JP7156022B2 - 三次元造形物の製造方法および三次元造形装置 - Google Patents

三次元造形物の製造方法および三次元造形装置 Download PDF

Info

Publication number
JP7156022B2
JP7156022B2 JP2018246552A JP2018246552A JP7156022B2 JP 7156022 B2 JP7156022 B2 JP 7156022B2 JP 2018246552 A JP2018246552 A JP 2018246552A JP 2018246552 A JP2018246552 A JP 2018246552A JP 7156022 B2 JP7156022 B2 JP 7156022B2
Authority
JP
Japan
Prior art keywords
modeling
overlapping portion
cutting
dimensional
overlapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018246552A
Other languages
English (en)
Other versions
JP2020104439A (ja
Inventor
賢太 姉川
大蔵 青▲柳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2018246552A priority Critical patent/JP7156022B2/ja
Priority to US16/727,397 priority patent/US11554545B2/en
Publication of JP2020104439A publication Critical patent/JP2020104439A/ja
Application granted granted Critical
Publication of JP7156022B2 publication Critical patent/JP7156022B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

本開示は、三次元造形物の製造方法および三次元造形装置に関する。
例えば、特許文献1には、溶融した熱可塑性の材料を、予め設定された形状データにしたがって走査する押出ノズルから基台上に押し出し、その基台上で硬化した材料の上に更に溶融した材料を積層して三次元造形物を作成する方法が開示されている。
特開2006-192710号公報
上述した方法では、下層を造形するためのノズルの走査経路に重なるように、上層を造形するためのノズルの走査経路を設定した場合であっても、実際に造形された下層が収縮することによって、設定された走査経路に従って上層を造形する際に、ノズルから造形材料を吐出した先に下層が存在せず、三次元造形物が所望の形状よりも小さくなり、三次元造形物の造形精度に影響を与える可能性がある。そこで、本願は、三次元造形物の造形精度を向上させることを課題とする。
本開示の一形態によれば、三次元造形物の製造方法が提供される。この三次元造形物の製造方法は、ステージに向かって造形材料を吐出することによって、前記三次元造形物の第1部分を造形する第1造形工程と、前記第1部分に重なる重複部、および、前記第1部分に重ならず、前記第1部分との間に空間を形成し、かつ、一端が前記重複部に接する非重複部を有する、前記三次元造形物の第2部分を造形する第2造形工程と、を有する。前記第2造形工程では、前記第1部分上に前記造形材料を吐出することによって、前記重複部を造形した後、前記重複部に接して前記造形材料を吐出することによって前記非重複部を造形する。
第1実施形態における三次元造形システムの概略構成を示す説明図。 第1実施形態における吐出ユニットの概略構成を示す説明図。 第1実施形態におけるフラットスクリューの溝形成面の構成を示す斜視図。 第1実施形態におけるバレルのスクリュー対向面の構成を示す上面図。 第1実施形態における造形処理の内容を示すフローチャート。 造形パスデータの一例を示す説明図。 第1実施形態における第2造形パスを示す上面図。 第1実施形態における第1造形工程を示す工程図。 第1実施形態における第1硬化工程を示す工程図。 第1実施形態における第1切削工程を示す工程図。 第1実施形態における第2造形工程を示す工程図。 第1実施形態における第2硬化工程を示す工程図。 第1実施形態における第2切削工程を示す工程図。 他の形態における第2造形パスを示す第1の上面図。 他の形態における第2造形パスを示す第2の上面図。
A.第1実施形態:
図1は、第1実施形態における三次元造形システム5の概略構成を示す説明図である。図1には、互いに直交するX,Y,Z方向に沿った矢印が表されている。X方向およびY方向は、水平方向に沿った方向であり、Z方向は、鉛直方向に沿った方向である。他の図においても、X,Y,Z方向に沿った矢印が、適宜、表されている。図1におけるX,Y,Z方向と、他の図におけるX,Y,Z方向とは、同じ方向を表している。
本実施形態における三次元造形システム5は、三次元造形装置10と、情報処理装置15とを備えている。三次元造形装置10は、吐出ユニット100と、切削ユニット200と、造形ステージ300と、移動機構400と、制御部500とを備えている。三次元造形装置10は、制御部500の制御下で、吐出ユニット100に設けられたノズル61から、造形ステージ300に向かって造形材料を吐出させつつ、移動機構400を駆動して、ノズル61と造形ステージ300との相対的な位置を変化させることによって、造形ステージ300上に造形材料を積層する。尚、吐出ユニット100の詳細な構成は、図2を用いて後述する。造形ステージ300のことを単にステージと呼ぶこともある。
また、本実施形態における三次元造形装置10は、制御部500の制御下で、切削ユニット200に取り付けられた切削工具210を回転させつつ、移動機構400を駆動して、切削工具210と造形ステージ300との相対的な位置を変化させることによって、造形ステージ300上に積層された造形材料を切削する。三次元造形装置10は、このようにして、所望の形状の三次元造形物OBを作成する。
切削ユニット200は、ヘッド先端の軸に取り付けられた切削工具210を回転させて、造形ステージ300上に積層された造形材料の切削を行う切削装置である。切削工具210として、例えば、フラットエンドミルや、ボールエンドミルを用いることができる。切削ユニット200は、一般的な位置検出センサーによって切削工具210の先端の位置を検出し、検出結果を制御部500に送信する。制御部500は、この検出結果を用いて、後述する移動機構400によって、切削工具210と積層された造形材料との相対的な位置関係を制御して切削を行う。尚、切削ユニット200は、イオナイザー等の除電器を備えてもよい。
移動機構400は、吐出ユニット100および切削ユニット200と、造形ステージ300との相対的な位置を変化させる。本実施形態では、移動機構400は、吐出ユニット100および切削ユニット200に対して、造形ステージ300を移動させる。本実施形態における移動機構400は、3つのモーターの駆動力によって、造形ステージ300をX,Y,Z方向の3軸方向に移動させる3軸ポジショナーによって構成される。各モーターは、制御部500の制御下にて駆動する。尚、移動機構400は、造形ステージ300を移動させる構成ではなく、造形ステージ300を移動させずに、吐出ユニット100および切削ユニット200を移動させる構成であってもよい。移動機構400は、吐出ユニット100および切削ユニット200と、造形ステージ300との両方を移動させる構成であってもよい。
