JP2023034377A - 三次元造形物の製造方法、および、三次元造形装置 - Google Patents

三次元造形物の製造方法、および、三次元造形装置 Download PDF

Info

Publication number
JP2023034377A
JP2023034377A JP2021140593A JP2021140593A JP2023034377A JP 2023034377 A JP2023034377 A JP 2023034377A JP 2021140593 A JP2021140593 A JP 2021140593A JP 2021140593 A JP2021140593 A JP 2021140593A JP 2023034377 A JP2023034377 A JP 2023034377A
Authority
JP
Japan
Prior art keywords
data
layer
modeling
shape
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021140593A
Other languages
English (en)
Inventor
郷志 山▲崎▼
Satoshi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2021140593A priority Critical patent/JP2023034377A/ja
Publication of JP2023034377A publication Critical patent/JP2023034377A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】十分な造形精度を有する三次元造形物を造形する。【解決手段】三次元造形物の製造方法は、三次元造形物の形状を表す形状データに基づいて、三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、層毎に、層データに基づいて、三次元造形装置に備えられた吐出部が造形材料を吐出しながら移動する移動経路を表した経路情報、及び、移動経路における造形材料の吐出量を表す吐出量情報を含む造形データを生成するデータ生成工程と、造形データに従って、吐出部から造形材料を吐出して層を積層する積層工程と、積層された層の物理量を測定する測定工程と、物理量に基づいて形状データを補正する補正工程と、を備える。データ生成工程において、補正された形状データに基づいて、物理量が測定された層より後の層の造形データを生成する。【選択図】図5

