JP2018109212A - Dehydrogenation refining method for molten steel - Google Patents

Dehydrogenation refining method for molten steel Download PDF

Info

Publication number
JP2018109212A
JP2018109212A JP2017000084A JP2017000084A JP2018109212A JP 2018109212 A JP2018109212 A JP 2018109212A JP 2017000084 A JP2017000084 A JP 2017000084A JP 2017000084 A JP2017000084 A JP 2017000084A JP 2018109212 A JP2018109212 A JP 2018109212A
Authority
JP
Japan
Prior art keywords
molten steel
dehydrogenation
hydrogen concentration
ppm
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017000084A
Other languages
Japanese (ja)
Other versions
JP6822148B2 (en
Inventor
峻介 村上
Shunsuke Murakami
峻介 村上
寛弥 谷川
Hiroya Tanigawa
寛弥 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017000084A priority Critical patent/JP6822148B2/en
Publication of JP2018109212A publication Critical patent/JP2018109212A/en
Application granted granted Critical
Publication of JP6822148B2 publication Critical patent/JP6822148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehydrogenation refining method for a molten steel where dehydrogenation treatment time to reach a pre-set hydrogen concentration in a molten steel is beforehand predicted at a high precision, and dehydrogenation treatment for the molten steel is performed without exaggeration and without omission.SOLUTION: Provided is a dehydrogenation refining method for a molten steel using a vacuum degassing apparatus, an alloy and Al are charged to a molten steel to control the free oxygen concentration in the molten steel to 10 ppm or lower, thereafter, the hydrogen concentration in the molten steel is measured, based on the measurement result and pre-obtained dehydrogenation rate constants, using a dehydrogenation prediction model equation, dehydrogenation treatment time is calculated till the pre-set hydrogen concentration in the molten steel is obtained, and dehydrogenation treatment for the molten steel is performed for the dehydrogenation treatment time.SELECTED DRAWING: Figure 4

Description

本発明は、真空脱ガス装置を用いた溶鋼の脱水素精錬方法に関する。   The present invention relates to a method for dehydrogenating and refining molten steel using a vacuum degassing apparatus.

転炉で一次精錬された溶鋼は、真空脱ガス装置により、水素や窒素などの脱ガス処理、合金成分濃度の最終調整などが行われる。その際、真空脱ガス処理時間が過剰になると、真空脱ガス槽の耐火物寿命の低下、電力・環流ガス等のユーティリティの浪費につながる。特に、水素含有量に関して厳格な厚板材の真空脱ガス処理時間は脱水素処理に律速しているため、脱水素処理を過不足なく行うことが求められる。   The molten steel primarily refined in the converter is subjected to degassing treatment such as hydrogen and nitrogen, final adjustment of alloy component concentration, and the like by a vacuum degassing apparatus. At this time, if the vacuum degassing treatment time is excessive, the life of the refractory in the vacuum degassing tank is reduced, and utilities such as electric power and reflux gas are wasted. In particular, since the vacuum degassing time of a thick plate material that is strict regarding the hydrogen content is rate-determined by the dehydrogenation treatment, it is required to perform the dehydrogenation treatment without excess or deficiency.

例えば、特許文献1には、真空脱ガス装置を用いた脱水素精錬方法が開示されている。特許文献1記載の脱水素精錬方法では、精錬期間をその進行に従って3期に区分したうえで、各期の脱水素速度定数を事前測定して定める。脱水素精錬時には、オンライン水素迅速分析計により処理前溶鋼中水素濃度を直接測定し、脱水素処理時間を3期それぞれの脱水素速度定数により精錬ヒートごとに決定する。   For example, Patent Document 1 discloses a dehydrogenation refining method using a vacuum degassing apparatus. In the dehydrogenation refining method described in Patent Document 1, the refining period is divided into three periods according to the progress, and the dehydrogenation rate constant in each period is determined in advance. At the time of dehydrogenation refining, the hydrogen concentration in the molten steel before treatment is directly measured by an on-line hydrogen rapid analyzer, and the dehydrogenation treatment time is determined for each refining heat by the dehydrogenation rate constant of each of the three periods.

特開平5−70821号公報JP-A-5-70821

特許文献1記載の脱水素精錬方法では、脱水素精錬を3つの区間に区分し、それぞれの区間について脱水素速度定数を定めることで最終到達水素濃度を推定しているが、区間IIから区間IIIへの切り替わりタイミングは脱水素速度定数値の変化により規定している。しかし、実操業において、切り替わりタイミングを正確に把握することは困難であり、予測精度悪化の要因となる。また、脱水素速度定数も操業条件ごとに複数個事前調査する必要があることに加えて、事前調査を行った操業条件からの変化によるバラツキが考慮しきれていない。   In the dehydrogenation refining method described in Patent Document 1, the final hydrogen concentration is estimated by dividing the dehydrogenation refining into three sections and determining the dehydrogenation rate constant for each section. The timing of switching to is defined by the change in the dehydrogenation rate constant value. However, in actual operation, it is difficult to accurately grasp the switching timing, which causes a deterioration in prediction accuracy. Further, in addition to the necessity of conducting a preliminary investigation on a plurality of dehydrogenation rate constants for each operating condition, variations due to a change from the operating condition subjected to the preliminary investigation are not fully considered.