制御部500は、1以上のプロセッサーと、主記憶装置と、外部との信号の入出力を行う入出力インターフェースとを備えるコンピューターによって構成されている。本実施形態では、制御部500は、主記憶装置上に読み込んだプログラムや命令をプロセッサーが実行することによって、種々の機能を発揮する。尚、制御部500は、コンピューターではなく、複数の回路の組み合わせによって構成されてもよい。
情報処理装置15は、三次元造形装置10の制御部500に接続されている。情報処理装置15は、三次元造形物OBの形状を表す三次元形状データを用いて、制御部500が吐出ユニット100や切削ユニット200や移動機構400を制御するための造形パスデータおよび切削パスデータを生成する。造形パスデータおよび切削パスデータの詳細については、図6および図7を用いて後述する。情報処理装置15は、1以上のプロセッサーと、主記憶装置と、外部との信号の入出力を行う入出力インターフェースとを備えるコンピューターによって構成されている。本実施形態では、情報処理装置15は、主記憶装置上に読み込んだプログラムや命令をプロセッサーが実行することによって、種々の機能を発揮する。尚、情報処理装置15は、コンピューターではなく、複数の回路の組み合わせによって構成されてもよい。
図2は、本実施形態における吐出ユニット100の概略構成を示す説明図である。吐出ユニット100は、材料貯留部20と、溶融部30と、吐出部60とを備えている。材料貯留部20には、ペレットや粉末等の状態の材料が投入される。本実施形態における材料は、ペレット状のABS樹脂である。本実施形態における材料貯留部20は、ホッパーによって構成されている。材料貯留部20と溶融部30との間は、材料貯留部20の下方に設けられた供給路22によって接続されている。材料貯留部20に投入された材料は、供給路22を介して、溶融部30に供給される。
溶融部30は、スクリューケース31と、駆動モーター32と、フラットスクリュー40と、バレル50とを備えている。溶融部30は、材料貯留部20から供給された固体状態の材料の少なくとも一部を溶融させて流動性を有するペースト状の造形材料にして、ノズル61に供給する。尚、フラットスクリュー40のことを、単にスクリューと呼ぶこともある。
スクリューケース31は、フラットスクリュー40を収容している。スクリューケース31の上面には、駆動モーター32が固定されている。駆動モーター32の回転軸は、フラットスクリュー40の上面41に接続されている。
フラットスクリュー40は、中心軸RXに沿った方向の高さが直径よりも小さい略円柱形状を有している。フラットスクリュー40は、中心軸RXがZ方向に平行になるように、スクリューケース31内に配置されている。駆動モーター32が発生させるトルクによって、フラットスクリュー40は、スクリューケース31内にて、中心軸RXを中心に回転する。
フラットスクリュー40は、中心軸RXに沿った方向における上面41とは反対側に溝形成面42を有している。溝形成面42には、溝部45が形成されている。フラットスクリュー40の溝形成面42の詳細な形状は、図3を用いて後述する。
バレル50は、フラットスクリュー40の下方に設けられている。バレル50は、フラットスクリュー40の溝形成面42に対向するスクリュー対向面52を有している。バレル50には、フラットスクリュー40の溝部45に対向する位置にヒーター58が内蔵されている。ヒーター58の温度は、制御部500によって制御される。尚、ヒーター58のことを加熱部と呼ぶこともある。
スクリュー対向面52の中心には、連通孔56が設けられている。連通孔56は、ノズル61に連通している。尚、バレル50のスクリュー対向面52の詳細な形状については、図4を用いて後述する。
吐出部60はノズル61を備えている。ノズル61には、ノズル流路65と、ノズル孔62とが設けられている。ノズル流路65は、溶融部30の連通孔56に連通する。ノズル孔62は、ノズル流路65に連通する、ノズル61の先端部分に設けられた開口部である。溶融部30からノズル61に供給された造形材料は、ノズル孔62から吐出される。本実施形態では、ノズル61には、円形のノズル孔62が設けられている。ノズル孔62の径のことをノズル径Dnと呼ぶ。尚、ノズル孔62の形状は、円形に限られず、四角形等であってもよい。
図3は、本実施形態におけるフラットスクリュー40の溝形成面42の構成を示す斜視図である。図3に示したフラットスクリュー40は、技術の理解を容易にするために、図2に示した上下の位置関係を逆向きとした状態で示されている。フラットスクリュー40の溝形成面42には、上述したとおり、溝部45が形成されている。溝部45は、中央部46と、渦状部47と、材料導入部48とを有している。
中央部46は、フラットスクリュー40の中心軸RXの周りに形成された円形の窪みである。中央部46は、バレル50に設けられた連通孔56に対向する。
渦状部47は、中央部46を中心として、溝形成面42の外周に向かって弧を描くように渦状に延びる溝である。渦状部47は、インボリュート曲線状や螺旋状に延びるように構成されてもよい。渦状部47の一端は、中央部46に接続されている。渦状部47の他端は、材料導入部48に接続されている。
材料導入部48は、溝形成面42の外周縁に設けられた渦状部47よりも幅広な溝である。材料導入部48は、フラットスクリュー40の側面43まで連続している。材料導入部48は、供給路22を介して材料貯留部20から供給された材料を、渦状部47に導入する。尚、図3には、フラットスクリュー40の中央部46から外周に向かって、1条の渦状部47および材料導入部48が設けられた形態を表したが、フラットスクリュー40の中央部46から外周に向かって、複数条の渦状部47および材料導入部48が設けられてもよい。
図4は、本実施形態におけるバレル50のスクリュー対向面52の構成を示す上面図である。上述したとおり、スクリュー対向面52の中央には、ノズル61に連通する連通孔56が形成されている。スクリュー対向面52における連通孔56の周りには、複数の案内溝54が形成されている。それぞれの案内溝54は、一端が連通孔56に接続され、連通孔56からスクリュー対向面52の外周に向かって渦状に延びている。それぞれの案内溝54は、造形材料を連通孔56に導く機能を有している。
図5は、本実施形態における三次元造形物OBの製造を実現するための造形処理の内容を示すフローチャートである。この処理は、三次元造形装置10に設けられた操作パネルや、三次元造形装置10に接続された情報処理装置15に対して、所定の開始操作がユーザーによって行われた場合に実行される。
まず、ステップ110のデータ取得工程にて、制御部500は、情報処理装置15から、後述する材料生成工程から第2切削工程までを実現するための造形パスデータおよび切削パスデータを取得する。本実施形態では、制御部500は、有線通信によって、情報処理装置15から造形パスデータおよび切削パスデータを取得する。尚、制御部500は、無線通信によって、情報処理装置15から造形パスデータおよび切削パスデータを取得してもよいし、記録媒体を介して、情報処理装置15から造形パスデータおよび切削パスデータを取得してもよい。
