JP7172630B2 - エンジンの冷却構造 - Google Patents

エンジンの冷却構造 Download PDF

Info

Publication number
JP7172630B2
JP7172630B2 JP2019006068A JP2019006068A JP7172630B2 JP 7172630 B2 JP7172630 B2 JP 7172630B2 JP 2019006068 A JP2019006068 A JP 2019006068A JP 2019006068 A JP2019006068 A JP 2019006068A JP 7172630 B2 JP7172630 B2 JP 7172630B2
Authority
JP
Japan
Prior art keywords
cylinder
peripheral wall
wall
coolant
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019006068A
Other languages
English (en)
Other versions
JP2020114996A (ja
Inventor
晋治 渡部
達也 ▲高▼籏
義昭 早水
佳太 渡邉
幹祐 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019006068A priority Critical patent/JP7172630B2/ja
Publication of JP2020114996A publication Critical patent/JP2020114996A/ja
Application granted granted Critical
Publication of JP7172630B2 publication Critical patent/JP7172630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、一列に並ぶ複数の気筒が形成されたシリンダブロックを備え、冷却液が内側を流通するウォータジャケットおよび当該ウォータジャケットに冷却液を導入する冷却液導入部が前記シリンダブロックに形成されたエンジンの冷却構造に関する。
車両等に設けられるエンジンでは、シリンダブロックにシリンダボア壁を囲むようにウォータジャケットを形成し、ウォータジャケットに冷却液を流通させることでエンジン本体を冷却することが行われている。また、シリンダボア壁を囲むスペーサをウォータジャケットに収容し、スペーサによってウォータジャケット内における冷却液の流通経路を区画するようにした構造が知られている。
例えば、特許文献1には、ウォータジャケットにスペーサを収容し、冷却液がウォータジャケットの上部のみを流通するように、スペーサによってウォータジャケットの内側空間を区画した構造が開示されている。具体的には、特許文献1の構造では、ウォータジャケットに冷却液を導入する冷却液導入部がシリンダブロックの外周壁に形成され、スペーサが、その上部はシリンダブロックの外周壁に近接する一方その下部はシリンダボア壁(シリンダライナ)に近接するように構成されるとともに、スペーサの上部に、前記冷却液導入部から導入された冷却液をスペーサの内側に導入する開口部が形成されている。
特許文献1の構造によれば、冷却液導入部からウォータジャケットに導入された冷却液の多くがスペーサの上部とシリンダボア壁との間の空間に導入されることになり、シリンダボア壁の上部が効果的に冷却される。
特開2015-190403号公報
特許文献1の構造では、前記のように、冷却液導入部からウォータジャケットに導入された冷却液の多くを、スペーサの上部とシリンダボア壁との間の空間に導入することができる。しかしながら、スペーサの下部とシリンボア壁との間には隙間が存在する。そのため、スペーサの上部とシリンダボア壁との間の空間に導入された冷却液の一部が、この隙間に漏れて、シリンダボア壁の下部が冷却液によって過度に冷却されるおそれがある。ここで、前記の隙間をゼロにすることも考えられるが、この場合にはスペーサのウォータジャケット内への組み付け性が著しく悪化する。
本発明は、前記の事情に鑑みて成されたものであり、シリンダボア壁の上部を効果的に冷却しつつシリンダボア壁の下部が過度に冷却されるのを防止できるエンジンの冷却構造を提供することを目的とする。
前記の課題を解決するために、本発明は、一列に並ぶ複数の気筒が形成されたシリンダブロックを備え、冷却液が内側を流通するウォータジャケットおよび当該ウォータジャケットに冷却液を導入する冷却液導入部が前記シリンダブロックに形成されたエンジンの冷却構造であって、前記ウォータジャケット内に収容されて、前記複数の気筒のシリンダボア壁を囲んで前記ウォータジャケットの内側空間を気筒側の空間と反気筒側の空間とに区画する周壁を含むスペーサを備え、前記周壁の少なくとも一部は、当該周壁の下部を構成する第1周壁の方が当該周壁の上部を構成する第2周壁よりも前記シリンダボア壁に近い位置に配置されるように構成されており、前記第1周壁には、上下方向に延び且つ前記シリンダボア壁に向かって突出する突出部が設けられている、ことを特徴とする(請求項1)。
本発明によれば、スペーサの周壁の上部を構成する第2周壁の方が、周壁の下部を構成する第1周壁よりもシリンダボア壁から遠い位置に配置されており、ウォータジャケットの上部においてスペーサとシリンダボア壁との間に流路面積の大きい通路が形成されている。そのため、このウォータジャケットの上部においてスペーサとシリンダボア壁との間に形成された通路に冷却液を多量に流すことができ、シリンダボア壁の上部を効果的に冷却できる。しかも、本発明では、第1周壁にシリンダボア壁に突出する突出部が設けられている。そのため、第2周壁とシリンダボア壁との間の通路から第1周壁とシリンダボア壁との間の隙間に向かうような冷却液の流れが形成されるのを防止でき、この隙間に冷却液が流れ込むのを抑制できる。従って、第1周壁とシリンダボア壁との間に隙間を形成してスペーサの組み付け性を良好にしつつ、シリンダボア壁の下部が冷却液によって過度に冷却されるのを回避できる。
また、本発明によれば、先端気筒の気筒配列方向の一方側の端部付近において、冷却液をスペーサの周壁とシリンダブロックの内周面との間に流すことができる。そのため、他の気筒と隣接していないことで低温に維持されやすい先端気筒の気筒配列方向の一方側の端部が、冷却液導入部からウォータジャケットに流入した直後の比較的低温の冷却液との直接接触によって過度に冷却されるのを防止することができる。
しかも、スペーサに、先端気筒の中心を挟んで相対向する位置に上下方向に延び且つシリンダボア壁に向かって突出する第2突出部が設けられて、これら第2突出部が各冷却液案内部よりも気筒配列方向の一方側に配置されている。そのため、これら第2突出部によって、各冷却液案内部を通って第2周壁とシリンダボア壁との間の空間に導入された冷却液が気筒配列方向の一方側に向かうのを規制することができる。従って、先端気筒の気筒配列方向の一方側の端部において冷却液とシリンダボア部とが直接接触するのを確実に防止でき、この端部が過度に冷却されるのをより確実に防止できる。
前記構成において、好ましくは、前記突出部は、前記第1周壁の上端から下方に延びている(請求項2)。
この構成によれば、第2周壁とシリンダボア壁との間の通路から第1周壁とシリンダボア壁との間の隙間に冷却液が流れ込むのをより確実に防止できる。
前記構成において、好ましくは、前記シリンダボア壁の外周面およびこれに対向する前記周壁の内周面は、気筒ごとに、上面視で略円弧状に延びるように形成され、気筒配列方向と直交する方向をエンジン幅方向としたとき、前記突出部は、気筒の中心を通ってエンジン幅方向に延びる平面上に位置するように設けられている(請求項3)。
この構成では、シリンダボア壁とスペーサとの間の隙間の気筒配列方向の寸法が比較的大きい部分に突出部が配設される。そのため、スペーサの組み付け性を高めることができる。
前記構成において、好ましくは、前記第1周壁および前記第2周壁は、複数の気筒のシリンダボア壁を囲んでおり、前記第1周壁には、対向する気筒ごとに、一対の前記突出部が気筒の中心を挟んで相対向するように設けられている(請求項4)。
この構成によれば、第2周壁とシリンダボア壁との間の通路から第1周壁とシリンダボア壁との間の隙間に冷却液が流れ込むのをより一層確実に防止できる。
前記構成において、好ましくは、前記スペーサは、エンジン幅方向について互いに対向し、前記第2周壁と前記シリンダボア壁との間の冷却液を当該第2周壁と前記シリンダブロックの内周面との間の空間に案内する一対の導出側冷却液案内部を備え、前記各導出側冷却液案内部は、前記シリンダブロックのうち気筒配列方向について前記先端気筒と反対側の端部に設けられた基端気筒と対向しており、前記スペーサは、気筒配列方向の両端部に設けられて、上下方向に延び且つ前記シリンダボア壁に向かって突出する第3突出部を備える(請求項)。