本発明はかかる事情に鑑みてなされたもので、予め設定した溶鋼中水素濃度となるまでの脱水素処理時間を高精度に予測し、溶鋼の脱水素処理を過不足なく行うことが可能な溶鋼の脱水素精錬方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and predicts the dehydrogenation processing time until the hydrogen concentration in the molten steel reaches a preset high accuracy, and can perform the dehydrogenation processing of the molten steel without excess or deficiency. An object of the present invention is to provide a dehydrogenation refining method.

上記目的を達成するため、本発明は、真空脱ガス装置を用いた溶鋼の脱水素精錬方法において、
合金及びAlを溶鋼に投入して溶鋼中の自由酸素濃度を10ppm以下とした後、溶鋼中水素濃度を測定し、その測定結果と予め求めておいた脱水素速度定数をもとに脱水素予測モデル式を用いて、予め設定した溶鋼中水素濃度となるまでの脱水素処理時間を算出し、該脱水素処理時間のあいだ溶鋼の脱水素処理を行うことを特徴としている。
In order to achieve the above object, the present invention provides a method for dehydrogenating and refining molten steel using a vacuum degassing apparatus.
The alloy and Al are introduced into the molten steel, the free oxygen concentration in the molten steel is reduced to 10 ppm or less, the hydrogen concentration in the molten steel is measured, and dehydrogenation prediction is made based on the measurement result and the dehydrogenation rate constant determined in advance. The dehydrogenation processing time until the hydrogen concentration in the molten steel reaches a preset hydrogen concentration is calculated using the model formula, and the dehydrogenation processing of the molten steel is performed during the dehydrogenation processing time.

合金及びAlを溶鋼に投入した後に溶鋼中水素濃度を測定することで、合金等から溶鋼中に混入する水素の影響を低減することができる。また、溶鋼中の自由酸素濃度によって脱水素反応速度が変化することから、溶鋼中の自由酸素濃度を10ppm以下とした後に溶鋼中水素濃度を測定することで、脱水素速度定数の変動を抑制することができる。   By measuring the hydrogen concentration in the molten steel after introducing the alloy and Al into the molten steel, the influence of hydrogen mixed into the molten steel from the alloy or the like can be reduced. In addition, since the dehydrogenation reaction rate changes depending on the free oxygen concentration in the molten steel, fluctuations in the dehydrogenation rate constant are suppressed by measuring the hydrogen concentration in the molten steel after setting the free oxygen concentration in the molten steel to 10 ppm or less. be able to.

また、本発明に係る溶鋼の脱水素精錬方法では、前記脱水素予測モデル式が(1)式であることを好適とする。
t=−1/k×Ln(([H]−[H]’)/([H]−[H]’)) (1)
ここで、
t:脱水素処理時間(min)、k:脱水素速度定数(min−1)、[H]:予め設定した溶鋼中水素濃度(ppm)、[H]:脱水素処理前の溶鋼中水素濃度(ppm)、[H]’:真空脱ガス槽内の溶鋼界面における平衡水素濃度(ppm)、Ln:自然対数
In the molten steel dehydrogenation refining method according to the present invention, it is preferable that the dehydrogenation prediction model equation is the equation (1).
t = −1 / k × Ln (([H] − [H] ′) / ([H] 0 − [H] ′)) (1)
here,
t: Dehydrogenation treatment time (min), k: Dehydrogenation rate constant (min −1 ), [H]: Hydrogen concentration in molten steel (ppm) set in advance, [H] 0 : Hydrogen in molten steel before dehydrogenation treatment Concentration (ppm), [H] ': Equilibrium hydrogen concentration (ppm) at the molten steel interface in the vacuum degassing tank, Ln: Natural logarithm

当該構成では、真空脱ガス槽内の溶鋼界面における平衡水素濃度を考慮する。これにより、低水素域における飽和水素濃度が脱水素処理時間の算出に反映され、従来の脱水素予測モデル式に比べて、脱水素処理時間を高い精度で予測することができる。   In the said structure, the equilibrium hydrogen concentration in the molten steel interface in a vacuum degassing tank is considered. Thereby, the saturated hydrogen concentration in the low hydrogen region is reflected in the calculation of the dehydrogenation treatment time, and the dehydrogenation treatment time can be predicted with higher accuracy than the conventional dehydrogenation prediction model formula.

