含有副原料として選定されなかった副原料は、焼成石灰非含有副原料として扱えばよい。
Ca(OH) 2 →CaO+H 2 O (g) (12)
Moreover, the added amount of the calcined lime non-containing auxiliary material is the total amount of the added amount of the auxiliary material not corresponding to the calcined lime containing auxiliary material added before the vacuum degassing refining. An auxiliary raw material that does not contain free lime even if it contains 10% by mass or more of CaO as a component and is not selected as an auxiliary raw material containing calcined lime may be treated as an auxiliary raw material that does not contain calcined lime.

焼成石灰非含有副原料とは、具体的には、生ドロマイト、石灰石、マンガン鉱石、炭材、保温材、鉄鉱石、鉄スクラップ、シリコンカーバイド、煉瓦屑、珪石及び各種の純金属・合金鉄などである。 Secondary raw materials not containing calcined lime specifically include raw dolomite, limestone, manganese ore, carbon material, heat insulating material, iron ore, iron scrap, silicon carbide, brick scrap, silica stone and various pure metals and ferroalloys. is.

尚、上記焼成石灰非含有副原料として例示した副原料であっても、遊離石灰を含有している場合には、(11)式のみならず(9)式の反応が起こり、溶鋼の水素濃度の上昇への寄与率が大きくなるため、焼成石灰含有副原料として扱う。 Even if the auxiliary raw material exemplified as the auxiliary raw material not containing calcined lime, if it contains free lime, not only the reaction of the formula (11) but also the reaction of the formula (9) occurs, and the hydrogen concentration of the molten steel treated as an auxiliary raw material containing calcined lime because it contributes significantly to the increase in

また、出鋼後においては、脱水素処理の施される鋼種は基本的に溶鋼が脱酸されているので、(10)式における右向きの反応、つまり、溶鋼への吸水素反応が進行しやすいため、出鋼の前後で個別に影響係数を設定することが望ましい。但し、未脱酸出鋼を行う鋼種に対しては、真空脱ガス精錬開始までに溶鋼は脱酸されないため、出鋼前後における影響係数は、出鋼時に脱酸を行う鋼種の影響係数と異なる値になる。よって、出鋼時の脱酸方法が異なる鋼種について、出鋼形態ごとに固有の推定式を作成することが望ましい。 In addition, after tapping, the molten steel is basically deoxidized in the type of steel subjected to dehydrogenation treatment, so the rightward reaction in equation (10), that is, the reaction of hydrogen absorption into molten steel, tends to proceed. Therefore, it is desirable to set the influence coefficient separately before and after tapping. However, for steel grades that are not deoxidized, the molten steel is not deoxidized before vacuum degassing refining starts. be a value. Therefore, it is desirable to create a unique estimation formula for each form of tapping for steel types with different deoxidizing methods during tapping.

尚、上記では真空脱ガス精錬前の溶鋼中の水素濃度を(1)式や(2)式で表される関数を用いて推定する場合について示したが、関数の形はこれらに限定されない。例えば、(1)式及び(2)式は、いずれも変数の1次式で表わされるものであるが、1次式でなくても構わない。 In the above, the case of estimating the hydrogen concentration in the molten steel before vacuum degassing refining using the functions represented by the formulas (1) and (2) has been shown, but the form of the function is not limited to these. For example, the equations (1) and (2) are both represented by linear equations of variables, but they do not have to be linear equations.

本発明では、(1)式、(2)式などの副原料の使用量を変数とする関数で求めた真空脱ガス精錬前の溶鋼中の水素濃度([H])を真空脱ガス精錬開始時の溶鋼の水素濃度として、真空脱ガス精錬中の溶鋼の水素濃度を、脱水素モデル式を用いて逐次推定し、脱水素モデル式で推定した水素濃度が目標水素濃度未満になった時点で真空脱ガス精錬を終了する。以下、本発明で使用する脱水素モデル式について説明する。 In the present invention, the hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining, which is obtained by a function such as formula (1) and formula (2) with the amount of auxiliary materials used as a variable, is As the hydrogen concentration of the molten steel at the start, the hydrogen concentration of the molten steel during vacuum degassing refining is successively estimated using the dehydrogenation model formula, and the time when the hydrogen concentration estimated by the dehydrogenation model formula becomes less than the target hydrogen concentration to end the vacuum degassing refining. The dehydrogenation model formula used in the present invention will be described below.

溶鋼の脱水素反応は、一般に、一次反応式で表されることから、脱水素モデル式を下記の(3)式とした。尚、(3)式は、一次反応式の一般形である下記の(3’)式を、真空脱ガス精錬前の溶鋼中の水素濃度([H])を初期条件として積分して得られる式である。 Since the dehydrogenation reaction of molten steel is generally represented by a first-order reaction formula, the dehydrogenation model formula is the following formula (3). The formula (3) is obtained by integrating the following formula (3′), which is a general form of the first-order reaction formula, with the hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining as the initial condition. is a formula for

[H]={[H]-[H]}×exp(-K×t)+[H] ・・・(3)
d[H]/dt=-K×([H]-[H]) ・・・(3’)
ここで、(3)式及び(3’)式において、[H]は、真空脱ガス精錬中の溶鋼中の水素濃度(質量ppm)、[H]は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、tは、真空脱ガス精錬の開始からの経過時間(min)である。
[H]={[H] 0 −[H] e }×exp(−K H ×t)+[H] e (3)
d[H]/dt=−K H ×([H]−[H] e ) (3′)
Here, in formulas (3) and (3′), [H] is the hydrogen concentration (mass ppm) in the molten steel during vacuum degassing refining, and [H] 0 is the molten steel before vacuum degassing refining. of hydrogen concentration (mass ppm), [H] e is the equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum chamber, K H is the dehydrogenation rate constant (1/min) in vacuum degassing refining, t is the elapsed time (min) from the start of vacuum degassing refining.

(3)式において、真空槽内の溶鋼界面での平衡水素濃度[H]は、下記の(4)式を用いた。但し、真空槽内の水素分圧は、真空槽内の圧力(真空度)に等しいと近似し、水素分圧の値として真空槽内の圧力を用いた。 In the equation (3), the equilibrium hydrogen concentration [H] e at the interface of the molten steel in the vacuum chamber was obtained from the following equation (4). However, the hydrogen partial pressure in the vacuum chamber was approximated to be equal to the pressure (degree of vacuum) in the vacuum chamber, and the pressure in the vacuum chamber was used as the value of the hydrogen partial pressure.

[H]=10-(1905/T)-1.591×P1/2 ・・・(4)
ここで、(4)式において、Tは、真空脱ガス精錬時の溶鋼温度(K)、Pは、真空槽内の圧力(atm)である。溶鋼温度は、取鍋内の溶鋼に熱電対を浸漬させて測定される温度である。
[H] e = 10 - (1905/T) - 1.591 x P 1/2 (4)
Here, in equation (4), T is the molten steel temperature (K) during vacuum degassing refining, and P is the pressure (atm) in the vacuum chamber. The molten steel temperature is the temperature measured by immersing a thermocouple in molten steel in a ladle.

また、真空脱ガス設備がRH真空脱ガス装置1の場合には、(3)式の脱水素速度定数(K)として、下記の(5)式を用いることで、溶鋼3の脱水素反応を精度良く把握することができる。 Further, when the vacuum degassing equipment is the RH vacuum degassing device 1, the dehydrogenation reaction of the molten steel 3 is obtained by using the following equation (5) as the dehydrogenation rate constant (K H ) of the equation (3). can be accurately grasped.