この構成によれば、基端気筒の先端気筒と反対側の端部付近において、冷却液をスペーサの周壁とシリンダブロックの内周面との間に流すことができる。しかも、第2周壁とシリンダボア壁との間を通って各導出側冷却液案内部に到達した冷却液が、前記端部付近において周壁とシリンダボア壁との間の隙間に入り込むのを前記第3突出部によって防止できる。従って、他の気筒と隣接していないことで低温に維持されやすい基端気筒の前記の端部が、冷却液によって過度に冷却されるのを防止することができる。また、先端気筒の気筒配列方向の一方側の端部においても、第3突出部によって冷却液とシリンダボア壁とが直接接触するのをより一層確実に防止することができる。
前記構成において、好ましくは、前記各導出側冷却案内部は、前記周壁のうち前記基端気筒の中心を挟んで相対向する位置に設けられており、前記スペーサは、前記周壁の前記各導出側冷却案内部から下方の部分に、上下方向に延び且つ前記シリンダボア壁に向かって突出する第4突出を備える(請求項)。
この構成によれば、導出側冷却案内部の通過途中に冷却液が周壁の下部とシリンダボア壁との間の隙間に流れ込むのを防止できる。
以上説明したように、本発明によれば、シリンダボア壁の上部を効果的に冷却しつつシリンダボア壁の下部が過度に冷却されるのを防止できる。
本発明の実施形態に係るエンジンシステムの全体構成を示す概略図である。 エンジン本体周りを排気側から見た概略斜視図である。 エンジン本体周りを吸気側から見た概略斜視図である。 シリンダブロックとスペーサとを示した概略斜視図である。 シリンダブロックの概略上面図である。 スペーサが収容された状態のシリンダブロックの上面図である。 図6のVII-VII線における概略断面図である。 図6のVIII-VIII線における概略断面図である。 スペーサの概略斜視図である。 スペーサの排気側の側面図である。 スペーサの吸気側の側面図である。 図10のXII-XII線におけるスペーサの概略断面図である。 図12のXIII-XIII線におけるスペーサの概略断面図である。 図7のXIV-XIV線におけるスペーサの概略断面図である。 図7のXV-XV線におけるスペーサの概略断面図である。 シリンダブロックの冷却液導入部近傍を拡大して示した概略側面図である。 図10のXVII-XVII線におけるスペーサの概略断面図である。 ウォータジャケットの上部における冷却液の流れを模式的に示した図である。 ウォータジャケットの下部における冷却液の流れを模式的に示した図である。
以下、図面を参照して、本発明の実施形態に係る気筒エンジンの冷却構造について説明する。
(1)全体構成
図1は、本発明の冷却構造が適用されたエンジンシステムの好ましい実施形態を示す概略図である。エンジンシステム100は、エンジン本体1と、ウォータポンプ60と、ラジエータ(RAD)61と、ATFウォーマ(ATF/W)62と、オイルクーラ(O/C)63と、EGRクーラ(EGR/C)64と、ヒータ65とを有する。
エンジン本体1は、図1に示すように、所定の方向に並ぶ4つの略円筒状の気筒2を有する直列4気筒の4サイクルエンジンである。エンジン本体1は、車輪の駆動源として車両に搭載される。エンジン本体1は、気筒2が形成されたシリンダブロック3と、シリンダブロック3の上面を覆う状態でシリンダブロック3に締結されるシリンダヘッド4とを備える。気筒2には、不図示のピストンが上下に移動可能に嵌装されており、ピストンの冠面とシリンダヘッド4の底面とによって、内側で混合気が燃焼する燃焼室が区画されている。本実施形態では、少なくとも一部の運転領域で、混合気が自着火する自着火燃焼が実施されるようになっている。なお、図1では、シリンダブロック3とシリンダヘッド4とを、分離した状態で示している。
以下では、シリンダブロック3に形成された4つの気筒2を、それぞれ図1の右側から順に第1気筒2a、第2気筒2b、第3気筒2c、第4気筒2dという。また、適宜、気筒2の並び方向つまり気筒配列方向を前後方向といい、第1気筒2a側を前、第4気筒2d側を後という。なお、図1では、シリンダヘッド4を前後方向についてシリンダブロック3と反対向きとなるように示しており、シリンダヘッド4においては右側が第4気筒2d、左側が第1気筒2aとなっている。シリンダヘッド4には、気筒2内に吸気を導入するための吸気ポート(不図示)と気筒2から排気ガスを排出するための排気ポート(不図示)とが、気筒2の中心軸を挟んで、気筒配列方向と直交するエンジン本体1の幅方向の一方側と他方側とに分かれて形成されている。以下では、適宜、エンジン本体1の幅方向を左右方向といい、吸気ポートが形成された側を吸気側あるいは左、反対側を排気側あるいは右という。図1等において「EX」は排気側であることを示し、「IN」は吸気側であることを示している。
ウォータポンプ60は、エンジン本体1を冷却するための冷却液を吐出する装置である。シリンダブロック3には、冷却液が流通可能なウォータジャケット20が形成されており、ウォータポンプ60はウォータジャケット20内に冷却液を導入する。
具体的には、シリンダブロック3には、4つの気筒2のシリンダボア壁2eを囲むブロック外周壁10が設けられており、ブロック外周壁10と各気筒2のシリンダボア壁2eとの間にウォータジャケット20が区画されている。ブロック外周壁10には、その外周面に開口してウォータジャケット20と連通する冷却液導入部15が形成されている。ウォータポンプ60は冷却液導入部15と連通する状態でシリンダブロック3に固定されており、ウォータポンプ60から吐出された冷却液は冷却液導入部15を介してウォータジャケット20に導入される。
ラジエータ61は、冷却液を冷却するための装置であり、内側を流通する冷却液を車両の走行風や冷却ファン等によって冷却する。
ATFウォーマ62は、自動変速機9(図2参照)の作動油であるATF(ATF:Automatic transmission fluid)を温めるための装置である。つまり、本実施形態では、エンジン本体1の回転を車軸等に連結される軸に伝達し且つこの回転数を変換可能な自動変速機9がエンジン本体1に接続されており、ATFウォーマ62は自動変速機9内のATFを温める。ATFウォーマ62にはATFと冷却液とがそれぞれ流通する通路が形成されており、ATFウォーマ62内で各通路を流通するATFと冷却液とが熱交換を行うことでATFは加熱される。
オイルクーラ63は、エンジン本体1の各部を潤滑するための潤滑油であるエンジンオイルを冷却するための装置である。オイルクーラ63にはエンジンオイルと冷却液とがそれぞれ流通する通路が形成されており、オイルクーラ63内で各通路を流通するエンジンオイルと冷却液とが熱交換を行うことでエンジンオイルが冷却される。
EGRクーラ64は、EGRガスを冷却するための装置である。つまり、本実施形態では、エンジン本体1から排出された排気ガスの一部をエンジン本体1に導入するべく、エンジン本体1に接続された排気通路(不図示)と吸気通路(不図示)とを連通するEGR通路(不図示)が設けられており、EGRクーラ64は、このEGR通路に設けられている。そして、EGRクーラ64は、EGR通路を通って吸気(エンジン本体1に導入される吸気)に還流される排気ガスであるEGRガスを冷却する。EGRクーラ64にはEGRガスおよび冷却液がそれぞれ流通する通路が形成されており、EGRクーラ64内で各通路を流通するEGRガスと冷却液とが熱交換を行うことでEGRガスが冷却される。
ヒータ65は、車室内等に温かい空気を導入するための暖房用(空調用)のヒータである。ヒータ65には空気と冷却液とがそれぞれ流通する通路が形成されており、ヒータ65内で各通路を流通する空気と冷却液とが熱交換を行うことで空気が加熱される。
このように冷却液はエンジン本体1を冷却するとともに各装置において対象流体と熱交換を行うようになっており、エンジンシステム100には、ウォータポンプ60とエンジン本体1および各装置との間で冷却液を循環させるための複数の通路が設けられている。具体的には、エンジンシステム100は、ウォータポンプ60とラジエータ61との間で冷却液を循環させる主通路L10と、ウォータポンプ60とATFウォーマ62およびオイルクーラ63との間で冷却液を循環させる第1副通路L20と、ウォータポンプ60とEGRクーラ64およびヒータ65との間で冷却液を循環させる第2副通路L30とを備える。
主通路L10は、冷却液導入部15、ウォータジャケット20、シリンダヘッド4に形成された第1ヘッド側ジャケット4a、第1ヘッド側ジャケット4aとラジエータ61とをつなぐラジエータ導入通路L11、ラジエータ61とウォータポンプ60とをつなぐラジエータ導出通路L12を含む。
第1ヘッド側ジャケット4aは、シリンダヘッド4の内部に形成された前後方向に延びる通路である。第1ヘッド側ジャケット4aは、各気筒2の中心付近を通るように形成されている。第1ヘッド側ジャケット4aの後端部と、ウォータジャケット20の後端部とは上下方向に連通している。第1ヘッド側ジャケット4aは、シリンダヘッド4の前端部の吸気側側面に開口しており、この開口部4c(以下、第1ヘッド側導出部4cという)にラジエータ導入通路L11が接続されている。
