JP7180257B2 - 電極、電極素子、非水電解液蓄電素子 - Google Patents

電極、電極素子、非水電解液蓄電素子 Download PDF

Info

Publication number
JP7180257B2
JP7180257B2 JP2018188638A JP2018188638A JP7180257B2 JP 7180257 B2 JP7180257 B2 JP 7180257B2 JP 2018188638 A JP2018188638 A JP 2018188638A JP 2018188638 A JP2018188638 A JP 2018188638A JP 7180257 B2 JP7180257 B2 JP 7180257B2
Authority
JP
Japan
Prior art keywords
layer
negative electrode
electrode
mixed layer
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018188638A
Other languages
English (en)
Other versions
JP2020057562A (ja
Inventor
優 座間
正弘 升澤
康司 松岡
杏奈 広渡
啓吾 鷹氏
英雄 柳田
美玖 大木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2018188638A priority Critical patent/JP7180257B2/ja
Publication of JP2020057562A publication Critical patent/JP2020057562A/ja
Application granted granted Critical
Publication of JP7180257B2 publication Critical patent/JP7180257B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電極、電極素子、非水電解液蓄電素子に関する。
近年、電池等の蓄電素子、燃料電池等の発電素子は高出力化、高容量化、高寿命化の要請が急速に高まっている。電池等の蓄電素子は、充電、放電の繰返し使用において、材料の劣化やガスの発生、電極表面でのリチウム等の析出により劣化するため、高寿命化するための技術が求められている。
電池等の蓄電素子の劣化要因の一例として、外力によるストレス、又は、充放電時の電極合材層の急激な体積膨張等によって電極合材層が脱離し、容量の減少及びサイクル寿命特性が劣化する現象が挙げられる。
電池等の蓄電素子の劣化の抑制については様々な対策が検討されており、例えば、電極基体の一面に形成された電極合材層、電極合材層上に形成された無機微粒子及びバインダー高分子を含む有無機多孔性層を含むシート型二次電池用電極が提案されている。この技術によると、電極合材層に外力が作用しても、電極合材層にクラックが発生することを緩和し、クラックが発生した場合でも電極合材層が電極基体から脱離することを防止できる。その結果、蓄電素子の劣化を抑制できる(例えば、特許文献1参照)。
しかしながら、上記の技術では、クラックに起因する蓄電素子の劣化は抑制できても、負極表面近傍でのリチウム等のアルカリ金属の析出による蓄電素子の劣化は抑制できないため、蓄電素子の寿命特性は十分に向上できなかった。
本発明は、上記に鑑みてなされたものであり、蓄電素子の寿命特性を向上可能な電極を提供することを目的とする。
本電極は、電極基体と、前記電極基体上に形成された電極合材層と、前記電極合材層上に形成された第1混合層と、前記第1混合層上に形成された無機粒子層と、を有し、前記第1混合層が電極合材及び無機粒子を含み、前記電極合材層は、金属イオンを可逆的に吸蔵及び放出可能な活物質を含み、前記無機粒子層上に形成された第2混合層を更に有し、前記第2混合層は無機粒子及び樹脂多孔質を含み、前記第2混合層の膜厚が3μm以上50μm以下であることを要件とする。
開示の技術によれば、蓄電素子の寿命特性を向上可能な電極を提供できる。
第1実施形態に係る非水電解液蓄電素子に用いる負極を例示する図である。 第1実施形態に係る非水電解液蓄電素子に用いる正極を例示する図である。 第1実施形態に係る非水電解液蓄電素子に用いる電極素子を例示する断面図である。 第1実施形態に係る非水電解液蓄電素子を例示する断面図である。 第2実施形態に係る非水電解液蓄電素子に用いる負極を例示する図である。 第2実施形態に係る非水電解液蓄電素子を例示する断面図である。 第3実施形態に係る非水電解液蓄電素子に用いる負極を例示する図である。 第3実施形態に係る非水電解液蓄電素子を例示する断面図である。 第3実施形態の変形例1に係る非水電解液蓄電素子を例示する断面図である。
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
〈第1実施形態〉
図1は、第1実施形態に係る非水電解液蓄電素子に用いる負極を例示する図であり、図1(a)は平面図、図1(b)は図1(a)のA-A線に沿う断面図である。
図1を参照すると、負極10は、負極用電極基体11と、負極用電極基体11上に形成された負極合材層12と、負極合材層12上に形成された混合層13と、混合層13上に形成された無機粒子層14とを有する構造である。混合層13は負極合材及び無機粒子を含む層である。
負極10の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状等が挙げられる。
図2は、第1実施形態に係る非水電解液蓄電素子に用いる正極を例示する図であり、図2(a)は平面図、図2(b)は図2(a)のB-B線に沿う断面図である。図2を参照すると、正極20は、正極用電極基体21と、正極用電極基体21上に形成された正極合材層22とを有する構造である。正極20の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状等が挙げられる。
図3は、第1実施形態に係る非水電解液蓄電素子に用いる電極素子を例示する断面図である。図3を参照すると、電極素子40は、負極17と正極27とが互いに絶縁された状態で積層された構造を含む。電極素子40において、正極27は負極17の両側に積層されている。負極用電極基体11には負極引き出し線41が接続されている。正極用電極基体21には正極引き出し線42が接続されている。
負極17は、負極用電極基体11の両側に、負極合材層12、負極合材と無機粒子の混合層13、及び無機粒子層14が形成された点が負極10(図1参照)と相違し、その他の点は負極10と同様である。正極27は、正極用電極基体21の両側に正極合材層22が形成された点が正極20(図2参照)と相違し、その他の点は正極20と同様である。
なお、電極素子40において、負極17と正極27の積層数は任意に決定することができる。すなわち、図3では、1つの負極17と2つの正極27の合計3層を図示しているが、これには限定されず、更に多くの負極17及び正極27を積層することができる。その際、負極17の個数と正極27の個数が同一であってもよい。
図4は、第1実施形態に係る非水電解液蓄電素子を例示する断面図である。図4を参照すると、非水電解液蓄電素子1は、電極素子40に非水電解液を注入して電解質層51を形成し、外装52で封止した構造である。非水電解液蓄電素子1において、負極引き出し線41及び正極引き出し線42は、外装52の外部に引き出されている。非水電解液蓄電素子1は、必要に応じてその他の部材を有してもよい。非水電解液蓄電素子1としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、非水電解液二次電池、非水電解液キャパシタ等が挙げられる。
非水電解液蓄電素子1の形状については、特に制限はなく、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。例えば、ラミネートタイプ、シート電極及びセパレータをスパイラル状にしたシリンダタイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダタイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。
以下、非水電解液蓄電素子1について詳説する。なお、負極と正極とを総称して電極、負極用電極基体と正極用電極基体とを総称して電極基体、負極合材層と正極合材層とを総称して電極合材層と称する場合がある。
<電極>
<<電極基体>>
負極用電極基体11の材質としては、導電性材料で形成されたものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレススチール、ニッケル、アルミニウム、銅等が挙げられる。これらの中でも、ステンレススチール、銅が特に好ましい。
負極用電極基体11の形状としては、特に制限はなく、目的に応じて適宜選択することができる。負極用電極基体11の大きさとしては、非水電解液蓄電素子1に使用可能な大きさであれば、特に制限はなく、目的に応じて適宜選択することができる。
正極用電極基体21の材質としては、導電性材料で形成されたものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタル等が挙げられる。これらの中でも、ステンレススチール、アルミニウムが特に好ましい。
正極用電極基体21の形状としては、特に制限はなく、目的に応じて適宜選択することができる。正極用電極基体21の大きさとしては、非水電解液蓄電素子1に使用可能な大きさであれば、特に制限はなく、目的に応じて適宜選択することができる。
<<電極合材層>>
負極合材層12及び正極合材層22は、特に制限はなく、目的に応じて適宜選択することができ、例えば、活物質(負極活物質又は正極活物質)を少なくとも含み、必要に応じてバインダー(結着剤)、増粘剤、導電剤等を含んでもよい。
負極合材層12は、例えば、負極活物質に、必要に応じてバインダー、増粘剤、導電剤、溶媒等を加えてスラリー状とした負極材組成物を作製し、作製した負極材組成物を負極用電極基体11上に塗布し、乾燥させて形成できる。正極合材層22についても、同様にして形成できる。
負極合材層12の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、負極合材層12の平均厚みは10μm以上450μm以下が好ましく、20μm以上100μm以下がより好ましい。負極合材層12の平均厚みが10μm未満であると、エネルギー密度が低下することがあり、450μmを超えるとサイクル特性が悪化してしまうことがある。
負極合材層12に含まれる負極活物質としては、リチウムイオン等のアルカリ金属イオンを可逆的に吸蔵及び放出できる材料であれば特に限定されない。負極合材層12に含まれる負極活物質としては、例えば、炭素質材料を用いることができる。炭素質材料としては、例えば、コークス、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、様々な熱分解条件での有機物の熱分解物、非晶質カーボン等が挙げられる。これらの中でも、人造グラファイト、天然グラファイト、非晶質カーボンが特に好ましい。
正極合材層22の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、正極合材層22の平均厚みは10μm以上300μm以下が好ましく、40μm以上150μm以下がより好ましい。正極合材層22の平均厚みが10μm未満であると、エネルギー密度が低下することがあり、300μmを超えると負荷特性が悪化してしまうことがある。
正極合材層22に含まれる正極活物質としては、リチウムイオン等のアルカリ金属イオンを可逆的に吸蔵及び放出できる材料であれば特に限定されない。正極合材層22に含まれる正極活物質としては、例えば、アルカリ金属含有遷移金属化合物を用いることができる。
アルカリ金属含有遷移金属化合物としては、例えば、LiNiCoMn(x+y+z=1)であるリチウムNi複合酸化物、LiMe(PO(0.5≦x≦4、Me=遷移金属、0.5≦y≦2.5、0.5≦x≦3.5)を基本骨格とするリチウムリン酸系材料等を用いることができる。
LiNiCoMn(x+y+z=1)であるリチウムNi複合酸化物としては、例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.2Mn等が挙げられる。
LiMe(PO(0.5≦x≦4、Me=遷移金属、0.5≦y≦2.5、0.5≦x≦3.5)を基本骨格とするリチウムリン酸系材料としては、例えば、リン酸バナジウムリチウム(Li(PO)、オリビン鉄(LiFePO)、オリビンマンガン(LiMnPO)、オリビンコバルト(LiCoPO)、オリビンニッケル(LiNiPO)、オリビンバナジウム(LiVOPO)、及びこれらを基本骨格とし、異種元素をドープした類似化合物等が挙げられる。
負極又は正極のバインダー(結着剤)には、例えば、ポリフッ化ビニリデン(PVDF)、PTFE、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース等が使用可能である。
又、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体を用いてもよい。又、これらのうちから選択された2種以上を混合して用いてもよい。