Description

本開示は、三次元造形物の製造方法、および、三次元造形装置に関する。
三次元造形物の製造に関して、特許文献1には、測定手段により測定された(n-1)層の平面形状のデータと、予測手段により予測された(n-1)層の形状の変位量とに基づいて、三次元造形物の形状データに基づいて生成された造形データのうち、(n-1)層に続いて造形されるn層の造形データを補正する技術が開示されている。
特開2019-217729号公報
特許文献1の技術では、造形中の周辺環境の変化等による平面形状の変化に応じて造形データを補正しつつ、三次元造形物を造形できる。しかしながら、予め生成された造形データを補正しているため、所望の形状を造形できる程度に造形データを補正できない場合がある。つまり、造形データを補正できる範囲には制限があるため、補正された造形データに基づいて造形される三次元造形物の精度が十分でない場合があった。
本開示の第1の形態によれば、三次元造形物の製造方法が提供される。この三次元造形物の製造方法は、三次元造形物の形状を表す形状データに基づいて、前記三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、前記層データに基づいて、層毎に、三次元造形装置に備えられた吐出部が造形材料を吐出しながら移動する移動経路を表した経路情報、及び、前記移動経路における前記造形材料の吐出量を表す吐出量情報を含む造形データを生成するデータ生成工程と、前記造形データに従って、前記吐出部から前記造形材料を吐出して層を積層する積層工程と、積層された層の物理量を測定する測定工程と、前記物理量に基づいて前記形状データを補正する補正工程と、を備える。前記データ生成工程において、補正された前記形状データに基づいて、前記物理量が測定された層より後の層の造形データを生成する。
本開示の第2の形態によれば、三次元造形装置が提供される。この三次元造形装置は、ステージと、前記ステージに向けて造形材料を吐出する吐出部と、前記吐出部と前記ステージとの相対的な位置を変更する位置変更部と、前記ステージ上に積層された前記層の物理量を測定する測定部と、前記吐出部と前記位置変更部とを制御して三次元造形物を造形する制御部と、を備える。前記制御部は、前記三次元造形物の形状を表す形状データに基づいて、前記三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、前記層データに基づいて、層毎に、前記吐出部が造形材料を吐出しながら移動する移動経路を表した経路情報、及び、前記移動経路における前記造形材料の吐出量を表す吐出量情報を含む造形データを生成するデータ生成工程と、前記造形データに従って、前記吐出部から前記造形材料を吐出させて層を積層する積層工程と、前記測定部によって、積層された層の物理量を測定する測定工程と、前記物理量に基づいて前記形状データを補正する補正工程と、を実行し、前記データ生成工程において、補正された前記形状データに基づいて、前記物理量が測定された層より後の層の造形データを生成する。
三次元造形装置の概略構成を示す説明図。 スクリュー下面側の概略構成を示す斜視図。 バレルの上面であるバレル上面側を示す概略平面図。 三次元造形物が造形される様子を模式的に示す概略図。 第1実施形態における三次元造形処理のフローチャート。 第2実施形態における三次元造形処理のフローチャート。 第3実施形態における三次元造形処理のフローチャート。 第2造形物を造形するための三次元造形処理のフローチャートの一例。
A.第1実施形態:
図1は、第1実施形態における三次元造形装置100の概略構成を示す説明図である。図1には、互いに直交するX,Y,Z方向に沿った矢印が表されている。X,Y,Z方向は、互いに直交する3つの空間軸であるX軸、Y軸、Z軸に沿った方向であり、それぞれ、X軸、Y軸、Z軸に沿う一方側の方向と、その反対方向を両方含む。X軸およびY軸は、水平面に沿った軸であり、Z軸は、鉛直線に沿った軸である。他の図においても、X,Y,Z方向に沿った矢印が、適宜、表されている。図1におけるX,Y,Z方向と、他の図におけるX,Y,Z方向とは、同じ方向を表している。以下では、+Z方向のことを「上」、-Z方向のことを「下」ともいう。
三次元造形装置100は、三次元造形装置100を制御する制御部500と、造形材料を生成して吐出する吐出部200と、三次元造形物の基台となる造形用のステージ300と、造形材料の吐出位置を制御する位置変更部400とを備える。
吐出部200は、制御部500の制御下において、固体状態の材料を溶融させてペースト状にした造形材料をステージ300上に吐出する。吐出部200は、造形材料に転化される前の材料の供給源である材料供給部20と、材料を可塑化して造形材料を生成する可塑化部30と、生成された造形材料を吐出するノズル61と、を備える。
材料供給部20には、ペレットや粉末等の状態の材料が収容されている。本実施形態では、ペレット状に形成された樹脂が材料として用いられる。本実施形態における材料供給部20は、ホッパーによって構成されている。材料供給部20の下方には、材料供給部20と可塑化部30との間を接続する供給路22が設けられている。材料供給部20は、供給路22を介して、可塑化部30に材料を供給する。
可塑化部30は、スクリューケース31と、駆動モーター32と、スクリュー40と、バレル50とを備えている。可塑化部30は、材料供給部20から供給された材料の少なくとも一部を可塑化し、流動性を有するペースト状の造形材料を生成して、ノズル61に供給する。「可塑化」とは、溶融を含む概念であり、固体から流動性を有する状態に変化させることである。具体的には、ガラス転移が起こる材料の場合、可塑化とは、材料の温度をガラス転移点以上にすることである。ガラス転移が起こらない材料の場合、可塑化とは、材料の温度を融点以上にすることである。本実施形態におけるスクリュー40は、フラットスクリューや、スクロールと呼ばれることもある。
図2は、スクリュー40の下面であるスクリュー下面48側の概略構成を示す斜視図である。図3は、バレル50の上面であるバレル上面52側を示す概略平面図である。スクリュー40は、その中心軸RXに沿った方向である軸線方向における高さが直径よりも小さい略円柱状を有する。スクリュー40は、その回転中心となる中心軸RXがZ方向に平行になるように配置される。
図1に示すように、スクリュー40は、スクリューケース31内に収納されている。スクリュー40の上面47側は駆動モーター32に連結されており、スクリュー40は、駆動モーター32が発生させる回転駆動力によって、スクリューケース31内で回転する。駆動モーター32は、制御部500の制御下において駆動する。なお、スクリュー40は、減速機を介して駆動モーター32によって駆動されてもよい。
図2に示すように、スクリュー下面48には、渦状の溝部42が形成されている。上述した材料供給部20の供給路22は、スクリュー40の側面から、溝部42に連通する。溝部42は、スクリュー40の側面に形成された材料導入口44まで連続している。この材料導入口44は、材料供給部20の供給路22を介して供給された材料を受け入れる部分である。図2に示すように、本実施形態では、溝部42は、凸条部43によって隔てられて3本分形成されている。なお、溝部42の数は、3本に限られず、1本でもよいし、2本以上であってもよい。溝部42は、渦状に限らず、螺旋状あるいはインボリュート曲線状であってもよいし、中央部46から外周に向かって弧を描くように延びる形状であってもよい。
図1に示すように、バレル50は、スクリュー40の下方に配置されている。バレル上面52は、スクリュー下面48に面しており、スクリュー下面48の溝部42と、バレル上面52との間には空間が形成される。バレル50には、スクリュー40の中心軸RX上に、後述するノズル61の流路65に連通する連通孔56が設けられている。バレル50には、スクリュー40の溝部42に対向する位置にヒーター58が内蔵されている。ヒーター58の温度は、制御部500によって制御される。
スクリュー40の溝部42内に供給された材料は、溝部42内において溶融されながら、スクリュー40の回転によって溝部42に沿って流動し、造形材料としてスクリュー40の中央部46へと導かれる。中央部46に流入した流動性を発現しているペースト状の造形材料は、連通孔56を介してノズル61に供給される。なお、造形材料では、造形材料を構成する全ての種類の物質が溶融していなくてもよい。造形材料は、造形材料を構成する物質のうちの少なくとも一部の種類の物質が溶融することによって、全体として流動性を有する状態に転化されていればよい。
図1に示すように、ノズル61は、流路65と、ノズル開口62が設けられた先端面63と、吐出量調整部70とを備えている。流路65は、ノズル61内に形成された造形材料の流路であり、上述したバレル50の連通孔56に接続されている。先端面63は、ノズル61の、造形面311に向かって-Z方向に突出した先端部分を構成する面である。ノズル開口62は、流路65の大気に連通する側の端部に設けられた、流路65の流路断面が縮小された部分である。可塑化部30によって生成された造形材料は、連通孔56を介してノズル61へ供給され、流路65を介してノズル開口62から吐出される。
吐出量調整部70は、ノズル開口62から吐出される造形材料の流量を調整する。ノズル開口62から外部へと吐出される造形材料の流量のことを吐出量と呼ぶこともある。本実施形態では、吐出量調整部70は、流路65内で回転することにより流路65の開度を変化させるバタフライバルブによって構成され、流路65の途中に設けられている。吐出量調整部70は、制御部500による制御下において、ステッピングモーター等によって構成される駆動部74によって駆動される。制御部500は、駆動部74を用いて、バタフライバルブの回転角度を制御することによって、流路65の開度を調整する。これによって、制御部500は、可塑化部30からノズル61に流れる造形材料の流量を調整し、吐出量を調整することができる。吐出量調整部70は、流路65の開度を0とすることによって、吐出量を0とすることもできる。つまり、吐出量調整部70は、吐出量を調整すると共に、造形材料の送出のオン/オフを制御する。
本実施形態では、ノズル61には、ノズルヒーター69が設けられている。本実施形態におけるノズルヒーター69は、流路65の周囲に設けられ、制御部500による制御下において、流路65内の造形材料を加熱する。制御部500は、ノズルヒーター69の出力を制御することによって、流路65内における造形材料の流動性を調整できる。
ステージ300は、ノズル61に対向する位置に配置されている。後述するように、三次元造形装置100は、ノズル61からステージ300の造形面311に向けて造形材料を吐出させて層を積層することによって三次元造形物を造形する。
位置変更部400は、ノズル61とステージ300との相対的な位置を変更する。本実施形態では、位置変更部400は、ノズル61に対してステージ300を移動させる。なお、ステージ300に対するノズル61の相対的な位置の変化を、単に、ノズル61の移動と呼ぶこともある。本実施形態では、例えば、ステージ300を+X方向に移動させたことを、ノズル61を-X方向に移動させたと言い換えることもできる。本実施形態における位置変更部400は、3つのモーターの駆動力によって、ステージ300をX,Y,Z方向の3軸方向に移動させる3軸ポジショナーによって構成される。各モーターは、制御部500の制御下にて駆動する。なお、位置変更部400は、ステージ300を移動させる構成ではなく、ステージ300を移動させずにノズル61を移動させる構成であってもよい。また、位置変更部400は、ステージ300とノズル61との両方を移動させる構成であってもよい。