主通路L10では、ウォータポンプ60から吐出された冷却液は、冷却液導入部15を通ってウォータジャケット20内に流入し、ウォータジャケット20の後端部から第1ヘッド側ジャケット4a内に入った後、第1ヘッド側導出部4cを通ってラジエータ導入通路L11に流入する。その後、冷却液はラジエータ61で冷却され、ラジエータ導出通路L12を通って再びウォータポンプ60に戻る。
ラジエータ導出通路L12には、ラジエータ導出通路L12を開閉する主開閉装置TS1が設けられている。主開閉装置TS1は、サーモスタットと開閉バルブとを含む。ラジエータ導出通路L12を流通する冷却液の温度が所定の温度未満のときは、主開閉装置TS1の開閉バルブは閉弁し、ラジエータ導出通路L12ひいては主通路L10における冷却液の流通は停止する。一方、ラジエータ導出通路L12を流通する冷却液の温度が所定の温度以上のときは、主開閉装置TS1の開閉バルブは開弁し、ラジエータ導出通路L12ひいては主通路L10を冷却液が流通可能となる。この所定の温度は、例えば、95℃程度に設定される。本実施形態では、車両に設けられたPCM(Power Control Module)からの指令に基づいて前記の所定の温度が変更されるようになっている。なお、PCMは、エンジンシステム100の各部を制御するための装置であり、周知のとおり、CPU、ROM、RAM等から構成されるマイクロプロセッサである。
第1副通路L20は、冷却液導入部15、ウォータジャケット20、シリンダブロック3に形成された第1ブロック側導出部16、第1ブロック側導出部16とATFウォーマ62とをつなぐATFウォーマ導入通路L21、ATFウォーマ62とオイルクーラ63とをつなぐATFウォーマ導出通路L22、オイルクーラ63とウォータポンプ60とをつなぐオイルクーラ導出通路L23を含む。
第1副通路L20では、ウォータポンプ60から吐出された冷却液は、冷却液導入部15を通ってウォータジャケット20内に流入した後、第1ブロック側導出部16からATFウォーマ導入通路L21に導出される。そして、冷却液は、ATFウォーマ62に流入してATFを加熱した後、ATFウォーマ導出通路L22を通ってオイルクーラ63に流入する。ATFを加熱することで降温した冷却液は、オイルクーラ63にてオイルを冷却し、その後、オイルクーラ導出通路L23を通って、ウォータポンプ60に戻る。
ATFウォーマ導入通路L21には、ATFウォーマ導入通路L21を開閉する第1副開閉装置TS2が設けられている。第1副開閉装置TS2は、サーモスタットと開閉バルブとを含む。ATFウォーマ導入通路L21を流通する冷却液の温度が所定の温度未満のときは、第1副開閉装置TS2の開閉バルブは閉弁し、ATFウォーマ導入通路L21ひいては第1副通路L20における冷却液の流通は停止する。一方、ATFウォーマ導入通路L21を流通する冷却液の温度が所定の温度以上のときは、第1副開閉装置TS2の開閉バルブは開弁し、ATFウォーマ導入通路L21ひいては第1副通路L20を冷却液が流通可能となる。この所定の温度は、例えば、65℃程度に設定されている。
第2副通路L30は、冷却液導入部15、ウォータジャケット20、シリンダブロック3に形成された第2ブロック側導出部17、第2ブロック側導出部17とEGRクーラ64とをつなぐEGRクーラ導入通路L31、EGRクーラ64とヒータ65とをつなぐEGRクーラ導出通路L32、とシリンダヘッド4に形成された第2ヘッド側ジャケット4bとヒータ65とをつなぐヒータ導出通路L33、第2ヘッド側ジャケット4bとウォータポンプ60とをつなぐヘッド導出通路L34を含む。
第2ヘッド側ジャケット4bは、シリンダヘッド4の内部に形成された前後方向に延びる通路である。第2ヘッド側ジャケット4bは、第1ヘッド側ジャケット4aよりも排気側に位置しており、各気筒2の排気ポート周りを通っている。第2ヘッド側ジャケット4bは、シリンダヘッド4の排気側の側面の後端部に開口しており、この開口部4d(以下、ヘッド側導入部4dという)にヒータ導出通路L33が接続されている。また、第2ヘッド側ジャケット4bは、シリンダヘッド4の排気側の側面の前端部に開口しており、この開口部4e(以下、第2ヘッド側導出部4eという)とヘッド導出通路L34とが接続されている。
第2副通路L30では、ウォータポンプ60から吐出された冷却液は、冷却液導入部15を通ってウォータジャケット20内に流入し、その後、第1ブロック側導出部16からEGRクーラ導入通路L31に導出される。そして、冷却液は、EGRクーラ64に流入してEGRガスを冷却した後、EGRクーラ導出通路L32を通ってヒータ65に流入する。EGRガスを冷却することで昇温した冷却液は、ヒータ65にて空気を加熱し、その後、ヒータ導出通路L33を通って、ヘッド側導入部4dを介して第2ヘッド側ジャケット4bに流入する。ヒータ65で空気を加熱することで降温した冷却液は、シリンダヘッド4を冷却しながら第2ヘッド側ジャケット4b内を前方に移動し、第2ヘッド側導出部4eおよびヘッド導出通路L34を通ってウォータポンプ60に戻る。
ヘッド導出通路L34には、ヘッド導出通路L34を開閉する第2副開閉装置SV1が設けられている。第2副開閉装置SV1は、ヘッド導出通路L34を開閉するソレノイドバルブを含む。このソレノイドバルブの開度は、全閉、全開および全閉と全開との間の中間開度に変更できるようになっており、エンジンの運転状態等に応じてPCMにより変更される。ソレノイドバルブが閉弁すると、ヘッド導出通路L34ひいては第2副通路L30における冷却液の流通は停止し、ソレノイドバルブが開弁するとヘッド導出通路L34ひいては第2副通路L30を冷却液が流通可能となる。
本実施形態では、シリンダヘッド4に、第1ヘッド側ジャケット4aと第2ヘッド側ジャケット4bとをつなぐ連絡通路4fが設けられており、第1ヘッド側ジャケット4a内の一部の冷却液が第2ヘッド側ジャケット4bに流入できるようになっている。
ここで、各通路L10、L20、L30はいずれもウォータジャケット20を含んでいる。しかしながら、後述するように、スペーサ30によって、ウォータジャケット20の内部空間は、主通路L10の一部を構成する通路と、第1副通路L20の一部を構成する通路と、第2副通路L30の一部を構成する通路とに区画されている。
(2)エンジン周りの構造
図2は、エンジン本体1周りを排気側から見た概略斜視図である。図3は、エンジン本体1周りを吸気側から見た概略斜視図である。図4は、シリンダブロック3とスペーサ30とを示した概略斜視図である。図5は、スペーサ30がウォータジャケット20に収容されていない状態でのシリンダブロック3の概略上面図である。
エンジン本体1は、シリンダブロック3、シリンダヘッド4に加えて、シリンダヘッド4の上方に設けられたカムシャフト等を覆うヘッドカバー6、各種補機類7およびシリンダヘッド4の下方に設けられたオイルパン5等を備える。自動変速機9は、シリンダブロック3の後方に配置されている。ラジエータ61は、エンジン本体1の吸気側に配置されている。
図5等に示すように、ブロック外周壁10は略直方体状であり、ブロック外周壁10は、排気側において前後方向に延びる排気側壁11と、吸気側において排気側壁11と略平行に延びる吸気側壁12と、排気側壁11の前端部と吸気側壁12の前端部とにわたって左右方向に延びる前側壁13と、排気側壁11の後端部と吸気側壁12の後端部とにわたって左右方向に延びる後側壁14とを備える。
ブロック外周壁10には、その上面に開口する複数のボルト孔19が形成されている。これらボルト孔19には、シリンダブロック3とシリンダヘッド4とを締結するためのヘッドボルトが螺合される。排気側壁11と吸気側壁12とには、その前端部、後端部、および隣接する気筒2の間の部分と対向する部分に、それぞれ気筒側に膨出する膨出部18が形成されており、これら膨出部18にそれぞれ1つずつボルト孔19が形成されている。
図3に示すように、ウォータポンプ60は、ベルト8aと複数のプーリー8bとを介してクランクシャフトと連結されており、クランクシャフトつまりエンジンにより駆動されて冷却液を吐出する。ウォータポンプ60は、排気側壁11の前端部に固定されており、冷却液導入部15は、排気側壁11の前端部に形成されている。図5等に示すように、冷却液導入部15は、前後方向について第1気筒2aの中心よりも前方に位置しており、第1気筒2aのシリンダボア壁2eのうち前側ほど吸気側に位置するように湾曲する部分と対向している。
図3に示すように、第1ヘッド側導出部4cはシリンダヘッド4の吸気側の側面の前端部に開口しており、ラジエータ導入通路L11は、シリンダヘッド4の吸気側の側面の前端部からラジエータ61に向かって左方に延びている。ラジエータ導出通路L12は、エンジン本体1の前方を通ってラジエータ61からウォータポンプ60まで延びている。図2に示すように、主開閉装置TS1はウォータポンプ60近傍に設けられている。
図3、図5等に示すように、第1ブロック側導出部16は吸気側壁12に形成されている。第1ブロック側導出部16は第2気筒2bと対向する位置に形成されている。ATFウォーマ62は、オイルパン5の吸気側部分の後端部に近接して配置されている。ATFウォーマ導入通路L21は、エンジン本体1の吸気側の側面に沿って第1ブロック側導出部16からATFウォーマ62まで延びている。図2に示すように、オイルクーラ63はシリンダブロック3の排気側の側面の下部に固定されている。ATFウォーマ導出通路L22は、オイルパン5の下方を通ってATFウォーマ62からオイルクーラ63まで延びている。オイルクーラ導出通路L23は、オイルクーラ63から上斜め前方に延びており、その上端においてウォータポンプ60に接続されている。
