JP7157678B2 - 噴霧ノズル - Google Patents

噴霧ノズル Download PDF

Info

Publication number
JP7157678B2
JP7157678B2 JP2019028479A JP2019028479A JP7157678B2 JP 7157678 B2 JP7157678 B2 JP 7157678B2 JP 2019028479 A JP2019028479 A JP 2019028479A JP 2019028479 A JP2019028479 A JP 2019028479A JP 7157678 B2 JP7157678 B2 JP 7157678B2
Authority
JP
Japan
Prior art keywords
compressed air
spray nozzle
air supply
supply path
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019028479A
Other languages
English (en)
Other versions
JP2020131124A (ja
Inventor
雄一 館山
賢太 増田
紀彦 三崎
諒一 末松
広樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2019028479A priority Critical patent/JP7157678B2/ja
Publication of JP2020131124A publication Critical patent/JP2020131124A/ja
Application granted granted Critical
Publication of JP7157678B2 publication Critical patent/JP7157678B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)
  • Glanulating (AREA)

Description

本発明は、噴霧ノズルに関する。
微小粒子を製造する装置として、噴霧熱分解法を用いた装置がある。この噴霧熱分解装置は、金属塩化物などの化合物の混合水溶液や混合有機溶液などからなる原料溶液をミスト状(霧状)に噴射し、これを加熱炉内にて加熱処理して乾燥や焼成することにより、複合酸化物などの微小粒子を製造する装置である。
噴霧熱分解装置には、原料溶液を加熱炉内に噴霧するために、噴霧ノズルが設置されている。噴霧ノズルは、原料溶液を圧縮空気と混合させて噴霧口(ノズル穴)からミスト状に噴霧する。
噴霧ノズルを用いて長時間に亘って噴霧を継続すると、その先端の噴霧口の周辺に原料溶液に含有された固形分や溶解している化合物が加熱により析出する固形分が徐々に固着する。この固着が大きくなると、良好なミストの形成が阻害され、製造品である微小粒子の粒径や密度などが所望のものとならなくなる。そのため固着を除去する清掃が必要となるので、長時間に亘って微小粒子の製造を継続することができなかった。
そこで、特許文献1には、噴霧ノズルの先端部を流線形状とし、さらに、先端部の周囲に空気を導入することにより、噴霧口周囲の渦流を防止することによって、固着を抑制することが開示されている。
特開平7-171444号公報
しかしながら、上記特許文献1に記載された技術では、噴霧口周囲の渦流の発生は抑制されるが、固着の抑制は十分ではなかった。本願発明者は、その原因は、噴霧ノズルの先端部の周囲に導入される空気が加熱炉内に熱によって加熱され、この加熱された空気が直接的にミスト状の液滴に当たるので、液滴の乾燥が促進され過ぎて、液滴に含有されている固形分が固着されるためであることを見い出した。
本発明は、固着の抑制をさらに図ることが可能な噴霧ノズルを提供することを目的とする。
本発明の噴霧ノズルは、噴霧口から溶液をミスト状に加熱炉内に向って噴霧する噴霧ノズルであって、前記噴霧口を先端に有する突出部と、前記突出部に向って気体を供給する気体供給路と、前記気体供給路の周囲に設けられ、前記気体を冷却する気体が内部を流れる気体流通路とを備えたことを特徴とする。