本発明に係る溶鋼の脱水素精錬方法では、合金及びAlを溶鋼に投入して溶鋼中の自由酸素濃度を10ppm以下とした後、溶鋼中水素濃度を測定するので、合金及び溶鋼中の自由酸素濃度による溶鋼中水素濃度への影響が低減され、脱水素処理時間を高精度に予測することができる。その結果、溶鋼の脱水素処理を過不足なく行うことができる。   In the dehydrogenation refining method for molten steel according to the present invention, the hydrogen concentration in the molten steel is measured after the alloy and Al are introduced into the molten steel so that the free oxygen concentration in the molten steel is 10 ppm or less. The influence of the concentration on the hydrogen concentration in the molten steel is reduced, and the dehydrogenation processing time can be predicted with high accuracy. As a result, the molten steel can be dehydrogenated without excess or deficiency.

合金投入量の違いが脱水素速度定数kに及ぼす影響を示したグラフである。It is the graph which showed the influence which the difference in alloy injection amount has on dehydrogenation rate constant k. 溶鋼中の自由酸素濃度(Free[O])の違いが脱水素速度定数kに及ぼす影響を示したグラフである。It is the graph which showed the influence which the difference in the free oxygen concentration (Free [O]) in molten steel exerts on the dehydrogenation rate constant k. 溶鋼中の自由酸素濃度(Free[O])と脱水素速度定数kの関係を示したグラフである。It is the graph which showed the relationship between the free oxygen concentration (Free [O]) in molten steel, and the dehydrogenation rate constant k. 本発明の一実施の形態に係る溶鋼の脱水素精錬方法の手順を示した工程図である。It is process drawing which showed the procedure of the dehydrogenation refining method of the molten steel which concerns on one embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

[溶鋼中水素濃度の測定タイミング]
予め設定した溶鋼中水素濃度となるまでの脱水素処理時間を溶鋼中水素濃度の測定結果より予測するモデルは今までにも存在していたが、高い精度で予測することが困難、もしくは鋼種ごとに事前に脱水素速度定数を求める必要があった。
[Measurement timing of hydrogen concentration in molten steel]
There has been a model that predicts the dehydrogenation time until the hydrogen concentration in the molten steel reaches a preset value based on the measurement results of the hydrogen concentration in the molten steel, but it is difficult to predict with high accuracy, or for each steel type Therefore, it was necessary to obtain the dehydrogenation rate constant in advance.

本発明者らが、従来の脱水素精錬方法について調査したところ、従来方法では、溶鋼中水素濃度の測定タイミングが真空脱ガス処理前もしくは真空脱ガス処理前半であった。真空脱ガス処理では処理中に合金を投入したり、脱酸のためにAlを投入することがある。本発明者らは、溶鋼中に投入する合金等から混入する水素、及び溶鋼中の自由酸素濃度(Free[O])の違いにより脱水素速度定数が変わり、真空脱ガス処理後の溶鋼中水素濃度に影響することを見出した。   When the present inventors investigated the conventional dehydrogenation refining method, in the conventional method, the measurement timing of the hydrogen concentration in molten steel was before the vacuum degassing process or the first half of the vacuum degassing process. In the vacuum degassing process, an alloy may be charged during the process or Al may be charged for deoxidation. The present inventors changed the dehydrogenation rate constant due to the difference in hydrogen mixed from the alloy and the like to be introduced into the molten steel and the free oxygen concentration (Free [O]) in the molten steel, and the hydrogen in the molten steel after the vacuum degassing treatment. It was found to affect the concentration.

本発明では、合金及びAlを溶鋼に投入して溶鋼中の自由酸素濃度が10ppm以下となった後に溶鋼中水素濃度を測定し、その測定結果をもとに、予め設定した溶鋼中水素濃度となるまでの脱水素処理時間を算出する。以下、本発明の根拠について説明する。   In the present invention, the hydrogen concentration in the molten steel is measured after the alloy and Al are introduced into the molten steel and the free oxygen concentration in the molten steel becomes 10 ppm or less. Based on the measurement result, the hydrogen concentration in the molten steel is set in advance. Calculate the dehydrogenation processing time until. Hereinafter, the basis of the present invention will be described.

図1は、合金投入量の違いが脱水素速度定数kに及ぼす影響を示したグラフである。溶鋼約400tonに対してRH真空脱ガス装置を用いて脱水素処理を行うにあたり、処理中に投入するNb合金の量を変えて、真空脱ガス処理前と処理開始15分後の溶鋼中水素濃度をそれぞれ測定した。同図において、実線で示されるヒート(チャージ)では、真空脱ガス処理開始から6分〜8分の間にNb合金を1500kg投入し、破線で示されるヒートでは、同じ時間帯にNb合金を1300kg投入した。   FIG. 1 is a graph showing the effect of the difference in alloy input amount on the dehydrogenation rate constant k. When performing dehydrogenation processing on about 400 tons of molten steel using an RH vacuum degassing apparatus, the hydrogen concentration in the molten steel before the vacuum degassing treatment and 15 minutes after the start of treatment is changed by changing the amount of Nb alloy introduced during the treatment. Was measured respectively. In the figure, in the heat (charge) indicated by the solid line, 1500 kg of Nb alloy is introduced between 6 minutes and 8 minutes from the start of the vacuum degassing treatment, and in the heat indicated by the broken line, 1300 kg of Nb alloy is supplied in the same time zone. I put it in.