図2、図5等に示すように、第2ブロック側導出部17は排気側壁11に形成されている。第2ブロック側導出部17は、第4気筒2dと対向する位置に形成されている。EGRクーラ64はシリンダブロック3の後方に左右に延びるように配置されている。EGRクーラ導入通路L31は、第2ブロック側導出部17からEGRクーラ64の上方を回り込むように延びており、EGRクーラ64の下面に接続されている。EGRクーラ導出通路L32はEGRクーラ64から上方に延びている。図2ではヒータ65の図示は省略したが、EGRクーラ導出通路L32はヒータ65まで延びている。ヘッド側導入部4dはシリンダヘッド4の排気側の側面の後端部に開口しており、ヒータ導出通路L33はヒータ65からシリンダヘッド4の排気側の側面の後端部まで延びている。第2ヘッド側導出部4eは、シリンダヘッド4の排気側の側面の前端部に開口している。ヘッド導出通路L34は、シリンダヘッド4の排気側の側面の前端部から右方に延びた後下方に延び、その下端においてウォータポンプ60に接続されている。第2副開閉装置SV1は、ヘッド導出通路L34の上下方向の中間部分に設けられている。
(3)スペーサおよびウォータジャケットの詳細構造
スペーサ30およびウォータジャケット20の詳細構造について説明する。
図6は、図5に対応する図であって、ウォータジャケット20にスペーサ30が収容された状態のシリンダブロック3の概略上面図である。図7は、図6のVII-VII線における概略断面図である。図8は、図6のVIII-VIII線における概略断面図である。図9は、スペーサ30の概略斜視図である。図10は、スペーサ30の排気側の側面図であり、図11は、スペーサ30の吸気側の側面図である。図12は、図10のXII-XII線におけるスペーサ30の概略断面図である。図13は、図12のXIII-XIII線におけるスペーサ30概略断面図である。図14は、図7のXIV-XIV線における概略断面図である。図15は、図7のXV-XV線における概略断面図である。
スペーサ30は、ウォータジャケット20の底面と当接する状態でウォータジャケット20内に収容されている。スペーサ30は、例えば、シリンダブロック3の素材(例えばアルミニウム合金)よりも熱伝導率が小さい素材(例えば合成樹脂)で構成されている。
スペーサ30は、各気筒2のシリンダボア壁2eの外周全体を囲み、ウォータジャケット20の内側空間を気筒側と反気筒側とに区画する周壁31を備える。シリンダボア壁2eおよびスペーサ30の周壁31は、各気筒2に沿って上面視で略円弧状に延びている。隣接する気筒2のシリンダボア壁2eどうしはつながっており、シリンダボア壁2eおよび周壁31は、上面視で4つの円が若干オーバーラップしてつながり、このオーバーラップ部分が除去されたような形状を呈している。以下では、適宜、隣接する気筒2のシリンダボア壁2eの接続部分を、ボア間部2fという。周壁31は、ウォータジャケット20の深さと同程度の高さを有している。これに伴い、ウォータジャケット20のほぼ全体が周壁31により気筒側と反気筒側とに区画されている。
第1気筒2aのシリンダボア壁2eと対向する周壁31には、周壁31を貫通する貫通孔からなる一対の第1案内部38が形成されている。これら第1案内部38は左右方向について相対向している。各第1案内部38は、第1気筒2aの後部と対向しており、前後方向について第1気筒2aの中心よりも後方の位置から第1気筒2の後端よりもわずかに前方の位置まで延びている。
第4気筒2dのシリンダボア壁2eと対向する周壁31にも、周壁31を貫通する貫通孔である一対の第2案内部39が形成されている。これら第2案内部39は、第4気筒2dの中心付近と対向しており、左右方向について相対向している。各第2案内部39は、前後方向について第4気筒2dの中心と第4気筒2dの前端との中間位置から第4気筒2dの中心と後端との中間位置まで延びている。周壁31の気筒側の空間と反気筒側の空間とは、これら案内部38、39を介して連通している。
以下では、適宜、吸気側の第1案内部38を吸気側第1案内部38iといい、排気側の第1案内部38を排気側第1案内部38eといい、吸気側の第2案内部39を吸気側第2案内部39iといい、排気側の第2案内部39を排気側第2案内部39eという。なお、本実施形態では、第1気筒2aが請求項の「先端気筒」に相当し、第4気筒2bが請求項の「基端気筒」に相当する。そして、前記の第1案内部38が請求項の「冷却液案内部」に相当し、第2案内部39が請求項の「導出側冷却液案内部」に相当する。
(分割壁)
スペーサ30は、周壁31を上下に区画する分割壁35を備える。分割壁35によって、周壁31は、全周にわたって上側に位置する上側周壁32と下側に位置する下側周壁33とに区画されている。
分割壁35は、中間フランジ35aと段部35bとによって構成されている。
具体的には、周壁31には、その外周面の上下方向の中間位置から反気筒側に突出する中間フランジ35aが形成されている。中間フランジ35aは周壁31の全周にわたって形成されている。図7、図8に示すように、中間フランジ35aは、ブロック外周壁10近傍まで突出している。これより、周壁31とブロック外周壁10との間の空間、つまり、ウォータジャケット20のうち周壁31の外周側の空間は、周壁31の全周にわたって概ね中間フランジ35aよりも上側の空間と下側の空間とに区画されている。
また、周壁31のうち第1案内部38の後端から第2案内部39の前端までの部分は、吸気側と排気側とのいずれにおいても、下側の方が上側よりも気筒側に位置するように構成されており、この部分の上下方向の中間位置には上側部分の下端から気筒側に突出する段部35bが形成されている。中間フランジ35aと段部35bとは同じ高さ位置に設けられており、周壁31のうち第1案内部38の後端から第2案内部39の前端までの部分では、これら中間フランジ35aと段部35bとによって周壁31が上側周壁32と下側周壁33とに区画されている。以下では、適宜、周壁31のうち吸気側第1案内部38iの後端から吸気側第2案内部39iの前端までの部分と、排気側第1案内部38eの後端から排気側第2案内部39eの前端までの部分とをまとめて中央周壁130という。ここで、本実施形態では、中央周壁130の下側周壁33が請求項の「第1周壁」に相当し、中央周壁130の上側周壁32が請求項の「第2周壁」に相当する。
図7等に示すように、段部35bは、シリンダボア壁2eの近傍まで突出している。これより、中央周壁130とシリンダボア壁2eと間の空間、つまり、ウォータジャケット20のうち中央周壁130の内周側の空間は、概ね中央周壁130の全周にわたって段部35bよりも上側の空間と下側の空間とに区画されている。
中間フランジ35aと段部35bとは、各案内部38、39においてつながっており、これら案内部38、39の下面を構成している。つまり、各案内部38、39は、周壁31のうち中間フランジ35aおよび段部35bよりも上側の部分を構成する上側周壁32に形成されており、中間フランジ35aと段部35bから上方に開口している。
周壁31のうち第1案内部38の前端から前方の部分、つまり、周壁31の前端を通り吸気側第1案内部38iの前端と排気側第1案内部38eの前端とにわたって延びる部分(以下、適宜、この部分を前側周壁140という)には、段部35bは形成されておらず、この前側周壁140では、中間フランジ35aのみによって、周壁31が上側周壁32と下側周壁33とに区画されている。つまり、前側周壁140の内周面は上下に区画されておらず外周面のみが中間フランジ35aによって上下に区画されている。これより、図8に示すように、前側周壁140が設けられた領域では、シリンダボア壁2eと周壁31との間の空間つまり周壁31の内周側の空間は上下に区画されず、周壁31とブロック外周壁10との間の空間つまり周壁31の外周側の空間のみが中間フランジ35aによって上下に区画されている。
同様に、周壁31のうち第2案内部38の後端から後側の部分、つまり、周壁31の後端を通り吸気側第2案内部39iの後端と排気側第2案内部39eの後端とにわたって延びる部分(以下、適宜、この部分を後側周壁150という)にも、段部35bは形成されておらず、後側周壁150分でも、中間フランジ35aのみによって周壁31は上側周壁32と下側周壁33とに区画されている。そして、後側周壁150が設けられた領域においても、シリンダボア壁2eと周壁31との間の空間つまり周壁31の内周側の空間は上下に区画されず、周壁31とブロック外周壁10との間の空間つまり周壁31の外周側の空間のみが中間フランジ35aによって上下に区画されている。