本発明の噴霧ノズルによれば、噴霧口は加熱炉内又はその近傍に位置しており高温化するが、気体供給路を介して気体が噴霧口を先端に有する突出部に向って供給されるので、噴霧口及びその周囲の高温化が抑制される。さらに、気体供給路を流れる気体はその周囲に設けられた気体流通路を流れる気体によって高温化が抑制される。これらにより、噴霧口の周囲の高温化を効果的に抑制することが可能となり、ミスト状の液滴から溶液が蒸発して液滴に含まれる固形分や溶解している化合物が加熱により析出する固形分が析出して噴霧口の周囲に堆積して固着することの長期間に亘る抑制を図ることが可能となる。
本発明の噴霧ノズルにおいて、前記気体流通路を流れる気体は前記加熱炉内に供給されることが好ましい。
この場合、気体供給路から供給された気体の流れによって噴霧口の周囲が負圧となって、良好なミストを形成が困難となるおそれを、気体流通路を流れる気体を加熱炉内に供給することに抑制することが可能となる。
本発明の実施形態に係る噴霧ノズルを備えた微小粒子製造装置を示す概略図。 本発明の実施形態に係る噴霧ノズルを示す概略図。
本発明の実施形態に係る噴霧ノズル10について説明する。この噴霧ノズル10は、図1を参照して、噴霧熱分解法を用いて微小粒子を製造する微小粒子製造装置100に設置される。
微小粒子製造装置100は、ここでは、炉芯管21及びその外周に加熱源22が配置された加熱炉20と、炉芯管21内に原料溶液をミスト状(霧状)に噴霧する噴霧ノズル10と、噴霧ノズル10に原料溶液を供給する原料供給部30と、炉芯管21の下部に接続され、製造品である微小粒子を回収する回収部40とを備えている。
炉芯管21は、管状の炉であり、ムライト、アルミナ、窒化珪素等のセラミックスや金属、耐熱レンガなどから形成されている。加熱源22は、炉壁23に配置され、炉芯管21内を加熱する。加熱源22は、ここでは、電気ヒータや熱風ヒータなどの外熱式であるが、ガスバーナなどの内燃式であってもよい。
噴霧ノズル10は、図2も参照して、上記特許文献1に記載されたものを用いてもよいが、その噴霧口10aを先端に有する突出部10bは流線形状でなくともよい。噴霧ノズル10は、市販品などの従来品であってもよい。なお、図2において、噴霧ノズル10の具体的な内部構成は省略されている。
噴霧ノズル10は、原料供給部30から原料溶液が供給される溶液ライン11と、圧縮空気が供給される圧縮空気ライン12とを備えている。圧縮空気ライン12は、一端で外気と連通した圧縮空気供給路51の他端に接続されており、圧縮空気供給路51の途中にはファン52が接続されている。ファン52を作動させることによって、外気から圧縮空気供給路51を介して圧縮空気を圧縮空気ライン12に供給することができる。さらに、ファン52の回転速度を制御することによって、圧縮空気ライン12を介して噴霧ノズル10に供給される空気量を調整することができる。
なお、噴霧ノズル10は、例えば、溶液ライン11と圧縮空気ライン12が共に1本の2流体ノズル、溶液ライン11が2本で圧縮空気ライン12が1本の3流体ノズル、溶液ライン11と圧縮空気ライン12が共に2本の4流体ノズルなどであってもよい。さらに、噴霧ノズル10は、溶液と圧縮空気をノズル内部で混合する内部混合方式、ノズル外部で混合する外部混合方式の何れもであってもよい。
そして、噴霧ノズル10の外周には、第1の環状壁13と、第1の環状壁13との間に隙間を介してさらに外周に位置する第2の環状壁14とが形成されており、二重壁構造となっている。これにより、噴霧ノズル10のボディと第1の環状壁13との間に第1の圧縮空気供給路S1が、第1の環状壁13と第2の環状壁14との間に第2の圧縮空気供給路S2がそれぞれ形成されている。
ここでは、噴霧ノズル10の外周形状は円筒状であり、この噴霧ノズル10と外側周面と円環筒状の第1の環状壁13との間に円環筒状の第1の圧縮空気供給路S1が形成されており、さらに、この第1の環状壁13と円環筒状の第2の環状壁14との間に円環筒状の第2の圧縮空気供給路S2が形成されている。なお、第1の圧縮空気供給路S1が本発明の気体供給路に相当し、第2の圧縮空気供給路S2が本発明の気体流通路に相当する。