造形パスデータは、造形材料を吐出しながら移動するノズル61の造形ステージ300に対する走査経路である造形パスが表されたデータである。造形パスデータには、造形パスの他に、ノズル61から吐出される造形材料の流量である吐出量の目標値や、フラットスクリュー40を回転させる駆動モーター32の回転数の目標値や、バレル50のヒーター58の温度の目標値等も表されている。切削パスデータは、積層された造形材料を切削しながら移動する切削工具210の造形ステージ300に対する走査経路である切削パスが表されたデータである。切削パスデータには、切削パスの他に、切削工具210の回転数の目標値や、切削工具210の送り速度の目標値等も表されている。
本実施形態では、造形パスデータおよび切削パスデータは、情報処理装置15によって生成される。情報処理装置15は、まず、三次元CADソフト等によって作成された、STL形式やSTEP形式やIGES形式等の三次元形状データを読み込む。三次元形状データは、三次元造形物OBの形状を表すデータである。次に、情報処理装置15は、三次元形状データによって表された三次元造形物OBの形状を、複数の平行な層に分割する。三次元造形物OBの造形に用いられる造形材料は、ノズル61から吐出され、造形ステージ上300に積層されて硬化する際に収縮する。また、本実施形態では、造形ステージ上300に積層された造形材料は、切削加工によって所望の寸法や表面粗さに仕上げられる。そのため、情報処理装置15は、三次元造形物OBの造形に用いられる造形材料の収縮率を考慮して、造形材料の収縮後に、切削加工のための所定の削り代が確保されるように、分割した各層の寸法を大きくする。情報処理装置15は、寸法を大きくした状態の各層を造形するための造形パスデータ、および、造形パスデータに従って造形される各層の削り代を切削するための切削パスデータを生成する。
図6は、本実施形態における造形パスデータの一例を示す説明図である。造形パスデータは、図6における上方から下方に順に読み込まれて解釈される。図6に表された造形パスデータPDMは、まず、ノズル61を座標(X,Y,Z)=(60,50,10)に移動させる命令が設定されている。この座標は、造形ステージ300に対するノズル61の相対的な位置を表している。次に、ノズル61を座標(X,Y,Z)=(60,50,10)から、座標(X,Y,Z)=(40,50,10)に移動させるとともに、この区間をノズル61が移動する間に、ノズル61から20単位量の造形材料を吐出させる命令が設定されている。さらに、ノズル61を座標(X,Y,Z)=(40,50,10)から、座標(X,Y,Z)=(40,48,10)に移動させるとともに、この区間をノズル61が移動する間に、ノズル61から2単位量の造形材料を吐出させる命令が設定されている。途中の説明は省略して、その後、ノズル61を座標(X,Y,Z)=(66,56,10)から、座標(X,Y,Z)=(36,56,10)に移動させるとともに、この区間をノズル61が移動する間に、ノズル61から30単位量の造形材料を吐出させる命令が設定されている。
図7は、本実施形態における第2造形パスPm2の一例を示す上面図である。図7には、三次元造形物OBの一部であり、造形ステージ300上に造形される第1部分910が破線で表されており、三次元造形物OBの一部であり、第1部分910上に造形される第2部分920が実線で表されている。図7には、第2部分920を造形するための第2造形パスPm2が太線によって表されている。図7に表された例では、造形ステージ300上に造形されて収縮した第1部分910に対して切削加工が施された後に、第1部分910上に第2部分920が造形される。図7における第1部分910は、第2部分920を造形する際の大きさで表されている。つまり、図7における第1部分910は、造形ステージ300上に造形されて収縮し、さらに切削加工が施された後の大きさで表されている。
第2部分920を造形する際の大きさの第1部分910と第2部分920とを、造形ステージ300に平行な面に投影した場合に、第1部分910に重なる第2部分920の領域のことを重複部921と呼ぶ。第2部分920を造形する際の大きさの第1部分910と第2部分920とを、造形ステージ300に平行な面に投影した場合に、第1部分910に重ならない第2部分920の領域であり、第1部分910との間に空間を形成し、かつ、重複部921に接する第2部分920の領域のことを非重複部922と呼ぶ。第1部分910と第2部分920の非重複部922との間に空間が形成されるとは、第1部分910と第2部分920の非重複部922との間にサポート材等が配置されず、非重複部922が、第1部分910上の重複部921から庇状に張り出した形態を有することを意味する。第1部分910と第2部分920の非重複部922との間に空間が形成されるとは、非重複部922が、重複部921のみによって支持された形態を有するということもできる。尚、サポート材とは、造形中の三次元造形物OBの形状を保持するための部材であり、造形の終了後に除去される部材のことを意味する。
情報処理装置15は、層状に分割された三次元造形物OBの三次元形状データを用いて、第2部分920に非重複部922が生じるか否かを判定し、第2部分920に非重複部922が生じると判断された場合には、第2部分920を造形するための第2造形パスPm2の始点Aを重複部921内に設定する。第2部分920に非重複部922が生じると判断された場合には、情報処理装置15は、第2部分920を造形するための第2造形パスPm2を、第1部分910上に造形材料を吐出することによって重複部921を造形した後、重複部921に接して造形材料を吐出することによって非重複部922を造形するように設定する。本実施形態では、第2造形パスPm2は、始点Aの外周を周回しながら、重複部921の外周に向かって延びるように設定される。
本実施形態では、重複部921内に配置された隣接する第2造形パスPm2の部分同士の間隔d1は、ノズル径Dnと同じに設定される。つまり、重複部921内では、ノズル61から吐出された造形材料が、先に配置された造形材料に接するように第2造形パスPm2が設定される。非重複部922内に配置された第2造形パスPm2の部分と、重複部921内に配置された隣接する第2造形パスPm2の部分との間隔d2は、間隔d1よりも狭く設定される。非重複部922内に配置された隣接する第2造形パスPm2の部分同士の間隔d3は、間隔d2と同じに設定される。つまり、非重複部922内では、ノズル61から吐出された造形材料の一部が、先に配置された造形材料の上に重なるように第2造形パスPm2が設定される。
図5を参照して、次に、ステップS120の材料生成工程にて、制御部500は、フラットスクリュー40の回転、および、バレル50に内蔵されたヒーター58の加熱を制御することによって、材料を溶融させて造形材料を生成する。この制御のことを、材料生成制御とも呼ぶ。材料生成工程にて、材料貯留部20内に貯留された材料が、供給路22を介して、回転しているフラットスクリュー40の側面43から材料導入部48に供給される。材料導入部48内に供給された材料は、フラットスクリュー40の回転によって、渦状部47内へと搬送される。フラットスクリュー40の回転、および、ヒーター58による加熱によって、渦状部47内に搬送された材料の少なくとも一部が溶融されて、流動性を有するペースト状の造形材料が生成される。生成された造形材料は、渦状部47内を中央部46に向かって搬送されて、連通孔56からノズル61に供給される。尚、造形材料は、後述する第1造形工程や第2造形工程が行われる間、生成され続ける。