この試験の結果、真空脱ガス処理前の溶鋼中水素濃度がいずれも4.9ppmと同等レベルでも、処理後は2.7ppmと1.9ppmと差が生じた。図中には、実験結果を基に一般に知られている脱水素反応式(2)式を用いて算出した脱水素速度定数kの値を記している。
[H]=[H]・exp(−k・t) (2)
ここで、[H]:処理後水素濃度(ppm)、[H]:処理前水素濃度(ppm)、
k:脱水素速度定数(min―1)、t:精錬時間(min)
合金に含まれる水素量の違いから脱水素速度定数kの値に違いが生じることが同図よりわかる。このことより、真空脱ガス処理前の溶鋼中水素濃度から終点を予測すると予測精度が悪くなり望ましくないことがわかる。
As a result of this test, there was a difference between 2.7 ppm and 1.9 ppm after the treatment even though the hydrogen concentration in the molten steel before the vacuum degassing treatment was all equal to 4.9 ppm. In the figure, the value of the dehydrogenation rate constant k calculated using the generally known dehydrogenation equation (2) based on the experimental results is shown.
[H] = [H] 0 · exp (−k · t) (2)
Here, [H]: hydrogen concentration after treatment (ppm), [H] 0 : hydrogen concentration before treatment (ppm),
k: Dehydrogenation rate constant (min −1 ), t: Refining time (min)
It can be seen from the figure that the dehydrogenation rate constant k varies depending on the amount of hydrogen contained in the alloy. From this, it can be seen that if the end point is predicted from the hydrogen concentration in the molten steel before the vacuum degassing process, the prediction accuracy is deteriorated, which is not desirable.

図2は、溶鋼中の自由酸素濃度(Free[O])の違いが脱水素速度定数kに及ぼす影響を示したグラフである。溶鋼約400tonに対してRH真空脱ガス装置を用いて脱水素処理を行うにあたり、処理開始約10分後に投入するAlの量を変え、溶鋼中の自由酸素濃度を変化させて、真空脱ガス処理前と処理開始15分後の溶鋼中水素濃度をそれぞれ測定した。
同図において、破線で示されるヒートでは、処理前の溶鋼中水素濃度は5.0ppm、Al投入後の溶鋼中の自由酸素濃度は34ppm、処理後の溶鋼中水素濃度は1.5ppmであった。一方、実線で示されるヒートでは、処理前の溶鋼中水素濃度は4.9ppm、Al投入後の自由酸素濃度は10ppm、処理後の溶鋼中水素濃度は2.7ppmであった。
図中には、実験結果を基に(2)式を用いて算出した脱水素速度定数kの値を記しているが、真空脱ガス処理前の溶鋼中水素濃度が同等レベルでも溶鋼中のFree[O]の違いにより脱水素速度定数kの値に違いが生じていることが図2からわかる。
FIG. 2 is a graph showing the effect of the difference in free oxygen concentration (Free [O]) in molten steel on the dehydrogenation rate constant k. When dehydrogenation processing is performed on about 400 tonnes of molten steel using an RH vacuum degassing device, the amount of Al to be added is changed about 10 minutes after the start of processing, and the free oxygen concentration in the molten steel is changed to perform vacuum degassing processing. The hydrogen concentration in the molten steel was measured before and 15 minutes after the start of treatment.
In the figure, in the heat indicated by the broken line, the hydrogen concentration in the molten steel before treatment was 5.0 ppm, the free oxygen concentration in the molten steel after Al was added was 34 ppm, and the hydrogen concentration in the molten steel after treatment was 1.5 ppm. . On the other hand, in the heat indicated by the solid line, the hydrogen concentration in the molten steel before the treatment was 4.9 ppm, the free oxygen concentration after the addition of Al was 10 ppm, and the hydrogen concentration in the molten steel after the treatment was 2.7 ppm.
In the figure, the value of the dehydrogenation rate constant k calculated using the formula (2) based on the experimental results is shown. Even if the hydrogen concentration in the molten steel before the vacuum degassing treatment is equivalent, the free hydrogen in the molten steel It can be seen from FIG. 2 that there is a difference in the value of the dehydrogenation rate constant k due to the difference in [O].