そして、第1の圧縮空気供給路S1は、炉芯管21と反対側(図2では上部)において、一端で外気と連通した圧縮空気供給路61の他端に接続されており、圧縮空気供給路61の途中にはファン62が接続されている。また、第2の圧縮空気供給路S2は、炉芯管21と反対側(図2では上部)において、一端で外気と連通した圧縮空気供給路63の他端に接続されており、圧縮空気供給路63の途中にはファン64が接続されている。
ファン62,64を作動することによって、外気から圧縮空気供給路61,63を介して圧縮空気を第1及び第2の圧縮空気供給路S1,S2にそれぞれ供給することができる。そして、ファン62,64の回転速度をそれぞれ制御することによって、第1及び第2の圧縮空気供給路S1,S2に供給される空気量をそれぞれ独立して調整することができる。
さらに、炉芯管21に近い側(図2では下部)において、噴霧ノズル10の炉芯管21側の面(図2では下面)と間に一定間隔の隙間を開けるようにして、第1の環状壁13の端部から延出する底壁15が形成されている。これにより、この噴霧ノズル10の下面と底壁15との隙間も、第1の圧縮空気供給路S1の一部を構成する。そして、底壁15は、噴霧ノズル10の噴霧口10aを先端に有して上面の中央部から上方に突出してなる突出部10bとの間に少なくとも水平方向に隙間を有するように開口15aが形成されている。
これにより、圧縮空気供給路61から供給される圧縮空気は、噴霧ノズル10と第1の環状壁13との間に位置する第1の圧縮空気供給路S1の部分、及び、噴霧ノズル10と底壁15との間に位置する第1の圧縮空気供給路S1の部分を経て、開口15aから炉芯管21内に供給される。このとき、圧縮空気は突出部10bに当たり、突出部10bを冷却する。また、この圧縮空気によって、上記特許文献1に記載されているように、突出部10bの周囲に発生する渦流の抑制を図ることが可能となる。
一方、第2の圧縮空気供給路S2は、第1の圧縮空気供給路S1のような底壁は備えておらず、炉芯管21側が円環状に開口している。
これにより、圧縮空気供給路63から供給される圧縮空気は、第1の環状壁13と第2の環状壁14との間に位置する第2の圧縮空気供給路S2を経て、炉芯管21に放出される。
原料供給部30は、噴霧ノズル10に一端が接続された原料供給管31と、原料供給管31の他端が接続され、原料溶液を貯留する原料タンク32と、原料供給管31の途中に設けられたポンプ33とを備えている。ポンプ33を作動させることによって、原料タンク33から原料供給管31を介して噴霧ノズル10に原料溶液を供給することができる。そして、ポンプ33の吐出量を制御することによって、溶液ライン11を介して噴霧ノズル10に供給される原料溶液の量を調整することができる。
なお、ポンプ33より下流の原料供給管31に流量計34を設け、この流量計34によって噴霧ノズル10に供給される原料溶液の量を計測してもよい。ただし、本実施形態においては、後述するように、噴霧口10aの周囲の固着の抑制が図られるので、固着によって噴霧ノズル10に供給される原料溶液の量が減少するような事態は生じ難い。そのため、従来にように固着の有無を推測するために、実際に噴霧ノズル10に供給される原料溶液の量の変化を流量計34を用いて計測する必要がないので、流量計34を設ける必要はない。
噴霧される液滴の平均粒子径は、噴霧ノズル10の噴霧口10aの直径や圧縮空気の圧力などによって調整することができるが、0.5~150μmが好ましく、1~100μmがより好ましく、1~50μmがさらに好ましい。なお、圧縮空気の圧力は、圧縮空気ライン12から供給される圧縮空気の圧力だけではなく、第1及び第2の圧縮空気供給路S1,S2から供給される圧縮空気の圧力にも依存する。
原料溶液は、製造物である微小粒子を構成する元素を含有する溶液からなる。製造物である微小粒子が無機酸化物微小粒子の場合、原料溶液は、無機酸化物微小粒子を構成する元素を含有する溶液であり、水などの溶媒に溶解する化合物があることが好ましい。このような化合物としては、無機塩、金属アルコキシドなどが挙げられる。より具体的には、アルミニウム塩、チタン塩、マグネシウム塩、アルミノケイ酸塩、アルミニウムアルコキシド、テトラエトキシシラン、テトラメトキシシラン等が挙げられる。
また、原料溶液として、アルミニウム酸化物、ケイ素酸化物を溶媒に分散した溶液、アルミニウム酸化物、ケイ素酸化物のゾル溶液なども用いることができる。さらに、溶融温度、耐熱性、粒子強度を調整するために他の元素を原料溶液に添加してもよい。