図8は、本実施形態における第1造形工程を示す工程図である。図5および図8を参照して、ステップS130の第1造形工程にて、制御部500は、吐出ユニット100および移動機構400を制御することによって、ノズル61から造形ステージ300上に造形材料を積層して、三次元造形物OBの第1部分910を造形する。この制御のことを、第1造形制御とも呼ぶ。第1部分910は、造形ステージ300上に積層された、三次元造形物OBの一部である。造形材料が一層のみ、または、複数層に亘って積層されることによって、第1部分910が形成される。本実施形態では、造形材料が5層に亘って積層されることによって、第1部分910が形成される。第1造形工程にて、制御部500は、データ取得工程にて取得した造形パスデータに表された、第1部分910を造形するための第1造形パスPm1に従って、吐出ユニット100および移動機構400を制御する。尚、第1造形工程に先立って、制御部500が造形ステージ300に内蔵された調温ヒーター320を制御することによって、造形材料のガラス転移点を超えない温度になるように造形ステージ300が調温されてもよい。この場合、造形ステージ300が調温されることによって、第1部分910と造形ステージ300との密着性が向上する。
図9は、本実施形態における第1硬化工程を示す工程図である。図5および図9を参照して、ステップS140の第1硬化工程にて、制御部500は、造形ステージ300上に積層された第1部分910を硬化させる。本実施形態では、制御部500は、第1部分910における可塑化した造形材料が造形ステージ300や大気に熱を奪われて硬化するまで処理を待機することによって、第1部分910の造形材料を硬化させる。ノズル61から吐出された造形材料が速やかに冷えて硬化する場合には、制御部500は、処理を待機しなくてもよい。造形材料が硬化する際の収縮によって、第1部分910は収縮する。図9には、収縮前の第1部分910が破線で表されており、収縮後の第1部分910が実線で表されている。造形材料の収縮によって、第1部分910の端部は、第1部分910の中心に向かって、長さWa1の距離を移動する。尚、三次元造形装置10に送風機が設けられ、制御部500は、送風機を用いて、第1部分910における造形材料に送風することによって、第1部分910の造形材料を硬化させてもよい。
図10は、本実施形態における第1切削工程を示す工程図である。図5および図10を参照して、ステップS150の第1切削工程にて、制御部500は、切削ユニット200および移動機構400を制御することによって、切削工具210で第1部分910の表面を切削する。この制御のことを、第1切削制御とも呼ぶ。制御部500はデータ取得工程にて取得した切削パスデータに表された、第1部分910を切削するための第1切削パスPc1に従って、切削ユニット200および移動機構400を制御することによって、第1部分910が所望の寸法や表面粗さになるように、第1部分910を切削する。図10には、第1部分910が端部から長さWb1に亘って切削された様子が一例として表されている。
図11は、本実施形態における第2造形工程を示す工程図である。図5および図11を参照して、ステップS160の第2造形工程にて、制御部500は、吐出ユニット100および移動機構400を制御することによって、切削された第1部分910上に造形材料を積層して、重複部921と非重複部922とを有する第2部分920を造形する。この制御のことを、第2造形制御とも呼ぶ。第2部分920は、第1部分910上に積層された、三次元造形物OBの一部である。造形材料が一層のみ、または、複数層に亘って積層されることによって、第2部分920が形成される。本実施形態では、造形材料が5層に亘って積層されることによって、第2部分920が形成される。第2造形工程にて、制御部500は、データ取得工程にて取得した造形パスデータに表された、第2部分920を造形するための第2造形パスPm2に従って、吐出ユニット100および移動機構400を制御する。第1部分910の端部から張り出す非重複部922の長さWdは、ノズル径Dnよりも大きい。長さWdは、非重複部922が自重によって垂れ下がらない範囲内に設定されることが好ましい。
図12は、本実施形態における第2硬化工程を示す工程図である。図5および図12を参照して、ステップS170の第2硬化工程にて、制御部500は、第2部分920の造形材料を硬化させる。本実施形態では、制御部500は、第2部分920における可塑化した造形材料が、第1部分910や大気に熱を奪われて硬化するまで待機することによって、第2部分920の造形材料を硬化させる。ノズル61から吐出された造形材料が速やかに冷えて硬化する場合には、制御部500は、処理を待機しなくてもよい。造形材料が硬化する際の収縮によって、第2部分920は収縮する。図12には、収縮前の第2部分920が破線で表されており、収縮後の第2部分920が実線で表されている。造形材料の収縮によって、第2部分920の端部は、第2部分920の中心に向かって、長さWa2の距離を移動する。尚、三次元造形装置10に送風機が設けられ、制御部500は、送風機を用いて、第2部分920における造形材料に送風することによって、第2部分920の造形材料を硬化させてもよい。
図13は、本実施形態における第2切削工程を示す工程図である。図5および図13を参照して、ステップS180の第2切削工程にて、制御部500は、切削ユニット200および移動機構400を制御することによって、第2部分920の表面を切削する。この制御のことを、第2切削制御とも呼ぶ。制御部500はデータ取得工程にて取得した切削パスデータに表された、第2部分920を切削するための第2切削パスPc2に従って、切削ユニット200および移動機構400を制御することによって、第2部分920が所望の大きさや表面粗さになるように、第2部分920を切削する。図13には、第2部分920が端部から長さWb2に亘って切削された様子が一例として表されている。この例では、第2部分920の面と、第1切削工程にて切削された第1部分910の面とが、連続的な面になるように、第2部分920が切削されている。
図5を参照して、ステップS190にて、制御部500は、三次元造形物OBが完成したか否かを判定する。ステップS190のことを完成判定工程と呼ぶこともできる。本実施形態では、制御部500は、取得した造形パスデータに表された全ての造形パス、および、取得した切削パスデータに表された全ての切削パスの走査を完了した場合に、三次元造形物OBが完成したと判断する。ステップS190で三次元造形物OBが完成したと判断された場合、制御部500は、この処理を終了する。一方、ステップS190で三次元造形物OBが完成したと判断されなかった場合、制御部500は、第2部分920よりも上層を形成するために、第2造形工程から第2切削工程までを繰り返し行う。制御部500は、三次元造形物OBが完成したと判断されるまで、第2造形工程から第2切削工程までを繰り返し行う。