測定部550は、ステージ300の造形面311上に積層された層の物理量を測定する。本実施形態における測定部550は、赤外線カメラ560と、2台のカメラ570と、赤外線カメラ560およびカメラ570を制御する測定制御部580とを、備える。本実施形態における測定制御部580は、制御部500がプログラムを実行することによって実現される機能部である。本実施形態において、測定制御部580は、層の物理量として、層の温度と、層の各部の寸法および位置とを測定する。より詳細には、測定制御部580は、赤外線カメラ560によるサーモグラフィーに基づいて層の温度を測定し、2台のカメラ570の視差に基づいて、層の各部の寸法と位置とを測定する。他の実施形態では、測定部550は、例えば、層の寸法や位置を測定するためのセンサーとして、カメラ570とともに、又は、カメラ570に代えて、レーザー測距計を備えていてもよい。測定部550は、例えば、カメラ570を備えず、赤外線カメラ560によるサーモグラフィーを層の寸法や位置の測定に用いてもよい。測定部550は、例えば、カメラ570による画像と赤外線カメラ560によるサーモグラフィーとに基づいて、直前に積層された層とその他の層とを区別してもよい。また、測定部550は、層の全体に亘って物理量を測定してもよいし、層の一部分において物理量を測定してもよい。
制御部500は、三次元造形装置100全体の動作を制御する制御装置である。制御部500は、1つ、または、複数のプロセッサーと、主記憶装置と、外部との信号の入出力を行う入出力インターフェイスとを備えるコンピューターによって構成される。制御部500は、主記憶装置上に読み込んだプログラムや命令をプロセッサーが実行することによって、上述した測定制御部580としての機能や、後述する三次元造形処理を実行する機能等、種々の機能を発揮する。なお、制御部500は、コンピューターによって構成される代わりに、各機能の少なくとも一部を実現するための複数の回路を組み合わせた構成により実現されてもよい。
三次元造形処理は、三次元造形物を造形するための処理を指す。三次元造形処理は、三次元造形装置100に設けられた操作パネルや、三次元造形装置100に接続されたコンピューターに対して、所定の開始操作がユーザーによって行われた場合に、制御部500によって実行される。なお、三次元造形処理のことを、単に造形処理と呼ぶこともある。
図4は、三次元造形処理によって三次元造形物OBが造形される様子を模式的に示す概略図である。制御部500は、造形処理において、後述する造形データに従って吐出部200と位置変更部400とを適宜制御して、吐出部200のノズル61からステージ300に向けて造形材料を吐出させて、造形面311上に造形材料の層をZ方向に積層することによって、三次元造形物OBを造形する。具体的には、制御部500は、図4に示すように、造形面311に沿った方向に、ノズル61を移動させながら、ノズル61から造形材料を吐出させる。ノズル61から吐出された造形材料は、ノズル61の移動方向に連続して堆積されていく。これによって、ノズル61の移動経路に沿って線状に延びる部位が造形される。更に、制御部500は、既に吐出された造形材料の上に、更に造形材料を吐出させることで、造形材料の層を形成する。なお、制御部500は、造形処理において、ノズル61と吐出目標との間の距離を保持したまま、ノズル61から造形材料を吐出させる。吐出目標は、造形面311上に造形材料を吐出する場合は造形面311であり、既に吐出された造形材料上に造形材料を吐出する場合は、既に吐出された造形材料の上面である。ノズル61と吐出目標との間の距離のことを、ギャップGpと呼ぶこともある。
造形データは、三次元造形物を層毎に造形するためのデータであり、経路情報と、吐出量情報とを含む。経路情報とは、吐出部200が造形材料を吐出しつつ移動する経路を複数の部分経路によって表した情報を指す。吐出量情報とは、各部分経路における造形材料の吐出量を表す情報を指す。造形データは、制御部500によって実行されるデータ生成工程において層毎に生成される。データ生成工程とは、三次元造形物の形状を表す三次元CADデータ等の形状データに基づいて、三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、生成された層データに基づいて、層毎に、上述した経路情報および吐出量情報を含む造形データを生成する工程のことを指す。
本実施形態における経路情報は、ノズル61が造形材料を吐出して移動する経路を表す直線状の部分経路を指定する。吐出量情報は、各部分経路における積層ピッチおよび線幅を指定する。積層ピッチとは、各部分経路で吐出される造形材料の厚みのことを指す。線幅とは、各部分経路で吐出される造形材料の幅のことを指す。積層ピッチおよび線幅は、上述したギャップGpの大きさと、単位移動量あたりにノズル61から吐出される造形材料の量とによって定まる。例えば、ギャップGpが小さい場合、ギャップGpが大きい場合と比較して、ノズル61から吐出された造形材料がノズル61によってより吐出目標に押しつけられるため、積層ピッチが小さく、かつ、線幅が大きくなる。単位移動量あたりにノズル61から吐出される造形材料の量は、例えば、ノズル61の移動速度と、単位時間あたりにノズル61から吐出される造形材料の量とによって定まる。単位時間あたりにノズル61から吐出される造形材料の量は、例えば、ノズル開口62の開口径や、ノズル61内を流れる造形材料の流量等によって定まる。
図5は、本実施形態における、三次元造形物の製造方法を実現する三次元造形処理のフローチャートである。ステップS105にて、制御部500は、三次元造形物の形状データを取得する。ステップS105では、制御部500は、例えば、外部のコンピューターとの通信によって造形データを取得する。以下では、ステップS105で取得される形状データのことを、「最初の形状データ」と呼ぶこともある。
ステップS110にて、制御部500は、ステップS105で取得した形状データに基づいて、形状データに表される三次元造形物の形状が層状にスライスされた層データを生成する。本実施形態では、制御部500は、ステップS110において、各層データに表される形状がそれぞれ同じ厚みを有するように、三次元造形物の第1層から最上層に亘る全層分の層データを生成する。層データが表す厚みによって、造形データの吐出量情報において指定される積層ピッチが定まる。以下では、三次元造形物のある層の形状を表す層データのことを、単に、その層の層データと呼ぶこともある。例えば、第1層の形状を表す層データのことを、第1層の層データと呼ぶこともある。
ステップS115にて、制御部500は、第1層を造形するための造形データを生成する。制御部500は、ステップS115において、ステップS110で生成された層データのうち、第1層の層データに表された形状を造形するための経路情報および吐出量データを決定することによって、第1層を造形するための造形データを生成する。以下では、ある層を積層するための造形データのことを、単に、その層の造形データと呼ぶこともある。
本実施形態におけるステップS110およびステップS115と、後述するステップS135およびステップS140とは、上述したデータ生成工程に相当する。以下では、ステップS110およびステップS115と、ステップS135およびステップS140とを単にデータ生成工程と呼ぶこともある。
本実施形態では、各造形データに含まれる経路情報および吐出量データは、各層の層データと、三次元造形物の造形条件とに基づいて決定される。本実施形態における造形条件は、ノズルヒーター69の設定温度と、三次元造形物の各層における内部充填率とを含む。例えば、ノズルヒーター69の設定温度が高いほど、ノズル61から吐出される造形材料の流動性が高まり、単位時間あたりにより多くの造形材料が吐出される。そのため、制御部500は、例えば、ノズルヒーター69の設定温度が高いほど、各部分経路における造形材料の吐出量が小さくなるように、吐出量データを決定する。また、制御部500は、内部充填率が高いほど、各層の外郭の内部を埋めるための部分経路の距離や個数が大きくなるように、経路情報を決定する。他の実施形態では、造形条件は、他の条件を含んでいてもよく、例えば、積層された層を冷却するための待ち時間を指す冷却時間を含んでいてもよいし、三次元造形装置100がステージ300に積層された層を冷却するための冷却ファン等の冷却機構を備える場合、冷却機構の出力の設定値を含んでいてもよい。
ステップS120にて、制御部500は、ステップS115で生成された第1層の造形データに従って、吐出部200および位置変更部400を制御することによって、吐出部200から造形材料を吐出して最下層を造形する。ステップS120のように、造形データに従って、吐出部200から造形材料を吐出して層を積層する工程のことを積層工程と呼ぶこともある。本実施形態では、ステップS120と、後述するステップS145とが積層工程に相当する。以下では、ステップS120やステップS145のことを、単に積層工程と呼ぶこともある。
ステップS125以後、制御部500は、ステップS125からステップS145までの工程を1つのサイクルとして繰り返し実行することによって、三次元造形物のうち、第2層から最上層までを積層する。本実施形態では、制御部500は、1つのサイクルにおいて、三次元造形物の1層分を積層する。以下では、nを2以上の任意の整数としたとき、三次元造形物の第n層を積層するサイクルのことを、第nサイクルと呼ぶこともある。つまり、制御部500は、第nサイクルでは、現在の層として、第n層を積層する。例えば、三次元造形処理が開始されてから初めてステップS125が実行された場合、ステップS125において第2サイクルが開始され、第2サイクルでは、現在の層として第2層が積層される。
ステップS125にて、制御部500は、測定部550を制御することによって、現在の層である第n層に先立って造形された第n-1層の物理量を測定する。例えば、第2サイクルにおけるステップS125では、ステップS120で積層された第1層の物理量が測定される。同様に、第3サイクルにおけるステップS125では、第2サイクルの積層工程で積層された第2層の物理量が測定される。以下では、ステップS125のように、積層された層の物理量を測定する工程のことを測定工程と呼ぶこともある。
ステップS130にて、制御部500は、ステップS125で測定された第n-1層の物理量の測定値に基づいて、ステップS105で取得された最初の形状データを補正する。本実施形態では、後述するように、第nサイクルのステップS130で補正された形状データは、第n層の造形データを生成するのに用いられる。以下では、ステップS130のように、物理量の測定値に基づいて形状データを補正する工程のことを補正工程と呼ぶこともある。
制御部500は、第2サイクルのステップS130では、第n-1層である第1層の実測形状とデータ上の形状との差異に基づいて、最初の形状データ全体を補正する。実測形状とは、物理量の測定値に基づいて算出される層の形状のことを指す。本実施形態におけるデータ上の形状とは、ステップS110で生成された層データに表された形状のことを指す。実測形状とデータ上の形状とは、互いに対応する部分の形状であればよく、それぞれ、層の一部分の形状であってもよい。例えば、制御部500は、ステップS130において、物理量の測定値に基づいて算出された第n-1層の外郭の寸法が、データ上の第n-1層の形状の外郭の寸法よりも大きい場合、最初の形状データを、補正後の形状データに表される形状が最初の形状データに表される形状よりも小さくなるように補正する。この場合、制御部500は、例えば、最初の形状データに、実測形状とデータ上の形状との差異に基づいて算出される補正係数を乗ずることによって、最初の形状データを補正する。このような実測形状と層データに表される形状との差異は、例えば、温度や湿度といった造形環境の変化や吐出部200の経年劣化等により、吐出される造形材料の実際の量や位置、温度等が変化することによって生じる。