電極合材層に含ませる導電剤には、例えば、天然黒鉛や人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム等の金属粉末類、酸化亜鉛やチタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、フェニレン誘導体、グラフェン誘導体等の有機導電性材料等が用いられる。
燃料電池での活物質は一般に、カソード電極やアノード電極の触媒として、白金、ルテニウム或いは白金合金等の金属微粒子をカーボン等の触媒担体に担持させたものを用いる。触媒担体の表面に触媒粒子を担持させるには、例えば触媒担体を水中に懸濁させ、触媒粒子の前駆体(例えば、塩化白金酸、ジニトロジアミノ白金、塩化第二白金、塩化第一白金、ビスアセチルアセトナート白金、ジクロロジアンミン白金、ジクロロテトラミン白金、硫酸第二白金塩化ルテニウム酸、塩化イリジウム酸、塩化ロジウム酸、塩化第二鉄、塩化コバルト、塩化クロム、塩化金、硝酸銀、硝酸ロジウム、塩化パラジウム、硝酸ニッケル、硫酸鉄、塩化銅等の合金成分を含むもの等)を添加し、懸濁液中に溶解させアルカリを加え金属の水酸化物を生成させると共に、触媒担体表面に担持させた触媒担体を得る。かかる触媒担体を電極基体上に塗布し、水素雰囲気下等で還元させることで、表面に触媒粒子(活物質)が塗布された電極合材層を得る。
太陽電池等の場合、活物質は、酸化タングステン粉末や酸化チタン粉末のほかSnO、ZnO、ZrO、Nb、CeO、SiO、Alといった酸化物半導体層が挙げられ、半導体層には、色素が担持させられており、例えば、ルテニウム・トリス型の遷移金属錯体、ルテニウム-ビス型の遷移金属錯体、オスミウム-トリス型の遷移金属錯体、オスミウム-ビス型の遷移金属錯体、ルテニウム-シス-ジアクア-ビピリジル錯体、フタロシアニン及びポルフィリン、有機-無機のペロブスカイト結晶等の化合物を挙げることができる。
なお、以降の説明は、一例として、アルカリ金属イオンがリチウムイオンである場合について説明する。
<<負極合材と無機粒子の混合層>>
混合層13は、負極合材と無機粒子とが混合した層である。混合層13に含まれる負極合材は、上述の通りである。つまり、混合層13は、負極活物質を少なくとも含み、必要に応じてバインダー、増粘剤、導電剤等を含んでもよい。
負極合材層12上に混合層13を設けることで、負極合材層12の表面近傍でのリチウムの拡散を促進させ、負極合材層12の表面近傍でのリチウムの析出を抑制することができる。その結果、負極表面近傍でのリチウムの析出による非水電解液蓄電素子1の劣化を抑制可能となり、非水電解液蓄電素子1の寿命特性を向上することができる。
混合層13に含まれる無機粒子としては、金属酸化物、金属窒化物、その他の金属微粒子が挙げられる。金属酸化物としては、Al(アルミナ)、TiO、BaTiO、ZrO等が好ましい。
金属窒化物としては、窒化アルミニウム、窒化ケイ素等が好ましい。その他の金属微粒子としては、フッ化アルミニウム、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶微粒子、或いはベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト等の鉱物資源由来物質又はそれらの人造物等が好ましい。
又、無機粒子として、ガラスセラミック粉末が挙げられる。ガラスセラミック粉末は、ZnO-MgO-Al-SiO系の結晶化ガラスを用いた結晶化ガラスセラミック、BaO-Al-SiO系セラミック粉末やAl-CaO-SiO-MgO-B系セラミック粉末等を用いた非ガラス系セラミックが好ましい。
混合層13に含まれる無機粒子として、イオン伝導性がある元素を用いることが更に好ましい。具体的には、無機粒子として、例えば、イオン伝導性があるケイ素元素、アルミニウム元素、及びジルコニウム元素から選ばれる少なくとも1種の元素を含む材料を用いることができる。これらの材料を用いることにより、負極合材層12の表面近傍でのリチウムの拡散を効果的に促進させ、負極合材層12の表面近傍でのリチウムの析出を効果的に抑制することができる。その結果、非水電解液蓄電素子1の寿命特性をより向上することができる。
混合層13に含まれる無機粒子の平均粒子径は0.1μm以上5μm以下が好ましく、0.1μm以上3μm以下がより好ましい。無機粒子の平均粒子径が0.1μm以上5μm以下であると、無機粒子の平均粒子径が十分に小さいため、無機粒子の表面積が増大し、無機粒子の使用量が少ない場合でもリチウムの拡散効果を得られる。なお、無機粒子の平均粒子径は、レーザ回折法により測定することができる。
混合層13は、下地の負極合材層12の上にインクジェット法等により負極合材と無機粒子とを含有したインクを塗布し、乾燥させることで形成できる。例えば、上記の負極合材と無機粒子を溶媒に分散させ、インクとする。溶媒は、分散させる無機粒子に適した溶媒を選定する。具体的には、水、炭化水素系溶媒、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒を用いることができる。このインクを調合するときに、ホモジナイザーを用いて分散させても良い。ホモジナイザーは、高速回転せん断攪拌方式、高圧噴射分散方式、超音波分散方式、媒体攪拌ミル方式等を用いることができる。
インクを調合するときに、必要に応じて分散剤、界面活性剤等の添加剤を用いてもよい。分散剤、界面活性剤として、メガファック(DIC株式会社製)、マリアリム(日油株式会社製)、エスリーム(日油株式会社製)、ソルスパース(Lubrizol社製)、ポリフロー(共栄社化学株式会社製)等を用いることができる。その他の添加剤として、粘度を調整するための増粘剤であるプロピレングリコール、カルボキシメチルセルロース等を用いることができる。無機粒子を溶媒に分散させる際に、結着材料を添加してもよい。
混合層13の膜厚は、0.1μm以上30μm以下が望ましく、0.1μm以上20μm以下がより好ましく、0.1μm以上10μm以下が更に好ましい。混合層13の膜厚が、0.1μm以上30μm以下であれば、リチウムの析出が起こりやすい負極表面近傍において、イオン伝導性の無機粒子があることにより負極合材層12の表面近傍でのリチウムの析出を効果的に抑制することができる。その結果、非水電解液蓄電素子1の寿命特性を向上することができる。
混合層13の膜厚が、0.1μm以上20μm以下であれば、負極合材層12の表面近傍でのリチウムの析出をより効果的に抑制することができ、非水電解液蓄電素子1の寿命特性をより向上することができる。混合層13の膜厚が、0.1μm以上10μm以下であれば、負極合材層12の表面近傍でのリチウムの析出を更に効果的に抑制することができ、非水電解液蓄電素子1の寿命特性を更に向上することができる。
又、負極合材と無機粒子とを混合させることによって、無機粒子表面においてリチウム拡散性がよくなるため、混合層13中のリチウム拡散性が向上する。これにより、非水電解液蓄電素子1の入出力特性を向上することができる。
<<無機粒子層>>
無機粒子層14は、負極17と正極27とが接触するような短絡を抑制する機能を有する層である。仮に、無機粒子層14を設けない場合、非水電解液蓄電素子1に内部短絡が発生すると、熱暴走により最悪の場合セルが破裂・発火に至るおそれがある。無機粒子層14を設けることにより、負極17と正極27とが接触するような短絡を抑制することができる。
無機粒子層14に含まれる無機粒子の平均粒子径は0.1μm以上5μm以下が好ましく、0.1μm以上3μm以下がより好ましい。無機粒子層14の膜厚は、0.1μm以上100μm以下が好ましく、3μm以上50μm以下がより好ましく、5μm以上30μm以下が更に好ましい。
無機粒子層14の膜厚が厚ければ、電極表面の絶縁性が高まり、容量が大きいセルにおいても内部短絡を効果的に抑制できるが、無機粒子層14の膜厚が厚過ぎると、電極間距離が大きくなり非水電解液蓄電素子1の入出力特性が低下する。無機粒子層14の膜厚を100μm以下とすることで、内部短絡の効果的な抑制と入出力特性の維持とを両立できる。又、無機粒子層14の膜厚が0.1μmより薄いと絶縁性効果が小さくなるため、短絡を抑制できなくなるが、無機粒子層14の膜厚を0.1μm以上とすることで、絶縁性効果を得ることができる。
無機粒子層14は、下地の混合層13の上に、インクジェット法等により無機粒子が分散している液体からなる無機粒子層作製用のインクを塗布し、塗布したインクを乾燥させることで形成できる。無機粒子層14は、無機粒子と、無機粒子同士を結着させる樹脂とを含むことができる。
無機粒子層14に含まれる無機粒子としては、金属酸化物、金属窒化物、その他の金属微粒子が挙げられる。金属酸化物としては、Al(アルミナ)、TiO、BaTiO、ZrO等が好ましい。
金属窒化物としては、窒化アルミニウム、窒化ケイ素等が好ましい。その他の金属微粒子としては、フッ化アルミニウム、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶微粒子、或いはベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト等の鉱物資源由来物質又はそれらの人造物等が好ましい。
又、無機粒子として、ガラスセラミック粉末が挙げられる。ガラスセラミック粉末は、ZnO-MgO-Al-SiO系の結晶化ガラスを用いた結晶化ガラスセラミック、BaO-Al-SiO系セラミック粉末やAl-CaO-SiO-MgO-B系セラミック粉末等を用いた非ガラス系セラミックが好ましい。
無機粒子層14に含まれる無機粒子として、イオン伝導性がある元素を用いることが更に好ましい。具体的には、無機粒子として、例えば、イオン伝導性があるケイ素元素、アルミニウム元素、及びジルコニウム元素から選ばれる少なくとも1種の元素を含む材料を用いることができる。
以上の無機粒子を溶媒に分散させ、絶縁層作製用のインクとする。溶媒は、分散させる無機粒子に適した溶媒を選定する。具体的には、水、炭化水素系溶媒、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒を用いることができる。
無機粒子を溶媒に分散させる際に、結着材料を添加することができる。結着材料は、無機粒子を絶縁層として保持させるため、無機粒子の粒子間を固着する機能を有する。結着材料として、アクリル系樹脂、スチレンブタジエン系樹脂、ポリフッ化ビニリデン系樹脂等を用いることができる。結着剤の添加量は無機粒子を固定するのに必要最小限量が望ましい。多いと無機粒子同士が形成する空隙を結着剤で塞いでしまうので、非水電解液蓄電素子1の入出力特性が低下する。結着剤添加量としては無機粒子に対して0.01重量%以上5重量%以下が好ましく、0.01重量%以上3重量%以下であることがより好ましい。
絶縁層作製用のインクを調合するときに、ホモジナイザーを用いて分散させてもよい。ホモジナイザーは、高速回転せん断攪拌方式、高圧噴射分散方式、超音波分散方式、媒体攪拌ミル方式等を用いることができる。
絶縁層作製用のインクを調合するときに、必要に応じて分散剤、界面活性剤等の添加剤を用いてもよい。分散剤、界面活性剤として、メガファック(DIC株式会社製)、マリアリム(日油株式会社製)、エスリーム(日油株式会社製)、ソルスパース(Lubrizol社製)、ポリフロー(共栄社化学株式会社製)等を用いることができる。その他の添加剤として、粘度を調整するための増粘剤であるプロピレングリコール、カルボキシメチルセルロース等を用いることができる。
<電解質層>
電解質層51を構成する非水電解液は、非水溶媒及び電解質塩を含有する電解液である。非水溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、非プロトン性有機溶媒が好適である。非プロトン性有機溶媒としては、鎖状カーボネート、環状カーボネート等のカーボネート系有機溶媒が用いられる。鎖状カーボネートとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(EMC)、メチルプロピオネート(MP)等が挙げられる。
環状カーボネートとしては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等が挙げられる。環状カーボネートとしてエチレンカーボネート(EC)と、鎖状カーボネートとしてジメチルカーボネート(DMC)とを組み合わせた混合溶媒を用いる場合には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合割合は、特に制限はなく、目的に応じて適宜選択することができる。
なお、非水溶媒としては、必要に応じて、環状エステル、鎖状エステル等のエステル系有機溶媒、環状エーテル、鎖状エーテル等のエーテル系有機溶媒等を用いることができる。
環状エステルとしては、例えば、γ-ブチロラクトン(γBL)、2-メチル-γ-ブチロラクトン、アセチル-γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。
鎖状エステルとしては、例えば、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル(酢酸メチル(MA)、酢酸エチル等)、ギ酸アルキルエステル(ギ酸メチル(MF)、ギ酸エチル等)等が挙げられる。
環状エーテルとしては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3-ジオキソラン、アルキル-1,3-ジオキソラン、1,4-ジオキソラン等が挙げられる。
鎖状エーテルとしては、例えば、1,2-ジメトシキエタン(DME)、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等が挙げられる。
