JP7175446B2 - タイヤ試験装置のタイヤ駆動制御装置 - Google Patents

タイヤ試験装置のタイヤ駆動制御装置 Download PDF

Info

Publication number
JP7175446B2
JP7175446B2 JP2019015671A JP2019015671A JP7175446B2 JP 7175446 B2 JP7175446 B2 JP 7175446B2 JP 2019015671 A JP2019015671 A JP 2019015671A JP 2019015671 A JP2019015671 A JP 2019015671A JP 7175446 B2 JP7175446 B2 JP 7175446B2
Authority
JP
Japan
Prior art keywords
tire
shaft
command signal
shaft torque
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019015671A
Other languages
English (en)
Other versions
JP2020122745A (ja
Inventor
岳夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2019015671A priority Critical patent/JP7175446B2/ja
Publication of JP2020122745A publication Critical patent/JP2020122745A/ja
Application granted granted Critical
Publication of JP7175446B2 publication Critical patent/JP7175446B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤ試験装置のタイヤ駆動制御装置に関する。より詳しくは、本発明は、タイヤ試験装置において試験対象であるタイヤのタイヤ駆動軸における軸トルクを制御するタイヤ駆動制御装置に関する。
四輪の自動車や自動二輪車等の多くの車両には、少なくとも2つのタイヤが装着される。タイヤの性能は、その材質、形状、空気圧、路面への接触荷重、及び温度等の様々な要因によって変化する。このようなタイヤの性能を評価するタイヤ試験装置として、ベルトやローラ等の模擬路面上でタイヤを回転させながら、そのキャンバー角、スリップ角、及び垂直荷重等を調整しつつ、この際にタイヤに加わる力や転がり抵抗等を測定するものが公知となっている。このようなタイヤ試験装置によれば、タイヤを現実の車両に装着したり、さらにこの実車両をテストコースで実際に走行させたりすることなく、タイヤ単体で性能を評価できるため、試験にかかる時間が短く利便性が高い。
また近年では、上記のようなタイヤ試験装置で現実のタイヤを用いることで得られた情報を入力として、車両モデルを用いたシミュレーションによって車両全体の挙動を再現し、さらにこのシミュレーションによって得られた情報をタイヤ試験装置において現実のタイヤを運動させるアクチュエータにフィードバックする試験装置が提案されている(例えば、特許文献1参照)。このように、現実の装置(上記の例では、現実のタイヤ及びそのタイヤ試験装置)をシミュレーションに組み込んだ試験装置は、HIL(Hardware In the Loop)シミュレータとも呼称されている。
このような試験装置では、車両の挙動を再現するシミュレーションによって得られた情報をタイヤ試験装置に入力することにより、より実走行条件に近い条件でタイヤの試験を行うことができる。またタイヤは、ゴム、有機繊維、金属等の複合素材で構成され、大きな変化を伴う弾性体であり、路面状態や温度によって性能が大きく変化すること等から、タイヤの挙動を精度良く再現できるタイヤモデルを構築することは困難である。これに対し、上記試験装置によれば、実タイヤから得られた情報を用いて、シミュレーションによって車両の挙動を再現することにより、より実走行条件に近い条件で精密な車両挙動の解析が可能となる。
特開2018-146421号公報
ところで一般的な車両において、エンジンで発生した動力をタイヤに伝達するドライブトレインには、クラッチやドライブシャフト等の様々なばね要素が存在する。このため実際の車両では、エンジントルクを急激に変化させると、これらばね要素のねじり振動によってタイヤを駆動するタイヤ駆動軸の軸トルクが振動する。しかしながら特許文献1に記載の発明では、このようなタイヤ駆動軸の軸トルクの振動現象については十分に検討されていない。
本発明は、タイヤ駆動軸における軸トルクの振動現象を再現できるタイヤ試験装置のタイヤ駆動制御装置を提供することを目的とする。
(1)本発明に係るタイヤ駆動制御装置(例えば、後述のタイヤ駆動制御装置60)は、タイヤ(例えば、後述のタイヤT)の駆動軸(例えば、後述のタイヤ駆動軸42)に連結されたタイヤ駆動モータ(例えば、後述のタイヤ駆動モータ38)と、前記駆動軸における軸トルクに応じた軸トルク検出信号(例えば、後述のタイヤ軸トルク検出信号Tsh)を生成する軸トルクセンサ(例えば、後述のタイヤ軸トルクセンサ40)と、前記タイヤの速度に応じた速度検出信号(例えば、後述のタイヤ回転速度検出信号ωtire)を生成する速度センサ(例えば、後述のタイヤ回転速度センサ41)と、前記タイヤを模擬路面(例えば、後述の模擬路面25a)に対し接地させるタイヤ接地装置(例えば、後述の垂直荷重調整モータ37)と、を備えるタイヤ試験装置(例えば、後述のタイヤ試験装置S)を制御対象とし、前記タイヤを構成要素の一部とする仮想車両の動力発生源に対する上位トルク指令信号(例えば、後述のエンジントルク指令信号Teng)、前記軸トルク検出信号及び前記速度検出信号に基づいて前記タイヤ駆動モータに対する制御入力(例えば、後述のモータトルク指令信号Itire)を生成する。