図3は、溶鋼中のFree[O]と脱水素速度定数kの関係を示したグラフである。溶鋼中のFree[O]の低下と共に脱水素速度定数kの値も低下し、溶鋼中のFree[O]が10ppm以下になると、脱水素速度定数kはほぼ一定値になることが同図よりわかる。   FIG. 3 is a graph showing the relationship between Free [O] in molten steel and the dehydrogenation rate constant k. From the figure, the value of the dehydrogenation rate constant k decreases with the decrease in Free [O] in the molten steel, and when the Free [O] in the molten steel falls below 10 ppm, the dehydrogenation rate constant k becomes almost constant. Recognize.

[本発明の一実施の形態に係る溶鋼の脱水素精錬方法]
本発明の一実施の形態に係る溶鋼の脱水素精錬方法の手順を図4に示す。
本実施の形態に係る溶鋼の脱水素精錬方法で使用される真空脱ガス装置は、真空脱ガス槽の下部に2本の浸漬管を有するRH式真空脱ガス装置である。脱ガス処理時には、真空脱ガス槽内の空気をポンプ等により槽外に排出して0.52kPa以下とし、取鍋内の溶鋼を真空脱ガス槽にリフトアップする。また、一方の浸漬管よりArガス等の環流ガスを吹き込んで溶鋼を環流することで、溶鋼からの脱ガスを促進する。
[Method for Dehydrogenating Refining Molten Steel According to One Embodiment of the Present Invention]
FIG. 4 shows the procedure of the molten steel dehydrogenation refining method according to the embodiment of the present invention.
The vacuum degassing apparatus used in the molten steel dehydrogenation refining method according to the present embodiment is an RH type vacuum degassing apparatus having two dip tubes in the lower part of the vacuum degassing tank. At the time of degassing, the air in the vacuum degassing tank is discharged out of the tank by a pump or the like to 0.52 kPa or less, and the molten steel in the ladle is lifted up to the vacuum degassing tank. Moreover, degassing from molten steel is accelerated | stimulated by blowing in circulating gas, such as Ar gas, from one dip tube, and circulating molten steel.

真空脱ガス処理開始してから5分〜15分の間に合金及びAlを溶鋼に投入する。投入する合金はMn合金、Ti合金、Nb合金などである。   The alloy and Al are introduced into the molten steel within 5 to 15 minutes after the start of the vacuum degassing treatment. Alloys to be introduced are Mn alloy, Ti alloy, Nb alloy and the like.

溶鋼中の自由酸素濃度が10ppm以下となった時点で、溶鋼中水素濃度を測定する。溶鋼中水素濃度の測定には、例えば、ヘレウス・エレクトロナイト株式会社製の「HYDRIS」(登録商標)などの分析装置を使用することができる。この分析装置は、溶鋼中に吹き込んだ窒素ガスを回収して分析する。溶鋼中水素濃度の増加に応じて窒素ガス中の水素濃度も増加するというSieverts の法則((3)式参照)を用いて溶鋼中水素濃度を算出する。なお、本実施の形態における窒素ガスは純度99.97%以上である。
[H]=K/f×√PH2 (3)
ここで、
[H]:溶鋼中水素濃度(ppm)、K:溶鋼中への水素ガスの溶解反応定数(−)、f:水素の活量係数、PH2:環流ガス中の水素分圧
When the free oxygen concentration in the molten steel becomes 10 ppm or less, the hydrogen concentration in the molten steel is measured. For measuring the hydrogen concentration in the molten steel, for example, an analyzer such as “HYDRIS” (registered trademark) manufactured by Heraeus Electronite Co., Ltd. can be used. This analyzer collects and analyzes nitrogen gas blown into the molten steel. The hydrogen concentration in the molten steel is calculated using Sieverts' law (see equation (3)) in which the hydrogen concentration in the nitrogen gas increases as the hydrogen concentration in the molten steel increases. Note that the nitrogen gas in this embodiment has a purity of 99.97% or more.
[H] = K / f × √P H2 (3)
here,
[H]: Hydrogen concentration in molten steel (ppm), K: Dissolution reaction constant of hydrogen gas in molten steel (−), f: Activity coefficient of hydrogen, P H2 : Hydrogen partial pressure in reflux gas

溶鋼中水素濃度の測定結果と脱水素速度定数kをもとに脱水素予測モデル式を用いて、予め設定した溶鋼中水素濃度となるまでの脱水素処理時間を算出する。そして、脱水素処理時間のあいだ溶鋼の脱水素処理を行う。   Based on the measurement result of the hydrogen concentration in the molten steel and the dehydrogenation rate constant k, a dehydrogenation prediction model equation is used to calculate the dehydrogenation processing time until the preset hydrogen concentration in the molten steel is reached. And dehydrogenation processing of molten steel is performed during the dehydrogenation processing time.