電解質塩としては、リチウム塩を用いることができる。リチウム塩としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヘキサフルオロリン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、塩化リチウム(LiCl)、ホウ弗化リチウム(LiBF)、六弗化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、リチムビストリフルオロメチルスルホニルイミド(LiN(CSO)、リチウムビスファーフルオロエチルスルホニルイミド(LiN(CFSO)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、炭素電極中へのアニオンの吸蔵量の大きさの観点から、LiPFが特に好ましい。
電解質塩の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、非水溶媒中に、0.7mol/L以上4mol/L以下が好ましく、1.0mol/L以上3mol/L以下がより好ましく、蓄電素子の容量と出力の両立の点から、1.0mol/L以上2.5mol/L以下がより好ましい。
<非水電解液蓄電素子の製造方法>
-負極の作製-
図3に示す負極17を作製するには、まず、ステンレススチールや銅等からなる負極用電極基体11を準備する。そして、負極活物質に、必要に応じてバインダー、導電剤、溶媒等を加えてスラリー状とした負極合材層12用の負極材組成物を作製し、負極用電極基体11の一方の面上に塗布し、乾燥させて負極合材層12を形成する。同様にして、負極用電極基体11の他方の面上にも負極合材層12を形成する。負極用電極基体11と各々の負極合材層12とは結着する。
次に、負極活物質と無機粒子に必要に応じてバインダー、導電剤、溶媒等を加えてインクとし、一方の負極合材層12上に塗布し、乾燥させて負極合材と無機粒子の混合層13を形成する。同様にして、他方の負極合材層12上にも混合層13を形成する。
次に、アルミナやジルコニア等のセラミックの粒子をバインダーや溶媒と混合してインクとした無機粒子層14用の組成物を作製し、一方の混合層13上に塗布し、乾燥させて無機粒子層14を形成する。同様にして、他方の混合層13上にも無機粒子層14を形成する。以上により、負極17が完成する。
負極材組成物や無機粒子層14用の組成物の塗布には、例えば、インクジェット法を用いることができる。但し、塗布方法に特に制限はなく、目的に応じて適宜選択することができ、例えば、ダイ塗工機、コンマ塗工機、グラビア塗工機、スクリーン印刷、乾式プレス塗布、ディスペンサ方式等を用いてもよい。
なお、インクジェット法は、下層の狙ったところに対象物を塗布ができる点で好適である。又、インクジェット法は、負極用電極基体11、負極合材層12、混合層13、無機粒子層14の各々の上下に接する面同士を結着できる点で好適である。又、インクジェット法は、各々の層において、膜厚を均一にできる点で好適である。
溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水系溶媒、有機系溶媒等が挙げられる。水系溶媒としては、例えば、水、アルコール等が挙げられる。有機系溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、トルエン等が挙げられる。
又、負極活物質にバインダー、導電剤等を加えたものをそのままロール成形してシート電極としたり、圧縮成形によりペレット電極としたり、蒸着、スパッタ、メッキ等の手法で負極用電極基体11上に負極活物質の薄膜を形成することもできる。
-正極の作製-
図3に示す正極27を作製するには、まず、ステンレススチールやアルミニウム等からなる正極用電極基体21を準備する。そして、正極活物質に、必要に応じてバインダー、増粘剤、導電剤、溶媒等を加えてスラリー状とした正極合材層22用の正極材組成物を作製し、正極用電極基体21上に塗布し、乾燥させて正極合材層22を形成する。同様にして、正極用電極基体21の他方の面上にも正極合材層22を形成する。正極用電極基体21と各々の正極合材層22とは結着する。
正極材組成物の塗布には、例えば、インクジェット法を用いることができるが、特に制限はなく、目的に応じて適宜選択することができる。但し、塗布方法に特に制限はなく、目的に応じて適宜選択することができ、例えば、ダイ塗工機、コンマ塗工機、グラビア塗工機、スクリーン印刷、乾式プレス塗布、ディスペンサ方式等を用いてもよい。
溶媒としては、負極17の作製方法と同様の溶媒を用いることができる。又、正極活物質をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極を形成したりすることもできる。
-電極素子、非水電解液蓄電素子の作製-
電極素子40及び非水電解液蓄電素子1を作製するには、まず、負極17の一方の側の無機粒子層14と正極27の正極合材層22とが対向するように負極17の一方の側に正極27を配置する。同様に、負極17の他方の側の無機粒子層14と正極27の正極合材層22とが対向するように負極17の他方の側に正極27を配置する。
次に、負極用電極基体11に負極引き出し線41を溶接等により接合し、正極用電極基体21に正極引き出し線42を溶接等により接合することで、図3に示す電極素子40を作製することができる。次に、電極素子40に非水電解液を注入して電解質層51を形成し、外装52で封止することで、図4に示す非水電解液蓄電素子1を作製することができる。
なお、前述のように、電極素子40において、負極17と正極27の積層数は任意に決定することができる。すなわち、図3及び図4では、1つの負極17と2つの正極27の合計3層を図示しているが、これには限定されず、更に多くの負極17及び正極27を積層することができる。
このように、本実施形態に係る非水電解液蓄電素子1に用いる負極17は、負極合材層12、負極合材と無機粒子の混合層13、及び無機粒子層14が順次積層された構造を含む。負極17において、負極合材層12上に混合層13を設けることで、負極合材層12の表面近傍でのリチウムの拡散を促進させ、負極合材層12の表面近傍でのリチウムの析出を抑制することができる。その結果、非水電解液蓄電素子1の寿命特性を向上することができる。
特に、混合層13に含まれる無機粒子としてイオン伝導性があるケイ素元素、アルミニウム元素、及びジルコニウム元素から選ばれる少なくとも1種の元素を含む材料を用いることが好ましい。これにより、負極合材層12の表面近傍でのリチウムの拡散を効果的に促進させ、負極合材層12の表面近傍でのリチウムの析出を効果的に抑制することができ、その結果、非水電解液蓄電素子1の寿命特性をより向上することができる。
又、混合層13を設けることで、無機粒子表面においてリチウム拡散性がよくなるため、混合層13中のリチウム拡散性が向上する。これにより、非水電解液蓄電素子1の入出力特性を向上することができる。
又、混合層13上に無機粒子層14を設けることで、負極17への異物混入を抑制できると共に、負極と正極との短絡を抑制できるため、非水電解液蓄電素子1の安全性を向上することができる。又、負極と正極との間にセパレータを設けることは必須ではないが、負極と正極との間にセパレータを設けた場合に、セパレータ溶融時の負極と正極との短絡を抑制できる。
すなわち、負極17において、負極合材層12上に混合層13を設け、混合層13上に無機粒子層14を設けることで、非水電解液蓄電素子1の寿命特性の向上と入出力特性と安全性を同時に満足させることができる。
なお、第1実施形態では、非水電解液蓄電素子1において、負極に混合層13及び無機粒子層14を設ける例を示したが、これには限定されず、正極の正極合材層上に正極合材と無機粒子とが混合した混合層を設け、混合層上に無機粒子層を設けてもよい。この場合には、負極には混合層13及び無機粒子層14を設けなくてもよい。或いは、正極に正極合材と無機粒子とが混合した混合層及び無機粒子層を設け、更に負極に混合層13及び無機粒子層14を設けてもよい。何れの場合にも、第1実施形態と同様の効果を奏する。
又、正極に正極合材と無機粒子の混合層を設ける場合、正極合材と無機粒子の混合層の膜厚としては、特に制限はなく、目的に応じて適宜選択できるが、0.1μm以上30μm以下が好ましく、0.1μm以上10μm以下がより好ましく、0.1μm以上5μm以下が更に好ましい。
正極合材と無機粒子の混合層の膜厚が、0.1μm以上30μm以下であれば、イオン伝導性がある無機粒子によって、正極表面近傍でのリチウムを拡散させることにより、電気導電性の低い正極材料(金属酸化物)にリチウムイオンを供給することができる。その結果、非水電解液蓄電素子1の性能(入出力特性)を向上させることができる。
正極合材と無機粒子の混合層の膜厚が、0.1μm以上10μm以下であれば、電気導電性の低い正極材料(金属酸化物)にリチウムイオンをより供給することができ、非水電解液蓄電素子1の性能(入出力特性)をより向上させることができる。正極合材と無機粒子の混合層の膜厚が、0.1μm以上5μm以下であれば、電気導電性の低い正極材料(金属酸化物)にリチウムイオンを更に供給することができ、非水電解液蓄電素子1の性能(入出力特性)を更に向上させることができる。
又、正極に無機粒子層を設ける場合、無機粒子層の膜厚は、負極の場合と同様にすると、負極の場合と同様の効果が得られる。
以上は一例であり、求める電池特性によって適宜設計可能である。
〈第2実施形態〉
第2実施形態では、無機粒子層上に無機粒子と樹脂多孔質の混合層を配置する例を示す。なお、第2実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図5は、第2実施形態に係る非水電解液蓄電素子に用いる負極を例示する図であり、図5(a)は平面図、図5(b)は図5(a)のC-C線に沿う断面図である。
図5を参照すると、負極10Aは、無機粒子層14上に混合層15が形成された点が、負極10(図1参照)と相違する。
混合層15は無機粒子及び樹脂多孔質を含む層である。混合層15に含まれる無機粒子は、混合層13で述べた絶縁性の無機粒子と同様とすることができる。すなわち、混合層15に含まれる無機粒子としては、金属酸化物、金属窒化物、その他の金属微粒子が挙げられる。金属酸化物としては、Al(アルミナ)、TiO、BaTiO、ZrO等が好ましい。
金属窒化物としては、窒化アルミニウム、窒化ケイ素等が好ましい。その他の金属微粒子としては、フッ化アルミニウム、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶微粒子、或いはベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト等の鉱物資源由来物質又はそれらの人造物等が好ましい。
又、無機粒子として、ガラスセラミック粉末が挙げられる。ガラスセラミック粉末は、ZnO-MgO-Al-SiO系の結晶化ガラスを用いた結晶化ガラスセラミック、BaO-Al-SiO系セラミック粉末やAl-CaO-SiO-MgO-B系セラミック粉末等を用いた非ガラス系セラミックが好ましい。
混合層15に含まれる無機粒子として、イオン伝導性があるケイ素元素、アルミニウム元素、及びジルコニウム元素から選ばれる少なくとも1種の元素を含む材料を用いることが更に好ましい。又、混合層15に含まれる無機粒子の平均粒子径は0.1μm以上5μm以下が好ましく、0.1μm以上3μm以下がより好ましい。
混合層15に含まれる樹脂多孔質を形成するための樹脂としては、例えば、アクリレート樹脂、メタアクリレート樹脂、ウレタンアクリレート樹脂、ビニルエステル樹脂、不飽和ポリエステル、エポキシ樹脂、オキセタン樹脂、ビニルエーテル、エン-チオール反応を活用した樹脂が挙げられる。これらの中でも特に、反応性の高さからラジカル重合を利用して容易に構造体を形成可能なアクリレート樹脂、メタアクリレート樹脂、ウレタンアクリレート樹脂、ビニルエステル樹脂が生産性の観点から好ましい。
混合層15の膜厚は、0.1μm以上100μm以下が好ましい。混合層15の膜厚を0.1μm以上100μm以下とすることによって、無機粒子表面においてリチウムの拡散性がよくなるため、混合層15中のリチウムの拡散性が向上する。これにより、非水電解液蓄電素子1の入出力特性が向上する。
混合層15の膜厚は、3μm以上50μm以下がより好ましく、5μm以上30μm以下が更に好ましい。混合層15は正極と負極の短絡を抑制する機能を持つ。混合層15の膜厚が3μm以上であれば、負極と正極とを確実に短絡防止できる。混合層15の膜厚が5μm以上であれば、負極と正極とをより確実に短絡防止できる。
混合層15の膜厚が50μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を防止できる。混合層15の膜厚が30μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加をいっそう防止できる。
混合層15の空隙率は30%以上80%以下が望ましく、40%以上75%以下がより望ましい。空隙率が小さいと電解液保持量が少なくなるので膜厚を増加させる必要がある。膜厚が厚いと電極間距離が大きくなるので、入出力特性が低下する。空隙率が大きい場合は、電解液の移動抵抗少なくなるため入出力特性が向上するが、空隙率が大きすぎる場合、構造体として脆くなり振動や衝撃に対して弱くなる。混合層15の空隙率を30%以上80%以下とすることで、膜厚を増加させなくても電解液保持量を確保でき、かつ、所定の入出力特性を実現できると共に構造体が脆くなることを防止できる。
なお、空隙率は、混合層の断面SEMで観察した画像から、空隙と構造体の面積比率にて求めることができる。