前記タイヤ駆動制御装置は、前記上位トルク指令信号及び前記速度検出信号に基づいて前記軸トルク検出信号に対する軸トルク指令信号(例えば、後述のタイヤ軸トルク指令信号Tsh_cmd)を生成するタイヤ駆動車両モデル演算部(例えば、後述のタイヤ駆動車両モデル演算部61)と、前記軸トルク指令信号と前記軸トルク検出信号との偏差が無くなるように前記制御入力を生成するタイヤ軸トルク制御器(例えば、後述のタイヤ軸トルク制御器62)と、を備え、前記タイヤ駆動車両モデル演算部は、前記上位トルク指令信号に応じたトルクを発生する慣性体(例えば、後述の慣性体M1)と、前記速度検出信号に応じた速度で回転する回転体(例えば、後述の回転体M6)と、前記回転体に接続された出力軸(例えば、後述の出力軸M5)と、入力軸(例えば、後述の入力軸M3)と前記出力軸との間で変速してトルクを伝達する変速要素(例えば、後述の変速要素M4)と、前記慣性体と前記入力軸とを連結するばね要素(例えば、後述のばね要素M2)と、を備える車両モデル(例えば、後述の車両モデルM)において、前記出力軸で発生する軸トルクを前記軸トルク指令信号として生成することを特徴とする。
(2)この場合、前記タイヤ駆動車両モデル演算部は、所定のサンプリング周期Tsの下で前記車両モデルの運動方程式を用いた演算を行うことにより前記軸トルク指令信号を生成し、z変換された前記運動方程式は、下記式によって表されることが好ましい。
Figure 0007175446000001
ここで上記式において、“z”は複素数であり、“Teng”は前記上位トルク指令信号であり、“ωtire”は前記速度検出信号であり、“Tsh_cmd”は前記軸トルク指令信号であり、“ωeng”は前記慣性体の速度に相当し、“T1”は前記入力軸における軸トルクに相当し、“EGJ”は前記慣性体の慣性モーメントに相当し、“K”は前記ばね要素のばね剛性に相当し、“g”は前記変速要素のギヤ比に相当する。
(3)この場合、前記ばね剛性Kは、下記式によって設定されることが好ましい。
Figure 0007175446000002
ここで上記式において、“Kcl”は前記仮想車両において前記動力発生源と前記タイヤとの間に設けられるクラッチのばね剛性に相当し、“Kds”は前記仮想車両において前記クラッチと前記タイヤとの間に設けられるドライブシャフトのばね剛性に相当する。
(1)本発明に係るタイヤ駆動制御装置は、タイヤ試験装置のタイヤを構成装置の一部とする仮想車両の仮想的な動力発生源に対する上位トルク指令信号及び速度センサの速度検出信号に基づいて軸トルクセンサの軸トルク検出信号に対する軸トルク指令信号を生成するタイヤ駆動車両モデル演算部と、軸トルク指令信号と軸トルク検出信号との偏差が無くなるようにタイヤ試験装置におけるタイヤ駆動モータに対する制御入力を生成するタイヤ軸トルク制御器と、を備える。また本発明において、タイヤ駆動車両モデル演算部では、上位トルク指令信号に応じたトルクを発生する慣性体と、速度検出信号に応じた速度で回転する回転体と、この回転体に接続された出力軸と、この出力軸と入力軸との間で変速してトルクを伝達する変速要素と、慣性体と入力軸とを連結するばね要素と、を備える車両モデルを用いることによって軸トルク指令信号を生成する。すなわち、タイヤ駆動車両モデル演算部では、上位トルク指令信号及び速度検出信号を上記車両モデルに入力したときに、この車両モデルの出力軸で発生する軸トルクを軸トルク指令信号として生成する。このように本発明によれば、仮想車両における動力発生源を模した慣性体や仮想車両におけるクラッチやドライブシャフト等を模したばね要素等を含む車両モデルを用いて軸トルク指令信号を生成し、これをタイヤ軸トルク制御器に入力することにより、タイヤ駆動軸における軸トルクの振動現象を再現できる。
(2)本発明に係るタイヤ駆動制御装置において、タイヤ駆動車両モデル演算部は、所定のサンプリング周期Tsの下で、上記式(1-1)~(1-3)で表される運動方程式を用いた演算を行うことによって軸トルク指令信号を生成し、タイヤ軸トルク制御器に入力する。後に図7~図12等を参照して説明するように、上記式(1-1)~(1-3)に示す運動方程式に基づいて軸トルク指令信号を生成することにより、軸トルク制御を発散させることなくタイヤ駆動軸における軸トルクの振動現象を再現できる。
(3)一般的な車両のドライブトレインを構成する様々な部品のうち、軸トルクの振動現象の原因となるばね要素の主要なものは、クラッチ及びドライブシャフトの2つである。これに対し上記車両モデルに含まれるばね要素は1つのみである。そこで本発明では、車両モデルにおけるばね要素のばね剛性Kを、仮想車両におけるクラッチのばね剛性Kcl及びドライブシャフトのばね剛性Kdsを用いて、上記式(2)に示すように設定する。後に図7~図12等を参照して説明するように、このようにしてばね剛性Kを設定することにより、1つのばね要素しか含まない車両モデルであっても実際の車両で生じ得る軸トルクの振動現象を精度良く再現できる。
本発明の一実施形態に係るタイヤ試験装置の構成を示す図である。 タイヤ試験装置に設けられる複数のモータ及び複数のセンサを模式的に示す図である。 模擬路面上におけるスリップ角を示す図である。 模擬路面上におけるキャンバー角を示す図である。 模擬路面上で運動するタイヤに作用する力を示す図である。 総括制御装置のうちタイヤ軸トルク制御に係る制御モジュールの構成を示す図である。 タイヤ駆動車両モデル演算部において参照される車両モデルの構成を模式的に示す図である。 タイヤ駆動車両モデル演算部の制御回路の構成を示す図である。 参考例及び比較例のタイヤ駆動車両モデル演算部において参照される車両モデルの構成を模式的に示す図である。 参考例のタイヤ駆動車両モデル演算部(連続時間系のコントローラ)の制御回路の構成を示す図である。 参考例のタイヤ駆動制御装置に対しステップ状に変化するエンジントルク指令信号を入力したときにおけるタイヤ軸トルク指令信号及びタイヤ軸トルク検出信号の応答を示す図である。 比較例のタイヤ駆動車両モデル演算部(離散時間系のデジタルコントローラ)の制御回路の構成を示す図である。 比較例のタイヤ駆動制御装置に対しステップ状に変化するエンジントルク指令信号を入力したときにおけるタイヤ軸トルク指令信号及びタイヤ軸トルク検出信号の応答を示す図である。 上記実施形態に係るタイヤ駆動制御装置に対しステップ状に変化するエンジントルク指令信号を入力したときにおけるタイヤ軸トルク指令信号及びタイヤ軸トルク検出信号の応答を示す図である。