以上で説明した本実施形態の三次元造形物OBの製造方法によれば、第2造形工程にて第2部分920を造形する際に、第1部分910から張り出した非重複部922が造形されるので、造形材料の収縮に伴って第2部分920が設計上狙った寸法よりも小さくなることを抑制できる。そのため、三次元造形物OBの造形精度を向上させることができる。
また、本実施形態では、第2造形工程にて第2部分920を造形した後、第2切削工程にて第2部分920が切削される。そのため、三次元造形物OBの造形精度を、より向上させることができる。
また、本実施形態では、第2部分920の張り出し量Wdが、第2部分920の硬化する際の収縮量と、第2部分920の削り代とを加味した大きさになるように、第2造形パスPm2が設定される。そのため、第2部分920が硬化して収縮した後に、確実に第2部分920の削り代を確保できる。
また、本実施形態では、重複部921の外周を周回する第2造形パスPm2に従って、非重複部922が造形されるので、必要最低限の長さの造形パスで第2部分920を造形できる。そのため、三次元造形物OBの造形に要する時間を短縮できる。
また、本実施形態では、非重複部922内に配置された隣接する第2造形パスPm2の部分同士の間隔d3が、重複部921内に配置された隣接する第2造形パスPm2の部分同士の間隔d1よりも狭く設定されている。そのため、ノズル61から吐出された造形材料の一部が、先に配置された造形材料の上に重なるように非重複部922が造形されるので、非重複部922の垂れ下がりを抑制できる。
また、本実施形態では、中心軸RXに沿った高さが小さいフラットスクリュー40を用いて材料を溶融させて造形材料にするため、溶融部30を小型化できる。そのため、小型な三次元造形装置10を用いて三次元造形物OBを造形できる。
尚、本実施形態では、ペレット状のABS樹脂の材料が用いられたが、吐出ユニット100において用いられる材料としては、例えば、熱可塑性を有する材料や、金属材料、セラミック材料等の種々の材料を主材料として三次元造形物を造形する材料を採用することもできる。ここで、「主材料」とは、三次元造形物の形状を形作っている中心となる材料を意味し、三次元造形物において50重量%以上の含有率を占める材料を意味する。上述した造形材料には、それらの主材料を単体で溶融したものや、主材料とともに含有される一部の成分が溶融してペースト状にされたものが含まれる。
主材料として熱可塑性を有する材料を用いる場合には、溶融部30において、当該材料が可塑化することによって造形材料が生成される。「可塑化」とは、熱可塑性を有する材料に熱が加わり溶融することを意味する。
熱可塑性を有する材料としては、例えば、下記のいずれか一つまたは2以上を組み合わせた熱可塑性樹脂材料を用いることができる。
<熱可塑性樹脂材料の例>
ポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリアセタール樹脂(POM)、ポリ塩化ビニル樹脂(PVC)、ポリアミド樹脂(PA)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、ポリ乳酸樹脂(PLA)、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレートなどの汎用エンジニアリングプラスチック、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチック。
熱可塑性を有する材料には、顔料や、金属、セラミック、その他に、ワックス、難燃剤、酸化防止剤、熱安定剤などの添加剤等が混入されていてもよい。熱可塑性を有する材料は、溶融部30において、フラットスクリュー40の回転とヒーター58の加熱によって可塑化されて溶融した状態に転化される。また、そのように生成された造形材料は、ノズル孔62から吐出された後、温度の低下によって硬化する。
熱可塑性を有する材料は、そのガラス転移点以上に加熱されて完全に溶融した状態でノズル孔62から射出されることが望ましい。例えば、ABS樹脂は、ガラス転移点が約120℃であり、ノズル孔62からの射出時には約200℃であることが望ましい。このように高温の状態で造形材料を射出するために、ノズル孔62の周囲にはヒーターが設けられてもよい。
吐出ユニット100では、上述した熱可塑性を有する材料の代わりに、例えば、以下の金属材料が主材料として用いられてもよい。この場合には、下記の金属材料を粉末状にした粉末材料に、造形材料の生成の際に溶融する成分が混合されて、溶融部30に投入されることが望ましい。
<金属材料の例>
マグネシウム(Mg)、鉄(Fe)、コバルト(Co)やクロム(Cr)、アルミニウム(Al)、チタン(Ti)、銅(Cu)、ニッケル(Ni)の単一の金属、もしくはこれらの金属を1つ以上含む合金。
<合金の例>
マルエージング鋼、ステンレス、コバルトクロムモリブデン、チタニウム合金、ニッケル合金、アルミニウム合金、コバルト合金、コバルトクロム合金。
吐出ユニット100においては、上記の金属材料の代わりに、セラミック材料を主材料として用いることが可能である。セラミック材料としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウムなどの酸化物セラミックスや、窒化アルミニウムなどの非酸化物セラミックスなどが使用可能である。主材料として、上述したような金属材料やセラミック材料を用いる場合には、造形ステージ300に配置された造形材料は、例えばレーザーの照射や温風などによる焼結によって硬化されてもよい。
材料貯留部20に投入される金属材料やセラミック材料の粉末材料は、単一の金属の粉末や合金の粉末、セラミック材料の粉末を、複数種類、混合した混合材料であってもよい。また、金属材料やセラミック材料の粉末材料は、例えば、上で例示したような熱可塑性樹脂、あるいは、それ以外の熱可塑性樹脂によってコーティングされていてもよい。この場合には、溶融部30において、その熱可塑性樹脂が溶融して流動性が発現されるものとしてもよい。
材料貯留部20に投入される金属材料やセラミック材料の粉末材料には、例えば、以下のような溶剤を添加することもできる。溶剤は、下記の中から選択される1種または2種以上を組み合わせて用いることができる。
<溶剤の例>
水;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル等の酢酸エステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、アセトン、メチルイソブチルケトン、エチル-n-ブチルケトン、ジイソプロピルケトン、アセチルアセトン等のケトン類;エタノール、プロパノール、ブタノール等のアルコール類;テトラアルキルアンモニウムアセテート類;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶剤;ピリジン、γ-ピコリン、2,6-ルチジン等のピリジン系溶剤;テトラアルキルアンモニウムアセテート(例えば、テトラブチルアンモニウムアセテート等);ブチルカルビトールアセテート等のイオン液体等。
その他に、材料貯留部20に投入される金属材料やセラミック材料の粉末材料には、例えば、以下のようなバインダーを添加することもできる。
<バインダーの例>