無機粒子層14と混合層15の合計の膜厚は1μm以上100μm以下が好ましく、3μm以上50μm以下がより好ましく、5μm以上30μm以下が更に好ましい。
無機粒子層14と混合層15の合計の膜厚が1μm以上であれば、負極と正極とを確実に短絡防止できる。又、無機粒子層14と混合層15の合計の膜厚が100μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を防止できる。
又、無機粒子層14と混合層15の合計の膜厚が3μm以上であれば、負極と正極とをより確実に短絡防止できる。又、無機粒子層14と混合層15の合計の膜厚が50μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加をより防止できる。
又、無機粒子層14と混合層15の合計の膜厚が5μm以上であれば、負極と正極とを更に確実に短絡防止できる。又、無機粒子層14と混合層15の合計の膜厚が30μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を更に防止できる。
混合層15は、混合層13で述べた絶縁性の無機粒子と、樹脂多孔質を形成するための原液(下記)を混合した無機粒子と樹脂多孔質の混合層作製用のインクを用いて形成することができる。
塗布形成できれば装置は特に制限はなく、例えばスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェット印刷法等の各種印刷方法に応じた任意の印刷装置を用いることができる。
樹脂多孔質を形成するための原液は、例えば、重合性化合物及び光開始剤及び溶媒からなる。重合性化合物は多孔質構造体を形成するための樹脂の前駆体に該当し、光の照射によって架橋性の構造体形成が可能である樹脂であれば何でもよいが、例えば、前述のアクリレート樹脂、メタアクリレート樹脂、ウレタンアクリレート樹脂、ビニルエステル樹脂、不飽和ポリエステル、エポキシ樹脂、オキセタン樹脂、ビニルエーテル、エン-チオール反応を活用した樹脂、中でも特に、反応性の高さからラジカル重合を利用して構造体を形成が容易なアクリレート樹脂、メタアクリレート樹脂、ウレタンアクリレート樹脂、ビニルエステル樹脂が生産性の観点から好ましい。
上記樹脂化合物は光によって硬化できる機能として、重合性化合物と、光によってラジカル又は酸を発生する化合物を混合した混合物を調液することで得ることができる。重合性化合物は少なくとも1つのラジカル重合性官能基を有する。その例としては、1官能、2官能、又は3官能以上のラジカル重合性化合物、機能性モノマー、ラジカル重合性オリゴマー等が挙げられる。これらの中でも、2官能以上のラジカル重合性化合物が特に好ましい。
1官能のラジカル重合性化合物としては、例えば、2-(2-エトキシエトキシ)エチルアクリレート、メトキシポリエチレングリコールモノアクリレート、メトキシポリエチレングリコールモノメタクリレート、フェノキシポリエチレングリコールアクリレート、2-アクリロイルオキシエチルサクシネート、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2-エチルヘキシルカルビトールアクリレート、3-メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマー等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
2官能のラジカル重合性化合物としては、例えば、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、EO変性ビスフェノールAジアクリレート、EO変性ビスフェノールFジアクリレート、ネオペンチルグリコールジアクリレート、トリシクロデカンジメタノールジアクリレート等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
3官能以上のラジカル重合性化合物としては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、ECH変性グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロールトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、アルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、EO変性リン酸トリアクリレート、2,2,5,5-テトラヒドロキシメチルシクロペンタノンテトラアクリレート等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
光重合開始剤としては、光ラジカル発生剤を用いることができる。例えば、商品名イルガキュアーやダロキュアで知られるミヒラーケトンやベンゾフェノンのような光ラジカル重合開始剤、より具体的な化合物としては、ベンゾフェノン、アセトフェノン誘導体、例えばα-ヒドロキシ-もしくは、α-アミノセトフェノン、4-アロイル-1,3-ジオキソラン、ベンジルケタール、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェン、p-ジメチルアミノプロピオフェノン、ベンゾフェノン、2-クロロベンゾフェノン、pp'-ジクロロベンゾフェン、pp'-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンジルジメチルケタール、テトラメチルチウラムモノサルファイド、チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、アゾビスイソブチロニトリル、ベンゾインパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、メチルベンゾイルフォーメート、ゾインイソプロピルエーテル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンエーテル、ベンゾインイソブチルエーテル、ベンゾインn-ブチルエーテル、ベンゾインn-プロピル等のベンゾインアルキルエ-テルやエステル、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア1173)、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オンモノアシルホスフィンオキシド、ビスアシルホスフィンオキシド又はチタノセン、フルオレセン、アントラキノン、チオキサントン又はキサントン、ロフィンダイマー、トリハロメチル化合物又はジハロメチル化合物、活性エステル化合物、有機ホウ素化合物、等が好適に使用される。
更に、ビスアジド化合物のような光架橋型ラジカル発生剤を同時に含有させても構わない。又、熱により重合を促進させる場合は通常の光ラジカル発生剤であるA(AIBN)等の通常の熱重合開始剤を混合して使用することができる。
一方、光照射により酸を発生する光酸発生剤と、酸の存在下で重合する少なくとも1種のモノマーとで混合物を調整しても同様の機能を達成することができる。このような液体インクに光を照射すると、光酸発生剤が酸を発生し、この酸は重合性化合物の架橋反応の触媒として機能する。又、発生した酸はインク層内で拡散する。しかも、酸の拡散及び酸を触媒とした架橋反応は、加熱することにより加速可能であり、この架橋反応はラジカル重合とは異なって、酸素の存在によって阻害されることがない。得られる樹脂層は、ラジカル重合系の場合と比較して密着性にも優れる。
酸の存在下で架橋する重合性化合物は、エポキシ基、オキセタン基、オキソラン基等のような環状エーテル基を有する化合物、上述した置換基を側鎖に有するアクリル又はビニル化合物、カーボネート系化合物、低分子量のメラミン化合物、ビニルエーテル類やビニルカルバゾール類、スチレン誘導体、アルファ-メチルスチレン誘導体、ビニルアルコールとアクリル、メタクリル等のエステル化合物をはじめとするビニルアルコールエステル類等、カチオン重合可能なビニル結合を有するモノマー類を併せて使用することが挙げられる。
光照射により酸を発生する光酸発生剤としては、例えば、オニウム塩、ジアゾニウム塩、キノンジアジド化合物、有機ハロゲン化物、芳香族スルフォネート化合物、バイスルフォン化合物、スルフォニル化合物、スルフォネート化合物、スルフォニウム化合物、スルファミド化合物、ヨードニウム化合物、スルフォニルジアゾメタン化合物、及びそれらの混合物等を使用することができる。
中でも光酸発生剤としては、オニウム塩を使用することが望ましい。使用可能なオニウム塩としては、例えば、フルオロホウ酸アニオン、ヘキサフルオロアンチモン酸アニオン、ヘキサフルオロヒ素酸アニオン、トリフルオロメタンスルホネートアニオン、パラトルエンスルホネートアニオン、及びパラニトロトルエンスルホネートアニオンを対イオンとするジアゾニウム塩、ホスホニウム塩、及びスルホニウム塩を挙げることができる。又、光酸発生剤は、ハロゲン化トリアジン化合物でも使用できる。
光酸発生剤は、場合によって、増感色素を更に含んでいてもよい。増感色素としては、例えば、アクリジン化合物、ベンゾフラビン類、ペリレン、アントラセン、及びレーザ色素類等を挙げることができる。
次に、使用される溶媒に関して記述する。又、重合誘起相分離により多孔質体を形成するためには上記重合性化合物及び光によってラジカル又は酸を発生する化合物に、予め溶媒を混合させた混合液の作製により達成できる。溶媒は光による重合進行時に、多孔質の空孔領域を形成するポロジェンとして機能する。
ポロジェンとしては、前記重合性化合物及び光によってラジカル又は酸を発生する化合物を溶解可能であり、かつ、前記重合性化合物及び光によってラジカル又は酸を発生する化合物が重合していく過程で、相分離を生じさせることが可能な液状物質ならば任意に選択可能である。
ポロジェンとしては、例えば、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル等のエチレングリコール類、γブチロラクトン、炭酸プロピレン等のエステル類、NNジメチルアセトアミド等のアミド類等を挙げることができる。又、テトラデカン酸メチル、デカン酸メチル、ミリスチン酸メチル、テトラデカン等の比較的分子量の大きな液状物質もポロジェンとして機能する傾向がある。中でも特に、エチレングリコール類は高沸点のものも多く存在する。相分離機構は形成される構造体が、ポロジェンの濃度に大きく依存する。そのため、上記液状物質を使用すれば、安定した多孔質体の形成が可能となる。又、ポロジェンは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
又、得られる製膜原液の粘度はやハンドリング性及び印刷品質確保の観点からレベリング性能を考慮して25℃において、1~1000Pa・sが好ましく、5~200mPa・sがより好ましい。
又、製膜原液中における重合性化合物の固形分濃度は、5~70質量%が好ましく、10~50質量%がより好ましい。重合性化合物濃度が上記よりも高い場合、空孔径が数十nm以下と小さくなり液体や気体の浸透が起きにくくなる傾向が見られる。又、重合性化合物濃度が上記よりも低い場合は、樹脂の三次元的な網目構造が十分に形成されず、得られる多孔質体の強度が著しく低下する傾向が見られる。
図6は、第2実施形態に係る非水電解液蓄電素子を例示する断面図である。図6を参照すると、非水電解液蓄電素子1Aは、電極素子40が電極素子40Aに置換された点が、非水電解液蓄電素子1(図4参照)と相違する。
電極素子40Aは、負極17Aの両側に正極27が積層された構造である。負極17Aは、負極用電極基体11の両側に、負極合材層12、負極合材と無機粒子の混合層13、無機粒子層14、及び無機粒子と樹脂多孔質の混合層15が形成された点が負極10A(図5参照)と相違し、その他の点は負極10Aと同様である。
なお、電極素子40Aにおいて、負極17Aと正極27の積層数は任意に決定することができる。すなわち、図6では、1つの負極17Aと2つの正極27の合計3層を図示しているが、これには限定されず、更に多くの負極17A及び正極27を積層することができる。その際、負極17Aの個数と正極27の個数が同一であってもよい。
このように、非水電解液蓄電素子1Aにおいて、負極17Aの無機粒子層14上に無機粒子と樹脂多孔質の混合層15を配置することで、非水電解液蓄電素子1の奏する効果に加え、イオン伝導を向上させる効果が得られる。
なお、第2実施形態では、負極に混合層13、無機粒子層14、及び混合層15を設ける例を示したが、これには限定されず、正極に正極合材と無機粒子の混合層、無機粒子層、及び無機粒子と樹脂多孔質の混合層を設けてもよい。この場合には、負極には混合層13、無機粒子層14、及び混合層15を設けなくてもよい。或いは、正極に正極合材と無機粒子の混合層、無機粒子層、及び無機粒子と樹脂多孔質の混合層を設け、更に負極に混合層13、無機粒子層14、及び混合層15を設けてもよい。何れの場合にも、第2実施形態と同様の効果を奏する。
又、正極に無機粒子と樹脂多孔質の混合層を設ける場合、無機粒子と樹脂多孔質の混合層の膜厚は、負極の場合と同様にすると、負極の場合と同様の効果が得られる。
無機粒子層、及び無機粒子と樹脂多孔質の混合層の合計の膜厚は1μm以上100μm以下が好ましく、3μm以上50μm以下がより好ましく、5μm以上30μm以下が更に好ましい。