以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係るタイヤ試験装置Sの構成を示す図である。
図2は、タイヤ試験装置Sに設けられる複数のモータ及び複数のセンサを模式的に示す図である。
タイヤ試験装置Sは、複数のモータを用いて現実のタイヤTに様々な外力を加えることによってタイヤTを運動させるタイヤ試験ユニット1と、タイヤ試験ユニット1を制御する総括制御装置6と、を備える。
タイヤ試験装置Sは、タイヤ試験ユニット1において現実のタイヤTを用いて得らえた情報を総括制御装置6への入力とし、総括制御装置6ではタイヤTを構成要素の一部とした仮想車両の挙動を、モデルを用いたシミュレーションによって再現し、さらにこのシミュレーションによって得られた情報をタイヤ試験ユニット1にフィードバックする。なお以下では、タイヤ試験装置Sにおいて想定する仮想車両は、エンジンを動力発生源とした四輪の自動車とするが、仮想車両の車輪の数や動力発生源はこれらに限らない。またタイヤTは、この仮想車両における動力発生源からの動力が伝達する駆動輪でありかつ運転者が操作可能なステアリングによって操舵角を変化させることができる転舵輪である場合について説明するが、仮想車両におけるタイヤTの役割はこれに限らない。
タイヤ試験ユニット1は、ホイールにリム組みされたタイヤTと、タイヤTが接する路面模擬装置2と、タイヤTをそのハブを中心として回転駆動しつつこのタイヤTを路面模擬装置2に対し所定の姿勢で支持するタイヤ支持機構3と、を備える。
路面模擬装置2は、水平な床面に固定された基台21と、この基台21に対し垂直な鉛直方向に沿った回動軸OSAを中心として回動自在に設けられたベルトユニット22と、このベルトユニット22を、回動軸を中心として回動させるスリップ角モータ23(図2参照)と、スリップ角センサ29(図2参照)と、を備える。
ベルトユニット22は、回転可能に設けられた一対の筒状のベルトドラム24a,24bと、これらベルトドラム24a.24bの外周に架け渡された無端帯状のフラットベルト25と、を備える。フラットベルト25の外周面には、実路面を模した加工が施されている。これにより、フラットベルト25の外周面のうち鉛直上方の面は、タイヤTが接する模擬路面25aとなっている。これらベルトドラム24a,24bの回転軸は、互いに平行でありかつ上記回動軸OSAに対し垂直となっている。
またベルトドラム24aには、その出力軸がベルトドラム24aに連結された路面駆動モータ26(図2参照)と、路面駆動モータ26の出力軸の回転速度を検出するベルト回転速度センサ27(図2参照)と、出力軸に発生する軸トルクを検出するベルト軸トルクセンサ28(図2参照)と、が設けられている。路面駆動モータ26は、総括制御装置6からの指令信号に応じてドラム24aを回転駆動する。これにより、模擬路面25aは、ベルトドラム24aの回転速度に応じた速度で、回動軸OSAに対し垂直な平面内を、路面進行方向FRに沿って流れる。ベルト回転速度センサ27は、出力軸の回転速度、すなわちベルトドラム24aの回転速度を検出し、検出値に応じたベルト回転速度検出信号ωbelを総括制御装置6へ送信する。またベルト軸トルクセンサ28は、出力軸に発生する軸トルクを検出し、検出値に応じたベルト軸トルク検出信号Tbelを総括制御装置6へ送信する。
スリップ角モータ23は、総括制御装置6からの信号に応じてベルトユニット22を、回動軸OSAを中心として回動させる。路面模擬装置2では、スリップ角モータ23を用いてベルトユニット22を回動させることにより、図3Aに示すように、模擬路面25a上におけるタイヤTの回転軸Rと垂直なタイヤ進行方向FTと路面進行方向FRとの成す角αであるスリップ角を調整することができる。スリップ角センサ29は、スリップ角に応じたスリップ角検出信号θSAを生成し、総括制御装置6へ送信する。
タイヤ支持機構3は、ベルトユニット22のベルト送り方向である路面進行方向FRの両端側の床面に固定された一対の台座31a,31bと、これら台座31a,31bによって両端部が支持された弧状のフレーム33と、このフレーム33によって支持された棒状の支持アーム35と、このアーム35の先端部に設けられた回転駆動ユニット36と、を備える。
フレーム33は、フラットベルト25の鉛直上方を延びる。フレーム33の両端部は、それぞれ、台座31a,31bによってフラットベルト25の延在方向と略垂直な回動軸OCAを中心として回動自在に支持されている。また台座31aには、フレーム33を、回動軸OCAを中心として回動駆動するキャンバー角調整モータ32(図2参照)と、フレーム33の模擬路面25aに対する角度を検出するキャンバー角センサ34と、が設けられている。キャンバー角調整モータ32は、総括制御装置6からの指令信号に応じてフレーム33を、回動軸OCAを中心として回動させる。タイヤ支持機構3では、このキャンバー角調整モータ32を用いてフレーム33及びこれに支持された支持アーム35を回動させることにより、図3Bに示すように、模擬路面25a上におけるタイヤTの回転軸Rと模擬路面25aとの成す角、すなわち模擬路面25aの法線と回転軸Rと垂直な面との成す角βであるキャンバー角を調整することができる。キャンバー角センサ34は、キャンバー角に応じたキャンバー角検出信号θCAを生成し、総括制御装置6へ送信する。