=(Q/V)×{ak/(Q+ak)} ・・・(5)
ここで、(5)式において、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、Qは、真空槽への溶鋼環流量(m/min)、Vは、真空脱ガス精錬対象の溶鋼の体積(m)、akは、脱水素反応容量係数(m/min)である。
KH =(Q/V)×{ak/(Q+ak)} (5)
Here, in equation (5), KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, Q is the molten steel recirculation flow rate to the vacuum tank ( m3 /min), and V is the vacuum degassing rate. The volume (m 3 ) of molten steel to be gas-refined, ak is the dehydrogenation reaction capacity coefficient (m 3 /min).

(5)式の溶鋼環流量(Q)としては、RH真空脱ガス装置1における溶鋼3の環流量を算出する経験式として一般に用いられている下記の(6)式を用いることができる。 As the molten steel recirculation rate (Q) in the formula (5), the following formula (6), which is generally used as an empirical formula for calculating the recirculation rate of the molten steel 3 in the RH vacuum degassing apparatus 1, can be used.

Q=11.4×G1/3×D4/3×{ln(P/P)}1/3/ρ ・・・(6)
ここで、(6)式において、Gは、環流用ガスの流量(NL/min)、Dは上昇側浸漬管の内径(m)、Pは、大気圧(atm)、Pは、真空槽内の圧力(atm)、ρは、溶鋼の密度(ton/m)である。
Q=11.4×G1 /3 ×D4 /3 ×{ln( P1 /P)} 1/3 / ρL (6)
Here, in the formula (6), G is the flow rate of the reflux gas (NL / min), D is the inner diameter of the rising side immersion tube (m), P 1 is the atmospheric pressure (atm), P is the vacuum chamber The internal pressure (atm), ρ L is the density of molten steel (ton/m 3 ).

また、(5)式の脱水素反応容量係数(ak)としては、水モデル実験における表面脱ガス反応の実験式である、下記の(7)式を用いることができる。但し、(7)式における比例定数の2500は、実機のRH真空脱ガス装置に合わせた補正値である。 Further, as the dehydrogenation reaction capacity coefficient (ak) in the formula (5), the following formula (7), which is an empirical formula for the surface degassing reaction in the water model experiment, can be used. However, the constant of proportionality 2500 in the equation (7) is a correction value adapted to the actual RH vacuum degassing device.

ak=2500×D 1/2×(G×10-31/2×d/2 ・・・(7)
ここで、(7)式において、Dは、溶鋼中水素の拡散係数(m/min)、Gは、環流用ガスの流量(NL/min)、dは、真空槽の内径(m)である。
ak=2500× DH1 /2 ×(G× 10-3 ) 1/2 × dL /2 (7)
Here, in equation (7), DH is the diffusion coefficient of hydrogen in molten steel (m 2 /min), G is the flow rate of recirculation gas (NL/min), dL is the inner diameter of the vacuum chamber (m ).

また、RH真空脱ガス装置以外の真空脱ガス設備を用いる場合にも、当該真空脱ガス設備における、当該真空脱ガス精錬よりも以前の真空脱ガス精錬中に溶鋼の水素濃度を測定し、測定した水素濃度から水素濃度の経時変化を求め、求めた水素濃度の経時変化に基づいて、(3)式による水素濃度の推定値が水素濃度の実測値と一致するように、脱水素速度定数(K)をフィッティングパラメータとして予め決定しておくことで、(3)式を用いた溶鋼中水素濃度の推定が可能である。 Also, when using a vacuum degassing equipment other than the RH vacuum degassing equipment, the hydrogen concentration of the molten steel is measured during vacuum degassing refining before the vacuum degassing refining in the vacuum degassing equipment, and the measurement is performed. Based on the obtained hydrogen concentration, the dehydrogenation rate constant ( K H ) is determined in advance as a fitting parameter, it is possible to estimate the hydrogen concentration in molten steel using the equation (3).

本発明に係る溶鋼の真空脱ガス精錬方法の一例として、図1に示すRH真空脱ガス装置1を用いて実施する場合について説明する。 As an example of the vacuum degassing refining method for molten steel according to the present invention, a case of using the RH vacuum degassing apparatus 1 shown in FIG. 1 will be described.

先ず、RH真空脱ガス装置1で真空脱ガス精錬を開始する前に、転炉または電気炉における精錬で添加した副原料の添加量の合計(W)、出鋼から真空脱ガス精錬開始前までの製鋼精錬工程で添加した副原料の添加量の合計(W)及び、影響係数b、bを用いて、(1)式から真空脱ガス精錬前の溶鋼中の水素濃度([H])を計算する。ここで、影響係数は、事前の測定結果から、b=0.035、b=0.100、β=0とした。 First, before starting vacuum degassing refining in the RH vacuum degassing apparatus 1, the total amount of auxiliary materials added in refining in the converter or electric furnace (W 1 ), from tapping to before the start of vacuum degassing refining Using the total amount of auxiliary materials added in the steelmaking refining process (W 2 ) and the influence coefficients b 1 and b 2 , the hydrogen concentration in the molten steel before vacuum degassing refining ([ H] 0 ). Here, the influence coefficients were b 1 =0.035, b 2 =0.100, and β=0 based on the results of previous measurements.

また、副原料を焼成石灰含有副原料と焼成石灰非含有副原料とに分類する場合には、RH真空脱ガス装置1で真空脱ガス精錬を開始する前に、転炉または電気炉における精錬で添加した焼成石灰含有副原料の添加量の合計(w)、出鋼から真空脱ガス精錬開始前までの製鋼精錬工程で添加した焼成石灰含有副原料の添加量の合計(w)、転炉または電気炉における精錬で添加した焼成石灰非含有副原料の添加量の合計(w)、出鋼から真空脱ガス精錬開始前までの製鋼精錬工程で添加した焼成石灰非含有副原料の添加量の合計(w)、及び、影響係数a、a、a、aを用いて、(2)式から真空脱ガス精錬前の溶鋼中の水素濃度([H])を計算する。ここで、影響係数は、事前の測定結果から、a=0.031、a=0.294、a=0.044、a=0.074、α=0とした。 Further, when the auxiliary raw materials are classified into auxiliary raw materials containing calcined lime and auxiliary raw materials not containing calcined lime, refining in a converter or an electric furnace is performed before vacuum degassing refining is started in the RH vacuum degassing device 1. The total amount of auxiliary raw materials containing calcined lime added (w 1 ), the total amount of auxiliary raw materials containing calcined lime added in the steelmaking refining process from tapping to before the start of vacuum degassing refining (w 2 ), Sum of additive amounts (w 3 ) of non-calcined lime-containing auxiliary materials added during refining in a furnace or electric furnace, addition of non-calcined lime-containing auxiliary materials added during the steelmaking refining process from tapping to before the start of vacuum degassing refining Using the sum of the amounts (w 4 ) and the influence coefficients a 1 , a 2 , a 3 , and a 4 , the hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining is calculated from the equation (2). calculate. Here, the influence coefficients were a 1 =0.031, a 2 =0.294, a 3 =0.044, a 4 =0.074, and α=0 based on the previous measurement results.