無機粒子層、及び無機粒子と樹脂多孔質の混合層の合計の膜厚が1μm以上であれば、負極と正極とを確実に短絡防止できる。又、無機粒子層、及び無機粒子と樹脂多孔質の混合層の合計の膜厚が100μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を防止できる。
又、無機粒子層、及び無機粒子と樹脂多孔質の混合層の合計の膜厚が3μm以上であれば、負極と正極とをより確実に短絡防止できる。又、無機粒子層、及び無機粒子と樹脂多孔質の混合層の合計の膜厚が50μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加をより防止できる。
又、無機粒子層、及び無機粒子と樹脂多孔質の混合層の合計の膜厚が5μm以上であれば、負極と正極とを更に確実に短絡防止できる。又、無機粒子層、及び無機粒子と樹脂多孔質の混合層の合計の膜厚が30μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を更に防止できる。
〈第3実施形態〉
第3実施形態では、無機粒子と樹脂多孔質の混合層上に樹脂多孔質層を配置する例を示す。なお、第3実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図7は、第3実施形態に係る非水電解液蓄電素子に用いる負極を例示する図であり、図7(a)は平面図、図7(b)は図7(a)のD-D線に沿う断面図である。
図7を参照すると、負極10Bは、混合層15上に樹脂多孔質層16が形成された点が、負極10A(図5参照)と相違する。
樹脂多孔質層16の膜厚は、0.1μm以上100μm以下が好ましく、3μm以上50μm以下がより好ましく、5μm以上30μm以下が更に好ましい。
樹脂多孔質層16の膜厚が0.1μm以上であれば、負極と正極とを確実に短絡防止できる。又、樹脂多孔質層16の膜厚が100μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を防止できる。
又、樹脂多孔質層16の膜厚が3μm以上であれば、負極と正極とをより確実に短絡防止できる。又、樹脂多孔質層16の膜厚が50μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加をより防止できる。
又、樹脂多孔質層16の膜厚が5μm以上であれば、負極と正極とを更に確実に短絡防止できる。又、樹脂多孔質層16の膜厚が30μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を更に防止できる。
樹脂多孔質層16の空隙率は40%以上90%以下が望ましく、45%以上85%以下がさらに望ましい。空隙率が小さいと電解液保持量が少なくなるので膜厚を増加させる必要がある。膜厚が厚いと電極間距離が大きくなるので、入出力特性が低下する。空隙率が大きい場合は、電解液の移動抵抗少なくなるため入出力特性が向上するが、空隙率が大きすぎる場合、構造体として脆くなり振動や衝撃に対して弱くなる。樹脂多孔質層16の空隙率を40%以上90%以下とすることで、膜厚を増加させなくても電解液保持量を確保でき、かつ、所定の入出力特性を実現できると共に構造体が脆くなることを防止できる。
無機粒子層14と混合層15と樹脂多孔質層16の合計の膜厚は1μm以上100μm以下が好ましく、3μm以上50μm以下がより好ましく、5μm以上30μm以下がより好ましい。
無機粒子層14と混合層15と樹脂多孔質層16の合計の膜厚が1μm以上であれば、負極と正極とを確実に短絡防止できる。又、無機粒子層14と混合層15と樹脂多孔質層16の合計の膜厚が100μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を防止できる。
又、無機粒子層14と混合層15と樹脂多孔質層16の合計の膜厚が3μm以上であれば、負極と正極とをより確実に短絡防止できる。又、無機粒子層14と混合層15と樹脂多孔質層16の合計の膜厚が50μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加をより防止できる。
又、無機粒子層14と混合層15と樹脂多孔質層16の合計の膜厚が5μm以上であれば、負極と正極とを更に確実に短絡防止できる。又、無機粒子層14と混合層15と樹脂多孔質層16の合計の膜厚が30μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を更に防止できる。
樹脂多孔質層16は、無機粒子と樹脂多孔質の混合層15で述べた樹脂多孔質を形成するための原液を用いた樹脂多孔質層作製用のインクを用いて形成することができる。塗布形成できれば装置は特に制限はなく、例えばスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェット印刷法等の各種印刷方法に応じた任意の印刷装置を用いることができる。樹脂多孔質を形成するための原液は、例えば、重合性化合物及び光開始剤及び溶媒からなる。材料は無機粒子と樹脂多孔質の混合層15で述べた樹脂多孔質を用いることができる。
図8は、第3実施形態に係る非水電解液蓄電素子を例示する断面図である。図8を参照すると、非水電解液蓄電素子1Bは、電極素子40Aが電極素子40Bに置換された点が、非水電解液蓄電素子1A(図6参照)と相違する。
電極素子40Bは、負極17Bの両側に正極27が積層された構造である。負極17Bは、負極用電極基体11の両側に、負極合材層12、負極合材と無機粒子の混合層13、無機粒子層14、無機粒子と樹脂多孔質の混合層15、及び樹脂多孔質層16が形成された点が負極10B(図7参照)と相違し、その他の点は負極10Bと同様である。
なお、電極素子40Bにおいて、負極17Bと正極27の積層数は任意に決定することができる。すなわち、図8では、1つの負極17Bと2つの正極27の合計3層を図示しているが、これには限定されず、更に多くの負極17B及び正極27を積層することができる。その際、負極17Bの個数と正極27の個数が同一であってもよい。
このように、非水電解液蓄電素子1Bにおいて、負極17Bの無機粒子と樹脂多孔質の混合層15上に樹脂多孔質層16を配置することで、非水電解液蓄電素子1Aの奏する効果に加え、負極17Bと正極27との短絡をより確実に防止する効果が得られる。
なお、第3実施形態では、負極に混合層13、無機粒子層14、混合層15、及び樹脂多孔質層16を設ける例を示したが、これには限定されず、正極に正極合材と無機粒子の混合層、無機粒子層、無機粒子と樹脂多孔質の混合層、及び樹脂多孔質層を設けてもよい。この場合には、負極には混合層13、無機粒子層14、混合層15、及び樹脂多孔質層16を設けなくてもよい。或いは、正極に正極合材と無機粒子の混合層、無機粒子層、無機粒子と樹脂多孔質の混合層、及び樹脂多孔質層を設け、更に負極に混合層13、無機粒子層14、混合層15、及び樹脂多孔質層16を設けてもよい。何れの場合にも、第3実施形態と同様の効果を奏する。
又、正極に樹脂多孔質層を設ける場合の厚みは、負極の場合と同様にすると、負極の場合と同様の効果が得られる。
無機粒子層、無機粒子と樹脂多孔質の混合層、樹脂多孔質層の合計の膜厚は1μm以上100μm以下が好ましく、3μm以上50μm以下がより好ましく、5μm以上30μm以下が更に好ましい。
無機粒子層、無機粒子と樹脂多孔質の混合層、樹脂多孔質層の合計の膜厚が1μm以上であれば、負極と正極とを確実に短絡防止できる。又、無機粒子と樹脂多孔質の混合層、樹脂多孔質層の合計の膜厚が100μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を防止できる。
又、無機粒子層、無機粒子と樹脂多孔質の混合層、樹脂多孔質層の合計の膜厚が3μm以上であれば、負極と正極とをより確実に短絡防止できる。又、無機粒子層、無機粒子と樹脂多孔質の混合層、樹脂多孔質層の合計の膜厚が50μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加をより防止できる。
又、無機粒子層、無機粒子と樹脂多孔質の混合層、樹脂多孔質層の合計の膜厚が5μm以上であれば、負極と正極とを更に確実に短絡防止できる。又、無機粒子層、無機粒子と樹脂多孔質の混合層、樹脂多孔質層の合計の膜厚が30μm以下であれば、負極と正極とが離れ過ぎることによる負極と正極との間の電気抵抗の増加を更に防止できる。
〈第3実施形態の変形例1〉
第3実施形態の変形例1では、正極と負極との間にセパレータを配置する例を示す。なお、第3実施形態の変形例1において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図9は、第3実施形態の変形例1に係る非水電解液蓄電素子を例示する断面図である。図9を参照すると、非水電解液蓄電素子1Cは、電極素子40Bが電極素子40Cに置換された点が、非水電解液蓄電素子1B(図8参照)と相違する。
電極素子40Cは、負極17Bの両側にセパレータ30を介して正極27が積層された構造である。
図8に示す非水電解液蓄電素子1Bの電極素子40Bでは、負極17Bの無機粒子層14、混合層15、及び樹脂多孔質層16により負極17Bと正極27との短絡を防いでいるため、セパレータを使用しなくてよい。しかし、図9に示す非水電解液蓄電素子1Cの電極素子40Cように、必要に応じて負極17Bと正極27との短絡をいっそう確実に防ぐために、負極17Bと正極27との間にセパレータ30を設けてもよい。
なお、電極素子40Cにおいて、セパレータ30を介しての負極17Bと正極27の積層数は任意に決定することができる。すなわち、図9では、1つの負極17Bと2つの正極27の合計3層を図示しているが、これには限定されず、更に多くの負極17B及び正極27を積層することができる。その際、負極17Bの個数と正極27の個数が同一であってもよい。
セパレータ30は、イオン透過性を有し、かつ電子伝導性を持たない絶縁層である。セパレータ30の材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。セパレータ30の材質としては、例えば、クラフト紙、ビニロン混抄紙、合成パルプ混抄紙等の紙、セロハン、ポリエチレングラフト膜、ポリプロピレンメルトフロー不織布等のポリオレフィン不織布、ポリアミド不織布、ガラス繊維不織布、ポリエチレン系微多孔膜、ポリプロピレン系微多孔膜等が挙げられる。これらの中でも、非水電解液を保持する観点から、気孔率が50%以上のものが好ましい。
セパレータ30の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、3μm以上50μm以下が好ましく、5μm以上30μm以下がより好ましい。セパレータ30の平均厚みが3μm以上であれば、負極17Bと正極27とを確実に短絡防止できる。又、セパレータ30の平均厚みが50μm以下であれば、負極17Bと正極27とが離れ過ぎることによる負極17Bと正極27との間の電気抵抗の増加を防止できる。
セパレータ30の平均厚みが5μm以上であれば、負極17Bと正極27とをより確実に短絡防止できる。又、セパレータ30の平均厚みが30μm以下であれば、負極17Bと正極27とが離れ過ぎることによる負極17Bと正極27との間の電気抵抗の増加をいっそう防止できる。
セパレータ30の形状としては、例えば、シート状等が挙げられる。セパレータ30の大きさとしては、蓄電素子に使用可能な大きさであれば、特に制限はなく、目的に応じて適宜選択することができる。セパレータ30の構造は、単層構造であってもよく、積層構造であってもよい。
図4に示す非水電解液蓄電素子1の電極素子40の負極17と正極27との間、図6に示す非水電解液蓄電素子1Aの電極素子40Aの負極17Aと正極27との間に、セパレータ30を設けてもよい。この場合も、負極17又は17Aと正極27との短絡をいっそう確実に防ぐことができる。
以下、実施例及び比較例を挙げて非水電解液蓄電素子等について更に具体的に説明するが、本発明は、これらの実施例に何ら限定されるものではない。
[実施例1]
負極合材層形成用として、グラファイト:97質量部、増粘剤(カルボキシメチルセルロース):1質量部、結着剤(スチレンブタジエンゴム):2質量部、溶媒として水:100質量部を加えて、電極塗料を作製した。電極塗料を銅の負極用電極基体上に塗布し乾燥させて、単位面積当たりの塗布量(面積密度)が片側9mg/cmの負極合材層を負極用電極基体の両面に形成した。
次に、負極合材と無機粒子の第1混合層形成用として、上記電極塗料40質量部に加え、更に無機粒子としてアルミナ粒子AKP-3000(住友化学社製):20質量部、有機溶剤としてプロピレングリコール30質量部、水10質量部を加えて、塗膜インクを作製した。この塗膜インクを一方の負極合材層上へインクジェット装置で塗布し乾燥させて、負極合材と無機粒子が混合した第1混合層(厚み約10μm)を形成した。同様にして、他方の負極合材層上に、負極合材と無機粒子が混合した第1混合層(厚み約10μm)を形成した。
次に、無機粒子層形成用として、アルミナ粒子AKP-3000(住友化学社製):30質量部、分散剤としてマリアリムHKM-50A(日油社製):0.3質量部、有機溶剤としてプロピレングリコール50質量部、水19.7質量部を加えて、塗膜インクを作製した。この塗膜インクを一方の第1混合層上へインクジェット装置で塗布し乾燥させて、無機粒子層(厚み約5μm)を形成した。同様にして、他方の第1混合層上に、無機粒子層(厚み約5μm)を形成した。