アクリル樹脂、エポキシ樹脂、シリコーン樹脂、セルロース系樹脂或いはその他の合成樹脂又はPLA(ポリ乳酸)、PA(ポリアミド)、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)或いはその他の熱可塑性樹脂。
B.他の実施形態:
図14は、他の形態における第2造形パスPm2の第1の例を示す上面図である。図15は、他の形態における第2造形パスPm2の第2の例を示す上面図である。図14に表されたように、第2造形パスPm2は、第1部分910の周縁の一辺に平行な方向に往復しながら、重複部921と非重複部922とを造形するように設定されてもよい。また、図15に表されたように、第2造形パスPm2は、第1部分910の周縁の一辺に交差する方向に往復しながら、重複部921と非重複部922とを造形するように設定されてもよい。これらの場合、非重複部922の第1部分910からの張り出し量Wdを、三次元造形物OBにおける部位に応じて異なる量に設定できる。
上述した実施形態では、制御部500は、第1切削処理を実行することによって第1切削工程を行い、第2切削処理を実行することによって第2切削工程を行っている。これに対して、制御部500は、第1切削処理と第2切削処理とのうち少なくともいずれか一方を実行しなくてもよい。つまり、第1切削工程と第2切削工程との少なくともいずれか一方が行われなくてもよい。
上述した実施形態では、非重複部922内に配置された第2造形パスPm2の部分と、重複部921内に配置された隣接する第2造形パスPm2の部分との間隔d2は、重複部921内に配置された隣接する第2造形パスPm2の部分同士の間隔d1よりも狭く設定されている。非重複部922内に配置された隣接する第2造形パスPm2の部分同士の間隔d3は、間隔d2と同じに設定されている。これに対して、間隔d2は、間隔d1と同じに設定されてもよいし、間隔d3は、間隔d2よりも狭く設定されてもよい。
C.他の形態:
本開示は、上述した実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の形態で実現することができる。例えば、本開示は、以下の形態によっても実現可能である。以下に記載した各形態中の技術的特徴に対応する上記実施形態中の技術的特徴は、本開示の課題の一部又は全部を解決するために、あるいは、本開示の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
(1)本開示の第1の形態によれば、三次元造形物の製造方法が提供される。この三次元造形物の製造方法は、ステージに向かって造形材料を吐出することによって、前記三次元造形物の第1部分を造形する第1造形工程と、前記第1部分に重なる重複部、および、前記第1部分に重ならず、前記第1部分との間に空間を形成し、かつ、一端が前記重複部に接する非重複部を有する、前記三次元造形物の第2部分を造形する第2造形工程と、を有する。前記第2造形工程では、前記第1部分上に前記造形材料を吐出することによって、前記重複部を造形した後、前記重複部に接して前記造形材料を吐出することによって前記非重複部を造形する。
この形態の三次元造形物の製造方法によれば、第2部分を造形する際に、第1部分から張り出した非重複部を造形できるので、造形材料の収縮に伴って第2部分が設計上狙った寸法よりも小さくなることを抑制できる。そのため、三次元造形物の造形精度を向上させることができる。
(2)上記形態の三次元造形物の製造方法は、前記第2造形工程よりも後に、少なくとも前記非重複部を切削する切削工程を有してもよい。
この形態の三次元造形物の製造方法によれば、第2部分を切削によって仕上げることができるため、三次元造形物の造形精度を、より向上させることができる。
(3)上記形態の三次元造形物の製造方法において、前記切削工程は、前記第2部分が硬化して収縮した後に行われ、前記第2造形工程において、前記非重複部は、前記切削工程において前記非重複部を切削するための削り代を確保可能な大きさに造形されてもよい。
この形態の三次元造形物の製造方法によれば、第2部分が硬化して収縮した後であっても、確実に削り代を確保できる。
(4)上記形態の三次元造形物の製造方法では、前記第2造形工程における、前記非重複部を造形するために前記造形材料が吐出される経路は、前記重複部を周回する経路であってもよい。
この形態の三次元造形物の製造方法によれば、重複部を周回する経路で非重複部を造形するので、必要最低限の長さの経路で造形できる。そのため、三次元造形物の造形に要する時間を短縮できる。
(5)上記形態の三次元造形物の製造方法では、前記第2造形工程における、前記非重複部を造形するために前記造形材料が吐出される経路は、前記重複部の周縁に平行に往復する経路であってもよい。
この形態の三次元造形物の製造方法によれば、非重複部の第1部分からの張り出し量を、三次元造形物における部位に応じて異なる量に設定できる。
(6)上記形態の三次元造形物の製造方法では、前記第2造形工程における、前記非重複部を造形するために前記造形材料が吐出される経路同士の間隔は、前記重複部を造形するために前記造形材料が吐出される経路同士の間隔よりも狭くてもよい。
この形態の三次元造形物の製造方法によれば、吐出された造形材料の一部が、先に配置された造形材料の上に重なるように非重複部が造形されるので、非重複部の垂れ下がりを抑制できる。
(7)本開示の第2の形態によれば、三次元造形装置が提供される。この三次元造形装置は、材料を溶融させて造形材料にする溶融部と、前記造形材料を吐出する吐出部と、前記吐出部から吐出された前記造形材料が積層されるステージと、前記吐出部と前記ステージとの相対位置を変化させる移動機構と、前記溶融部および前記移動機構を制御することによって、第1部分と、前記第1部分に重なる重複部、および、前記第1部分に重ならず、前記第1部分との間に空間を形成し、かつ、一端が前記重複部に接する非重複部を有する第2部分とを有する三次元造形物を造形する制御部と、を備える。前記制御部は、前記第1部分上に前記造形材料を吐出することによって、前記重複部を造形した後、前記重複部に接して前記造形材料を吐出することによって前記非重複部を造形する造形パスに従って、前記溶融部および前記移動機構を制御する。
この形態の三次元造形装置によれば、第2部分を造形する際に、第1部分から張り出した非重複部を造形できるので、造形材料の収縮に伴って第2部分が設計上狙った寸法よりも小さくなることを抑制できる。そのため、三次元造形物の造形精度を向上させることができる。
(8)上記形態の三次元造形装置において、前記溶融部は、溝が形成された溝形成面を有するフラットスクリューと、前記溝形成面に対向し、中央に前記吐出部に連通する連通孔が形成されたスクリュー対向面、および、加熱部を有するバレルと、を備え、前記フラットスクリューの回転、および、前記加熱部による加熱によって前記材料を溶融させて前記造形材料にして、前記連通孔から前記吐出部に前記造形材料を供給してもよい。
この形態の三次元造形装置によれば、フラットスクリューを用いて材料を溶融させて造形材料にするため、溶融部を小型化できる。そのため、三次元造形装置を小型化できる。
本開示は、三次元造形物の製造方法以外の種々の形態で実現することも可能である。例えば、三次元造形装置、三次元造形システム、三次元造形装置の制御方法、情報処理装置、データ生成方法等の形態で実現することができる。