ここで、脱水素予測モデル式について説明しておく。
溶鋼の脱水素処理は、(4)式で示される微分方程式で表すことができる。
−d[H]/dt=k([H]−[H]’) (4)
ここで、
t:脱水素処理時間(min)、[H]:脱水素処理時間tにおける溶鋼中水素濃度(ppm)、k:脱水素速度定数(min−1)、 [H]’:真空脱ガス槽内の溶鋼界面における平衡水素濃度(ppm)
Here, the dehydrogenation prediction model formula will be described.
The dehydrogenation treatment of the molten steel can be expressed by a differential equation represented by equation (4).
−d [H] / dt = k ([H] − [H] ′) (4)
here,
t: Dehydrogenation treatment time (min), [H]: Hydrogen concentration in molten steel (ppm) at dehydrogenation treatment time t, k: Dehydrogenation rate constant (min −1 ), [H] ′: In vacuum degassing tank Equilibrium Hydrogen Concentration (ppm) at Molten Steel Interface

(4)式を積分することにより(5)式が得られる。
[H]−[H]’=Ce−kt (5)
ここで、C:積分定数
By integrating equation (4), equation (5) is obtained.
[H] − [H] ′ = Ce −kt (5)
Where C: integration constant

t=0のときの溶鋼中水素濃度[H]を[H]と置くと、[H]−[H]’=Cであるから、(5)式は次のようになる。
([H]−[H]’)/([H]−[H]’)=e−kt (6)
Placing molten steel in a hydrogen concentration [H] when the t = 0 and [H] 0, [H] 0 - because it is [H] '= C, ( 5) formula is as follows.
([H] − [H] ′) / ([H] 0 − [H] ′) = e −kt (6)

(6)式を変形することにより、次の脱水素予測モデル式が得られる。
t=−1/k×Ln(([H]−[H]’)/([H]−[H]’)) (7)
ただし、Lnは自然対数である。
By transforming equation (6), the following dehydrogenation prediction model equation is obtained.
t = −1 / k × Ln (([H] − [H] ′) / ([H] 0 − [H] ′)) (7)
However, Ln is a natural logarithm.

一方、従来の脱水素予測モデル式では、[H]’=0ppmと近似することにより、次式を使用していた。
t=−1/k×Ln([H]/[H]) (8)
しかし、実操業条件下において、t=∞のとき[H]’≠0ppmであることから、[H]’を考慮した(7)式を用いることで、より高い精度で予測することができる。
なお、脱水素速度定数kと真空脱ガス槽内の溶鋼界面における平衡水素濃度[H]’は、過去の実操業結果より事前に求めておく必要がある。
On the other hand, in the conventional dehydrogenation prediction model formula, the following formula is used by approximating [H] ′ = 0 ppm.
t = −1 / k × Ln ([H] / [H] 0 ) (8)
However, since [H] ′ ≠ 0 ppm when t = ∞ under actual operating conditions, it is possible to predict with higher accuracy by using Equation (7) considering [H] ′.
The dehydrogenation rate constant k and the equilibrium hydrogen concentration [H] ′ at the molten steel interface in the vacuum degassing tank must be obtained in advance from the past actual operation results.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、真空脱ガス装置をRH式としたが、これに限定されるものではなく、取鍋全体を真空状態にする装置などを使用してもよい。   Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the said embodiment, although the vacuum degassing apparatus was made into RH type, it is not limited to this, You may use the apparatus etc. which make the whole ladle a vacuum state.

本発明の効果について検証するために実施した検証試験について説明する。
実施例五例と従来例一例について検証試験を実施した。
溶鋼量約400tonに対して、RH式真空脱ガス装置を用いて真空度を0.26kPa未満として脱水素処理を行った。処理開始5分〜12分後の間にNb合金、Mn合金、Ti合金、及びAlを投入した。Al投入後の自由酸素濃度は7ppm〜9ppmであった。
処理後に測定した溶鋼中水素濃度、脱水素処理時間の実績、並びに、それらを基に評価した結果を表1に示す。
A verification test carried out to verify the effects of the present invention will be described.
Verification tests were conducted on five examples and one conventional example.
Dehydrogenation treatment was performed on the molten steel amount of about 400 tons using an RH vacuum degassing apparatus with a degree of vacuum of less than 0.26 kPa. Nb alloy, Mn alloy, Ti alloy, and Al were added 5 to 12 minutes after the start of the treatment. The free oxygen concentration after addition of Al was 7 ppm to 9 ppm.
Table 1 shows the hydrogen concentration in the molten steel measured after the treatment, the results of the dehydrogenation treatment time, and the results of evaluation based on them.