さらに、原料化合物から得られる酸化物としては、無機酸化物、例えば金属酸化物、アルミナ、シリカ、アルミニウム及びケイ素からなる酸化物などが挙げられ、より具体的には、アルミナ、シリカ、アルミニウム及びケイ素からなる酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物、バリウム酸化物、セリウム酸化物、イットリウム酸化物などが挙げられ、これら酸化物を組み合わせた複合酸化物も挙げられる。
これらの酸化物を構成する元素の原料を溶解あるいは分散する溶媒としては、水及び有機溶媒が挙げられるが、環境への影響、製造コストの点から水が好ましい。
原料溶液中の酸化物を構成する元素の原料濃度は、製造物である酸化物粒子の密度、強度などを考慮し、0.01mol/L~飽和濃度が好ましく、0.1mol/L~2.0mol/Lがより好ましい。なお、元素の原料濃度を高くすれば、得られる酸化物粒子の粒子径が大きくなるので、粒子径の大きい粒子を得るためには元素濃度を0.3mol/L~1.5mol/Lとするのが好ましい。
炉芯管21の内において、噴霧ノズル10から噴霧されたミスト状の原料溶液の液滴は、加熱されることにより乾燥され、その後、熱分解される。
乾燥工程は、原料溶液のミスト状の液滴から溶媒を除去する工程であり、ここでは、液滴から溶媒が蒸発し、液滴粒子表面に無機塩が析出し、粒子内部に空隙が形成される。この乾燥工程が生じる部分の炉芯管21内の温度は、原料溶液のミスト状の液滴から、溶媒が蒸発する温度であればよいが、例えば、室温~600℃の範囲内であって0.1秒から1分程度で析出が生じる温度である。炉芯管21内の温度は、好ましくは100℃~600℃、より好ましくは150℃~500℃、さらに好ましくは150~450℃である。
次に、乾燥された粒子は、乾燥工程が生じる部分の下方の炉芯管21にてさらに加熱されて熱分解される。この熱分解工程は、乾燥された液滴及び粒子を熱分解して酸化物粒子を形成する工程であり、ここでは、液滴及び粒子表面の無機塩が熱分解及び酸化されて酸化物粒子が生成する。
熱分解工程が生じる部分の炉芯管21内の温度は、熱分解及び酸化反応が進行する温度であればよいが、熱分解工程で酸化反応が終了する必要性から、150℃~1200℃であることが好ましい。さらに、0.1秒~1分程度で酸化反応が終了する温度が好ましく、具体的には、400℃~1200℃が好ましく、500℃~1200℃がより好ましい。
また、微小粒子製造装置100を用いて、微小粒子として中空粒子も製造することが可能である。中空粒子を製造する場合、酸化物粒子の表面を溶融し、粒子強度の高い中空粒子を得るため、熱分解工程後に、粒子の外殻表面の孔を閉塞させて、さらに溶融工程を行うことが好ましい。
溶融工程は、形成された酸化物粒子の表面を溶融する工程であり、酸化物粒子の表面を溶融し、表面に存在する孔を閉塞させる工程である。溶融工程が生じる部分の炉芯管21内の温度は、酸化物粒子の表面が溶融する温度であればよいが、溶融工程で溶融により酸化物粒子表面の孔が閉塞する点から600℃以上が好ましい。また、0.1秒~1分程度で酸化物粒子表面が溶融するように、700℃以上が好ましく、800℃以上がより好ましく、900℃以上がさらに好ましく、1200℃以上がさらに好ましい。なお、経済性の点から1500℃以下が好ましい。また、溶融温度が600~1200℃と低い酸化物であれば、熱分解ゾーンと溶融ゾーンの加熱温度を同じにしてもよい。
溶融工程が終了した酸化物中空粒子は、表面の孔が閉塞されていることから外殻に孔がなく、粒子強度の高い酸化物中空粒子となっている。
熱分解工程、さらに必要により溶融工程を行った酸化物中空粒子を冷却後回収すれば、製造物である酸化物中空粒子を得ることができる。
回収部40は、炉芯管21の下部に一端が接続された排出管41と、排出管41の他端に接続された回収装置42とを備えている。回収装置42は、ここでは、バグフィルタを用いた粉体回収装置である。そして、この回収装置42には、吸引ファン43が接続されており、これにより、炉芯管21の内圧を減圧し、炉芯管21内部から空気と共に微小粒子を吸引することができる。このとき、炉芯管21の内力は-5Pa~-40Paが好ましく、-10Pa~-30Paがより好ましい。また、フィルタを通過させて微小粒子を回収することにより、微小粒子の粒子径を調整することができる。