支持アーム35は、模擬路面25aに対し垂直な鉛直方向に沿って延びる。支持アーム35の基端部は、フレーム33によって支持アーム35の延在方向に沿って摺動自在に支持されている。フレーム33には、支持アーム35を、支持アーム35の延在方向に沿って変位させる垂直荷重調整モータ37(図2参照)が設けられている。垂直荷重調整モータ37は、総括制御装置6からの指令信号に応じて、支持アーム35を、その延在方向に沿って変位させる。タイヤ支持機構3では、この垂直荷重調整モータ37を用いて支持アーム35を変位させることにより、タイヤTを模擬路面25aに対し接地させたり、タイヤTを模擬路面25aに対し離間させたりする。またタイヤ支持機構3では、この垂直荷重調整モータ37を用いて支持アーム35を変位させることにより、タイヤTを模擬路面25aに押さえつける力である垂直荷重を調整することも可能となっている。
回転駆動ユニット36は、支持アーム35の先端部において、タイヤTを回転自在に支持する。図2に示すように、回転駆動ユニット36は、タイヤ駆動モータ38と、力センサ39と、タイヤ軸トルクセンサ40と、タイヤ回転速度センサ41と、タイヤ駆動軸42と、を備える。
タイヤ駆動軸42は、支持アーム35に対し略垂直に延び、タイヤ駆動モータ38とタイヤTとを連結する。タイヤ駆動軸42の先端側は、タイヤTのハブに連結され、基端側は、タイヤ駆動モータ38の出力軸に連結されている。タイヤ駆動モータ38は、総括制御装置6からの指令信号に応じてタイヤTを回動駆動する。タイヤ回転速度センサ41は、タイヤ駆動モータ38の出力軸の回転速度、すなわちタイヤTの回転速度に応じたタイヤ回転速度検出信号ωtireを生成し、このタイヤ回転速度検出信号ωtireを総括制御装置6へ送信する。
力センサ39は、模擬路面25a上で運動するタイヤTに作用する力を検出する。この力センサ39には、例えば、図3Cに示すようにタイヤTに作用する6分力のうちの5つを検出する5分力計が用いられる。より具体的には、力センサ39は、タイヤTの進行方向軸Xに沿った前後力に応じた前後力検出信号Fxと、タイヤTの横方向軸Yに沿った横力に応じた横力検出信号Fyと、タイヤTの縦方向軸Zに沿った垂直荷重に応じた垂直荷重検出信号Fzと、タイヤTの進行方向軸X周りのモーメントに応じたオーバターニング検出信号Mxと、及びタイヤTの縦方向軸周りのモーメントに応じたセルフアライニングトルク検出信号Mzと、を総括制御装置6へ送信する。なお以下では、力センサ39によって生成される上記5つの信号Fx,Fy,Fz,Mx,Mzをまとめて“F5”と表記する。
タイヤ軸トルクセンサ40は、タイヤ駆動軸42における軸トルク、すなわちタイヤTの横方向軸周りのモーメントに応じたタイヤ軸トルク検出信号Tshを生成し、このタイヤ軸トルク検出信号Tshを総括制御装置6へ送信する。
総括制御装置6は、各種センサ27,28,29,34,39,40,41等から送信される入力信号をA/D変換したり、各種モータ23,26,32,37,38等へ入力される出力信号をD/A変換したりするI/Oインターフェース、各種プログラムに従って演算処理を実行するCPU、各種データを記憶するROM及びRAM等の記憶手段、作業者が各種指令を入力するために操作可能な入力手段、並びに演算結果等を作業者が視認可能な態様で表示する表示手段等のハードウェアによって構成されるコンピュータである。
総括制御装置6では、各種センサ27,28,29,34,39,40,41等から送信される入力信号に基づいて、タイヤTを構成要素の一部とした仮想車両の挙動を再現するシミュレーション演算を行うとともに、このシミュレーション演算によって各種モータ23,26,32,37,38等への出力信号を生成し、各種モータ23,26,32,37,38等へ入力する。
図4は、総括制御装置6のうちタイヤ駆動軸42に作用するタイヤ軸トルク制御に係る制御モジュールであるタイヤ駆動制御装置60の構成を示す図である。タイヤ駆動制御装置60は、タイヤ軸トルク制御に係る制御モジュールとして、タイヤ駆動車両モデル演算部61と、タイヤ軸トルク制御器62と、を備える。
タイヤ駆動制御装置60は、エンジントルク指令信号Tengと、タイヤ回転センサ41から送信されるタイヤ回転速度検出信号ωtireと、タイヤ軸トルクセンサ40から送信されるタイヤ軸トルク検出信号Tshと、に基づいて、タイヤ駆動モータ38に対する制御入力に相当するモータトルク指令信号Itireを生成し、このモータトルク指令信号Itireをタイヤ駆動モータ38へ入力する。ここでエンジントルク指令信号Tengは、仮想車両の動力発生源である仮想的なエンジンで発生するエンジントルクに対する指令信号であり、仮想車両におけるアクセルペダルの開度に相当する。このエンジントルク指令信号Tengは、図示しないシミュレーション演算によって算出される。
タイヤ駆動車両モデル演算部61は、エンジントルク指令信号Teng及びタイヤ回転速度検出信号ωtireに基づいて、タイヤ軸トルク検出信号Tshに対する目標に相当するタイヤ軸トルク指令信号Tsh_cmdを生成し、このタイヤ軸トルク指令信号Tsh_cmdをタイヤ軸トルク制御器62へ入力する。
一般的な車両において、エンジンで発生したトルクをタイヤに伝達するドライブトレインには、クラッチやドライブシャフト等の様々なばね要素が存在する。このため、例えばエンジントルクを急激に変化させると、これらばね要素のねじり振動によって、タイヤを駆動する軸トルクが振動する。そこでタイヤ駆動車両モデル演算部61では、このような実車両において発生し得る軸トルクの振動現象を再現するべく、エンジントルク指令信号Teng及びタイヤ回転速度検出信号ωtireに基づいて、仮想車両におけるドライブトレインの入出力特性を模した車両モデルを用いた演算を行うことによってタイヤ軸トルク指令信号Tsh_cmdを生成する。
図5は、タイヤ駆動車両モデル演算部61において参照される車両モデルMの構成を模式的に示す図である。図5に示すように、車両モデルMは、慣性体M1と、ばね要素M2と、入力軸M3と、変速要素M4と、出力軸M5と、回転体M6と、を直列に連結して構成される。