RH真空脱ガス装置1における真空脱ガス精錬では、真空槽5の内部の圧力(真空度)を2torr(0.266kPa)以下に減圧し、取鍋2と真空槽5との間で溶鋼3を環流させる。ここで、前述した(3)~(7)式に、(1)式または(2)式で求めた水素濃度([H])、溶鋼温度、環流用ガスの流量及び真空槽内の圧力などの実績値を随時入力して、真空脱ガス精錬の開始からの経過時間における溶鋼中水素濃度を推定する。そして、推定される水素濃度が、鋼種ごとの水素規格に基づいて予め決定した目標水素濃度を下回った後に、真空脱ガス精錬を終了する。環流用ガスには、通常、アルゴンガスを用いるが、目的に応じて、窒素ガスなどの他の不活性ガスを用いることもできる。 In the vacuum degassing refining in the RH vacuum degassing apparatus 1, the pressure (degree of vacuum) inside the vacuum chamber 5 is reduced to 2 torr (0.266 kPa) or less, and the molten steel 3 is moved between the ladle 2 and the vacuum chamber 5. circulate. Here, the hydrogen concentration ([H] 0 ) obtained by the formula (1) or (2), the molten steel temperature, the flow rate of the reflux gas, and the pressure in the vacuum chamber are added to the above-described formulas (3) to (7). and other actual values are input at any time to estimate the hydrogen concentration in molten steel in the elapsed time from the start of vacuum degassing refining. After the estimated hydrogen concentration falls below the target hydrogen concentration determined in advance based on the hydrogen standard for each steel type, the vacuum degassing refining is terminated. Argon gas is usually used as the reflux gas, but other inert gases such as nitrogen gas can also be used depending on the purpose.

また、上記の(3)式において、精錬中の溶鋼中の水素濃度([H])に、真空脱ガス精錬後の溶鋼中の水素濃度の目標値([H])を代入して、(3)式を変形すると、下記の(8’)式が導かれる。 Further, in the above equation (3), the hydrogen concentration ([H]) in the molten steel during refining is substituted with the target value ([H] f ) of the hydrogen concentration in the molten steel after vacuum degassing refining, By transforming the equation (3), the following equation (8') is derived.

t=(1/K)×ln{([H]-[H])/([H]-[H])}・・・(8’)
ここで、(8’)式において、tは、真空脱ガス精錬の開始からの経過時間(min)、[H]は、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定した、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、[H]は、真空脱ガス精錬後の溶鋼中の水素濃度の目標値(質量ppm)、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、lnは、自然対数である。
t=(1/K H )×ln{([H] 0 −[H] e )/([H] f −[H] e )} (8′)
Here, in equation (8′), t is the elapsed time (min) from the start of vacuum degassing refining, and [H] 0 is the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining. The hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, estimated using the function of [H] e is the equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum chamber, KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, ln is the natural logarithm.

(8’)式は、真空脱ガス精錬後の溶鋼中の水素濃度が目標値になるまでの経過時間(処理時間)を表す式であり、(8’)式で算出される経過時間(t)と同等またはそれ以上の処理時間、真空脱ガス精錬を溶鋼に施すことで、溶鋼中の水素濃度は目標値以下になる。つまり、下記の(8)式の条件を満たす時点で真空脱ガス精錬を終了することで、真空脱ガス精錬後の溶鋼中の水素濃度は目標値以下になる。 Formula (8′) is a formula representing the elapsed time (processing time) until the hydrogen concentration in the molten steel after vacuum degassing refining reaches the target value, and the elapsed time (t ), the hydrogen concentration in the molten steel is reduced to the target value or less by subjecting the molten steel to vacuum degassing refining for a treatment time equal to or longer than the target value. That is, by ending the vacuum degassing refining when the condition of the following formula (8) is satisfied, the hydrogen concentration in the molten steel after the vacuum degassing refining becomes equal to or less than the target value.

t≧(1/K)×ln{([H]-[H])/([H]-[H])}・・・(8)
即ち、RH真空脱ガス装置1での真空脱ガス精錬において、前述した(4)式から求められる平衡水素濃度([H])、前述した(5)式~(7)式から求められる脱水素速度定数(K)、(1)式または(2)式から求められる真空脱ガス精錬前の溶鋼中の水素濃度([H])、鋼種規格によって定められる真空脱ガス精錬後の溶鋼中の水素濃度の目標値([H])を、(8)式に随時入力して、溶鋼中水素濃度が目標水素濃度まで低下するのに要する真空脱ガス精錬の開始からの経過時間(t)を推定し、推定された経過時間(t)以上の処理時間、脱ガス精錬処理を行なってもよい。但し、生産効率の低下やコストの上昇を伴わないように、処理時間は推定された経過時間(t)の1.1倍を超えない時間とすることが好ましい。
t≧(1/K H )×ln{([H] 0 −[H] e )/([H] f −[H] e )} (8)
That is, in the vacuum degassing refining in the RH vacuum degassing apparatus 1, the equilibrium hydrogen concentration ([H] e ) obtained from the above equation (4), the dehydration obtained from the above equations (5) to (7) Elementary rate constant (K H ), hydrogen concentration ([H] 0 ) in molten steel before vacuum degassing refining determined from equation (1) or (2), molten steel after vacuum degassing refining determined by steel grade standards The target value ([H] f ) of the hydrogen concentration in the molten steel is input to the formula (8) at any time, and the elapsed time from the start of the vacuum degassing refining required for the hydrogen concentration in the molten steel to decrease to the target hydrogen concentration ( t) may be estimated, and the degassing refining treatment may be performed for a treatment time equal to or longer than the estimated elapsed time (t). However, it is preferable that the processing time does not exceed 1.1 times the estimated elapsed time (t) so as not to reduce production efficiency and increase costs.

ここでは、一例としてRH真空脱ガス装置を用いた真空脱ガス精錬方法を説明したが、DH真空脱ガス装置、REDA真空脱ガス装置、VAD真空精錬設備など、他の真空脱ガス設備を用いても、本発明に係る溶鋼の真空脱ガス精錬方法を実施することができる。 Here, the vacuum degassing refining method using the RH vacuum degasser was described as an example, but other vacuum degassing equipment such as the DH vacuum degasser, the REDA vacuum degasser, and the VAD vacuum refining equipment can be used. can also carry out the vacuum degassing refining method for molten steel according to the present invention.

以上説明したように、本発明によれば、溶鋼中水素濃度を直接測定することなく、真空脱ガス精錬前の溶鋼中の水素濃度を精度良く推定することができる。また、推定した真空脱ガス精錬前の溶鋼中の水素濃度に対して、脱水素モデル式を適用した場合には、真空脱ガス精錬の精錬時間を延長することなく、真空脱ガス精錬中の溶鋼中の水素濃度を高精度に推定することが可能となる。 As described above, according to the present invention, the hydrogen concentration in molten steel before vacuum degassing refining can be accurately estimated without directly measuring the hydrogen concentration in molten steel. In addition, when the dehydrogenation model formula is applied to the estimated hydrogen concentration in the molten steel before vacuum degassing refining, the molten steel during vacuum degassing refining can be obtained without extending the refining time of vacuum degassing refining. It is possible to estimate the hydrogen concentration in the medium with high accuracy.