次に、無機粒子と樹脂多孔質の第2混合層形成用として、無機粒子としてアルミナ粒子AKP-3000(住友化学社製):20質量部、樹脂としてトリシクロデカンジメタノールアクリレート(ダイセル・オルネクス社製):23.2質量部、溶媒としてテトラデカン(関東化学工業株式会社製):56質量部、重合開始剤としてIrgacure184(BASF社製):0.8質量部を加えて塗膜インクを作製した。この塗膜インクを一方の無機粒子層上へインクジェット装置で塗布し、重合不活性気体のNでパージした環境にてUV照射し、更に80℃に設定した恒温槽内で溶媒の除去及び重合反応を促進させ、無機粒子と樹脂多孔質が混合した第2混合層(厚み約5μm)を形成した。同様にして、他方の無機粒子層上に、無機粒子と樹脂多孔質が混合した第2混合層(厚み約5μm)を形成した。
次に、樹脂多孔質層形成用として、樹脂としてトリシクロデカンジメタノールアクリレート(ダイセル・オルネクス社製):29質量部、溶媒としてテトラデカン(関東化学工業株式会社製):70質量部、重合開始剤としてIrgacure184(BASF社製):1質量部を加えて塗膜インクを作製した。この塗膜インクを一方の第2混合層上へインクジェット装置で塗布し、重合不活性気体のNでパージした環境にてUV照射し、更に80℃に設定した恒温槽内で溶媒の除去及び重合反応を促進させ、樹脂多孔質層(厚み約10μm)を形成した。同様にして、他方の第2混合層上に、樹脂多孔質層(厚み約10μm)を形成した。
以上により、負極用電極基体の両面に、負極合材層、負極合材と無機粒子の第1混合層、無機粒子層、無機粒子と樹脂多孔質の第2混合層、及び樹脂多孔質層が順次積層された電極が得られた。得られた電極を、所定のサイズ(塗布面30mm×50mm、未塗布面10mm×11mm)に打ち抜いて負極を作製した。
正極合材層形成用として、リチウム-ニッケルコバルトアルミニウム複合酸化物(NCA):93質量部、導電助剤:3質量部、結着剤(ポリフッ化ビニリデン):4質量部、溶媒としてN-メチルピロリドン:100質量部を加えて、電極塗料を作製した。電極塗料をアルミニウムの正極用電極基体上に塗布し乾燥させて、単位面積当たりの塗布量(面積密度)が片側15.0mg/cmの正極合材層が両面に形成された電極を得た。
得られた電極を、所定のサイズ(塗布面28mm×48mm、未塗布面10mm×13mm)に打ち抜いて正極を作製した。
なお、正極には、正極合材と無機粒子の第1混合層、無機粒子層、無機粒子と樹脂多孔質の第2混合層、樹脂多孔質層を設けなかった。
上記のようにして作製した正極及び負極を交互に積層し、積層厚が10mm程度まで積層した電極素子を形成し、電極の未塗布部をまとめて負極に負極引き出し線となるニッケルタブを溶接し、正極に正極引き出し線となるアルミニウムタブを溶接した。そして、この電極素子に1.5M LiPF6 EC:DMC:EMC=1:1:1の非水電解液を含ませ、アルミラミネートフイルムに封止して、非水電解液蓄電素子を作製した。
(初回充電実施及び初期容量の測定)
上述のように作製した非水電解液蓄電素子の正極引き出し線と負極引き出し線とを、充放電試験装置に接続し、最大電圧4.2V、電流レート0.2C、5時間で定電流定電圧充電し、充電完了後、40℃の恒温槽で5日間静置した。その後、電流レート0.2Cで2.5Vまで定電流放電させた。その後、最大電圧4.2V、電流レート0.2C、5時間で定電流定電圧充電し、10分の休止を挟んで、電流レート0.2Cで2.5Vまで定電流放電させた。このときの放電容量を初期容量とした。
(出力密度評価試験):評価1
上述のように初期容量を測定した非水電解液蓄電素子の正極引き出し線と負極引き出し線とを、充放電試験装置に接続し、最大電圧4.2V、電流レート0.2C、5時間で充電した。そして、10分休止を挟んで、電流レート0.2C、2.5時間で定電流放電させ、非水電解液蓄電素子の充電深度を50%の状態とした。次いで電流レート1C~10Cのパルスを10秒間放電させ、パルス後電圧と電流値の相関直線から2.5Vカットオフ電圧に至る電力を計算し、セル重量の割り算にて出力密度(Wh/kg)を算出した。その結果、出力密度3150Wh/kgであった。
(寿命評価試験):評価2
上述のように初期容量を測定した非水電解液蓄電素子の正極引き出し線と負極引き出し線とを、充放電試験装置に接続し、最大電圧4.2V、電流レート1C、3時間で定電流定電圧充電し、充電完了後、電流レート1Cで2.5Vまで定電流放電させた。10分の休止を挟んで、これを1000サイクル繰り返した。サイクル完了後、最大電圧4.2V、電流レート0.2C、5時間で定電流定電圧充電し、充電完了後、10分の休止を挟んで、電流レート0.2Cで2.5Vまで定電流放電させた。このときの放電容量をサイクル後放電容量とし、サイクル容量維持率(サイクル後放電容量/初期放電容量×100)を算出した。結果を以下の評価基準により評価した。
[評価基準]
○:1000サイクル後の0.2C放電容量が、初期の0.2C放電容量の80%以上
×:1000サイクル後の0.2C放電容量が、初期の0.2C放電容量の80%未満
(安全性評価試験):評価3
上述のように初期容量を測定した非水電解液蓄電素子の正極引き出し線と負極引き出し線とを、充放電試験装置に接続し、最大電圧4.2V、電流レート1C、3時間で定電流定電圧充電し、充電深度を100%(満充電)とした。次いで、電極が積層されている方向と水平に、直径4.5mmの鉄釘を刺し、意図的に短絡させた状態で、非水電解液蓄電素子の様子を観察した。観察結果を以下の評価基準により評価した。
[評価基準]
○:発火なし
×:発火あり
[実施例2]
負極上の無機粒子と樹脂多孔質の第2混合層の膜厚を15μmとし、樹脂多孔質層を設けなかった以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[実施例3]
負極上の負極合材と無機粒子の第1混合層の膜厚を5μmとした以外は全て実施例1と同条件で負極及び正極を作製した。実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[実施例4]
負極上の無機粒子層の膜厚を25μmとし、無機粒子と樹脂多孔質の第2混合層及び樹脂多孔質層を設けなかった以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[実施例5]
負極上の樹脂多孔質の膜厚を50μmとした以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[比較例1]
負極上には負極合材層のみ設け、負極合材と無機粒子の第1混合層、無機粒子層、無機粒子と樹脂多孔質の第2混合層、及び樹脂多孔質層は設けなかった。負極と正極の間には膜厚20μmのポリオレフィンセパレータを設けた以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[比較例2]
負極上の負極合材と無機粒子の第1混合層を設けない以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[比較例3]
負極上の無機粒子層を設けず、樹脂多孔質層の膜厚を15μmとした以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[比較例4]
負極上の無機粒子と樹脂多孔質の第2混合層を設けず、樹脂多孔質層の膜厚を15μmとした以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
[比較例5]
負極上の負極合材と無機粒子の第1混合層を設けず、無機粒子層を設けず、無機粒子と樹脂多孔質の第2混合層を設けず、樹脂多孔質層の膜厚を0.5μmとした以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、初期充電を実施したところ、短絡があり正常に充電されなかった。
[比較例6]
負極上の樹脂多孔質の膜厚を150μmとした以外は全て実施例1と同条件で負極及び正極を作製した。そして、実施例1と同様に非水電解液蓄電素子を作製し、評価1~3を実施した。
各実施例及び比較例における各層の厚みを表1に示す。なお、該当する層が形成されていない場合は表1に『なし』と表示した。又、各実施例及び比較例における評価結果を表2に示す。
Figure 0007180257000001
Figure 0007180257000002
[実施例1/比較例1の比較]
実施例1の非水電解液蓄電素子及び比較例1の非水電解液蓄電素子について、評価1の結果より、実施例1は出力密度3150Wh/kg、比較例1は出力密度2700Wh/kgであった。又、評価2の結果より、実施例1は○、比較例1は×であり、評価3の結果より、実施例1は○、比較例1は×であった。
実施例1と比較例1の非水電解液蓄電素子の違いは、負極合材層上における負極合材と無機粒子の第1混合層の有無である。実施例1のように負極合材層上に負極合材と無機粒子の第1混合層を設けることにより、負極合材層の表面近傍のリチウムの析出を抑制し、寿命特性が向上することが確認された。
又、実施例1と比較例1の非水電解液蓄電素子の他の違いは、無機粒子層の有無であり、無機粒子層があることで、実施例1のように安全性が向上すること確認された。
又、実施例1と比較例1の非水電解液蓄電素子の他の違いは、無機粒子と樹脂多孔質の第2混合層の有無である。実施例1と比較例1の非水電解液蓄電素子では、負極と正極との間にある絶縁層(実施例1は、無機粒子層と、無機粒子と樹脂多孔質の第2混合層と、樹脂多孔質層の合計であり、比較例1はポリオレフィンセパレータに相当する)の膜厚は同じ20μmである。しかし、実施例1では無機粒子と樹脂多孔質の第2混合層があることにより、樹脂多孔質におけるイオン伝導性能が向上し、その結果出力性能が向上することが確認された。
[実施例2の結果について]
実施例2の非水電解液蓄電素子の評価結果は、評価1の結果は出力密度3300Wh/kg、評価2の結果は○、評価3の結果は○であった。実施例1よりも更に出力密度が向上している。実施例1と比較して、樹脂多孔質層を設けない代わりに無機粒子と樹脂多孔質の第2混合層の膜厚を厚くしている。このとき、実施例1の無機粒子層、無機粒子と樹脂多孔質の第2混合層、及び樹脂多孔質層の合計の膜厚と、実施例2の無機粒子層、及び無機粒子と樹脂多孔質の第2混合層の合計の膜厚とが等しくなるようにした。
評価1の結果を比較すると実施例1は出力密度3150Wh/kg、実施例2は出力密度3300Wh/kgである。実施例2のように無機粒子と樹脂多孔質の第2混合層の膜厚を厚くすることで、樹脂多孔質におけるイオン伝導性能が向上し、その結果出力性能が向上することが確認された。
[実施例3の結果について]
実施例3の非水電解液蓄電素子では、負極合材と無機粒子の第1混合層の膜厚を5μmとした。実施例3において、評価2の結果は○であり、負極合材と無機粒子の第1混合層を設けない比較例1と比較して、寿命特性の向上効果が確認された。
[実施例4の結果について]
実施例4では正極と負極の短絡を抑制するために、負極の第1混合層上に膜厚25μmの無機粒子層のみを設けた。この非水電解液蓄電素子において、正極と負極の短絡が抑制されて非水電解液蓄電素子として正常機能した。すなわち、第1混合層及び無機粒子層を有していれば、第2混合層及び樹脂多孔質層を有していなくても、非水電解液蓄電素子として正常機能することが確認できた。
[実施例5の結果について]
実施例5の非水電解液蓄電素子は、実施例1と比較して、樹脂多孔質層の膜厚が50μmと厚い条件ではあるが、評価1の結果は出力密度2800Wh/kgであり良好な出力特性が確認された。
[比較例2の結果について]
比較例2の非水電解液蓄電素子では、負極合材と無機粒子の第1混合層を設けなかった。評価2の結果は×であり、負極合材と無機粒子層を設けた実施例1~4よりも寿命が劣っている結果であった。
[比較例3の結果について]
比較例3の非水電解液蓄電素子では、無機粒子層を設けなかった。評価3の結果は×であり、無機粒子層を設けた実施例1~4と比較して安全性が劣っている結果であった。
[比較例4の結果について]
比較例4の非水電解液は、無機粒子と樹脂多孔質の第2混合層を設けなかった。評価1の結果より、出力密度2700Wh/kgであり、無機粒子と樹脂多孔質の第2混合層を設けた実施例1~3と比較して出力密度特性が劣っている結果であった。
[比較例5の結果について]
比較例5の非水電解液蓄電素子では、負極上に膜厚0.5μmの樹脂多孔質層のみを設けた。この非水電解液蓄電素子は、初期充電を実施したところ、短絡があり正常に充電されなかった。これは、樹脂多孔質層の膜厚が小さすぎるため、負極と正極の極間距離が小さくなり短絡を防止できなかったためである。
[比較例6/実施例1との比較]
比較例6の非水電解液蓄電素子は、実施例1と比較して、樹脂多孔質層の膜厚が150μmと厚くなっている。評価1の結果は比較例6が出力密度2500Wh/kg、実施例1が出力密度3150Wh/kgであり、負極と正極の極間距離が大きい比較例6において、実施例1よりも出力密度特性が劣っている結果であった。
以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。
例えば、上記の各実施形態では負極17等を非水電解液蓄電素子に用いる例を示したが、これには限定されず、負極17等はゲル電解質を用いる蓄電素子にも用いることができ、その場合も非水電解液蓄電素子に用いたときと同様の効果を奏する。
1、1A、1B、1C 非水電解液蓄電素子
10、10A、10B、17、17A、17B 負極
11 負極用電極基体
12 負極合材層
13、15 混合層
14 無機粒子層
16 樹脂多孔質層
20、27 正極
21 正極用電極基体
22 正極合材層
30 セパレータ
40、40A、40B、40C 電極素子
41 負極引き出し線
42 正極引き出し線
51 電解質層
52 外装
特表2015-518644号公報