慣性体M1は、仮想車両におけるエンジンに相当し、所定のエンジン慣性モーメントEGJによって特徴付けられる。車両モデルMにおいて、慣性体M1は、エンジン慣性モーメントEGJの下でエンジントルク指令信号Tengに応じたトルクを発生する。
ばね要素M2は、仮想車両のドライブトレインにおけるクラッチやドライブシャフト等に相当し、所定のばね剛性Kによって特徴付けられる。車両モデルMにおいて、ばね要素M2は、ばね剛性Kの下で慣性体M1と入力軸M3とを連結する。
変速要素M4は、仮想車両のドライブトレインにおけるトランスミッション等に相当し、所定のギヤ比gによって特徴付けられる。車両モデルMにおいて、変速要素M4は、入力軸M3と出力軸M5との間においてギヤ比gの下で変速してトルクを伝達する。
出力軸M5は、タイヤ試験装置Sにおけるタイヤ駆動軸42に相当する。車両モデルMにおいて、出力軸M5は、変速要素M4と回転体M6とを連結する。
回転体M6は、タイヤ試験装置SにおけるタイヤTに相当する。車両モデルMにおいて、回転体M6は、タイヤ回転速度検出信号ωtireに応じた速度で回転する。
タイヤ駆動車両モデル演算部61では、以上のような車両モデルMに対しエンジントルク指令信号Teng及びタイヤ回転速度検出信号ωtireを入力したときに、この車両モデルMの出力軸M5で発生する軸トルクをタイヤ軸トルク指令信号Tsh_cmdとして生成する。
次に、図6を参照しながらタイヤ駆動車両モデル演算部61におけるタイヤ軸トルク指令信号Tsh_cmdを生成する具体的な手順について説明する。
図6は、タイヤ駆動車両モデル演算部61の制御回路の構成を示す図である。
タイヤ駆動車両モデル演算部61は、離散時間系のデジタルコントローラであり、所定のサンプリング周期Tsの下で上述の車両モデルMの運動方程式を用いた演算を行うことによってタイヤ軸トルク指令信号Tsh_cmdを生成する。ここで車両モデルMの運動方程式をz変換したものは、下記式(3-1)~(3-3)によって表される。
Figure 0007175446000003
ここで上記式(3-1)~(3-3)及び図6において、“z”は複素数であり、“ωeng”は車両モデルMの慣性体M1の速度に相当し、“T1”は車両モデルMの入力軸M3における軸トルクに相当する。また上記式(3-1)~(3-3)及び図6においてエンジン慣性モーメントEGJ及びギヤ比gの具体的な値は、仮想車両として想定する車両の設計値が用いられる。またばね剛性Kの具体的な値は、仮想車両として想定する車両の設計値に基づいて設定される。なおこのばね剛性Kの具体的な値を設定する手順については、後に説明する。
図4に戻り、タイヤ軸トルク制御器62は、タイヤ軸トルク検出信号Tshと上述のタイヤ駆動車両モデル演算部61によって生成されるタイヤ軸トルク指令信号Tsh_cmdとに基づいて、タイヤ駆動モータ38に対する制御入力に相当するモータトルク指令信号Itireを生成し、このモータトルク指令信号Itireをタイヤ駆動モータ38へ入力する。より具体的には、タイヤ軸トルク制御器62は、タイヤ軸トルク指令信号Tsh_cmdとタイヤ軸トルク検出信号Tshとの偏差が無くなるように、所定のフィードバック制御アルゴリズムに従ってモータトルク指令信号Itireを生成し、タイヤ駆動モータ38へ入力する。
次に、以上のようなタイヤ駆動制御装置60の効果について、参考例及び比較例のタイヤ駆動制御装置と比較しながら説明する。
ここで参考例及び比較例のタイヤ駆動制御装置は、本実施形態に係るタイヤ駆動制御装置60と、タイヤ駆動車両モデル演算部61の構成が異なる。より具体的には、参考例及び比較例のタイヤ駆動車両モデル演算部では、図7に示すような車両モデルM´に基づいてタイヤ軸トルク指令信号Tsh_cmdを生成する。
図7に示すように、参考例及び比較例の車両モデルM´は、第1慣性体M1´と、第1ばね要素M2´と、変速要素M3´と、第2慣性体M4´と、第2ばね要素M5´と、出力軸M6´と、回転体M7´と、を直列に連結して構成される。
第1慣性体M1´は、仮想車両におけるエンジンに相当し、所定のエンジン慣性モーメントEGJによって特徴付けられる。車両モデルM´において、第1慣性体M1´は、エンジン慣性モーメントEGJの下でエンジントルク指令信号Tengに応じたトルクを発生する。
第1ばね要素M2´は、仮想車両のドライブトレインにおけるクラッチに相当し、所定のばね剛性Kclによって特徴付けられる。車両モデルM´において、第1ばね要素M2´は、ばね剛性Kclの下で第1慣性体M1´と変速要素M3´とを連結する。
変速要素M3´は、仮想車両のドライブトレインにおけるトランスミッション等に相当し、所定のギヤ比gによって特徴付けられる。車両モデルM´において、変速要素M3´は、第1ばね要素M2´と第2慣性体M4´との間においてギヤ比gの下で変速してトルクを伝達する。
第2慣性体M4´は、仮想車両のドライブトレインにおけるトランスミッション等に相当し、所定のトランスミッション慣性モーメントJcによって特徴付けられる。車両モデルM´において、第2慣性体M4´は、トランスミッション慣性モーメントJcの下で変速要素M3´と第2ばね要素M5´とを連結する。
第2ばね要素M5´は、仮想車両のドライブトレインにおけるドライブシャフトに相当し、所定のばね剛性によって特徴付けられる。車両モデルM´において、第2ばね要素M5´は、ばね剛性Kdsの下で第2慣性体M4´と出力軸M6´とを連結する。
出力軸M6´は、タイヤ試験装置Sにおけるタイヤ駆動軸42に相当する。車両モデルM´において、出力軸M6´は、第2ばね要素M5´と回転体M7´とを連結する。
回転体M7´は、タイヤ試験装置SにおけるタイヤTに相当する。車両モデルM´において、回転体M7´は、タイヤ回転速度検出信号ωtireに応じた速度で回転する。