転炉で溶銑を脱炭精錬して溶製した300トンの溶鋼を、転炉から取鍋に出鋼し、取鍋内の溶鋼をRH真空脱ガス装置(RH)で真空脱ガス精錬する試験を行った。試験では、転炉での脱炭精錬における焼成石灰含有副原料及び焼成石灰非含有副原料の使用量、並びに、出鋼時の取鍋内溶鋼への焼成石灰含有副原料及び焼成石灰非含有副原料の添加量、出鋼後の取鍋精錬炉(LF)での脱硫精錬における焼成石灰含有副原料及び焼成石灰非含有副原料の使用量を種々変更した。そして、真空脱ガス精錬に先立つ製鋼精錬工程である転炉及び取鍋精錬炉における焼成石灰含有副原料及び焼成石灰非含有副原料の使用量から、(1)式または(2)式によって算出される真空脱ガス精錬前の溶鋼中の水素濃度([H])と、水素濃度の実測値とを比較調査した(試験番号1~18)。試験では、(1)式において、b=0.035、b=0.100、β=0とし、(2)式において、a=0.031、a=0.294、a=0.044、a=0.074、α=0とした。 A test in which 300 tons of molten steel produced by decarburizing and refining molten iron in a converter is tapped from the converter into a ladle, and the molten steel in the ladle is vacuum degassed and refined with an RH vacuum degasser (RH). did In the test, the amounts of calcined lime-containing auxiliary materials and calcined lime-free auxiliary materials used in decarburization refining in a converter, and the amount of calcined lime-containing auxiliary materials and calcined lime-free auxiliary materials used in the molten steel in the ladle at the time of tapping. The amounts of raw materials added and the amounts of auxiliary raw materials containing calcined lime and auxiliary raw materials not containing calcined lime in desulfurization refining in a ladle refining furnace (LF) after tapping were variously changed. Then, from the amount of the auxiliary raw material containing calcined lime and the auxiliary raw material not containing calcined lime in the converter and ladle refining furnace, which are steelmaking refining processes prior to vacuum degassing refining, it is calculated by formula (1) or (2) The hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining and the measured hydrogen concentration were compared and investigated (test numbers 1 to 18). In the test, in formula (1), b 1 =0.035, b 2 =0.100, β=0, and in formula (2), a 1 =0.031, a 2 =0.294, a 3 = 0.044, a 4 = 0.074, and α = 0.

本実施例において、真空脱ガス精錬前の溶鋼中水素濃度に影響を及ぼす焼成石灰含有副原料として使用した副原料は、転炉脱炭精錬においては、焼成石灰、軽焼ドロマイトの2種、出鋼時の取鍋内溶鋼への添加や取鍋精錬炉での脱硫精錬においては、焼成石灰、軽焼ドロマイトの2種である。また、焼成石灰非含有副原料として使用した副原料は、転炉脱炭精錬においては、生ドロマイト、鉄スクラップ、鉄鉱石、シリコンカーバイド、珪石、レンガ屑の7種、出鋼後の精錬においては、金属アルミニウム、レンガ屑、無煙炭、シリコンマンガン、フェロシリコンの5種である。 In this example, the auxiliary raw materials used as auxiliary raw materials containing calcined lime that affect the hydrogen concentration in the molten steel before vacuum degassing refining were two kinds of calcined lime and light burned dolomite in the converter decarburization refining. In addition to molten steel in a ladle during steelmaking and in desulfurization refining in a ladle refining furnace, there are two types: calcined lime and light calcined dolomite. In addition, the auxiliary raw materials used as auxiliary raw materials that do not contain calcined lime are raw dolomite, iron scrap, iron ore, silicon carbide, silica, and brick waste in the converter decarburization refining, and in the refining after tapping, , metal aluminum, brick waste, anthracite, silicon manganese, and ferrosilicon.

また、RH真空脱ガス装置における真空脱ガス精錬では、(1)式または(2)式によって算出された水素濃度([H])を真空脱ガス精錬の溶鋼中初期水素濃度と設定し、設定した水素濃度([H])に対して(3)式~(7)式による脱水素モデル式を適用し、脱水素モデル式で推定した水素濃度が目標水素濃度未満になった時点で真空脱ガス精錬を終了する試験(本発明例1~16)を行った。 Further, in the vacuum degassing refining in the RH vacuum degassing apparatus, the hydrogen concentration ([H] 0 ) calculated by the formula (1) or (2) is set as the initial hydrogen concentration in the molten steel in the vacuum degassing refining, Applying the dehydrogenation model equations (3) to (7) to the set hydrogen concentration ([H] 0 ), when the hydrogen concentration estimated by the dehydrogenation model equation becomes less than the target hydrogen concentration Tests (Inventive Examples 1 to 16) were conducted to terminate the vacuum degassing refining.

また、比較のために、RH真空脱ガス装置における真空脱ガス精錬中に溶鋼の水素濃度を3分ごとに実測し、水素濃度の実測値が目標水素濃度未満になった時点で真空脱ガス精錬を終了する試験(比較例1~2)、真空脱ガス精錬前の溶鋼中水素濃度を実測し、実測した水素濃度に対して(3)式~(7)式による脱水素モデル式を適用し、脱水素モデル式で推定した水素濃度が目標水素濃度未満になった時点で真空脱ガス精錬を終了する試験(比較例3~6)、及び、鋼種に対する水素濃度規格に応じて精錬時間を予め設定し、設定した精錬時間(20分間)を経過した時点で真空脱ガス精錬を終了する試験(比較例7~10)を行った。 For comparison, the hydrogen concentration of molten steel was actually measured every 3 minutes during vacuum degassing refining in the RH vacuum degassing apparatus, and when the measured hydrogen concentration became less than the target hydrogen concentration, vacuum degassing refining (Comparative Examples 1 and 2), the hydrogen concentration in the molten steel before vacuum degassing refining was actually measured, and the dehydrogenation model equations (3) to (7) were applied to the actually measured hydrogen concentration. , a test in which vacuum degassing refining is terminated when the hydrogen concentration estimated by the dehydrogenation model formula becomes less than the target hydrogen concentration (Comparative Examples 3 to 6), and the refining time is set in advance according to the hydrogen concentration standard for the steel type. Tests (Comparative Examples 7 to 10) were conducted in which the vacuum degassing refining was terminated when the set refining time (20 minutes) had elapsed.

ここで、真空槽は、全ての試験で同一のものを用いた。また、脱水素モデル式による溶鋼中水素濃度の推定値を評価するために、つまり、脱水素モデル式による溶鋼中水素濃度の推定値が実態と一致しているか否かを確認するために、全ての試験で真空脱ガス精錬の前後で溶鋼中水素濃度を実測した。 Here, the same vacuum chamber was used in all tests. In addition, in order to evaluate the estimated value of the hydrogen concentration in molten steel by the dehydrogenation model formula, that is, to confirm whether the estimated value of the hydrogen concentration in molten steel by the dehydrogenation model formula matches the actual situation, all In the test, the hydrogen concentration in the molten steel was measured before and after the vacuum degassing refining.

試験で用いた溶鋼の真空脱ガス精錬前における化学成分は、C;0.04~0.06質量%、Si;0.15~0.25質量%、Mn;1.2~1.4質量%、P;0.02質量%以下、S;0.003質量%以下であり、真空脱ガス精錬前の溶鋼温度は1640~1670℃であった。真空槽内の到達真空度を0.5~1.0torrとし、環流用アルゴンガスの流量は2000~2200NL/minとした。 The chemical composition of the molten steel used in the test before vacuum degassing refining is C: 0.04 to 0.06 mass%, Si: 0.15 to 0.25 mass%, Mn: 1.2 to 1.4 mass %, P: 0.02% by mass or less, S: 0.003% by mass or less, and the molten steel temperature before vacuum degassing refining was 1640 to 1670°C. The ultimate vacuum in the vacuum chamber was set to 0.5 to 1.0 torr, and the flow rate of argon gas for reflux was set to 2000 to 2200 NL/min.