制御部500は、第3サイクル以降のステップS130では、第n-1層の実測形状とデータ上の形状との差異に加え、第n-1層の造形データの生成に用いられた形状データと最初の形状データとの差異、つまり、第n-1サイクルのステップS130で補正された後の形状データと最初の形状データとの差異に基づいて、最初の形状データを補正する。例えば、制御部500は、第3サイクルでは、ステップS130において、後述するステップS140で第3層の造形データを生成するために、最初の形状データを、第2層の実測形状とデータ上の形状との差異、および、第2サイクルのステップS130で補正された後の形状データと最初の形状データとの差異に基づいて補正する。上述したように、第2サイクルのステップS130で補正された後の形状データは、第1層の実測形状とデータ上の形状との差異に基づいて補正された形状データである。そのため、第3サイクルのステップS130では、最初の形状データは、第2層の実測形状とデータ上の形状との差異、および、第1層の実測形状とデータ上の形状との差異に基づいて補正されるとも言える。
なお、他の実施形態では、上述したデータ上の形状は、層データに表される形状でなくてもよく、例えば、最初の形状データに表される形状のうち、実測形状に対応する部分の形状であってもよい。この場合、制御部500は、ステップS110において、全層分の層データを生成しなくてもよく、例えば、第1層の層データのみを生成してもよい。
ステップS135にて、制御部500は、物理量の測定値に基づいて補正された形状データに基づいて、その物理量が測定された層より後の層の層データを生成する。以下では、「物理量が測定された層より後の層」のことを、単に、「後の層」と呼ぶこともある。本実施形態では、制御部500は、ステップS135で補正された形状データに基づいて、第n層の層データのみを生成する。制御部500は、ステップS135において、ステップS110で補正されていない形状データに基づいて層データを生成するのと同様に、補正された形状データに基づいて、第n層の層データを生成する。
本実施形態では、制御部500は、ステップS135において、ステップS125で測定された物理量の測定値に基づいて、ステップS135で生成される層データが表す厚みを決定する。本実施形態では、制御部500は、ステップS130で実行された補正による、形状データに表されるZ方向における寸法の変化に応じて、第n層の層データが表す厚みを決定する。例えば、制御部500は、ステップS130で、形状データに表される形状のZ方向における寸法が大きくなるように形状データを補正した場合、ステップS135において、第n層の層データが表す厚みを、ステップS110で生成された各層の層データが表す厚みよりも大きくする。
ステップS140にて、制御部500は、補正された形状データに基づいて生成された、後の層の層データに基づいて、後の層の造形データを生成する。本実施形態では、制御部500は、ステップS140において、ステップS135で生成された第n層の層データに基づいて、第n層の層データに表された形状を造形するための経路情報および吐出量データを決定することによって、第n層の造形データのみを生成する。つまり、本実施形態では、制御部500は、データ生成工程において、1回の補正工程につき、後の層の造形データとして1層分の造形データを生成する。制御部500は、データ生成工程において、1層分の物理量の測定値につき、後の層の造形データとして1層分の造形データを生成すると言うこともできる。
ステップS145にて、制御部500は、現在の層である第n層を積層する。制御部500は、ステップS145において、ステップS140で生成された第n層の造形データに従って吐出部200および位置変更部400を制御することによって、第n層を積層する。
ステップS145で用いられる第n層の造形データは、上述したように、第n-1層の物理量の測定値に基づいて補正された形状データに基づいて生成される。そのため、造形環境の変化や吐出部200の経年劣化等がある場合でも、精度良く三次元造形物を造形できる可能性が高まる。また、第n-1層の物理量の測定値に基づいて、形状データを補正するため、予め生成された造形データを補正する場合と比較して、所望の形状を有する三次元造形物を造形可能な造形データを準備できる可能性が高まる。例えば、造形データを補正する方法では、外郭の内側に空洞部分を有する三次元造形物や、曲面状や曲線状の部分を有する三次元造形物等を造形する場合に、空洞部分等を所望の形状に造形できる程度に造形データを補正できない場合がある。その結果、例えば、三次元造形物全体の形状や寸法の精度に比較して、空洞部分等の形状や寸法の精度が低い三次元造形物が造形される可能性がある。一方で、本実施形態では、形状データを補正し、補正された形状データに基づいて造形データを生成するため、同様に空洞部分等を有する三次元造形物を造形する場合であっても、補正された形状データに表される空洞部分等の形状に基づいて経路情報や吐出量情報を新たに決定して造形データを生成できる。そのため、十分な造形精度を有する三次元造形物を造形できる可能性が高まる。
ステップS150にて、制御部500は、全ての層の積層が完了したか否かを判定する。制御部500は、全ての層の積層が完了していないと判定した場合、ステップS125に処理を戻し、次のサイクルを開始する。
以上で説明した本実施形態における三次元造形物の製造方法によれば、造形データを生成するデータ生成工程と、造形データに従って層を積層する積層工程と、積層された層の物理量を測定する測定工程と、物理量の測定値に基づいて形状データを補正する補正工程とを備える。また、データ生成工程において、補正工程で補正された形状データに基づいて、物理量が測定された層より後の層の造形データを生成する。これによって、物理量の測定値に基づいて形状データを補正し、補正された形状データに基づいて、後の層の造形データを新たに生成できる。そのため、予め生成された造形データを補正する場合と比較して、所望の形状を有する三次元造形物を造形可能な造形データを準備できる可能性が高まり、十分な造形精度を有する三次元造形物を造形できる可能性が高まる。
また、本実施形態では、データ生成工程、測定工程、および、補正工程を三次元造形装置100において実行する。これによって、積層工程を実行する三次元造形装置100において、データ生成工程、測定工程、および、補正工程を実行できるため、より簡易に三次元造形物を造形できる。
また、本実施形態では、データ生成工程において、物理量の測定値に基づいて、物理量が測定された層より後の層の層データが表す形状の厚みを決定する。そのため、三次元造形物のZ方向における造形精度をより高めることができる。
また、本実施形態では、データ生成工程において、1回の前記補正工程につき、物理量が測定された後の層の造形データとして、1層分の造形データを生成する。そのため、補正工程とその補正工程に対応する造形データを生成する工程とを繰り返し実行することによって、1回の補正工程につき複数層分の造形データを生成する場合と比較して、造形環境等の変化に対応してより緻密に造形データを生成できる可能性が高まる。
B.第2実施形態:
図6は、第2実施形態における、三次元造形物の製造方法を実現する三次元造形処理のフローチャートである。本実施形態では、制御部500は、第1実施形態とは異なり、データ生成工程において、物理量の測定値に基づいて、物理量が測定された層より後の層の造形条件を決定し、決定された造形条件、および、補正工程で補正された形状データに基づいて、後の層の造形データを生成する。図6では、図5と同様の工程には、図5と同じ符号が付されている。本実施形態における三次元造形装置100の構成のうち、特に説明しない部分については、第1実施形態と同様である。
ステップS137にて、制御部500は、ステップS125で測定された物理量の測定値に基づいて、物理量が測定された層である第n-1層より後の層である第n層の造形条件を決定する。制御部500は、例えば、ステップS125で測定された第n-1層の温度の測定値が予測値よりも低い場合、第n層を造形する時のノズルヒーター69の設定温度を、測定値と予測値との差異に基づいて、第n-1層を造形した時のノズルヒーター69の設定温度よりも高くする。また、制御部500は、例えば、ステップS125で第n層の変形が検出された場合、第n層の変形を抑制するように、第n層を造形する際の内部充填率を決定する。例えば、ステップS125で第n-1層の撓みが検出された場合、撓みの程度に基づいて、第n層を造形する時の内部充填率を、第n層を造形した時の内部充填率より高くする。撓みの程度は、例えば、測定部550によって第n-1層の物理量として測定される、第n-1層の寸法やエッジ部分の位置等に基づいて算出される。他の実施形態では、制御部500は、ステップS137において、例えば、第n層の変形を抑制するように、第n-1層の内部形状を造形するための部分経路のパターンを決定してもよい。また、第1実施形態で説明したように、造形条件が冷却時間や冷却機構の出力値を含む場合、制御部500は、ステップS137において、ステップS125で測定された第n-1層の温度に基づいて冷却時間や冷却機構の出力値を決定してもよい。
ステップS140bにて、制御部500は、物理量が測定された層である第n-1層より後の層である第n層の造形データを生成する。本実施形態では、制御部500は、ステップS140bにおいて、補正された形状データに基づいて生成された第n層の層データ、および、上述したステップS137で決定された造形条件に基づいて、第n層の造形データにおける経路データおよび吐出量情報を決定し、第n層の造形データを生成する。制御部500は、例えば、ステップS140bにおいて、ステップS137で決定した内部充填率に基づいて、第n層を造形するための部分経路を決定し、経路データを決定する。また、制御部500は、ステップS140bにおいて、ステップS137で決定したノズルヒーター69の設定温度に基づいて、第n層の造形データにおける吐出量を決定する。例えば、制御部500は、ステップS137で第n層を造形する時のノズルヒーター69の設定温度を高くした場合、設定温度に基づいて第n層の造形データにおけるスクリュー40の回転数又は設定圧力を減少させる。
その後、ステップS145にて、制御部500は、ステップS137で決定された造形条件で、かつ、ステップS140bで生成された造形データに従って、第n層を造形する。
以上で説明した本実施形態における三次元造形物の製造方法によれば、物理量の測定値に基づいて、物理量が測定された層より後の層の造形条件を決定し、決定された造形条件、および、補正された三次元造形物の形状データに基づいて、後の層の造形データを生成する。そのため、物理量の測定値に基づいて造形条件を変更し、かつ、変更した造形条件で精度良く三次元造形物を造形できる。
C.第3実施形態:
図7は、第3実施形態における、三次元造形物の製造方法を実現する三次元造形処理のフローチャートである。本実施形態では、制御部500は、第1実施形態とは異なり、データ生成工程において、後の層の造形データとして、物理量が測定された層の次の層よりも後に造形される層の造形データを生成する。本実施形態における三次元造形装置100の構成のうち、特に説明しない部分については、第2実施形態と同様である。
ステップS205およびステップS210は、それぞれ図5のステップS105およびステップS110と同様である。ステップS215にて、制御部500は、図5のステップS115において第1層の造形データを生成するのと同様に、第1層の造形データと第2層の造形データとを生成する。ステップS220は、図5のステップS120と同様である。
ステップS225以後、制御部500は、第1実施形態で図5のステップS125からステップS145までの工程を1つのサイクルとして繰り返し実行するのと同様に、ステップS225からステップS250までの工程を1つのサイクルとして繰り返し実行する。本実施形態では、制御部500は、このサイクルを繰り返し実行することによって、三次元造形物の第2層から最上層の1つ下の層までを造形する。