Figure 2018109212
Figure 2018109212

表中の「基準」処理時間は、従来の実績から決定される目標水素濃度ごとの脱水素処理時間であり、処理前の水素濃度、真空脱ガス装置の到達真空度、目標水素濃度から決定した。従来例では、この「基準」処理時間で脱水素処理を行った。実施例では、合金及びAl投入後の溶鋼中水素濃度を、前述した分析装置を用いて測定し、目標水素濃度とするのに必要な脱水素処理時間を求めて脱水素処理を行った。
実施例1は、(8)式で示される従来の脱水素予測モデル式を使用して脱水素処理時間を求め、実施例2〜5は、(7)式で示される本発明に係る脱水素予測モデル式を使用して脱水素処理時間を求めた。
表中の「予測」処理時間は、脱水素予測モデル式を用いて算出された脱水素処理時間と、溶鋼中水素濃度の測定を行うまでに経過した脱ガス処理時間の合計(総処理時間)を示している。
The “reference” treatment time in the table is the dehydrogenation treatment time for each target hydrogen concentration determined from the past results, and was determined from the hydrogen concentration before treatment, the ultimate vacuum of the vacuum degassing apparatus, and the target hydrogen concentration. . In the conventional example, the dehydrogenation treatment was performed in this “reference” treatment time. In the examples, the hydrogen concentration in the molten steel after adding the alloy and Al was measured using the analyzer described above, and the dehydrogenation treatment was performed to obtain the dehydrogenation treatment time necessary to obtain the target hydrogen concentration.
Example 1 calculates | requires dehydrogenation processing time using the conventional dehydrogenation prediction model formula shown by (8) Formula, and Examples 2-5 are dehydrogenation concerning this invention shown by (7) Formula. The dehydrogenation time was obtained using the prediction model formula.
The “predicted” treatment time in the table is the sum of the dehydrogenation treatment time calculated using the dehydrogenation prediction model formula and the degassing treatment time elapsed until the measurement of the hydrogen concentration in the molten steel (total treatment time) Is shown.

評価に当たっては、溶鋼中水素濃度が目標値に比べて大幅に下回った場合を×(不可)、脱水素処理時間の予測精度が高かったが、溶鋼中水素濃度が目標値より僅かに下回った場合を○(良)、脱水素処理時間の予測精度が高く、溶鋼中水素濃度も目標値に収まった場合を◎(優良)とした。   In the evaluation, the case where the hydrogen concentration in the molten steel was significantly lower than the target value x (impossible), the prediction accuracy of the dehydrogenation treatment time was high, but the hydrogen concentration in the molten steel was slightly lower than the target value ◯ (good), the accuracy of dehydrogenation treatment time prediction is high, and the case where the hydrogen concentration in the molten steel is within the target value is marked ◎ (excellent).

表1より次のことがわかる。
・実施例1は、脱水素処理時間の予測精度は高かったが、従来の脱水素予測モデル式を使用したため、溶鋼中水素濃度が目標値より僅かに下回った。
・実施例2〜5は、本発明に係る脱水素予測モデル式を使用することで、過剰な脱水素処理が防止され、目標値どおりの溶鋼中水素濃度となることが確認された。また、脱ガス処理前において溶鋼中水素濃度にバラツキがあった場合でも高い精度で脱水素処理時間を予測することができた。
・従来例は、溶鋼中水素濃度が目標値に比べて大幅に下回り、過剰な脱水素処理となった。
Table 1 shows the following.
-Although the prediction accuracy of the dehydrogenation processing time was high in Example 1, since the conventional dehydrogenation prediction model formula was used, the hydrogen concentration in molten steel was slightly lower than the target value.
In Examples 2 to 5, it was confirmed that by using the dehydrogenation prediction model formula according to the present invention, excessive dehydrogenation treatment was prevented, and the hydrogen concentration in the molten steel became the target value. Moreover, even if there was a variation in the hydrogen concentration in the molten steel before the degassing treatment, the dehydrogenation treatment time could be predicted with high accuracy.
・ In the conventional example, the hydrogen concentration in the molten steel was significantly lower than the target value, resulting in excessive dehydrogenation treatment.

Claims (2)