表1に、転炉及び取鍋精錬炉における焼成石灰含有副原料の使用量から(1)式または(2)式によって算出された真空脱ガス精錬前の溶鋼中の水素濃度([H])と、水素濃度の実測値とを比較して示す。 Table 1 shows the hydrogen concentration ([H] 0 ) and the measured value of hydrogen concentration are shown in comparison.

Figure 0007180645000001
Figure 0007180645000001

表1に示すように、(1)式によって算出される真空脱ガス精錬前の溶鋼中の水素濃度([H])の推定値と、真空脱ガス精錬前の溶鋼中の水素濃度の実測値とは、副原料の使用量が大きく変化しても高い精度で一致しており、(1)式によって精度良く真空脱ガス精錬前の溶鋼中の水素濃度([H])を推定できることが確認できた。更に、(2)式を用いた場合には、(1)式を用いた場合と比較して、より精度良く真空脱ガス精錬前の溶鋼中の水素濃度([H])を推定できることが確認できた。 As shown in Table 1, the estimated value of the hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining calculated by the formula (1) and the measured hydrogen concentration in the molten steel before vacuum degassing refining The value is consistent with high accuracy even if the amount of auxiliary raw material used varies greatly, and the hydrogen concentration ([H] 0 ) in molten steel before vacuum degassing refining can be estimated with high accuracy by equation (1). was confirmed. Furthermore, when using the formula (2), the hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining can be estimated more accurately than when using the formula (1). It could be confirmed.

また、表2に、本発明例1~16及び比較例1~10における脱ガス精錬前の溶鋼中水素濃度(実測値)及び脱ガス精錬時の溶鋼中水素濃度(実測値)、並びに、脱ガス精錬時間(推定時間及び実績時間)、短縮された精錬時間を示す。尚、本発明例1~8では、転炉及び取鍋精錬炉における焼成石灰含有副原料及び焼成石灰非含有副原料の使用量、並びに、この焼成石灰含有副原料及び焼成石灰非含有副原料の使用量から(1)式によって算出された真空脱ガス精錬前の溶鋼中の水素濃度([H])を示す。また、本発明例9~16では、転炉及び取鍋精錬炉における焼成石灰含有副原料及び焼成石灰非含有副原料の使用量、並びに、この焼成石灰含有副原料及び焼成石灰非含有副原料の使用量から(2)式によって算出された真空脱ガス精錬前の溶鋼中の水素濃度([H])を示す。ここで、表2における脱ガス精錬時間の「推定時間」とは、(8’)式で算出される経過時間(t)である。また、表2における「短縮された精錬時間」とは、鋼種に対する水素濃度規格に応じて予め設定された精錬時間である比較例7~10における精錬時間20分に対して短縮された時間を示す。また、表2に示す精錬コストとは、従来の精錬方法における精錬コストに対して下記の基準で評価した結果である。 In addition, Table 2 shows the hydrogen concentration in molten steel before degassing refining (actual value) and the hydrogen concentration in molten steel during degassing refining (actual value) in Examples 1 to 16 of the present invention and Comparative Examples 1 to 10, and degassing. Gas refining time (estimated time and actual time), showing reduced refining time. In addition, in Examples 1 to 8 of the present invention, the amount of the calcined lime-containing auxiliary raw material and the calcined lime-free auxiliary raw material used in the converter and ladle refining furnace, and the amount of the calcined lime-containing auxiliary raw material and the calcined lime-free auxiliary raw material The hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining calculated from the amount used by the formula (1) is shown. In addition, in Examples 9 to 16 of the present invention, the amount of the calcined lime-containing auxiliary raw material and the calcined lime-free auxiliary raw material used in the converter and ladle refining furnace, and the amount of the calcined lime-containing auxiliary raw material and the calcined lime-free auxiliary raw material The hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining calculated from the amount used by the formula (2) is shown. Here, the "estimated time" of the degassing refining time in Table 2 is the elapsed time (t) calculated by the formula (8'). In addition, the “reduced refining time” in Table 2 indicates a time shortened from the refining time of 20 minutes in Comparative Examples 7 to 10, which is the refining time preset according to the hydrogen concentration standard for the steel type. . Further, the refining cost shown in Table 2 is the result of evaluating the refining cost in the conventional refining method according to the following criteria.

<脱ガス精錬コスト評価基準>
◎;コスト削減大(水素測定プローブ不使用、且つ、短縮された精錬時間3分以上)
〇;コスト削減中(水素測定プローブ不使用、且つ、短縮された精錬時間1分以上3分未満)
△;コスト削減小(水素測定プローブ使用、且つ、短縮された精錬時間3分以上)
×;コスト削減無(水素測定プローブ使用、且つ、短縮された精錬時間3分未満、または、水素測定プローブ不使用、且つ、短縮された精錬時間1分未満)
<Degassing refining cost evaluation criteria>
◎;Large cost reduction (no use of hydrogen measurement probe and shortened refining time of 3 minutes or more)
○: Cost reduction in progress (hydrogen measurement probe not used and refining time shortened from 1 minute to less than 3 minutes)
△: Small cost reduction (use of hydrogen measurement probe and shortened refining time of 3 minutes or more)
×; No cost reduction (use of hydrogen measurement probe and reduced refining time of less than 3 minutes, or no use of hydrogen measurement probe and reduced refining time of less than 1 minute)

Figure 0007180645000002
Figure 0007180645000002

本発明例1~16では、溶鋼の水素濃度を測定することなく、溶鋼中水素濃度を精度良く推定でき、目標水素濃度近くで真空脱ガス精錬を終了することができた。その結果、精錬コストの増加を招くことがないばかりか、精錬コストを大幅に削減したうえで、精錬時間の短縮が達成された。特に、真空脱ガス精錬前の溶鋼中の水素濃度([H])の推定に(2)式を用いた本発明例9~16において、より良好な結果が得られた。また、本発明例1~16では、脱ガス精錬時間の実績時間は、(8’)式で算出される脱ガス精錬時間の推定時間の1.1倍以下であった。 In Examples 1 to 16 of the present invention, the hydrogen concentration in molten steel could be accurately estimated without measuring the hydrogen concentration in the molten steel, and the vacuum degassing refining could be completed near the target hydrogen concentration. As a result, the refining cost was not increased, and the refining time was shortened while significantly reducing the refining cost. In particular, better results were obtained in Examples 9 to 16 in which the formula (2) was used to estimate the hydrogen concentration ([H] 0 ) in the molten steel before vacuum degassing refining. Further, in Examples 1 to 16 of the present invention, the actual degassing refining time was 1.1 times or less the estimated degassing refining time calculated by the formula (8′).