なお、回収装置42として、バグフィルタの代わりに、サイクロン粉体回収機などを用いることもでき、この場合、回収装置42自体の作動により炉芯管21の内圧を減圧することができる。
以上説明した微小粒子製造装置100においては、突出部10bは、炉芯管21の内部に位置しており、高温化する。特に突出部10bの周囲の温度が100℃を超えると、ミスト状の液滴から水分が蒸発して液滴に含まれる固形分が析出して突出部10bの表面に堆積して固着するおそれがある。この固形分の堆積が噴霧口10a又はその近傍に及ぶと、好適なミストの形成が困難となる。そこで、第1の圧縮空気供給路S1から供給される圧縮空気を直接的に当てることにより、突出部10bを冷却することによって、このような固着の抑制を図ることが可能となる。
なお、開口15aから供給される圧縮空気は、噴霧ノズル10からミスト状に噴霧された原料溶液には、直接的に当たらないことが好ましい。圧縮空気がミスト状の原料溶液に直接的に当たると、好適なミストの形成を阻害するおそれがあるためである。そのため、圧縮空気は、噴霧口10aに直接的に向うように供給するのではなく、噴霧口10aの周囲に向けて供給する必要がある。本実施形態では、圧縮空気は、先端に噴霧口10aを有する突出部10bの外周面に当てている。なお、圧縮空気は、噴霧口10a又はミスト状の原料溶液に間接的には当たってもよい。間接的であれば、好適なミストの形成を左程阻害しないからである。
さらに、噴霧口10aの位置やその周囲の形状などに応じて、第1の圧縮空気供給路S1の位置や形状を定めればよい。例えば、突出部10bが存在せず、噴霧ノズル10の上面に噴霧口10aが形成されている場合、噴霧口10aの噴霧ノズル10の上面の部分に圧縮空気が供給されるように第1の圧縮空気供給路S1の形状を定めればよい。
また、前述したように、突出部10bを含む噴霧ノズル10の先端部は高温化する。この高温化した先端部からの伝熱によって、噴霧ノズル10全体が高温化し、さらに、これにより、第1の圧縮空気供給路S1を介して供給される圧縮空気も徐々に高温化する。そのため、第1の圧縮空気供給路S1を介した圧縮空気による突出部10bの冷却効果は徐々に低下するので、長時間に亘って微小粒子を連続的に製造することができないおそれがある。
そこで、第2の圧縮空気供給路S2を流れる圧縮空気によって、第1の圧縮空気供給路S1を流れる圧縮空気を冷却することによって、噴霧ノズル10全体、ひいては突出部10bに備わる噴霧口10aの周囲の環境温度の高温化の抑制を図ることが可能となる。さらに、噴霧ノズル10全体を冷却することもできるので、噴霧ノズル20を耐熱温度以下に長時間に亘って維持することが可能となる。これらにより、微小粒子製造装置100を長時間に亘って連続的に稼働することが可能となる。
なお、第1の圧縮空気供給路S1から炉芯管21内に供給される圧縮空気の流速が速過ぎる又は流量が大き過ぎると、良好なミストの形成が阻害され微小粒子の粒径にばらつきが生じるなどの不具合が生じる。一方、この圧縮空気の流速が遅過ぎる又は流量が小き過ぎると、噴霧口10aの周囲に生じる渦流を十分に解消できずに良好なミストの形成が阻害される、また、噴霧口10aの周囲を十分に冷却する解消することができず、固着が生じるなどの不具合が生じる。
そのため、これらを考慮して、第1の圧縮空気供給路S1から炉芯管21内に供給される圧縮空気の流速や流量などを定める必要がある。このような流速は、噴霧口10aからミスト状(霧状)に噴霧される原料溶液の流速に対して、およそ0.1倍~3.0倍の範囲であり、例えば0.5m/s~30.0m/sである。そして、流量は、例えば1L/min~500L/minである。
さらに、第1の圧縮空気供給路S1を供給された圧縮空気は、開口15aを噴霧口10aの周囲から炉芯管21内に供給される。このため、噴霧口10aの周囲が負圧となり過ぎると、良好なミストを形成が困難となるおそれがあり得る。しかし、第2の圧縮空気供給路S2を介して炉芯管21内に圧縮空気を供給することにより、この負圧の抑制を図ることが可能となる。