ステップS225は、図5のステップS125と同様である。ステップS230にて、制御部500は、現在の層である第n層の積層を開始する。本実施形態では、制御部500は、ステップS230以降、後述するステップS250で第n層の積層を完了するまでの間、第n層の造形データに従って、第n層を積層する。つまり、本実施形態では、ステップS220と、ステップS230からステップS250までの工程とが積層工程に相当する。以下では、ステップS220や、ステップS230からステップS250までの工程のことを単に積層工程と呼ぶこともある。例えば、制御部500は、第2サイクルの積層工程では、ステップS215で生成された第2層を造形するための造形データに従って、第2層を造形する。一方で、制御部500は、第3サイクル以降の積層工程では、後述する第n-1サイクルで生成された造形データに従って、第n層を造形する。
ステップS235にて、制御部500は、図5のステップS130と同様に、ステップS205で取得された最初の形状データを補正する補正工程を実行する。本実施形態では、第nサイクルの補正工程で補正された形状データは、第1実施形態とは異なり、後述するように、第n+1層の造形データを生成するのに用いられる。
ステップS235にて、制御部500は、ステップS225で測定された第n-1層の物理量の測定値に基づいて、ステップS205で取得された形状データを補正する。本実施形態では、制御部500は、第2サイクルおよび第3サイクルのステップS235において、第1実施形態における第2サイクルの場合と同様に、実測形状とデータ上の形状との差異に基づいて最初の形状データ全体を補正する。
制御部500は、第4サイクル以降のステップS235では、第n-1層の実測形状とデータ上の形状との差異に加え、第n-1層の造形データの生成に用いられた形状データと最初の形状データとの差異、つまり、第n-2サイクルのステップS235で補正された後の形状データと最初の形状データとの差異に基づいて、最初の形状データを補正する。例えば、制御部500は、第4サイクルでは、ステップS235において、後述するステップS245で第5層の造形データを生成するために、最初の形状データを、第3層の実測形状とデータ上の形状との差異、および、第2サイクルのステップS235で補正された後の形状データと最初の形状データとの差異に基づいて補正する。第2サイクルのステップS235で補正された後の形状データは、第1層の実測形状とデータ上の形状との差異に基づいて補正された形状データであるため、第4サイクルのステップS235では、最初の形状データは、第3層の実測形状とデータ上の形状との差異、および、第1層の実測形状とデータ上の形状との差異に基づいて補正されるとも言える。
ステップS240にて、制御部500は、ステップS235で補正された形状データに基づいて、後の層の層データとして、物理量が測定された層である第n-1層の2つ後の層である第n+1層の造形データを生成する。本実施形態では、制御部500は、ステップS240において、図5のステップS135で第n層の層データのみを生成するのと同様に、第n+1層の層データのみを生成する。
ステップS245にて、制御部500は、ステップS240で生成された層データに基づいて、後の層の造形データとして、第n+1層の造形データを生成する。本実施形態では、制御部500は、ステップS245において、ステップS240で生成された第n+1層の層データに基づいて、第n+1層の造形データを生成する。
ステップS250にて、制御部500は、第n層の造形を完了させる。つまり、本実施形態では、制御部500は、第n+1層の造形データの生成を、第n層の積層を開始してから完了させるまでの間に完了させる。なお、他の実施形態では、制御部500は、例えば、第n層の積層を完了させた後に、第n+1層の造形データの生成を完了させてもよい。
ステップS255にて、制御部500は、次に造形される層が最上層であるか否かを判定する。制御部500は、ステップS255において、次に造形される層が最上層でないと判定した場合、ステップS225に処理を戻し、次のサイクルを開始する。
ステップS255で次に造形される層が最上層であると判定された場合、ステップS260にて、制御部500は、最上層を造形する。制御部500は、ステップS260では、直前に実行されたステップS245で生成された最上層を造形するための造形データに従って、最上層を造形する。例えば、最上層が第10層である場合、制御部500は、第9サイクルのステップS245で生成された造形データに従って、第10層を造形する。
以上で説明した本実施形態における三次元造形物の製造方法によれば、データ生成工程において、物理量の測定値に基づいて補正された形状データに基づいて、物理量が測定された層の次の層よりも後に造形される層の造形データを生成する。これによって、次の層よりも後の層の造形データを生成している間に次の層を造形できるため、造形時間を短縮できる。特に、本実施形態では、次の層よりも後に造形される層の造形データの生成を、次の層の積層を開始してから完了させるまでの間に完了させるため、より造形時間を短縮できる。
D.第4実施形態:
図8は、第4実施形態における、第2造形物を造形するための三次元造形処理のフローチャートの一例である。第4実施形態では、制御部500は、三次元造形処理を連続して2回実行することによって、三次元造形物として、第1造形物、および、第1造形物と対応する形状を有する第2造形物を製造する。第2造形物は、第1造形物が造形された後に造形される。本実施形態では、第1造形物と第2造形物とは、その各部において互いに同一の寸法を有し、互いに同一の形状を有している。本実施形態における三次元造形装置100の構成のうち、特に説明しない部分については、第1実施形態と同様である。
本実施形態では、第1造形物を製造する際に、データ生成工程、積層工程、測定工程、および、補正工程を実行し、第1造形物の製造における補正工程で補正された形状データを、第2造形物の造形データの生成に用いる。制御部500は、例えば、まず、図5の三次元造形処理を実行することによって、データ生成工程、積層工程、測定工程、および、補正工程を実行しつつ、第1造形物を造形して製造する。そして、制御部500は、第1造形物の造形を完了させた後、図8の三次元造形処理を実行し、ステップS310にて、第1造形物の製造における補正工程で補正された形状データを取得する。より詳細には、制御部500は、図8のステップS310にて、図5の三次元造形処理において最後に補正された形状データ、つまり、最上層の造形データを生成するために補正された形状データを取得する。次に、制御部500は、ステップS320にて、ステップS310で取得した造形データに基づいて、全層分の層データを生成する。そして、ステップS330にて、制御部500は、ステップS320で生成した層データに基づいて、第2造形物の全層分の造形データを生成する。その後、ステップS340にて、制御部500は、ステップS330で生成した造形データに従って、ステージ300の造形面311上に造形材料を積層し、第2造形物を造形して製造する。つまり、本実施形態では、制御部500は、第1造形物の製造における補正工程で補正された造形データを補正することなく、そのまま第2造形物の全層分の造形データの生成に用いる。
以上で説明した本実施形態における三次元造形物の製造方法によれば、第1造形物を製造する際に、データ生成工程、積層工程、測定工程、および、補正工程を実行し、第1造形物の製造における補正工程で補正された形状データを、第2造形物の造形データの生成に用いる。そのため、第1造形物の製造における補正工程で補正された形状データを、第2造形物の造形データの生成に用いない場合と比較して、第2造形物を精度良く製造できる可能性が高まる。特に、本実施形態では、第1造形物の製造における補正工程で補正された造形データを補正することなく、そのまま第2造形物の全層分の造形データの生成に用いるため、第2造形物を効率良く製造できる。
なお、他の実施形態では、第2造形物を製造する際に、例えば、図5から図7の三次元造形処理を実行してもよい。この場合、図5や図6のステップS105、又は、図7のステップS205において、第1造形物の製造における補正工程で補正された形状データを取得することで、その形状データを更に補正しつつ第2造形物を製造できるため、第2造形物をより精度良く造形できる可能性が高まる。また、第1造形物を製造する際に、図5の三次元造形処理ではなく、例えば、図6や図7の三次元造形処理を実行してもよい。
また、他の実施形態では、第1造形物と第2造形物とは、互いに同一の形状を有していなくてもよい。例えば、第1造形物と第2造形物とは相似の造形物であってもよいし、第2造形物が、第1造形物をX方向や、Y方向、Z方向に一定の倍率で拡大または縮小した造形物であってもよい。この場合、制御部500は、例えば、第1造形物の製造における補正工程で補正された製造に形状データを、第1造形物と第2造形物との寸法の比率に基づいて更に補正し、寸法の比率に基づいて補正された形状データを第2造形物の造形データの生成に用いてもよい。
E.他の実施形態:
(E-1)上記実施形態のデータ生成工程において、制御部500は、後の層の造形データとして、物理量が測定された層の3つ以上後の造形データを生成してもよい。例えば、制御部500は、データ生成工程において、第n-1層の物理量の測定値に基づいて補正された形状データに基づいて、第n+2層の造形データを生成してもよい。また、制御部500は、データ生成工程において、1回の補正工程につき、後の層の造形データとして、1層分ではなく2層分以上の造形データを準備してもよい。例えば、制御部500は、データ生成工程において、第n-1層の物理量の測定値に基づいて、第n層および第n+1層の造形データを準備してもよい。
(E-2)上記実施形態では、測定工程で取得される物理量には、層の寸法と位置と温度とが含まれている。これに対して、物理量は、層の寸法と位置と温度とのいずれか1つや2つのみを含んでいてもよいし、例えば、他の物理量を含んでいてもよい。なお、例えば、物理量に温度のみが含まれている場合であっても、制御部500は、補正工程において、実験等によって予め算出された層の温度と形状や寸法との関係に基づいて、形状データを補正できる。
(E-3)上記実施形態では、制御部500は、測定工程を、第n-1層の造形の完了後、かつ、第n層の造形の開始前のタイミングで実行している。これに対して、制御部500は、測定工程を、例えば、第n-1層の造形の途中に実行してもよいし、第n層の造形開始後、かつ、第n層の造形完了前のタイミングで実行してもよい。
(E-4)上記実施形態では、制御部500は、データ生成工程において、物理量の測定値に基づいて、形状データ全体を補正している。これに対して、制御部500は、データ生成工程において、形状データ全体ではなく、形状データのうち、物理量が測定された層より後の層に相当する部分の形状を表す部分を、物理量の測定値に基づいて補正してもよい。例えば、制御部500は、図5のステップS130において、ステップS105で取得した形状データのうち、第n層に相当する部分の形状を表す部分を、ステップS125で取得した第n-1層の物理量の測定値に基づいて補正してもよい。
(E-5)上記実施形態では、制御部500がデータ生成工程、および、測定工程、補正工程を実行している。これに対して、データ生成工程や、測定工程、補正工程が、三次元造形装置100の外部のコンピューター等によって実行されてもよい。この場合、制御部500は、三次元造形処理において、外部のコンピューターと通信しながら三次元造形物を造形してもよい。
(E-6)上記実施形態では、吐出部200の可塑化部30は、フラットスクリューによって材料を可塑化し、造形材料を生成している。これに対して可塑化部30は、例えば、インラインスクリューを回転させることによって材料を可塑化して造形材料を生成してもよい。また、吐出部200は、フィラメント状の材料を可塑化して吐出するヘッドとして構成されていてもよい。
(E-7)上記実施形態では、材料供給部20に供給される原材料として、ペレット状に形成された樹脂材料が用いられる。これに対して、三次元造形装置100は、例えば、熱可塑性を有する材料や、金属材料、セラミック材料等の種々の材料を主材料として三次元造形物を造形することができる。ここで、「主材料」とは、三次元造形物の形状を形作っている中心となる材料を意味し、三次元造形物において50重量%以上の含有率を占める材料を意味する。上述した造形材料には、それらの主材料を単体で溶融したものや、主材料とともに含有される一部の成分が溶融してペースト状にされたものが含まれる。