これに対して、溶鋼の水素濃度を実測し、水素濃度の実測値に基づいて真空脱ガス精錬を行った比較例1~2、及び、水素濃度の実測値と脱水素モデル式とを組み合わせた比較例3~6においては、精錬時間の短縮が達成されたが、水素濃度分析用のプローブ使用に起因して精錬コストが増加した。また、比較例7~10においては、目標水素濃度を上回らないように精錬時間を長く設定しているので、過剰に脱水素処理が行われていた。 On the other hand, the hydrogen concentration of molten steel was actually measured, and vacuum degassing refining was performed based on the measured hydrogen concentration. In Comparative Examples 3 to 6, the refining time was shortened, but the refining cost increased due to the use of a probe for hydrogen concentration analysis. In addition, in Comparative Examples 7 to 10, the refining time was set long so as not to exceed the target hydrogen concentration, so the dehydrogenation process was performed excessively.

1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹き込み管
11 ダクト
12 原料投入口
13 上吹きランス
D 上昇側浸漬管の内径
真空槽の内径
1 RH vacuum degassing device 2 ladle 3 molten steel 4 slag 5 vacuum tank 6 upper tank 7 lower tank 8 rising side dipping pipe 9 descending dipping pipe 10 reflux gas blowing pipe 11 duct 12 raw material inlet 13 top blowing lance D rise Inner diameter of side immersion tube d Inner diameter of L vacuum chamber

Claims (9)