ここで、図15に示すように、下側周壁33はその全周にわたってシリンダボア壁2eに近接している。具体的には、周壁31の全周にわたって、下側周壁33とブロック外周壁10との隙間寸法は、下側周壁33とシリンダボア壁2eとの隙間寸法よりも大きくなっている。これに伴い、ウォータジャケット20の下部(分割壁35よりも下方の空間)には、反気筒側に、気筒側よりも流路面積の大きい通路が形成されている。
一方、図14に示すように、中央周壁130の上側周壁32はブロック外周壁10に近接し、前側周壁140および後側周壁150の各上側周壁32はシリンダボア壁2eに近接している。具体的には、前側周壁140の上側周壁32とブロック外周壁10との隙間寸法は前側周壁140の上側周壁32とシリンダボア壁2eとの隙間寸法よりも大きく、後側周壁150の上側周壁32とブロック外周壁10との隙間寸法は後側周壁150の上側周壁32とシリンダボア壁2eとの隙間寸法よりも大きくい。一方で、中央周壁130の上側周壁32とブロック外周壁10との隙間寸法は中央周壁130の上側周壁32とシリンダボア壁2eとの隙間寸法よりも小さい。これに伴い、ウォータジャケット20の上部(分割壁35よりも上方の空間)のうち前側周壁140と後側周壁150が設けられた領域では、反気筒側に気筒側よりも流路面積の大きい通路が形成され、ウォータジャケット20の上部のうち中央周壁130が設けられた領域では気筒側に反気筒側よりも流路面積の大きい通路が形成されている。
ここで、中央周壁130は、第1気筒2aの後部から第4気筒2dの前部まで延びており、シリンダボア壁2eの各ボア間部2fは中央周壁130と対向している。これより、ウォータジャケット20のうち各ボア間部2fの上部と対向する領域には、気筒側に反気筒側よりも流通面積の大きい通路が形成されていることになる。
(分配壁)
周壁31の排気側の外周面には、上下方向に延び、且つ、反気筒側に突出する(ブロック外周壁10に向かって突出する)分配壁36が設けられている。図9等に示すように、分配壁36は、排気側第1案内部38eよりも前側に位置している。本実施形態では、分配壁36は、前後方向について第1気筒2aの中心よりもわずかに前側に位置している。中間フランジ35aは、分配壁36を上下に分割するように周壁31の周方向に延びており、分配壁36は、中間フランジ35aから上方に延びる上側分配壁36aと、中間フランジ35aから下方に延びる下側分配壁36bとで構成されている。
図16は、シリンダブロック3の排気側の前端部を拡大して示した図である。図16に示すように、分配壁36と冷却液導入部15とは対向しており、冷却液導入部15の外側から見て、分配壁36は冷却液導入部15の前後方向の中間位置を上下方向に延びている。中間フランジ35aのうち冷却液導入部15と対向する部分は、冷却液導入部15の下端と上端との間に位置している。これに伴い、冷却液導入部15のブロック外周壁10側の開口部と周壁31との間の空間は、中間フランジ35aの上方且つ上側分配壁36aの前方に位置する第1流入部A1と、中間フランジ35aの上方且つ上側分配壁36aの後方に位置する第2流入部A2と、中間フランジ35aの下方且つ下側分配壁36bの前方に位置する第3流入部A3と、中間フランジ35aの下方且つ下側分配壁36bの後方に位置する第4流入部A4との4つの空間に区画されている。
冷却液導入部15を通じて周壁31をみたときの各流入部A1~A4の面積、詳細には、冷却液導入部15のブロック外周壁側の開口縁と、中間フランジ35aおよび分配壁36の反気筒側の縁とによって区画される各面積は、次のように設定されている。第1流入部A1の面積と第2流入部A2の面積とはほぼ同等に設定されている。これら第1、第2流入部A1、A2の面積は、第3、第4流入部A3、A4の面積よりも大きくされている。第3流入部A3の面積は、第4流入部A4の面積よりも小さくされている。例えば、第3流入部A3の面積は、第4流入部A4の面積のおよそ半分に設定されている。
(リブ)
図12、図13等に示すように、周壁31の内周面には、気筒側に突出する複数のリブが設けられている。
周壁31には、気筒2a~2dごとに、左右方向(つまりエンジン幅方向)について気筒2の中心を挟んで相対向する一対の上下方向に延びるリブ51a~51dが設けられている。具体的には、周壁31には、各気筒2a~2dの中心を通って左右方向に延びる平面上に左右一対のリブ51が設けられている。なお、図13は周壁31の吸気側の内周面を示した図であり、周壁31の排気側の内周面の図示は省略しているが、吸気側の内周面と排気側の内周面とはほぼ同じ構造を有しており、吸気側のリブ51a~51dとこれと対をなす排気側のリブ51a~51dの構造は同じである。
第1気筒2aの中心を通って左右方向に延びる平面上に設けられた左右一対の第1リブ51aは、前側周壁140の上端から下端まで延びている。
第2気筒2b、第3気筒2cおよび第4気筒2dにそれぞれ対応する前記のリブである第2リブ51b、第3リブ51c、第4リブ51dはそれぞれ下側周壁33の上端から下方に延びている。本実施形態では、これら第2~第4リブ51b~51cは下側周壁33の上端から下端まで延びており、第4気筒2dに対応する第4リブ51dは、第2案内部39の下縁から下方に延びている。
また、周壁31には、その前端部と後端部とにも上下方向に延びるリブ51が設けられている。つまり、第1気筒2aを囲む周壁31(前側周壁140)の前端部には第5リブ51eが設けられ、第4気筒2dを囲む周壁31(後側周壁150)の後部には第6リブ51fが設けられている。図10のXVII-XVII線を通る断面図である図17、図12等に示すように、第5リブ51eおよび第6リブ51fは、周壁31の上端から下端まで延びている。
なお、前記の第2リブ51bおよび第3リブ51cは請求項の「突出部」に相当し、第4リブ51dは請求項の「第4突出部」に相当する。また、第1リブ51aは請求項の「第2突出部」に相当し、第5リブ51eおよび第6リブ51fは請求項の「第3突出部」に相当する。
(フランジ)
スペーサ30は、前記の中間フランジ35aの他にも複数のフランジを備える。
スペーサ30は、各第2案内部39の上方の開口縁および上側周壁32の一部をそれぞれ構成する第2フランジ42を備える。各第2フランジ42は、各第2案内部39の前端から後端よりもわずかに後方の位置まで延びている。図6に示すように、各第2フランジ42は、上面視でブロック外周壁10近傍からシリンダボア壁2e近傍まで延びており、各第2案内部38が形成された領域のブロック外周壁10とシリンダボア壁2eとの間の隙間の上部のほぼ全体を覆っている。
スペーサ30は、上側周壁32のうち各第1案内部38が形成された部分の上端からそれぞれ反気筒側に突出する一対の第1フランジ41を備える。第1フランジ41は、前後方向について第1案内部38の全体にわたって延びている。換言すると、第1フランジ41は、前後方向について、前側周壁140の後縁と中央周壁130の前縁とにわたって延びている。
スペーサ30は、前側周壁140の上端から反気筒側に突出する第3フランジ43を備える。第3フランジ43は、前後方向について冷却液導入部15の後端と同じ位置から前側回りで吸気側第1案内部38iの前端まで延びている。
吸気側第1案内部38iに対応する吸気側の第1フランジ41は、第3フランジ43の吸気側の後端部からこれに連続して後方に延びている。排気側第1案内部38eに対応する排気側の第1フランジ41は第3フランジ43の排気側の後端部からわずかに後方に離間した位置から後方に延びている。
このようにして、本実施形態では、第1気筒2aを囲む周壁31の上端のほぼ全周にわたって反気筒側に突出するフランジが設けられている。図6等に示すように、このフランジ(各第1フランジ41および第3フランジ43)は、その全体がブロック外周壁10近傍まで延びている。これより、第1気筒2aを囲む周壁31とブロック外周壁10との間の空間であって前側周壁140とブロック外周壁10との間の空間を含む空間の上方は、そのほぼ全体がフランジにより覆われることになる。
ここで、前記のように、排気側壁11と吸気側壁12の各前端部には膨出部18が形成されている。これに対応して、本実施形態では、第3フランジ43の前端部の排気側の端部は、上面視で、排気側壁11の前端部の膨出部(以下、適宜、排気側第1膨出部という)18eに沿って気筒側に凹むように湾曲しており、排気側第1膨出部18eを囲む形状を呈している。また、第3フランジ43の前端部の吸気側の端部は、上面視で、吸気側壁12の前端部の膨出部(以下、適宜、吸気側第1膨出部という)18iに沿って気筒側に凹むように湾曲しており、吸気側第1膨出部18iを囲む形状を有している。
第3フランジ43の前端部であって第3フランジ43のうちの前側壁13に沿って左右方向に延びる部分の上面には、上方に膨出する規制部43aが複数設けられている。これら規制部43aは、それぞれ前後方向に延びており、左右方向について互いに平行に配設されている。規制部43aは、第3フランジ43の前端部の上面の前後方向全体にわたって延びている。
図9等に示すように、スペーサ30は、上下方向に延びて上側周壁32の後端部から後方に突出する第4フランジ44を備える。第4フランジ44は上側周壁32の上端から中間フランジ35aまで延びている。