以上のように、参考例及び比較例の車両モデルM´(図7参照)と本実施形態に係る車両モデルM(図5参照)とを比較すると、車両モデルMは1つのばね要素M2及び1つの慣性体M1を備えるのに対し、参考例及び比較例の車両モデルM´は2つのばね要素M2´,M5´及び2つの慣性体M1´,M4´を備える点において異なる。すなわち、参考例及び比較例の車両モデルM´は、ドライブトレインを構成する複数の部品のうち主なばね要素であるクラッチ及びドライブシャフトをその位置を考慮して独立して扱っており、さらにトランスミッションの慣性モーメントを考慮している点において、本実施形態に係る車両モデルMよりも現実の車両に則したものとなっている。
図8は、参考例のタイヤ駆動制御装置のタイヤ駆動車両モデル演算部の制御回路の構成を示す図である。参考例のタイヤ駆動車両モデル演算部は、連続時間系のコントローラであり、その制御回路は、図7に示す車両モデルM´に基づいて図8に示すように構築される。ここで車両モデルM´の運動方程式をラプラス変換したものは、下記式(4-1)~(4-4)によって表される。
Figure 0007175446000004
ここで上記式(4-1)~(4-4)及び図8において、“s”はラプラス演算子であり、“Tcl”は車両モデルM´の第1ばね要素M2´と変速要素M3´との間の軸トルクに相当し、“ωc”は車両モデルM´の第2慣性体M4´の速度に相当する。
図9は、参考例のタイヤ駆動制御装置に対しステップ状に変化するエンジントルク指令信号Tengを入力したときにおけるタイヤ軸トルク指令信号Tsh_cmd(図9中太破線)及びタイヤ軸トルク検出信号Tsh(図9中の細線)の応答を示す図である。図9の例では、エンジントルク指令信号Tengを時刻t0において0から正の所定値にステップ状に変化させた。また図9の例では、エンジン慣性モーメントEGJの値を“0.2”とし、ばね剛性Kclの値を“2000”とし、ギヤ比gの値を“15”とし、トランスミッション慣性モーメントJcの値を“0.01”とし、ばね剛性Kdsの値を“10000”とした。
図9に示すように、参考例のタイヤ駆動制御装置によれば、エンジントルク指令信号Tengを時刻t0において急激に変化させると、これに応じてタイヤ軸トルク指令信号Tsh_cmdは振動し、さらにタイヤ軸トルク検出信号Tshはこれに追従するように振動する。上述のように参考例のタイヤ駆動車両モデル演算部において参照する車両モデルM´は、本実施形態に係る車両モデルMよりも現実の車両に則したモデルとなっている。このため連続時間系のコントローラである参考例のタイヤ駆動制御装置による制御結果は、離散時間系のデジタルコントローラである本実施形態に係るタイヤ駆動制御装置に対する規範となる。
図10は、比較例のタイヤ駆動制御装置のタイヤ駆動車両モデル演算部の制御回路の構成を示す図である。比較例のタイヤ駆動車両cモデル演算部は、離散時間系のデジタルコントローラであり、その制御回路は、図7に示す車両モデルM´に基づいて図10に示すように構築される。ここで車両モデルM´の運動方程式をz変換したものは、下記式(5-1)~(5-4)によって表される。
Figure 0007175446000005
図11は、比較例のタイヤ駆動制御装置に対しステップ状に変化するエンジントルク指令信号Tengを入力したときにおけるタイヤ軸トルク指令信号Tsh_cmd(図11中の太破線)及びタイヤ軸トルク検出信号Tsh(図11中の細線)の応答を示す図である。図11の例では、エンジントルク指令信号Tengを時刻t0において0から正の所定値にステップ状に変化させた。また図11の例では、サンプリング周期Tsの値を“0.001”とし、他の慣性モーメントEGJ等の値は図9の参考例と同じとした。
図11に示すように、比較例のタイヤ駆動制御装置によれば、エンジントルク指令信号Tengを時刻t0において急激に変化させると、これに応じてタイヤ軸トルク指令信号及びタイヤ軸トルク検出信号は直ちに発散する。このように比較例のタイヤ駆動制御装置は上述の参考例のタイヤ駆動制御装置と同じ車両モデルM´に基づいて構築されたものであるにも関わらず、軸トルク制御が発散する。これは以下のような理由による。
離散時間系の安定条件は、閉ループ伝達関数の特性多項式H(z)において、H(z)=0とする全ての解の絶対値が1未満であることが知られている。ここで上記運動方程式(5-1)~(5-4)に基づいて導出される特性多項式H(z)は、下記式(6)のようになる。また下記特性多項式H(z)において、上述のようなパラメータの設定の下では、H(z)=0とする4つの解の絶対値は、[44,0.02,1,1]となり、上記安定条件を満たさない。
Figure 0007175446000006
以上のように、より現実の車両に則した車両モデルM´に基づいて構築された離散時間系のタイヤ駆動車両モデル演算部では、軸トルク制御を安定して行うことができない。
図12は、本実施形態に係るタイヤ駆動制御装置60に対しステップ状に変化するエンジントルク指令信号Tengを入力したときにおけるタイヤ軸トルク指令信号Tsh_cmd(図12中の太破線)及びタイヤ軸トルク検出信号Tsh(図12中の細線)の応答を示す図である。図12の例では、エンジントルク指令信号Tengを時刻t0において0から正の所定値にステップ状に変化させた。
また図12の例では、ばね剛性Kの値は、下記式(7)によって設定した。また図12の例では、サンプリング周期Tsや他の慣性モーメントEGJ等の値は、図11の比較例と同じとした。
Figure 0007175446000007
ここでばね剛性Kの設定式(7)の導出過程について説明する。規範となる図7に示す参考例の車両モデルM´では2つのばね要素M2´,M5´が定義されている。しかしながら図9に示す振動波形は、ばね要素を1つのみ含む機械モデルにおいて実現される振動波形と類似している。このため、ばね要素M2を1つのみ含む図5に示す本実施形態に係る車両モデルMであっても、このばね要素M2のばね剛性Kを調整することによって、図9に示す振動波形を精度良く再現できると考えられる。