主材料として熱可塑性を有する材料を用いる場合には、可塑化部30において、当該材料が可塑化することによって造形材料が生成される。「可塑化」とは、熱可塑性を有する材料に熱が加わり溶融することを意味する。
熱可塑性を有する材料としては、例えば、下記の熱可塑性樹脂材料を用いることができる。
<熱可塑性樹脂材料の例>
ポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリアセタール樹脂(POM)、ポリ塩化ビニル樹脂(PVC)、ポリアミド樹脂(PA)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、ポリ乳酸樹脂(PLA)、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレートなどの汎用エンジニアリングプラスチック、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチック。
熱可塑性を有する材料には、顔料や、金属、セラミック、その他に、ワックス、難燃剤、酸化防止剤、熱安定剤などの添加剤等が混入されていてもよい。熱可塑性を有する材料は、可塑化部30において、スクリュー40の回転とヒーター58の加熱によって可塑化されて溶融した状態に転化される。熱可塑性を有する材料の溶融によって生成された造形材料は、ノズル61から吐出された後、温度の低下によって硬化する。
熱可塑性を有する材料は、そのガラス転移点以上に加熱されて完全に溶融した状態でノズル61から射出されることが望ましい。例えば、ABS樹脂は、ガラス転移点が約120℃であり、ノズル61からの射出時には約200℃であることが望ましい。
三次元造形装置100では、上述した熱可塑性を有する材料の代わりに、例えば、以下の金属材料が主材料として用いられてもよい。この場合には、下記の金属材料を粉末状にした粉末材料に、造形材料の生成の際に溶融する成分が混合されて、原材料として可塑化部30に投入されることが望ましい。
<金属材料の例>
マグネシウム(Mg)、鉄(Fe)、コバルト(Co)やクロム(Cr)、アルミニウム(Al)、チタン(Ti)、銅(Cu)、ニッケル(Ni)の単一の金属、もしくはこれらの金属を1つ以上含む合金。
<前記合金の例>
マルエージング鋼、ステンレス、コバルトクロムモリブデン、チタニウム合金、ニッケル合金、アルミニウム合金、コバルト合金、コバルトクロム合金。
三次元造形装置100においては、上記の金属材料の代わりに、セラミック材料を主材料として用いることが可能である。セラミック材料としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウムなどの酸化物セラミックスや、窒化アルミニウムなどの非酸化物セラミックスなどが使用可能である。主材料として、上述したような金属材料やセラミック材料を用いる場合には、ステージ300に配置された造形材料はレーザーの照射や温風などによる焼結によって硬化されてもよい。
材料供給部20に原材料として投入される金属材料やセラミック材料の粉末材料は、単一の金属の粉末や合金の粉末、セラミック材料の粉末を、複数種類、混合した混合材料であってもよい。また、金属材料やセラミック材料の粉末材料は、例えば、上で例示したような熱可塑性樹脂、あるいは、それ以外の熱可塑性樹脂によってコーティングされていてもよい。この場合には、可塑化部30において、その熱可塑性樹脂が溶融して流動性が発現されるものとしてもよい。
材料供給部20に原材料として投入される金属材料やセラミック材料の粉末材料には、例えば、以下のような溶剤を添加することもできる。溶剤は、下記の中から選択される1種または2種以上を組み合わせて用いることができる。
<溶剤の例>
水;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル等の酢酸エステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、アセトン、メチルイソブチルケトン、エチル-n-ブチルケトン、ジイソプロピルケトン、アセチルアセトン等のケトン類;エタノール、プロパノール、ブタノール等のアルコール類;テトラアルキルアンモニウムアセテート類;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶剤;ピリジン、γ-ピコリン、2,6-ルチジン等のピリジン系溶剤;テトラアルキルアンモニウムアセテート(例えば、テトラブチルアンモニウムアセテート等);ブチルカルビトールアセテート等のイオン液体等。
その他に、材料供給部20に原材料として投入される金属材料やセラミック材料の粉末材料には、例えば、以下のようなバインダーを添加することもできる。
<バインダーの例>
アクリル樹脂、エポキシ樹脂、シリコーン樹脂、セルロース系樹脂或いはその他の合成樹脂又はPLA(ポリ乳酸)、PA(ポリアミド)、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)或いはその他の熱可塑性樹脂。
F.他の形態:
本開示は、上述した実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の形態で実現することができる。例えば、本開示は、以下の形態によっても実現可能である。以下に記載した各形態中の技術的特徴に対応する上記実施形態中の技術的特徴は、本開示の課題の一部又は全部を解決するために、あるいは、本開示の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
(1)本開示の第1の形態によれば、三次元造形物の製造方法が提供される。この三次元造形物の製造方法は、三次元造形物の形状を表す形状データに基づいて、前記三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、前記層データに基づいて、層毎に、三次元造形装置に備えられた吐出部が造形材料を吐出しながら移動する移動経路を表した経路情報、及び、前記移動経路における前記造形材料の吐出量を表す吐出量情報を含む造形データを生成するデータ生成工程と、前記造形データに従って、前記吐出部から前記造形材料を吐出して層を積層する積層工程と、積層された層の物理量を測定する測定工程と、前記物理量に基づいて前記形状データを補正する補正工程と、を備える。前記データ生成工程において、補正された前記形状データに基づいて、前記物理量が測定された層より後の層の造形データを生成する。
このような形態によれば、物理量の測定値に基づいて形状データを補正し、補正された形状データに基づいて、後の層の造形データを新たに生成できる。そのため、予め生成された造形データを補正する場合と比較して、所望の形状を有する三次元造形物を造形可能な造形データを準備できる可能性が高まり、十分な造形精度を有する三次元造形物を造形できる可能性が高まる。
(2)上記形態では、前記物理量は、層の寸法と、位置と、温度と、の少なくともいずれかを含んでいてもよい。このような形態によれば、層の寸法と、位置と、温度と、の少なくともいずれかに基づいて、形状データを補正できる。
(3)上記形態では、前記データ生成工程、前記測定工程、および、前記補正工程を、前記三次元造形装置において実行してもよい。このような形態によれば、積層工程を実行する三次元造形装置において、データ生成工程、測定工程、および、補正工程を実行できるため、より簡易に三次元造形物を造形できる。
(4)上記形態では、前記データ生成工程において、前記物理量に基づいて、前記後の層の層データが表す厚みを決定してもよい。このような形態によれば、三次元造形物の層を積層する方向における造形精度をより高めることができる。
(5)上記形態では、前記後の層は、前記物理量が測定された層の次の層よりも後に造形される層であってもよい。このような形態によれば、次の層よりも後の層の造形データを生成している間に次の層を造形できるため、造形時間を短縮できる。
(6)上記形態では、前記データ生成工程において、1回の前記補正工程につき、前記後の層の造形データとして、1層分の造形データを生成してもよい。このような形態によれば、補正工程とその補正工程に対応する造形データを生成する工程とを繰り返し実行することによって、1回の補正工程につき複数層分の造形データを生成する場合と比較して、造形環境等の変化に対応してより緻密に造形データを生成できる可能性が高まる。
(7)上記形態では、前記データ生成工程において、測定された前記物理量に基づいて、前記後の層の造形条件を決定し、補正された前記形状データ、および、決定された前記造形条件に基づいて、前記後の層の造形データを生成してもよい。このような形態によれば、物理量の測定値に基づいて造形条件を変更し、かつ、変更した造形条件で精度良く三次元造形物を造形できる。
(8)上記形態では、前記三次元造形物として、第1造形物と、前記第1造形物と対応する形状を有し、前記第1造形物の製造が完了した後に製造される第2造形物と、を製造し、前記第1造形物を製造する際に、前記データ生成工程、前記積層工程、前記測定工程、および、前記補正工程を実行し、前記第1造形物の製造における前記補正工程で補正された前記形状データを、前記第2造形物の造形データの生成に用いてもよい。このような形態によれば、第1造形物の製造における補正工程で補正された形状データを、第2造形物の造形データの生成に用いない場合と比較して、第2造形物を精度良く製造できる可能性が高まる。
(9)本開示の第2の形態によれば、三次元造形装置が提供される。この三次元造形装置は、ステージと、前記ステージに向けて造形材料を吐出する吐出部と、前記吐出部と前記ステージとの相対的な位置を変更する位置変更部と、前記ステージ上に積層された前記層の物理量を測定する測定部と、前記吐出部と前記位置変更部とを制御して三次元造形物を造形する制御部と、を備える。前記制御部は、前記三次元造形物の形状を表す形状データに基づいて、前記三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、前記層データに基づいて、層毎に、前記吐出部が造形材料を吐出しながら移動する移動経路を表した経路情報、及び、前記移動経路における前記造形材料の吐出量を表す吐出量情報を含む造形データを生成するデータ生成工程と、前記造形データに従って、前記吐出部から前記造形材料を吐出させて層を積層する積層工程と、前記測定部によって、積層された層の物理量を測定する測定工程と、前記物理量に基づいて前記形状データを補正する補正工程と、を実行し、前記データ生成工程において、補正された前記形状データに基づいて、前記物理量が測定された層より後の層の造形データを生成する。このような形態によれば、物理量の測定値に基づいて形状データを補正し、補正された形状データに基づいて、後の層の造形データを新たに生成できる。そのため、予め生成された造形データを補正する場合と比較して、所望の形状を有する三次元造形物を造形可能な造形データを準備できる可能性が高まり、十分な造形精度を有する三次元造形物を造形できる可能性が高まる。
20…材料供給部、22…供給路、30…可塑化部、31…スクリューケース、32…駆動モーター、40…スクリュー、42…溝部、43…凸条部、44…材料導入口、46…中央部、47…上面、48…スクリュー下面、50…バレル、52…バレル上面、56…連通孔、58…ヒーター、61…ノズル、62…ノズル開口、63…先端面、65…流路、69…ノズルヒーター、70…吐出量調整部、74…駆動部、100…三次元造形装置、200…吐出部、300…ステージ、311…造形面、400…位置変更部、500…制御部、550…測定部、560…赤外線カメラ、570…カメラ、580…測定制御部