図9等に示すように、スペーサ30は、周壁31の周方向に延びて周壁31の下端および下端からわずかに上方の部分から反気筒側に突出する第5フランジ45および第6フランジ46を備える。これら第5、第6フランジ45、46は、周壁31の全周にわたって設けられている。
図11、図15等に示すように、スペーサ30は、下側周壁33の第2気筒2bを囲む部分の吸気側の外周面から反気筒側に突出する第1規制フランジ47を備える。第1規制フランジ47は中間フランジ35aと第5フランジ46とにわたって上下方向に延びている。第1ブロック側導出部16は、下側周壁33と対向する位置に設けられている。第1規制フランジ47は、第1ブロック側導出部16よりも後方に設けられている。
図10、図15等に示すように、スペーサ30は、下側周壁33の第4気筒2dを囲む部分の排気側の外周面から反気筒側に突出する第2規制フランジ48を備える。第2規制フランジ48は中間フランジ35aと第5フランジ45とにわたって上下方向に延びている。第2ブロック側導出部17は、下側周壁33と対向する位置に設けられている。第2規制フランジ48は、第2ブロック側導出部17よりも後方に設けられている。
また、図9、図12等に示すように、スペーサ30は、上側周壁32のうち各ボア間部2fと対向する部分において、それぞれ上下方向に延びて上側周壁32の外周面から反気筒側に突出する補強リブ52を備える。各補強リブ52は、上側周壁32の上端付近から中間フランジ35aまで延びている。
(4)ウォータジャケット内の冷却液の流れ
ウォータジャケット20内での冷却液の流れについて説明する。図18は、ウォータジャケット20の上部空間(ウォータジャケット20のうちの分割壁35よりも上方の空間)の流れ、図19は、ウォータジャケット20の下部空間(ウォータジャケット20のうち分割壁35よりも下方の空間)の流れをそれぞれ模式的に示した図である。
ウォータポンプ60から吐出された冷却液は冷却液導入部15を通ってウォータジャケット20内に導入される。このとき、冷却液は、第1流入部A1~第4流入部A4のそれぞれに分かれて流入する。各流入部A1~A4に流入した冷却液はそれぞれ次のように流れる。
(第1流入部A1および第2流入部A2に流入した冷却液)
中間フランジ35aの上方に区画された第1流入部A1に流入した冷却液は、ウォータジャケット20の上部空間を流通する。
第1流入部A1に流入した冷却液は、まず、中間フランジ35aよりも上側の周壁31つまり上側周壁32とブロック外周壁10との間に区画された通路のうち、前側回りで第1流入部A1から吸気側第1案内部38iまで延びる部分(以下、適宜、第1上側通路21uという)を通り、吸気側第1案内部38iに移動する。
吸気側第1案内部38iにおいて、中間フランジ35aと段部35bとはつながっている。吸気側第1案内部38iから後方の領域では、段部35bによって周壁31の内周側の空間が上下に区画されている。また、この領域の段部35bよりも上方では、中央周壁130の上側周壁32によって気筒側に反気筒側よりも流路面積の大きい通路が区画されている。これより、吸気側第1案内部38iに到達した冷却液のほとんどは、段部35bよりも上方で且つ流路面積が大きい気筒側の通路、つまり、中央周壁130の上側周壁32の吸気側部分とシリンダボア壁2eとの間に区画された通路(以下、適宜、第2上側通路22uという)に流入する。そして、冷却液は、第2上側通路22uを後方に移動して、吸気側第2案内部39iに移動する。
吸気側第2案内部39iにおいて、段部35bと中間フランジ35aとはつながっている。吸気側第2案内部39iから後方の領域では、中間フランジ35aによって周壁31の外周側の空間が上下に区画されている。また、この領域の中間フランジ35aよりも上
方では、後側周壁150によって反気筒側に気筒側よりも流路面積の大きい通路が区画されている。これより、吸気側第2案内部39iに到達した冷却液のほとんどは、中間フランジ35aよりも上方で且つ流路面積が大きい反気筒側の通路、つまり、後側周壁150の上側周壁32とシリンダボア壁2eとの間に区画された通路(以下、適宜、第3上側通路23uという)に流入する。第3上側通路23uは、前記の第1ヘッド側ジャケット4aと連通しており、第3上側通路23uに到達した冷却液は第1ヘッド側ジャケット4aに流入する。
中間フランジ35aの上方に形成された、第2流入部A2に流入した冷却液も、ウォータジャケット20の上部空間を流通する。
第2流入部A2に流入した冷却液は、まず、中間フランジ35aよりも上側の周壁31つまり上側周壁32とブロック外周壁10との間に区画された通路のうち第2流入部A2から後方に延びる部分(以下、適宜、第4上側通路24uという)を通り、排気側第1案内部38eに向かう。
排気側第1案内部38eにおいても、中間フランジ35aと段部35bとはつながっている。また、排気側第1案内部38eから後方の領域でも、段部35bによって周壁31の内周側の空間が上下に区画されるとともに、その上部空間において、中央周壁130の上側周壁32によって気筒側に反気筒側よりも流路面積の大きい通路が区画されている。これより、吸気側と同様に、排気側第1案内部38eに到達した冷却液のほとんどは、段部35bよりも上方で且つ流路面積が大きい気筒側の通路、つまり、中央周壁130の上側周壁32の排気側の部分とシリンダボア壁2eとの間に区画された通路(以下、適宜、第5上側通路25uという)に流入する。そして、冷却液は、第5上側通路25u内を後方に移動して、排気側第2案内部39eに到達する。吸気側と同様に、排気側第2案内部39eに到達した冷却液のほとんどは、気筒側よりも流路面積が大きい反気筒側の通路、つまり、前記の第3上側通路23uに流入し、その後、第1ヘッド側ジャケット4aに流入する。
なお、第3上側通路23uは、第4フランジ44によって吸気側と排気側とに区画されており、第1流入部A1から流れてきた冷却液は第3上側通路23uの吸気側部分において第1ヘッド側ジャケット4aに流入し、第2流入部A2から流れてきた冷却液は第3上側通路23uの排気側部分において第1ヘッド側ジャケット4aに流入する。
このように、第1流入部A1および第2流入部A2に流入した冷却液は、上側周壁32に沿う通路、つまり、ウォータジャケット20のうち分割壁35よりも上側に区画された通路を通って第1ヘッド側ジャケット4aに導入されるようになっており、これら第1流入部A1および第2流入部A2に流入した冷却液が通過する前記の第1~第5上側通路25uおよび各案内部38、39が、前記の主通路L10のうちのウォータジャケット20に形成された部分を構成する。以下では、適宜、このウォータジャケット20の内側空間のうち分割壁35よりも上側に区画された空間を、上側通路20uという。
前記のように、上側通路20uにおいて、前側周壁140および後側周壁150に沿う部分では冷却液は周壁31の外周側を通り、中央周壁130に沿う部分では冷却液は周壁31の内周側を通るようになっている。これより、第1気筒2aの前側部分および第4気筒2dの後側部分では冷却液はシリンダボア壁2eに直接接触しない一方、各ボア間部2fの上部と、第2気筒2bおよび第3気筒2cのシリンダボア壁2eの上部には冷却液が直接接触することになる。
本実施形態では、第3フランジ43、第1リブ51d、第5リブ51eによって、第1気筒2aの前側部分のシリンダボア壁2eと冷却液との直接接触が確実に回避されるようになっている。
具体的には、第1、第2流入部A1、A2付近において、冷却液の一部の流れ方向は、これら流入部A1,A2と対向する前側周壁140との衝突に伴い上向きになる。これに対して、本実施形態では、前記のように、冷却液導入部15と前側周壁140との間の空間の上方が第3フランジ43によって覆われている。そのため、第1、第2流入部A1、A2付近において冷却液が前側周壁140の上端を超えて前側周壁140の内周側に流れ込むことが防止され、冷却液が第1気筒2aの前側部分のシリンダボア壁2eと直接接触するのが回避される。
また、前側周壁140に沿う第1上側通路21uでは、排気側第1膨出部18eおよび吸気側第1膨出部18iによってその流路面積が小さくなっていることで、冷却液導入部15から第1流入部A1に勢いよく流入した冷却液の速度がこれら第1膨出部18e、18iの通過時にさらに高められる。これより、これら第1膨出部18e、18iの下流側において冷却液の流れが乱流となり、一部の冷却液の流れ方向は上向きになる。これに対して、本実施形態では、これら第1膨出部18e、18iの下流側においても、前側周壁140とブロック外周壁10との間の空間の上方が第3フランジ43によって覆われている。そのため、第3フランジ43によって、冷却液が前側周壁140の上端を超えて前側周壁140よりも気筒側の空間に流れ込むのが回避される。
また、冷却液の一部が、各第1案内部38を通過した後に前方に向かい、前側周壁140とシリンダボア壁2eと間の隙間に入り込むおそれもある。これに対して、本実施形態では、第1リブ51a、第5リブ51eによって前側周壁140の内周面が周方向に分断されている。つまり、第1リブ51a、第5リブ51eが設けられることで、前側周壁140の内周面が連続する周面とならないように構成されている。そのため、前側周壁140の内周面に沿うような冷却液の流れが形成されるのが防止され、各第1案内部38に到達した冷却液の一部が、前側周壁140の内周側に入り込むのも回避される。