5…三次元造形システム、10…三次元造形装置、15…情報処理装置、20…材料貯留部、22…供給路、30…溶融部、31…スクリューケース、32…駆動モーター、40…フラットスクリュー、41…上面、42…溝形成面、43…側面、45…溝部、46…中央部、47…渦状部、48…材料導入部、50…バレル、52…スクリュー対向面、54…案内溝、56…連通孔、58…ヒーター、60…吐出部、61…ノズル、62…ノズル孔、65…ノズル流路、100…吐出ユニット、200…切削ユニット、210…切削工具、300…造形ステージ、320…調温ヒーター、400…移動機構、500…制御部、910…第1部分、920…第2部分、921…重複部、922…非重複部。

Claims (6)

  1. 三次元造形物の製造方法であって、
    ステージに向かって造形材料を吐出することによって、前記三次元造形物の第1部分を造形する第1造形工程と、
    前記第1部分に重なる重複部と、前記第1部分に重ならず、前記ステージとの間に空間を形成し、かつ、一端が前記重複部に接する非重複部を有する、前記三次元造形物の第2部分を造形する第2造形工程と、
    前記第2造形工程よりも後、かつ、前記第2部分が硬化した後に、少なくとも前記非重複部を切削する切削工程と、
    を有し、
    前記第2造形工程では、前記第1部分上に前記造形材料を吐出することによって前記重複部を造形した後、前記重複部に接して前記造形材料を吐出することによって前記非重複部を造形し、
    前記第2造形工程では、前記非重複部は、前記切削工程において前記非重複部を切削するための削り代を確保可能な大きさに造形される、
    三次元造形物の製造方法。
  2. 請求項に記載の三次元造形物の製造方法であって、
    前記第2造形工程における、前記非重複部を造形するために前記造形材料が吐出される経路は、前記重複部を周回する経路である、三次元造形物の製造方法。
  3. 請求項に記載の三次元造形物の製造方法であって、
    前記第2造形工程における、前記非重複部を造形するために前記造形材料が吐出される経路は、前記重複部の周縁に平行に往復する経路である、三次元造形物の製造方法。
  4. 請求項1から請求項のいずれか一項に記載の三次元造形物の製造方法であって、
    前記第2造形工程における、前記非重複部を造形するために前記造形材料が吐出される経路同士の間隔は、前記重複部を造形するために前記造形材料が吐出される経路同士の間隔よりも狭い、三次元造形物の製造方法。
  5. 三次元造形装置であって、
    材料を溶融させて造形材料にする溶融部と、
    前記造形材料を吐出する吐出部と、
    前記吐出部から吐出された前記造形材料が積層されるステージと、
    前記ステージ上に積層された前記造形材料を切削する切削部と、
    前記吐出部と前記切削部と前記ステージとの相対位置を変化させる移動機構と、
    前記溶融部と前記切削部と前記移動機構を制御することによって三次元造形物を造形する制御部と、
    を備え、
    前記制御部は、
    前記溶融部と前記移動機構とを制御することによって、前記吐出部から前記ステージに向かって前記造形材料を吐出させて、前記三次元造形物の第1部分を造形する第1造形制御と、
    前記溶融部と前記移動機構とを制御することによって、前記第1部分に重なる重複部と、前記第1部分に重ならず、前記ステージとの間に空間を形成し、かつ、一端が前記重複部に接する非重複部とを有する、前記三次元造形物の第2部分を造形する第2造形制御と、
    前記切削部と前記移動機構とを制御することによって、前記第2造形制御よりも後、かつ、前記第2部分が硬化した後に、少なくとも前記非重複部を切削する切削制御と、
    を実行し、
    前記第2造形制御では、前記制御部は、前記吐出部から前記第1部分上に前記造形材料を吐出させることによって前記重複部を造形した後、前記吐出部から前記重複部に接して前記造形材料を吐出させることによって前記非重複部を造形し、
    前記第2造形制御では、前記非重複部は、前記切削制御において前記非重複部を切削するための削り代を確保可能な大きさに造形される、三次元造形装置。
  6. 請求項に記載の三次元造形装置であって、
    前記溶融部は、
    溝が形成された溝形成面を有するフラットスクリューと、前記溝形成面に対向し、中央に前記吐出部に連通する連通孔が形成されたスクリュー対向面、および、加熱部を有するバレルと、を備え、
    前記フラットスクリューの回転、および、前記加熱部による加熱によって前記材料を溶融させて前記造形材料にして、前記連通孔から前記吐出部に前記造形材料を供給する、三次元造形装置。
JP2018246552A 2018-12-28 2018-12-28 三次元造形物の製造方法および三次元造形装置 Active JP7156022B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018246552A JP7156022B2 (ja) 2018-12-28 2018-12-28 三次元造形物の製造方法および三次元造形装置
US16/727,397 US11554545B2 (en) 2018-12-28 2019-12-26 Method for producing three-dimensional shaped article and three-dimensional shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246552A JP7156022B2 (ja) 2018-12-28 2018-12-28 三次元造形物の製造方法および三次元造形装置

Publications (2)

Publication Number Publication Date
JP2020104439A JP2020104439A (ja) 2020-07-09
JP7156022B2 true JP7156022B2 (ja) 2022-10-19

Family

ID=71122478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246552A Active JP7156022B2 (ja) 2018-12-28 2018-12-28 三次元造形物の製造方法および三次元造形装置

Country Status (2)

Country Link
US (1) US11554545B2 (ja)
JP (1) JP7156022B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024599B2 (ja) 2018-05-23 2022-02-24 セイコーエプソン株式会社 可塑化装置、射出成形機および造形装置
JP7163692B2 (ja) * 2018-09-25 2022-11-01 セイコーエプソン株式会社 可塑化装置および三次元造形装置
JP7131248B2 (ja) * 2018-09-25 2022-09-06 セイコーエプソン株式会社 可塑化装置および三次元造形装置
JP7180244B2 (ja) 2018-09-27 2022-11-30 セイコーエプソン株式会社 可塑化装置