Claims (9)

  1. 三次元造形物の形状を表す形状データに基づいて、前記三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、前記層データに基づいて、層毎に、三次元造形装置に備えられた吐出部が造形材料を吐出しながら移動する移動経路を表した経路情報、及び、前記移動経路における前記造形材料の吐出量を表す吐出量情報を含む造形データを生成するデータ生成工程と、
    前記造形データに従って、前記吐出部から前記造形材料を吐出して層を積層する積層工程と、
    積層された層の物理量を測定する測定工程と、
    前記物理量に基づいて前記形状データを補正する補正工程と、を備え、
    前記データ生成工程において、補正された前記形状データに基づいて、前記物理量が測定された層より後の層の造形データを生成する、三次元造形物の製造方法。
  2. 請求項1に記載の三次元造形物の製造方法であって、
    前記物理量は、層の寸法と、位置と、温度と、の少なくともいずれかを含む、三次元造形物の製造方法。
  3. 請求項1又は2に記載の三次元造形物の製造方法であって、
    前記データ生成工程、前記測定工程、および、前記補正工程を、前記三次元造形装置において実行する、三次元造形物の製造方法。
  4. 請求項1から3のいずれか一項に記載の三次元造形物の製造方法であって、
    前記データ生成工程において、前記物理量に基づいて、前記後の層の層データが表す厚みを決定する、三次元造形物の製造方法。
  5. 請求項1から4のいずれか一項に記載の三次元造形物の製造方法であって、
    前記後の層は、前記物理量が測定された層の次の層よりも後に造形される層である、三次元造形物の製造方法。
  6. 請求項1から5のいずれか一項に記載の三次元造形物の製造方法であって、
    前記データ生成工程において、1回の前記補正工程につき、前記後の層の造形データとして、1層分の造形データを生成する、三次元造形物の製造方法。
  7. 請求項1から6のいずれか一項に記載の三次元造形物の製造方法であって、
    前記データ生成工程において、
    測定された前記物理量に基づいて、前記後の層の造形条件を決定し、
    補正された前記形状データ、および、決定された前記造形条件に基づいて、前記後の層の造形データを生成する、
    三次元造形物の製造方法。
  8. 請求項1から7のいずれか一項に記載の三次元造形物の製造方法であって、
    前記三次元造形物として、第1造形物と、前記第1造形物と対応する形状を有し、前記第1造形物の製造が完了した後に製造される第2造形物と、を製造し、
    前記第1造形物を製造する際に、前記データ生成工程、前記積層工程、前記測定工程、および、前記補正工程を実行し、
    前記第1造形物の製造における前記補正工程で補正された前記形状データを、前記第2造形物の造形データの生成に用いる、三次元造形物の製造方法。
  9. ステージと、
    前記ステージに向けて造形材料を吐出する吐出部と、
    前記吐出部と前記ステージとの相対的な位置を変更する位置変更部と、
    前記ステージ上に積層された前記層の物理量を測定する測定部と、
    前記吐出部と前記位置変更部とを制御して三次元造形物を造形する制御部と、を備え、
    前記制御部は、
    前記三次元造形物の形状を表す形状データに基づいて、前記三次元造形物の形状が層状にスライスされた形状を表す層データを生成し、前記層データに基づいて、層毎に、前記吐出部が前記造形材料を吐出しながら移動する移動経路を表した経路情報、及び、前記移動経路における前記造形材料の吐出量を表す吐出量情報を含む造形データを生成するデータ生成工程と、
    前記造形データに従って、前記吐出部から前記造形材料を吐出させて層を積層する積層工程と、
    前記測定部によって、積層された層の前記物理量を測定する測定工程と、
    測定された前記物理量に基づいて前記形状データを補正する補正工程と、を実行し、
    前記データ生成工程において、補正された前記形状データに基づいて、前記物理量が測定された層より後の層の造形データを生成する、
    三次元造形装置。
JP2021140593A 2021-08-31 2021-08-31 三次元造形物の製造方法、および、三次元造形装置 Pending JP2023034377A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021140593A JP2023034377A (ja) 2021-08-31 2021-08-31 三次元造形物の製造方法、および、三次元造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021140593A JP2023034377A (ja) 2021-08-31 2021-08-31 三次元造形物の製造方法、および、三次元造形装置