図7に示すように、クラッチを模した第1ばね要素M2´は、トランスミッションを模した変速要素M3´よりもエンジンを模した第1慣性体M1´側に存在するが、これをドライブシャフトを模した第2ばね要素M5´側に換算すると、ばね剛性はKcl×gとなる。ここでトランスミッションを模した第2慣性体M4´の慣性モーメントJcは、エンジン慣性モーメントEGJやタイヤTに作用する車体慣性よりも小さいと考えられる。このため第1ばね要素M2´を変速要素M3´よりも回転体M7´側に移動させた場合、その総合的なばね剛性は、ばね剛性がKcl×gのばね要素とばね剛性がKdsのばね要素を直列に接続したもののばね剛性と同じになると考えられる。またこれら2つのばね要素を直列接続したものの等価ばね剛性Kxは、下記式(8)によって表される。
Figure 0007175446000008
またこのばね剛性Kxは、変速要素M3´よりも第2ばね要素M5´側での等価ばね剛性であるので、このばね剛性を変速要素M3´よりも第1慣性体M1´側に移動させることにより(すなわち、ばね剛性Kxをgで割ることにより)、下記式(9)に示すように、図5に示す車両モデルMにおけるばね要素M2のばね剛性Kに対する設定式が導出される。
Figure 0007175446000009
図12に戻り、以上のようにばね剛性Kが設定されたタイヤ駆動制御装置60によれば、エンジントルク指令信号Tengを時刻t0において急激に変化させると、これに応じてタイヤ軸トルク指令信号Tsh_cmdは振動し、さらにタイヤ軸トルク検出信号Tshはこれに追従するように振動する。すなわち、図12と図9とを比較して明らかなように、本実施形態に係るタイヤ駆動制御装置60によれば、安定した軸トルク制御を実現でき、かつより実際の車両に則した車両モデルM´に基づいて構築した連続時間系のコントローラと同様にタイヤ駆動軸の軸トルクの振動現象を再現できる。
以上、本発明の一実施形態について説明したが、本発明はこれに限らない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。
S…タイヤ試験装置
1…タイヤ試験ユニット
T…タイヤ
2…路面模擬装置
25a…模擬路面
3…タイヤ支持機構(タイヤ接地装置)
37…垂直荷重調整モータ(タイヤ接地装置)
36…回転駆動ユニット
38…タイヤ駆動モータ
40…タイヤ軸トルクセンサ(軸トルクセンサ)
41…タイヤ回転速度センサ(速度センサ)
42…タイヤ駆動軸(駆動軸)
6…総括制御装置
60…タイヤ駆動制御装置
61…タイヤ駆動車両モデル演算部
M…車両モデル
M1…慣性体
M2…ばね要素
M3…入力軸
M4…変速要素
M5…出力軸
M6…回転体
62…タイヤ軸トルク制御器

Claims (3)

  1. タイヤの駆動軸に連結されたタイヤ駆動モータと、前記駆動軸における軸トルクに応じた軸トルク検出信号を生成する軸トルクセンサと、前記タイヤの速度に応じた速度検出信号を生成する速度センサと、前記タイヤを模擬路面に対し接地させるタイヤ接地装置と、を備えるタイヤ試験装置を制御対象とし、前記タイヤを構成要素の一部とする仮想車両の動力発生源に対する上位トルク指令信号、前記軸トルク検出信号及び前記速度検出信号に基づいて前記タイヤ駆動モータに対する制御入力を生成するタイヤ試験装置のタイヤ駆動制御装置であって、
    前記上位トルク指令信号及び前記速度検出信号に基づいて前記軸トルク検出信号に対する軸トルク指令信号を生成するタイヤ駆動車両モデル演算部と、
    前記軸トルク指令信号と前記軸トルク検出信号との偏差が無くなるように前記制御入力を生成するタイヤ軸トルク制御器と、を備え、
    前記タイヤ駆動車両モデル演算部は、前記上位トルク指令信号に応じたトルクを発生する慣性体と、前記速度検出信号に応じた速度で回転する回転体と、前記回転体に接続された出力軸と、入力軸と前記出力軸との間で変速してトルクを伝達する変速要素と、前記慣性体と前記入力軸とを連結するばね要素と、を備え、かつ前記慣性体と前記ばね要素と前記入力軸と前記変速要素と前記出力軸と前記回転体とをこの順で直列に連結して構成される車両モデルにおいて、前記出力軸で発生する軸トルクを前記軸トルク指令信号として生成することを特徴とするタイヤ試験装置のタイヤ駆動制御装置。
  2. 前記タイヤ駆動車両モデル演算部は、所定のサンプリング周期Tsの下で前記車両モデルの運動方程式を用いた演算を行うことにより前記軸トルク指令信号を生成し、
    z変換された前記運動方程式は、下記式によって表されることを特徴とする請求項1に記載のタイヤ試験装置のタイヤ駆動制御装置。
    Figure 0007175446000010
    ここで上記式において、“z”は複素数であり、“Teng”は前記上位トルク指令信号であり、“ωtire”は前記速度検出信号であり、“Tsh_cmd”は前記軸トルク指令信号であり、“ωeng”は前記慣性体の速度に相当し、“T1”は前記入力軸における軸トルクに相当し、“EGJ”は前記慣性体の慣性モーメントに相当し、“K”は前記ばね要素のばね剛性に相当し、“g”は前記変速要素のギヤ比に相当する。
  3. 前記ばね剛性Kは、下記式によって設定されることを特徴とする請求項2に記載のタイヤ試験装置のタイヤ駆動制御装置。
    Figure 0007175446000011
    ここで上記式において、“Kcl”は前記仮想車両において前記動力発生源と前記タイヤとの間に設けられるクラッチのばね剛性に相当し、“Kds”は前記仮想車両において前記クラッチと前記タイヤとの間に設けられるドライブシャフトのばね剛性に相当する。