Claims (14)

  1. 電極基体と、
    前記電極基体上に形成された電極合材層と、
    前記電極合材層上に形成された第1混合層と、
    前記第1混合層上に形成された無機粒子層と、を有し、
    前記第1混合層が電極合材及び無機粒子を含み、
    前記電極合材層は、金属イオンを可逆的に吸蔵及び放出可能な活物質を含み、
    前記無機粒子層上に形成された第2混合層を更に有し、
    前記第2混合層は無機粒子及び樹脂多孔質を含み、
    前記第2混合層の膜厚が3μm以上50μm以下である
    電極。
  2. 前記第1混合層に含まれる前記無機粒子は、ケイ素元素、アルミニウム元素、及びジルコニウム元素から選ばれる少なくとも1種の元素を含む請求項1に記載の電極。
  3. 前記第1混合層に含まれる前記無機粒子の平均粒子径が0.1μm以上5μm以下である請求項1又は2に記載の電極。
  4. 前記第1混合層の膜厚が0.1μm以上30μm以下である請求項1乃至3の何れか一項に記載の電極。
  5. 前記無機粒子層の膜厚が0.1μm以上100μm以下である請求項1乃至4の何れか一項に記載の電極。
  6. 前記第2混合層に含まれる前記無機粒子は、ケイ素元素、アルミニウム元素、及びジルコニウム元素から選ばれる少なくとも1種の元素を含む請求項1乃至5の何れか一項に記載の電極。
  7. 前記第2混合層に含まれる前記無機粒子の平均粒子径が0.1μm以上5μm以下である請求項1乃至6の何れか一項に記載の電極。
  8. 前記第2混合層の空隙率が30%以上80%以下である請求項乃至の何れか一項に記載の電極。
  9. 前記第2混合層上に形成された樹脂多孔質層を有する請求項乃至の何れか一項に記載の電極。
  10. 前記樹脂多孔質層の膜厚が0.1μm以上100μm以下である請求項に記載の電極。
  11. 前記樹脂多孔質層の空隙率が30%以上80%以下である請求項9又は10に記載の電極。
  12. 前記第2混合層の膜厚が5μm以上15μm以下である
    請求項1乃至11の何れか一項に記載の電極。
  13. 負極と正極とが互いに絶縁された状態で積層された構造を含む電極素子であって、
    前記正極及び/又は前記負極が、請求項1乃至12の何れか一項に記載の電極である電極素子。
  14. 請求項13に記載の電極素子と、
    前記電極素子に注入された非水電解液と、
    前記電極素子及び前記非水電解液を封止する外装と、を有する非水電解液蓄電素子。
JP2018188638A 2018-10-03 2018-10-03 電極、電極素子、非水電解液蓄電素子 Active JP7180257B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188638A JP7180257B2 (ja) 2018-10-03 2018-10-03 電極、電極素子、非水電解液蓄電素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188638A JP7180257B2 (ja) 2018-10-03 2018-10-03 電極、電極素子、非水電解液蓄電素子