ただし、第2の圧縮空気供給路S2を介して供給される圧縮空気が炉芯管21内に開放されるものに限定されない。例えば、第2の圧縮空気供給路S2を介して供給される圧縮空気は、加熱炉20の外部に放出するものであってもよく、さらに、第2の圧縮空気供給路S2内を循環するものであってもよい。これらの場合、炉芯管21内に供給される圧縮空気の量が抑制されるので、炉芯管21内に原料液滴が滞留する時間の長期化を図ることが可能となる。
なお、第2の圧縮空気供給路S2を流れる圧縮空気の流速が速過ぎる又は流量が大き過ぎると、液滴が炉芯管21に滞在する時間が短すぎて、粒径がばらつくなど、製造品である微小粒子に不具合が生じる。一方、この圧縮空気の流速が遅過ぎる又は流量が小き過ぎると、第1の圧縮空気供給路S1を流れる圧縮空気を十分に冷却することができず、これに起因する不具合が生じる。
そのため、これらを考慮して、第2の圧縮空気供給路S2を流れる圧縮空気の流速や流量などを定める必要がある。このような流速は例えば4.0m/s~10m/sであり、流量は例えば80L/min~500L/minである。
そこで、例えば、第2の圧縮空気供給路S2を流れる圧縮空気の流速又は流量は、第1の圧縮空気供給路S1を流れる圧縮空気の温度が所定の温度以下となるように調整することが好ましい。ここで、所定温度とは、液滴に含まれる溶液が水の場合は、噴霧口10aの周囲の温度が100℃以下となるように、例えば、90℃、好ましくは60℃、より好ましくは50℃や40℃に設定すればよい。
そして、この場合、開口15aの近傍で第1の圧縮空気供給路S1を流れる圧縮空気の温度を測定するために、熱電対などの温度測定手段65を設け、この温度測定手段65が測定する温度が所定の温度以下とさせるために、ファン64を制御して、第2の圧縮空気供給路S2を流れる圧縮空気を増加させればよい。なお、ファン64を調整する代わりに、又はファン64を調整すると共に、ファン62を制御して、第2の圧縮空気供給路S2を流れる圧縮空気を増加させてもよい。
なお、本発明は、上述した実施形態に具体的に記載した微小粒子製造装置100に備わる噴霧ノズル10に限定されるものではなく、特許請求の範囲に記載した範囲内であれば適宜変更することができる。
例えば、上述した実施形態においては、第1及び第2の圧縮空気供給路S1,S2に対してそれぞれ独立にファン62,64を接続して流れる圧縮空気の量を独立して制御する場合について説明した。しかし、これに限定されず、第1及び第2の圧縮空気供給路S1,S2に対して1個のファンを接続して、これらを流れる圧縮空気の量が所定の比率で一定となるようにしてもよい。
また、噴霧ノズル10のボディ、第1及び第2の環状壁13,14、底壁15並びに第1及び第2の圧縮空気供給路S1,S2は、上述した形状や構成に限定されない。例えば、これらの厚さや幅などは場所によって変動してもよい。
特に、噴霧ノズル10の炉芯管21側の面(図2では下面)は図2のように水平面であることに限定されず、傾斜面であって曲面であってもよく、部分的に凹凸などが形成されていてもよい。これらの場合であっても、噴霧ノズル10のこのような面と少なくとも所定の間隔の隙間を開けるようにして、第1の環状壁13の端部から延出する底壁15が形成されることにより、第1の圧縮空気供給路S1の一部が構成されていればよい。
さらに、上述した実施形態においては、第1及び第2の圧縮空気供給路S1,S2に外気を取り込んだ常温の圧縮空気を流す場合について説明した。しかし、これに限定されず、冷却した圧縮空気を流してもよく、さらに、窒素やアルゴンなどの不活性ガスを流してもよい。
10…噴霧ノズル、 10a…噴霧口、 10b…突出部、 11…溶液ライン、 12…圧縮空気ライン、 13…第1の環状壁、 14…第2の環状壁、 15…底壁、 15a…開口、 20…加熱炉、 21…炉芯管、 22…加熱源、 23…炉壁、 30…原料供給部、 31…原料供給管、 32…原料タンク、 33…ポンプ、 34…流量計、 40…回収部、 41…排出管、 42…回収装置、 43…吸引ファン、 51…圧縮空気供給路、 52…ファン、 61,63…圧縮空気供給路、 62,64…ファン、 65…温度測定手段、 100…微小粒子製造装置、 S1…第1の圧縮空気供給路(気体供給路)、 S2…第2の圧縮空気供給路(気体流通路)。