また、本実施形態では、第6リブ51fによって、第4気筒2dの後側部分のシリンダボア壁2eと冷却液との直接接触が確実に回避されるようになっている。
具体的には、前記の第5リブ51eと同様に、後側周壁150の内周面は第6リブ51fによって分断されている。これより、後側周壁150の内周面に沿う冷却液の流れが形成されるのが防止され、第2案内部39を通過した冷却液の一部が後側周壁150の内周側に入り込んで第4気筒2dのシリンダボア壁2eと直接接触するのが回避される。
また、本実施形態では、第2~第4リブ51b~51dによって、第2上側通路22uおよび第5上側通路25uを流通している冷却液が段部35bよりも下方に漏れるのが回避されるようになっている。
具体的には、第2上側通路22uの下方の下側周壁33の内周面が仮に連続している場合、図13の破線に示すように、この内周面に沿う流れが形成されてしまい、この流れに乗って冷却液が第2上側通路22uから下方に漏えいしやすい。これに対して、第2上側通路22uの下方の下側周壁33、つまり、第2~第4気筒2b~2dに対向する下側周壁33の内周面が、第2~第4リブ51b~51dによって分断されていることで、前記の流れが形成されるのが回避されるようになっている。従って、第2上側通路22u内の冷却液が下方に漏えいするのが回避される。同様に、第5上側通路25uにおいても、排気側の第2~第4リブ51b~51dによって第5上側通路25uの下方の下側周壁33の内周面が分断されていることで、この内周面に沿う流れが形成されるのが防止されて第5上側通路25uを流通する冷却液が下方に漏えいするのが回避される。
(第3流入部A3に流入した冷却液)
中間フランジ35aの下方に形成された第3流入部A3に流入した冷却液は、ウォータジャケット20の下部空間を流通する。
第3流入部A3に流入した冷却液は、中間フランジ35aよりも下側の周壁31つまり下側周壁33とブロック外周壁10との間に区画された通路を通り、第3流入部A3から前方に移動した後、吸気側に回り込む。吸気側に回り込んだ冷却液は、吸気側の下側周壁33とブロック外周壁10との間に区画された通路を通り、後方に移動する。前記のように、下側周壁33の吸気側の側面には、第1ブロック側導出部16よりも後方に、第1規制フランジ47が設けられている。そのため、冷却液は、第1規制フランジ47によってこれよりも後方への移動が規制され、第1ブロック側導出部16内に導入される。そして、冷却液は、第1ブロック側導出部16を通ってウォータジャケット20の外部に導出される。
このように、第3流入部A3に流入した冷却液は第1ブロック側導出部16に導出されるようになっており、下側周壁33とブロック外周壁10との間、且つ、第3流入部A3と第1規制フランジ47との間の部分であって周壁31の前側を通る通路(以下、適宜、第1下側通路21dという)が、第1副通路L20の一部を構成する。
(第4流入部A3)
中間フランジ35aの下方に形成された第4流入部A4に流入した冷却液は、ウォータジャケット20の下部空間を流通する。
第4流入部A4に流入した冷却液は、中間フランジ35aよりも下側の周壁31つまり下側周壁33とブロック外周壁10との間に区画された通路を通り、後方に移動する。前記のように、下側周壁33の排気側の側面には、第2ブロック側導出部17よりも後方となる位置に、第2規制フランジ48が設けられている。そのため、冷却液は、第2規制フランジ48によってこれよりも後方への移動が規制され、第2ブロック側導出部17内に導入される。そして、冷却液は、第2ブロック側導出部17を通ってウォータジャケット20の外部に導出される。
このように、第4流入部A4に流入した冷却液は第2ブロック側導出部17に導出されるようになっており、下側周壁33とブロック外周壁10との間、且つ、第4流入部A4と第2規制フランジ48との間の部分であって周壁31の排気側に沿う通路(以下、適宜、第2下側通路22dという)が、第2副通路L20の一部を構成する。
(5)作用等
以上のように、本実施形態では、周壁31と分割壁35とによって、ウォータジャケット20の内側空間に、冷却液が流通する通路として、上部に位置する上側通路20uと下部にそれぞれ位置する各下側通路21d、22dとが形成されている。そして、中央周壁130において、上側周壁32とシリンダボア壁2eとの間の流路面積の方が上側周壁32とブロック外周壁10との間の流路面積よりも大きくされたことで、上側周壁32とシリンダボア壁2eとの間に区画された第2上側通路22uと第5上側通路25uとが上側通路20uの一部を構成し、これにより、第2、第3気筒2b、2cのシリンダボア壁2eの上部およびボア間部2fの上部と冷却液とが直接接触するように構成されている。一方で、各下側通路21d、22dは各気筒2のシリンダボア壁2eと冷却液とが直接接触しないように構成されている。さらに、上側通路20uが、第1気筒2aの前側部分および第4気筒2dの後側部分と冷却液とが直接接触しないように構成されている。
そのため、両隣に他の気筒が存在することで高温になりやすい第2、第3気筒2b、2cのシリンダボア壁2eおよび2つの気筒から燃焼エネルギーを受けることで高温になりやすいボア間部2fのうちの、燃焼室に近いことで特に高温になりやすい上部を、冷却液との直接接触によって確実に冷却することができる。そして、その他の比較的低温に維持されやすい部分、具体的には、第1気筒2aのシリンダボア壁2eの前側部分、第4気筒2dのシリンダボア壁2eの後側部分、および、各気筒2a~2dのシリンダボア壁2eの下部が、冷却液との直接接触によって過度に冷却されるのを回避できる。従って、各気筒2a~2dの燃焼室の温度をそれぞれ適切な温度にすることができる。特に、本実施形態では、前記のように、燃焼室で自着火燃焼が行われるようになっている。そのため、シリンダボア壁2eが過度に冷却されると燃焼室内の温度が低くなりすぎて自着火燃焼が安定して生じないおそれがある。これに対して、前記のようにシリンダボア壁2eが過度に冷却されるのを回避することができることで、自着火燃焼の安定性を高めることができる。
しかも、本実施形態では、前記のように、第2リブ51b、第3リブ51c、第4リブ51dが設けられて、第2~第4気筒2b~2dにそれぞれ対向する下側周壁33の内周面が第2~第4リブ51b~51dによって分断されることで、第2上側通路22uおよび第5上側通路25u内の冷却液が、下方、つまり、下側周壁33とシリンダボア壁2eとの間の空間に漏れるのが回避されるようになっている。詳細には、第2リブ51bは、第2気筒2bのシリンダボア壁2eと上側周壁32との間の通過時に冷却液が下方に漏れるのを規制し、第3リブ51cは、第3気筒2cのシリンダボア壁2eと上側周壁32との間の通過時に冷却液が下方に漏れるのを規制し、第4リブ51dは、第3気筒2cのシリンダボア壁2eと上側周壁32との間および第2案内部39の通過時に冷却液が下方に漏れるのを規制する。これより、前記のように、比較的低温に維持されやすいシリンダボア壁2eの下部に冷却液が直接接触してしまうのをより確実に防止でき、シリンダボア壁2eが過度に冷却されるのを抑制できる。
特に、本実施形態では、第2リブ51b~第4リブ51dが下側周壁33の上端から下端まで延びており、下側周壁の内周面を上下全体にわたって分断している。そのため、この内周面に沿うような流れが形成されるのを確実に防止できる。
また、本実施形態では、前記のように、第1リブ51aおよび第5リブ51eによって、第1気筒2aのシリンダボア壁2eと前側周壁140との間の隙間に冷却液が導入されるのが規制され、各第6リブ51fによって、第4気筒2dのシリンダボア壁2eと後側周壁150との間の隙間に冷却液が導入されるのが規制されるようになっている。そのため、比較的低温に維持される第1気筒2aのシリンダボア壁2eの前側部分と第4気筒2dのシリンダボア壁2eの後側部分とが冷却液との直接接触によって過度に冷却されるのをより一層確実に防止することができる。
(6)変形例
前記実施形態では、第1リブ51a~第4リブ51dをそれぞれ各気筒2a~2dの中心を挟んで左右方向に相対向する位置に設けた場合について説明したが、これらリブ51a~51dの位置はこれに限らない。ただし、これらリブ51a~51dを前記実施形態の位置に設ければ、スペーサ30の組み付け性を良好にすることができる。
具体的には、下側周壁33は各気筒2a~2dに沿って上面視で略円弧状に湾曲している。これより、各気筒2a~2dのシリンダボア壁2eと下側周壁33との間の気筒配列方向の隙間寸法は、これらの壁2e、33が気筒側に最も膨出する位置においてほぼ最大となる。この気筒側に最も膨出する位置は各気筒2a~2dの中心を通り左右方向に延びる平面上に存在する。従って、前記実施形態の位置に第1リブ51a~第4リブ51dをそれぞれ設ければ、各リブ51a~51dとシリンダボア壁2eとの衝突をより容易に回避しながらスペーサ30をウォータジャケット30に収容することができ、スペーサ30の組み付け性を良好にできる。