真空脱ガス装置を用いた溶鋼の脱水素精錬方法において、
合金及びAlを溶鋼に投入して溶鋼中の自由酸素濃度を10ppm以下とした後、溶鋼中水素濃度を測定し、その測定結果と予め求めておいた脱水素速度定数をもとに脱水素予測モデル式を用いて、予め設定した溶鋼中水素濃度となるまでの脱水素処理時間を算出し、該脱水素処理時間のあいだ溶鋼の脱水素処理を行うことを特徴とする溶鋼の脱水素精錬方法。
In the dehydrogenation refining method for molten steel using vacuum degassing equipment,
The alloy and Al are introduced into the molten steel, the free oxygen concentration in the molten steel is reduced to 10 ppm or less, the hydrogen concentration in the molten steel is measured, and dehydrogenation prediction is made based on the measurement result and the dehydrogenation rate constant determined in advance. A dehydrogenation refining method for molten steel characterized by calculating a dehydrogenation treatment time until a hydrogen concentration in the molten steel reaches a preset level using a model formula, and performing dehydrogenation treatment of the molten steel during the dehydrogenation treatment time .
請求項1記載の溶鋼の脱水素精錬方法において、前記脱水素予測モデル式が(1)式であることを特徴とする溶鋼の脱水素精錬方法。
t=−1/k×Ln(([H]−[H]’)/([H]−[H]’)) (1)
ここで、
t:脱水素処理時間(min)、k:脱水素速度定数(min−1)、[H]:予め設定した溶鋼中水素濃度(ppm)、[H]:脱水素処理前の溶鋼中水素濃度(ppm)、[H]’:真空脱ガス槽内の溶鋼界面における平衡水素濃度(ppm)、Ln:自然対数
2. The method for dehydrogenating and refining molten steel according to claim 1, wherein the dehydrogenation prediction model equation is equation (1).
t = −1 / k × Ln (([H] − [H] ′) / ([H] 0 − [H] ′)) (1)
here,
t: Dehydrogenation treatment time (min), k: Dehydrogenation rate constant (min −1 ), [H]: Hydrogen concentration in molten steel (ppm) set in advance, [H] 0 : Hydrogen in molten steel before dehydrogenation treatment Concentration (ppm), [H] ': Equilibrium hydrogen concentration (ppm) at the molten steel interface in the vacuum degassing tank, Ln: Natural logarithm
JP2017000084A 2017-01-04 2017-01-04 Dehydrogenation refining method for molten steel Active JP6822148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017000084A JP6822148B2 (en) 2017-01-04 2017-01-04 Dehydrogenation refining method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017000084A JP6822148B2 (en) 2017-01-04 2017-01-04 Dehydrogenation refining method for molten steel

Publications (2)

Publication Number Publication Date
JP2018109212A true JP2018109212A (en) 2018-07-12
JP6822148B2 JP6822148B2 (en) 2021-01-27

Family

ID=62844687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000084A Active JP6822148B2 (en) 2017-01-04 2017-01-04 Dehydrogenation refining method for molten steel

Country Status (1)

Country Link
JP (1) JP6822148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050415A (en) * 2019-09-19 2021-04-01 Jfeスチール株式会社 Method for estimating hydrogen concentration in molten steel and method for vacuum degassing and refining molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050415A (en) * 2019-09-19 2021-04-01 Jfeスチール株式会社 Method for estimating hydrogen concentration in molten steel and method for vacuum degassing and refining molten steel
JP7180645B2 (en) 2019-09-19 2022-11-30 Jfeスチール株式会社 Method for estimating hydrogen concentration in molten steel and vacuum degassing refining method for molten steel

Also Published As

Publication number Publication date
JP6822148B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
RU2363740C2 (en) Control method of steel sheet cooling down
KR102065455B1 (en) Phosphorus concentration estimation method and converter blow control device in molten steel
KR101362712B1 (en) Control of the converter process by means of exhaust gas signals
JP5582105B2 (en) Converter blowing control method
JP5527180B2 (en) Converter blowing method and converter blowing system
Grigorovich et al. Analysis and optimization of ladle treatment technology of steels processing
JP2018109212A (en) Dehydrogenation refining method for molten steel
JP6376200B2 (en) Molten state estimation device, molten state estimation method, and molten metal manufacturing method
JPH09202913A (en) Method for controlling carbon concentration at end point in rh vacuum degassing apparatus and device for controlling carbon concentration
EP3795702A1 (en) Melt component estimation device, melt component estimation method, and method for producing melt
WO2019039539A1 (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program, and recording medium
JP5387012B2 (en) Control method of carbon concentration in molten steel in RH degassing refining
KR101388066B1 (en) Forecasting of temperature of molten steel
JP2006104521A (en) Molten steel decarburizing method in rh vacuum degassing device
JP4816513B2 (en) Molten steel component estimation method
JP5423614B2 (en) Hot metal desulfurization method
JP2014189799A (en) METHOD FOR CONTROLLING DEBRIS COMPOSITION OF Ca-CONTAINING ALUMINUM-KILLED STEEL
BRPI0717315B1 (en) CARBON MONOXIDE OUTPUT REGULATION PROCESS IN A METALURGIC MERGER PROCESS
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
RU2817694C1 (en) Refining process control device and refining process control method
EP4095269A1 (en) Method for conducting decarburization refining of molten steel under reduced pressure
JP6379933B2 (en) Alloy manufacturing method
JP6331601B2 (en) Blowing control method in steelmaking converter.
RU2026360C1 (en) Device for determining the instant of metal discharge from converter
JPH07242928A (en) Method for estimating carbon concentration in molten steel through rh type vacuum vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R151 Written notification of patent or utility model registration

Ref document number: 6822148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151