Publications (1)

Publication Number Publication Date
JP2023034377A true JP2023034377A (ja) 2023-03-13

Family

ID=85505235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021140593A Pending JP2023034377A (ja) 2021-08-31 2021-08-31 三次元造形物の製造方法、および、三次元造形装置

Country Status (1)

Country Link
JP (1) JP2023034377A (ja)

Similar Documents

Publication Publication Date Title
JP7115088B2 (ja) 三次元造形装置および三次元造形物の製造方法
JP7156022B2 (ja) 三次元造形物の製造方法および三次元造形装置
JP7135409B2 (ja) 三次元造形装置および三次元造形物の製造方法
CN113997562A (zh) 三维造型装置以及三维造型物的制造方法
JP2021041626A (ja) 三次元造形装置、および、三次元造形物の製造方法
US11498266B2 (en) Three-dimensional molding device and method for molding three-dimensional molded object
JP2021024148A (ja) 可塑化装置、三次元造形装置および射出成形装置
JP2023034377A (ja) 三次元造形物の製造方法、および、三次元造形装置
JP2023034375A (ja) 三次元造形物の製造方法、および、三次元造形装置
JP7395993B2 (ja) 三次元造形装置、および、三次元造形物の製造方法
CN114670444A (zh) 三维造型装置
JP7459546B2 (ja) 三次元造形物の製造方法、および、三次元造形装置
JP7338420B2 (ja) 三次元造形物の製造方法、および、データ処理装置
JP2023003589A (ja) 三次元造形装置
JP2022025173A (ja) 三次元造形装置、三次元造形物の製造方法および情報処理装置
JP7395894B2 (ja) 三次元造形物の製造方法、および、三次元造形装置
JP2023069762A (ja) 三次元造形装置
JP7388212B2 (ja) 三次元造形物の製造方法および三次元造形装置
JP2023078601A (ja) 三次元造形装置
JP7400327B2 (ja) 三次元造形物の製造方法、および、データ処理装置
JP7476567B2 (ja) 三次元造形システム、および三次元造形物の製造方法
JP2023062804A (ja) 三次元造形装置
JP2023033888A (ja) 三次元造形装置
JP2023034652A (ja) 三次元造形物の製造方法、および、三次元造形装置
JP2023097690A (ja) 三次元造形装置