前記、第1リブ51a、第5リブ51e、第6リブ51fは、省略可能である。ただし、前記のように、これらリブ51a、51e、51fを設ければ、シリンダボア壁の下部が過度に冷却されるのをより確実に回避できる。
また、前記実施形態では、燃焼室で自着火燃焼が実施される場合について説明したが、燃焼室で実施される燃焼の形態はこれに限らない。
1 エンジン本体
2 気筒
2e シリンダボア壁
3 シリンダブロック
10 ブロック外周壁
15 冷却液導入部
30 スペーサ
31 周壁
35 分割壁
51a 第1リブ(第2突出部)
51b 第2リブ(突出部)
51c 第3リブ(突出部)
51d 第4リブ(第4突出部)
51e 第5リブ(第3突出部)
51f 第6リブ(第3突出部)
38 第1案内部(冷却液案内部)
39 第2案内部(導出側冷却液案内部)

Claims (6)

  1. 一列に並ぶ複数の気筒が形成されたシリンダブロックを備え、冷却液が内側を流通するウォータジャケットおよび当該ウォータジャケットに冷却液を導入する冷却液導入部が前記シリンダブロックに形成されたエンジンの冷却構造であって、
    前記ウォータジャケット内に収容されて、前記複数の気筒のシリンダボア壁を囲んで前記ウォータジャケットの内側空間を気筒側の空間と反気筒側の空間とに区画する周壁を含むスペーサを備え、
    前記周壁の少なくとも一部は、当該周壁の下部を構成する第1周壁の方が当該周壁の上部を構成する第2周壁よりも前記シリンダボア壁に近い位置に配置されるように構成されており、
    前記第1周壁には、上下方向に延び且つ前記シリンダボア壁に向かって突出する突出部が設けられており
    前記冷却液導入部は、複数の気筒のうち気筒配列方向の一方端に位置する先端気筒を囲む前記周壁と対向しており、
    前記スペーサは、気筒配列方向と直交する方向であるエンジン幅方向について互いに対向して前記第2周壁と前記シリンダブロックの内周面との間の冷却液を当該第2周壁と前記シリンダボア壁との間の空間に案内する一対の冷却液案内部と、エンジン幅方向について前記先端気筒の中心を挟んで相対向して上下方向に延び且つ前記シリンダボア壁に向かって突出する第2突出部とを備え、
    前記各冷却液案内部は、前記先端気筒と対向し、且つ、前記冷却液導入部および前記先端気筒の中心よりも気筒配列方向の他方側となる位置に設けられている、ことを特徴とするエンジンの冷却構造。
  2. 請求項1に記載のエンジンの冷却構造において、
    前記突出部は、前記第1周壁の上端から下方に延びている、ことを特徴とするエンジンの冷却構造。
  3. 請求項1または2に記載のエンジンの冷却構造において、
    前記シリンダボア壁の外周面およびこれに対向する前記周壁の内周面は、気筒ごとに、上面視で略円弧状に延びるように形成され、
    気筒配列方向と直交する方向をエンジン幅方向としたとき、前記突出部は、気筒の中心を通ってエンジン幅方向に延びる平面上に位置するように設けられている、ことを特徴とするエンジンの冷却構造。
  4. 請求項3に記載のエンジンの冷却構造において、
    前記第1周壁および前記第2周壁は、複数の気筒のシリンダボア壁を囲んでおり、
    前記第1周壁には、対向する気筒ごとに、一対の前記突出部が気筒の中心を挟んで相対向するように設けられている、ことを特徴とするエンジンの冷却構造。
  5. 請求項1~4のいずれか1項に記載のエンジンの冷却構造において、
    前記スペーサは、エンジン幅方向について互いに対向し、前記第2周壁と前記シリンダボア壁との間の冷却液を当該第2周壁と前記シリンダブロックの内周面との間の空間に案内する一対の導出側冷却液案内部を備え、
    前記各導出側冷却液案内部は、前記シリンダブロックのうち気筒配列方向について前記先端気筒と反対側の端部に設けられた基端気筒と対向しており、
    前記スペーサは、気筒配列方向の両端部に設けられて、上下方向に延び且つ前記シリンダボア壁に向かって突出する第3突出部を備える、ことを特徴とするエンジンの冷却構造。
  6. 請求項に記載のエンジンの冷却構造において、
    前記各導出側冷却案内部は、前記周壁のうち前記基端気筒の中心を挟んで相対向する位置に設けられており、
    前記スペーサは、前記周壁の前記各導出側冷却案内部から下方の部分に、上下方向に延び且つ前記シリンダボア壁に向かって突出する第4突出を備える、ことを特徴とするエンジンの冷却構造。
JP2019006068A 2019-01-17 2019-01-17 エンジンの冷却構造 Active JP7172630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006068A JP7172630B2 (ja) 2019-01-17 2019-01-17 エンジンの冷却構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006068A JP7172630B2 (ja) 2019-01-17 2019-01-17 エンジンの冷却構造

Publications (2)

Publication Number Publication Date
JP2020114996A JP2020114996A (ja) 2020-07-30
JP7172630B2 true JP7172630B2 (ja) 2022-11-16

Family

ID=71778933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006068A Active JP7172630B2 (ja) 2019-01-17 2019-01-17 エンジンの冷却構造

Country Status (1)

Country Link
JP (1) JP7172630B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047088A (ja) 2010-08-26 2012-03-08 Honda Motor Co Ltd スペーサ
JP2015108347A (ja) 2013-12-05 2015-06-11 マツダ株式会社 多気筒エンジンの冷却装置
WO2016158043A1 (ja) 2015-04-03 2016-10-06 Nok株式会社 ウォータージャケットスペーサー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047088A (ja) 2010-08-26 2012-03-08 Honda Motor Co Ltd スペーサ
JP2015108347A (ja) 2013-12-05 2015-06-11 マツダ株式会社 多気筒エンジンの冷却装置
WO2016158043A1 (ja) 2015-04-03 2016-10-06 Nok株式会社 ウォータージャケットスペーサー

Also Published As

Publication number Publication date
JP2020114996A (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
US6732679B2 (en) Water-cooled internal combustion engine
US6729272B2 (en) Cylinder head cooling construction for an internal combustion engine
JP6036668B2 (ja) 多気筒エンジンの冷却構造
US10428719B2 (en) Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
US10738730B2 (en) Cooling device for engine
JP2015108347A (ja) 多気筒エンジンの冷却装置
JP6079594B2 (ja) 多気筒エンジンの冷却構造
JP7238413B2 (ja) エンジンの冷却構造
JP7172629B2 (ja) エンジンの冷却構造
JP6358284B2 (ja) エンジンの冷却構造
JP7172631B2 (ja) エンジンの冷却構造
US20070056276A1 (en) Exhaust manifold and internal combustion engine comprising an exhaust manifold
JP7172630B2 (ja) エンジンの冷却構造
JP7206936B2 (ja) 多気筒エンジンの冷却構造
JPH02140413A (ja) V型エンジンの冷却装置
JP4411969B2 (ja) エンジンの冷却装置
JP3903744B2 (ja) エンジンの冷却構造
JP6504214B2 (ja) エンジンの冷却装置
JP2015078674A (ja) エンジンの冷却装置
JP3991871B2 (ja) エンジンの冷却構造
JPH05187307A (ja) 内燃機関の冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150