減圧下で溶鋼中の水素を除去する真空脱ガス精錬が溶鋼に施される前の溶鋼中の水素濃度を推定する方法であって、
真空脱ガス精錬前の溶鋼中の水素濃度を、実測を行うことなく、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定し、
前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(2)式を使用することを特徴とする、溶鋼中の水素濃度推定方法。
[H] =a ×w +a ×w +a ×w +a ×w +α ・・・(2)
ここで、(2)式において、[H] は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、w は、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、w は、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、w は、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、w は、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、a 、a 、a 、a は、個々の副原料の種類や管理状態によって決まる影響係数、αは補正定数であり、前記焼成石灰含有副原料は遊離石灰を含有し、前記焼成石灰非含有副原料は遊離石灰を含有しない。
A method for estimating the hydrogen concentration in molten steel before the molten steel is subjected to vacuum degassing refining for removing hydrogen in the molten steel under reduced pressure, comprising:
Estimate the hydrogen concentration in the molten steel before vacuum degassing refining without actual measurement using a function with the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining as a variable ,
A method for estimating the concentration of hydrogen in molten steel, characterized by using the following formula (2) as a function with the amount of auxiliary raw materials used in the steel refining process as a variable.
[H] 0 = a 1 ×w 1 +a 2 ×w 2 +a 3 ×w 3 +a 4 ×w 4 +α (2)
Here, in equation (2), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, and w 1 is the calcination per unit mass of molten steel in refining in a converter or electric furnace. The total amount of lime-containing auxiliary materials added (kg/ton), w 2 is the content of calcined lime per unit mass of molten steel in the steelmaking refining process from converter or electric furnace tapped steel to before the start of vacuum degassing refining Total additive amount of auxiliary raw materials (kg/ton), w 3 is the total additive amount of auxiliary raw materials not containing calcined lime per unit mass of molten steel in refining in a converter or electric furnace (kg/ton), w 4 is the total addition amount of non-calcined lime-containing auxiliary materials per unit mass of molten steel (kg/ton) in the steelmaking refining process from converter or electric furnace output steel to before the start of vacuum degassing refining, a 1 , a 2 , a 3 , and a 4 are influence coefficients determined by the types and management conditions of individual auxiliary raw materials, α is a correction constant, the calcined lime-containing auxiliary raw material contains free lime, and the calcined lime-free auxiliary raw material contains free lime. The raw material does not contain free lime.
過去の操業データを回帰分析することによって前記影響係数及び前記補正定数のうちの少なくとも1つを決定することを特徴とする、請求項1に記載の溶鋼中の水素濃度推定方法。 2. The method for estimating hydrogen concentration in molten steel according to claim 1 , wherein at least one of said influence coefficient and said correction constant is determined by regression analysis of past operational data. 溶鋼を減圧下で精錬して溶鋼中の水素を除去する溶鋼の真空脱ガス精錬方法であって、
真空脱ガス精錬前の溶鋼中の水素濃度を、実測を行うことなく、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定し、
更に、真空脱ガス精錬中の溶鋼中の水素濃度を、脱水素モデル式を用いて逐次推定し、鋼種に対する水素濃度規格に応じた精錬時間を超えることなく、脱水素モデル式で推定した水素濃度が目標水素濃度未満になった時点で真空脱ガス精錬を終了することとし、
前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(2)式を使用することを特徴とする、溶鋼の真空脱ガス精錬方法。
[H] =a ×w +a ×w +a ×w +a ×w +α ・・・(2)
ここで、(2)式において、[H] は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、w は、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、w は、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、w は、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、w は、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、a 、a 、a 、a は、個々の副原料の種類や管理状態によって決まる影響係数、αは補正定数であり、前記焼成石灰含有副原料は遊離石灰を含有し、前記焼成石灰非含有副原料は遊離石灰を含有しない。
A vacuum degassing refining method for molten steel for refining molten steel under reduced pressure to remove hydrogen in the molten steel, comprising:
Estimate the hydrogen concentration in the molten steel before vacuum degassing refining without actual measurement using a function with the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining as a variable,
Furthermore, the hydrogen concentration in the molten steel during vacuum degassing refining is estimated sequentially using the dehydrogenation model formula, and the hydrogen concentration estimated by the dehydrogenation model formula is used without exceeding the refining time according to the hydrogen concentration standard for the steel type. Vacuum degassing refining will be terminated when the concentration of hydrogen becomes less than the target hydrogen concentration,
A vacuum degassing refining method for molten steel, wherein the following formula (2) is used as a function with the amount of auxiliary raw materials used in the steel refining process as a variable.
[H] 0 = a 1 ×w 1 +a 2 ×w 2 +a 3 ×w 3 +a 4 ×w 4 +α (2)
Here, in equation (2), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, and w 1 is the calcination per unit mass of molten steel in refining in a converter or electric furnace. The total amount of lime-containing auxiliary materials added (kg/ton), w 2 is the content of calcined lime per unit mass of molten steel in the steelmaking refining process from converter or electric furnace tapped steel to before the start of vacuum degassing refining Total additive amount of auxiliary raw materials (kg/ton), w 3 is the total additive amount of auxiliary raw materials not containing calcined lime per unit mass of molten steel in refining in a converter or electric furnace (kg/ton), w 4 is the total addition amount of non-calcined lime-containing auxiliary materials per unit mass of molten steel (kg/ton) in the steelmaking refining process from converter or electric furnace output steel to before the start of vacuum degassing refining, a 1 , a 2 , a 3 , and a 4 are influence coefficients determined by the types and management conditions of individual auxiliary raw materials, α is a correction constant, the calcined lime-containing auxiliary raw material contains free lime, and the calcined lime-free auxiliary raw material contains free lime. The raw material does not contain free lime.
過去の操業データを回帰分析することによって前記影響係数及び前記補正定数のうちの少なくとも1つを決定することを特徴とする、請求項3に記載の溶鋼の真空脱ガス精錬方法。 4. The vacuum degassing refining method of molten steel according to claim 3 , wherein at least one of said influence coefficient and said correction constant is determined by regression analysis of past operational data. 前記脱水素モデル式として、下記の(3)式及び(4)式を使用することを特徴とする、請求項3又は請求項4に記載の溶鋼の真空脱ガス精錬方法。
[H]={[H]-[H]}×exp(-K×t)+[H] ・・・(3)
[H]=10-(1905/T)-1.591×P1/2 ・・・(4)
ここで、(3)式において、[H]は、真空脱ガス精錬中の溶鋼中の水素濃度(質量ppm)、[H]は、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定した、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、tは、真空脱ガス精錬の開始からの経過時間(min)であり、(4)式において、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Tは、真空脱ガス精錬時の溶鋼温度(K)、Pは、真空槽内の圧力(atm)である。
The method for vacuum degassing refining of molten steel according to claim 3 or 4 , wherein the following equations (3) and (4) are used as the dehydrogenation model equations.
[H]={[H] 0 −[H] e }×exp(−K H ×t)+[H] e (3)
[H] e = 10 - (1905/T) - 1.591 x P 1/2 (4)
Here, in the formula (3), [H] is the hydrogen concentration (mass ppm) in the molten steel during vacuum degassing refining, [H] 0 is the use of auxiliary raw materials in the steelmaking refining process prior to vacuum degassing refining. Hydrogen concentration (mass ppm) in molten steel before vacuum degassing refining estimated using a function with quantity as a variable, [H] e is the equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum tank, K H is the dehydrogenation rate constant (1/min) in vacuum degassing refining, t is the elapsed time (min) from the start of vacuum degassing refining, and in equation (4), [H] e is The equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum chamber, T is the molten steel temperature (K) during vacuum degassing refining, and P is the pressure (atm) in the vacuum chamber.
前記真空脱ガス精錬は、RH真空脱ガス装置における真空脱ガス精錬であって、前記脱水素速度定数(K)を、下記の(5)式、(6)式及び(7)式を使用して決定することを特徴とする、請求項5に記載の溶鋼の真空脱ガス精錬方法。
=(Q/V)×{ak/(Q+ak)} ・・・(5)
Q=11.4×G1/3×D4/3×{ln(P/P)}1/3/ρ ・・・(6)
ak=2500×D 1/2×(G×10-31/2×d/2 ・・・(7)
ここで、(5)式、(6)式及び(7)式において、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、Qは、真空槽への溶鋼環流量(m/min)、Vは、真空脱ガス精錬対象の溶鋼の体積(m)、akは、脱水素反応容量係数(m/min)、Gは、環流用ガスの流量(NL/min)、Dは上昇側浸漬管の内径(m)、Pは、大気圧(atm)、Pは、真空槽内の圧力(atm)、ρは、溶鋼の密度(ton/m)、Dは、溶鋼中水素の拡散係数(m/min)、dは、真空槽の内径(m)である。
The vacuum degassing refining is vacuum degassing refining in an RH vacuum degassing apparatus, and the dehydrogenation rate constant (K H ) is calculated using the following equations (5), (6) and (7). The method for vacuum degassing refining of molten steel according to claim 5 , characterized in that the determination is made as follows.
KH =(Q/V)×{ak/(Q+ak)} (5)
Q=11.4×G1 /3 ×D4 /3 ×{ln( P1 /P)} 1/3 / ρL (6)
ak=2500× DH1 /2 ×(G× 10-3 ) 1/2 × dL /2 (7)
Here, in equations (5), (6) and (7), KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, Q is the molten steel circulation flow rate to the vacuum tank (m 3 /min), V is the volume of molten steel to be vacuum degassed (m 3 ), ak is the dehydrogenation reaction capacity coefficient (m 3 /min), and G is the flow rate of reflux gas (NL/min). , D is the inner diameter of the ascending immersion tube (m), P 1 is the atmospheric pressure (atm), P is the pressure in the vacuum chamber (atm), ρ L is the density of molten steel (ton/m 3 ), D H is the diffusion coefficient of hydrogen in molten steel (m 2 /min), and dL is the inner diameter (m) of the vacuum chamber.
当該真空脱ガス精錬よりも以前の真空脱ガス精錬中に溶鋼の水素濃度を測定し、測定した水素濃度から水素濃度の経時変化を求め、求めた水素濃度の経時変化に基づいて脱水素速度定数(K)を予め決定しておき、予め決定した脱水素速度定数(K)を用いて真空脱ガス精錬中の溶鋼中の水素濃度を逐次推定することを特徴とする、請求項5に記載の溶鋼の真空脱ガス精錬方法。 The hydrogen concentration of the molten steel is measured during the vacuum degassing refining prior to the vacuum degassing refining, the change in hydrogen concentration over time is obtained from the measured hydrogen concentration, and the dehydrogenation rate constant is determined based on the change in hydrogen concentration over time. (K H ) is determined in advance, and the hydrogen concentration in the molten steel during vacuum degassing refining is sequentially estimated using the predetermined dehydrogenation rate constant (K H ). A method for vacuum degassing refining of molten steel as described. 溶鋼を減圧下で精錬して溶鋼中の水素を除去する溶鋼の真空脱ガス精錬方法であって、
真空脱ガス精錬前の溶鋼中の水素濃度を、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定し、
前記真空脱ガス精錬を、鋼種に対する水素濃度規格に応じた精錬時間を超えることなく、前記推定された真空脱ガス精錬前の溶鋼中の水素濃度と真空脱ガス精錬後の溶鋼中の水素濃度の目標値とから得られる下記(8)式の条件を満たす時点で終了することとし、
前記製鋼精錬工程における副原料の使用量を変数とする関数として、下記の(2)式を使用することを特徴とする、溶鋼の真空脱ガス精錬方法。
t≧(1/K)×ln{([H]-[H])/([H]-[H])}・・・(8)
ここで、(8)式において、tは、真空脱ガス精錬の開始からの経過時間(min)、[H]は、真空脱ガス精錬に先立つ製鋼精錬工程における副原料の使用量を変数とする関数を用いて推定した、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、[H]は、真空脱ガス精錬後の溶鋼中の水素濃度の目標値(質量ppm)、[H]は、真空槽内の溶鋼界面での平衡水素濃度(質量ppm)、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、lnは、自然対数である。
[H] =a ×w +a ×w +a ×w +a ×w +α ・・・(2)
ここで、(2)式において、[H] は、真空脱ガス精錬前の溶鋼中の水素濃度(質量ppm)、w は、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、w は、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰含有副原料の添加量の合計(kg/ton)、w は、転炉または電気炉における精錬での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、w は、転炉出鋼または電気炉出鋼から真空脱ガス精錬開始前までの製鋼精錬工程での溶鋼単位質量当たりの焼成石灰非含有副原料の添加量の合計(kg/ton)、a 、a 、a 、a は、個々の副原料の種類や管理状態によって決まる影響係数、αは補正定数であり、前記焼成石灰含有副原料は遊離石灰を含有し、前記焼成石灰非含有副原料は遊離石灰を含有しない。
A vacuum degassing refining method for molten steel for refining molten steel under reduced pressure to remove hydrogen in the molten steel, comprising:
Estimate the hydrogen concentration in the molten steel before vacuum degassing refining using a function with the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining as a variable,
The vacuum degassing refining is performed without exceeding the refining time according to the hydrogen concentration standard for the steel type, and the estimated hydrogen concentration in the molten steel before vacuum degassing refining and the hydrogen concentration in the molten steel after vacuum degassing refining It is decided to end when the condition of the following formula (8) obtained from the target value is satisfied,
A vacuum degassing refining method for molten steel, wherein the following formula (2) is used as a function with the amount of auxiliary raw materials used in the steel refining process as a variable.
t≧(1/K H )×ln{([H] 0 −[H] e )/([H] f −[H] e )} (8)
Here, in formula (8), t is the elapsed time (min) from the start of vacuum degassing refining, and [H] 0 is the amount of auxiliary raw materials used in the steelmaking refining process prior to vacuum degassing refining. The hydrogen concentration in the molten steel before vacuum degassing refining (mass ppm), [H ] , estimated using the function to H] e is the equilibrium hydrogen concentration (mass ppm) at the molten steel interface in the vacuum chamber, KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, ln is the natural logarithm.
[H] 0 = a 1 ×w 1 +a 2 ×w 2 +a 3 ×w 3 +a 4 ×w 4 +α (2)
Here, in equation (2), [H] 0 is the hydrogen concentration (mass ppm) in the molten steel before vacuum degassing refining, and w 1 is the calcination per unit mass of molten steel in refining in a converter or electric furnace. The total amount of lime-containing auxiliary materials added (kg/ton), w 2 is the content of calcined lime per unit mass of molten steel in the steelmaking refining process from converter or electric furnace tapped steel to before the start of vacuum degassing refining Total additive amount of auxiliary raw materials (kg/ton), w 3 is the total additive amount of auxiliary raw materials not containing calcined lime per unit mass of molten steel in refining in a converter or electric furnace (kg/ton), w 4 is the total addition amount of non-calcined lime-containing auxiliary materials per unit mass of molten steel (kg/ton) in the steelmaking refining process from converter or electric furnace output steel to before the start of vacuum degassing refining, a 1 , a 2 , a 3 , and a 4 are influence coefficients determined by the types and management conditions of individual auxiliary raw materials, α is a correction constant, the calcined lime-containing auxiliary raw material contains free lime, and the calcined lime-free auxiliary raw material contains free lime. The raw material does not contain free lime.
前記真空脱ガス精錬は、RH真空脱ガス装置における真空脱ガス精錬であって、前記脱水素速度定数(K)を、下記の(5)式、(6)式及び(7)式を使用して決定することを特徴とする、請求項8に記載の溶鋼の真空脱ガス精錬方法。
=(Q/V)×{ak/(Q+ak)} ・・・(5)
Q=11.4×G1/3×D4/3×{ln(P/P)}1/3/ρ ・・・(6)
ak=2500×D 1/2×(G×10-31/2×d/2 ・・・(7)
ここで、(5)式、(6)式及び(7)式において、Kは、真空脱ガス精錬における脱水素速度定数(1/min)、Qは、真空槽への溶鋼環流量(m/min)、Vは、真空脱ガス精錬対象の溶鋼の体積(m)、akは、脱水素反応容量係数(m/min)、Gは、環流用ガスの流量(NL/min)、Dは上昇側浸漬管の内径(m)、Pは、大気圧(atm)、Pは、真空槽内の圧力(atm)、ρは、溶鋼の密度(ton/m)、Dは、溶鋼中水素の拡散係数(m/min)、dは、真空槽の内径(m)である。
The vacuum degassing refining is vacuum degassing refining in an RH vacuum degassing apparatus, and the dehydrogenation rate constant (K H ) is calculated using the following equations (5), (6) and (7). The vacuum degassing refining method of molten steel according to claim 8 , characterized in that it is determined by
KH =(Q/V)×{ak/(Q+ak)} (5)
Q=11.4×G1 /3 ×D4 /3 ×{ln( P1 /P)} 1/3 / ρL (6)
ak=2500× DH1 /2 ×(G× 10-3 ) 1/2 × dL /2 (7)
Here, in equations (5), (6) and (7), KH is the dehydrogenation rate constant (1/min) in vacuum degassing refining, Q is the molten steel circulation flow rate to the vacuum tank (m 3 /min), V is the volume of molten steel to be vacuum degassed (m 3 ), ak is the dehydrogenation reaction capacity coefficient (m 3 /min), and G is the flow rate of reflux gas (NL/min). , D is the inner diameter of the ascending immersion tube (m), P 1 is the atmospheric pressure (atm), P is the pressure in the vacuum chamber (atm), ρ L is the density of molten steel (ton/m 3 ), D H is the diffusion coefficient of hydrogen in molten steel (m 2 /min), and dL is the inner diameter (m) of the vacuum chamber.
JP2020128151A 2019-09-19 2020-07-29 Method for estimating hydrogen concentration in molten steel and vacuum degassing refining method for molten steel Active JP7180645B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019170013 2019-09-19
JP2019170013 2019-09-19