Claims (2)

  1. 噴霧口から溶液をミスト状に加熱炉内に向って噴霧する噴霧ノズルであって、
    前記噴霧口を先端に有する突出部と、
    前記突出部に向って気体を供給する気体供給路と、
    前記気体供給路の周囲に設けられ、前記気体を冷却する気体が内部を流れる気体流通路とを備えたことを特徴とする噴霧ノズル。
  2. 前記気体流通路を流れる気体は前記加熱炉内に供給されることを特徴とする請求項1に記載の噴霧ノズル。
JP2019028479A 2019-02-20 2019-02-20 噴霧ノズル Active JP7157678B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028479A JP7157678B2 (ja) 2019-02-20 2019-02-20 噴霧ノズル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028479A JP7157678B2 (ja) 2019-02-20 2019-02-20 噴霧ノズル

Publications (2)

Publication Number Publication Date
JP2020131124A JP2020131124A (ja) 2020-08-31
JP7157678B2 true JP7157678B2 (ja) 2022-10-20

Family

ID=72261746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028479A Active JP7157678B2 (ja) 2019-02-20 2019-02-20 噴霧ノズル

Country Status (1)

Country Link
JP (1) JP7157678B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501252A (ja) 1999-06-16 2003-01-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 噴霧乾燥プラント、およびその使用方法
JP2004230243A (ja) 2003-01-29 2004-08-19 Denki Kagaku Kogyo Kk 噴霧方法及び装置
JP2012035235A (ja) 2010-08-11 2012-02-23 Chugai Ro Co Ltd 噴霧装置および粉体製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718520B2 (ja) * 1988-09-26 1998-02-25 フロイント産業株式会社 スプレーノズルおよびそれを用いた造粒コーディング装置
JP3011799B2 (ja) * 1991-08-23 2000-02-21 新日本製鐵株式会社 噴霧焙焼ノズル先端部への付着防止ノズル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501252A (ja) 1999-06-16 2003-01-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 噴霧乾燥プラント、およびその使用方法
JP2004230243A (ja) 2003-01-29 2004-08-19 Denki Kagaku Kogyo Kk 噴霧方法及び装置
JP2012035235A (ja) 2010-08-11 2012-02-23 Chugai Ro Co Ltd 噴霧装置および粉体製造装置

Also Published As

Publication number Publication date
JP2020131124A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
JP3844941B2 (ja) 調温装置および高温排ガスの調温方法
JP6422679B2 (ja) 中空粒子の製造装置
CN109808049A (zh) 一种高温气体气雾化制备球形粉末的方法
CN108115145A (zh) 一种金属粉末制备装置及制备方法
JP5318463B2 (ja) 微粒子の製造方法およびそれに用いる製造装置
JP7157678B2 (ja) 噴霧ノズル
JP4668751B2 (ja) 粉体製造方法
JP6846245B2 (ja) 噴霧熱分解による微小粒子製造装置
JP7261043B2 (ja) 無機酸化物粒子の製造方法
CN208554083U (zh) 一种新型喷雾造粒装置
JP2009204232A (ja) 溶融高炉スラグからの熱回収装置
JP7190338B2 (ja) 無機酸化物粒子の製造方法
JP6763740B2 (ja) 噴霧熱分解装置
JP2019122926A (ja) 噴霧熱分解による微小粒子の製造法
JP2005218938A (ja) 微粒子製造装置
CN215144703U (zh) 一种真空电极感应熔化双流气体雾化金属粉末装置
JP7232024B2 (ja) 無機酸化物中空粒子の製造方法
JP6997633B2 (ja) 噴霧熱分解による微粒子製造装置
CN1209217C (zh) 控制往复喷射成形工艺
JP7266358B2 (ja) 噴霧微粒子製造装置
JP2004051409A (ja) 球状無機質超微粉末の製造方法
JP3011799B2 (ja) 噴霧焙焼ノズル先端部への付着防止ノズル
CN109019668A (zh) 一种热球磨氧化制备超细活性氧化锌粉末的方法及生产系统
JP2019055365A (ja) 噴霧熱分解装置
JP7518592B2 (ja) 微粒子製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221007

R150 Certificate of patent or registration of utility model

Ref document number: 7157678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150