JP7272047B2 (ja) 2019-03-27 2023-05-12 セイコーエプソン株式会社 可塑化装置および三次元造形装置
JP7358903B2 (ja) * 2019-10-21 2023-10-11 セイコーエプソン株式会社 三次元造形物の製造方法、および、データ処理装置
US11708626B2 (en) * 2020-12-03 2023-07-25 Metal Industries Research & Development Centre Titanium-aluminum intermetallic and manufacturing method thereof for improving casting fluidity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203425A (ja) 2015-04-17 2016-12-08 セイコーエプソン株式会社 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2018192624A (ja) 2017-05-12 2018-12-06 セイコーエプソン株式会社 三次元造形装置および三次元物体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192710A (ja) 2005-01-13 2006-07-27 Sekisui Chem Co Ltd 溶融樹脂押出積層造形方法およびその装置
US7236166B2 (en) * 2005-01-18 2007-06-26 Stratasys, Inc. High-resolution rapid manufacturing
US10259160B2 (en) * 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US9815268B2 (en) * 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9579851B2 (en) * 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
CN106255584B (zh) * 2014-04-30 2019-05-03 麦格纳国际公司 用于形成三维物体的装置及方法
JP2016055603A (ja) 2014-09-12 2016-04-21 コニカミノルタ株式会社 三次元造形方法および三次元造形装置
JPWO2017038985A1 (ja) 2015-09-04 2018-06-21 Jsr株式会社 立体造形物の製造方法及びこれに用いられるノズル移動経路のデータ作成方法、並びに立体造形物の製造装置及びこれに用いられるノズル移動経路のデータ作成プログラム
JP6526839B2 (ja) * 2016-01-25 2019-06-05 武藤工業株式会社 三次元造形装置、及びその制御方法、並びにその造形物
US10633468B2 (en) * 2016-04-01 2020-04-28 Arkema Inc. 3-D printed fluoropolymer structures
US10254499B1 (en) * 2016-08-05 2019-04-09 Southern Methodist University Additive manufacturing of active devices using dielectric, conductive and magnetic materials
CN110023793B (zh) * 2016-12-01 2021-10-12 昕诺飞控股有限公司 用于生成光效果的光学元件
US10668664B1 (en) * 2018-11-09 2020-06-02 Thermwood Corporation Systems and methods for printing components using additive manufacturing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203425A (ja) 2015-04-17 2016-12-08 セイコーエプソン株式会社 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2018192624A (ja) 2017-05-12 2018-12-06 セイコーエプソン株式会社 三次元造形装置および三次元物体の製造方法

Also Published As

Publication number Publication date
US20200207016A1 (en) 2020-07-02
US11554545B2 (en) 2023-01-17
JP2020104439A (ja) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7156022B2 (ja) 三次元造形物の製造方法および三次元造形装置
JP7263838B2 (ja) 三次元造形物の造形方法
JP7180154B2 (ja) 三次元造形装置および三次元造形物の製造方法
JP7159859B2 (ja) 三次元造形装置
JP7115088B2 (ja) 三次元造形装置および三次元造形物の製造方法
CN110406098B (zh) 三维造型装置以及三维造型物的制造方法
JP7263835B2 (ja) 三次元造形装置および三次元造形物の造形方法
JP7272091B2 (ja) 三次元造形装置
CN112238614A (zh) 三维造型物的制造方法及三维造型装置
JP7119643B2 (ja) 三次元造形物の製造方法および三次元造形装置
JP7459546B2 (ja) 三次元造形物の製造方法、および、三次元造形装置
JP7400327B2 (ja) 三次元造形物の製造方法、および、データ処理装置
US11351720B2 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaping device
JP7172564B2 (ja) 三次元造形システムおよび三次元造形物の製造方法
JP7476567B2 (ja) 三次元造形システム、および三次元造形物の製造方法
US11584070B2 (en) Method of manufacturing three-dimensional shaped object and three-dimensional shaping device
JP2020116900A (ja) 三次元造形物の製造方法および三次元造形装置
JP7388212B2 (ja) 三次元造形物の製造方法および三次元造形装置
JP7395894B2 (ja) 三次元造形物の製造方法、および、三次元造形装置
JP2022166949A (ja) 三次元造形装置
JP2023097689A (ja) 三次元造形装置
JP2023078601A (ja) 三次元造形装置
JP2023034377A (ja) 三次元造形物の製造方法、および、三次元造形装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7156022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150