Publications (2)

Publication Number Publication Date
JP2021050415A JP2021050415A (en) 2021-04-01
JP7180645B2 true JP7180645B2 (en) 2022-11-30

Family

ID=75157160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020128151A Active JP7180645B2 (en) 2019-09-19 2020-07-29 Method for estimating hydrogen concentration in molten steel and vacuum degassing refining method for molten steel

Country Status (1)

Country Link
JP (1) JP7180645B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275903A (en) 2006-04-03 2007-10-25 Sumitomo Metal Ind Ltd Method for casting stainless steel or high alloy steel
JP2018109212A (en) 2017-01-04 2018-07-12 新日鐵住金株式会社 Dehydrogenation refining method for molten steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238415A (en) * 1975-09-23 1977-03-25 Nippon Steel Corp Refining method of low hydrogen content steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275903A (en) 2006-04-03 2007-10-25 Sumitomo Metal Ind Ltd Method for casting stainless steel or high alloy steel
JP2018109212A (en) 2017-01-04 2018-07-12 新日鐵住金株式会社 Dehydrogenation refining method for molten steel

Also Published As

Publication number Publication date
JP2021050415A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
CN103468866A (en) Refining technology for molten medium-high carbon steel
JP2010133030A (en) Method for decarbonization refining of chromium-containing molten steel under reduced pressure
JP7180645B2 (en) Method for estimating hydrogen concentration in molten steel and vacuum degassing refining method for molten steel
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JP5896153B2 (en) Desulfurization method and manufacturing method of molten steel
US8092572B2 (en) Method of regulating the output of carbon monoxide in a metallurgical melting process
JP6330559B2 (en) Denitrification refining method
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
KR20050005067A (en) A method for reducing extra low carbon steel inclusion using a recarburizer
CN111479935B (en) Method for refining molten iron
KR101388066B1 (en) Forecasting of temperature of molten steel
JP4816513B2 (en) Molten steel component estimation method
JP6822148B2 (en) Dehydrogenation refining method for molten steel
KR101246213B1 (en) Method for predicting dissolved oxygen quantity in vacuum degassing process
JP7318821B2 (en) Method for deoxidizing and refining molten steel, method for manufacturing steel material, and steel material thereof
JP5849667B2 (en) Melting method of low calcium steel
JP5704019B2 (en) Secondary refining method and manufacturing method of molten steel
JP6277991B2 (en) Slag component estimation method, solvent calculation method and hot metal pretreatment method
KR20190143132A (en) Method for determining decarburization time in rh vacuum degassing process
WO2021200496A1 (en) Method for conducting decarburization refining of molten steel under reduced pressure
JP5423614B2 (en) Hot metal desulfurization method
WO2020195598A1 (en) Blowing control method of converter-type dephosphorization refining furnace and blowing control device
JP2005206877A (en) Method for estimating carbon concentration at blowing time in converter
Slović et al. A numerical analysis as a good tool for a prediction of final sulphur steel ladle content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R150 Certificate of patent or registration of utility model

Ref document number: 7180645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150