Publications (2)

Publication Number Publication Date
JP2020057562A JP2020057562A (ja) 2020-04-09
JP7180257B2 true JP7180257B2 (ja) 2022-11-30

Family

ID=70107596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188638A Active JP7180257B2 (ja) 2018-10-03 2018-10-03 電極、電極素子、非水電解液蓄電素子

Country Status (1)

Country Link
JP (1) JP7180257B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059871A1 (fr) 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication de pile a electrolyte non aqueux et pile ainsi obtenue
JP2013191550A (ja) 2012-03-13 2013-09-26 Hitachi Ltd 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法
JP2014212027A (ja) 2013-04-18 2014-11-13 株式会社豊田自動織機 電極製造装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140014692A (ko) * 2012-07-25 2014-02-06 에너테크인터내셔널 주식회사 리튬 이차전지용 전극, 그 제조방법 및 리튬 이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059871A1 (fr) 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication de pile a electrolyte non aqueux et pile ainsi obtenue
JP2013191550A (ja) 2012-03-13 2013-09-26 Hitachi Ltd 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法
JP2014212027A (ja) 2013-04-18 2014-11-13 株式会社豊田自動織機 電極製造装置

Also Published As

Publication number Publication date
JP2020057562A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
KR102417200B1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
WO2009123232A1 (ja) 二次電池用正極板、その製造方法、及びそれを備える二次電池
JP7206763B2 (ja) 電極及びその製造方法、電極素子、非水電解液蓄電素子
CN111490230B (zh) 电极及其制造方法,电极元件,非水电解液蓄电元件
WO2019156031A1 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
CN111490229A (zh) 电极及其制造方法,电极元件,电化学元件
JP7447406B2 (ja) 電極、電極素子、非水電解液蓄電素子
JP7548345B2 (ja) 電極の製造方法、液体材料
JP2024069279A (ja) 電極、電極素子、非水電解液蓄電素子
KR102470559B1 (ko) 금속 전극을 구비하는 금속이차전지
JP2022547501A (ja) 二次電池の製造方法
KR100462668B1 (ko) 폴리머 전지
JP5071171B2 (ja) リチウム二次電池
JP2010199083A (ja) リチウム二次電池
CN113380981A (zh) 电极及电化学元件
JP7206762B2 (ja) 電極及びその製造方法、電極素子、非水電解液蓄電素子
JP7225714B2 (ja) 電極及びその製造方法、電極素子、非水電解液蓄電素子
JP7180257B2 (ja) 電極、電極素子、非水電解液蓄電素子
CN114051666B (zh) 制造二次电池的方法
JP2020155378A (ja) リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
CN110277537B (zh) 电极及其制造方法,电极元件,非水电解液蓄电元件
CN116914137A (zh) 负极的制造方法
KR20240059818A (ko) 리튬 이차 전지용 전극 및 리튬 이차 전지
KR20240032565A (ko) 음극 및 이를 포함하는 리튬 이차전지
KR20230136028A (ko) 전극, 전극 요소, 전기화학 요소, 및 전력 저장 디바이스

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R151 Written notification of patent or utility model registration

Ref document number: 7180257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151