JP2019015671A 2019-01-31 2019-01-31 タイヤ試験装置のタイヤ駆動制御装置 Active JP7175446B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015671A JP7175446B2 (ja) 2019-01-31 2019-01-31 タイヤ試験装置のタイヤ駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015671A JP7175446B2 (ja) 2019-01-31 2019-01-31 タイヤ試験装置のタイヤ駆動制御装置

Publications (2)

Publication Number Publication Date
JP2020122745A JP2020122745A (ja) 2020-08-13
JP7175446B2 true JP7175446B2 (ja) 2022-11-21

Family

ID=71993535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015671A Active JP7175446B2 (ja) 2019-01-31 2019-01-31 タイヤ試験装置のタイヤ駆動制御装置

Country Status (1)

Country Link
JP (1) JP7175446B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931587B (zh) * 2023-03-09 2023-05-23 荣成康派斯新能源车辆股份有限公司 一种房车轮胎载重能力检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177259A (ja) 2002-11-27 2004-06-24 Meidensha Corp エンジン試験装置の制御装置
JP2011127953A (ja) 2009-12-16 2011-06-30 Ono Sokki Co Ltd タイヤ試験装置
JP2016133377A (ja) 2015-01-19 2016-07-25 株式会社明電舎 ダイナモメータシステムの制御装置
JP2018146421A (ja) 2017-03-07 2018-09-20 株式会社明電舎 試験装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177259A (ja) 2002-11-27 2004-06-24 Meidensha Corp エンジン試験装置の制御装置
JP2011127953A (ja) 2009-12-16 2011-06-30 Ono Sokki Co Ltd タイヤ試験装置
JP2016133377A (ja) 2015-01-19 2016-07-25 株式会社明電舎 ダイナモメータシステムの制御装置
JP2018146421A (ja) 2017-03-07 2018-09-20 株式会社明電舎 試験装置

Also Published As

Publication number Publication date
JP2020122745A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
JP4266818B2 (ja) 操縦安定性の実時間評価用タイヤ試験機
CN109060369B (zh) 一种分布式电传动系统测试方法、装置及台架
JP4264725B2 (ja) 電動パワーステアリング装置用試験システム
US7421890B2 (en) Tire HIL simulator
KR102479175B1 (ko) 테스트 스탠드 상에서 테스트 런을 수행하기 위한 방법 및 장치
JP4005618B2 (ja) タイヤの制動特性試験装置
EP2796850B1 (en) Vehicle test system
US20180357338A1 (en) Kinematics table generation for steering hardware simulator
JP6801525B2 (ja) 試験装置
JP7175446B2 (ja) タイヤ試験装置のタイヤ駆動制御装置
JP6416006B2 (ja) シミュレーション装置
US11879809B2 (en) Vehicle action simulation method and vehicle action simulation system
JP4105492B2 (ja) 負荷試験システムおよび負荷試験方法
JP7175445B2 (ja) タイヤ試験装置の軸トルク制御器
JP7326937B2 (ja) タイヤ試験システム
JPS6310775B2 (ja)
Vörös et al. Small-scale experimental test rig for lateral vehicle control
Zeitvogel et al. Holistic vehicle parametrization on a handling roadway
JPH1045011A (ja) パワーステアリング試験装置
JP2000314683A (ja) エンジン試験装置
JP2000132083A (ja) 車両用シミュレーションシステム
JP2008107246A (ja) 機器構成ユニット用シミュレーションシステムと、それを利用した機器構成ユニットの製造方法
RU2640667C2 (ru) Автоматизированная система управления нагружающим устройством для стендовых испытаний автомобильных энергетических установок
JP5414582B2 (ja) タイヤ試験装置
JPWO2022032320A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7175446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150