JP7155729B2 - アクチュエータ駆動回路および電子機器 - Google Patents

アクチュエータ駆動回路および電子機器 Download PDF

Info

Publication number
JP7155729B2
JP7155729B2 JP2018149056A JP2018149056A JP7155729B2 JP 7155729 B2 JP7155729 B2 JP 7155729B2 JP 2018149056 A JP2018149056 A JP 2018149056A JP 2018149056 A JP2018149056 A JP 2018149056A JP 7155729 B2 JP7155729 B2 JP 7155729B2
Authority
JP
Japan
Prior art keywords
phase
signal
integration
drive
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018149056A
Other languages
English (en)
Other versions
JP2020025412A5 (ja
JP2020025412A (ja
Inventor
長武 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2018149056A priority Critical patent/JP7155729B2/ja
Publication of JP2020025412A publication Critical patent/JP2020025412A/ja
Publication of JP2020025412A5 publication Critical patent/JP2020025412A5/ja
Application granted granted Critical
Publication of JP7155729B2 publication Critical patent/JP7155729B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、アクチュエータ駆動回路および電子機器に関する。
従来から、トラス型アクチュエータの分野では、3つの積層型圧電素子の交点にチップ部材を設け、楕円を描くようにチップ部材を駆動し、球形の被駆動部材を任意の方向に旋回させる技術が知られている。特許文献1の要約書の解決手段には、「各変位部2、3の振動周波数を調整する発振器10と、各変位部2、3の振動振幅を調整するAGC12、13及びパワーアンプ14、15と、各変位部2、3間の振動位相差を調整する移相器11と、振動する各変位部2、3の振幅及び位相差を検出する振幅検出部19、20及び位相差検出部18と、その検出振幅及び検出位相差に基づき、AGC12等及びパワーアンプ14等により調整される振幅及び移相器11により調整される位相差のうちの少なくとも一方を変更して合成部の楕円軌跡を調整するMPU21とを具備する。」と記載されている。
図10は、アクチュエータ駆動回路の一例の概略を示す構成図である。
駆動回路1Bは、トラス型のアクチュエータ2に接続されて、このアクチュエータ2を回転駆動させる。このアクチュエータ2は、加圧部21と、固定部22と、変位素子23A,23Bと、変位素子23A,23Bにそれぞれ結合された合成部24と、ロータ25を含んで構成される。固定部22は、変位素子23A,23Bの先端が直交するように、これら変位素子23A,23Bの基端を接着して固定する。変位素子23A,23Bは、駆動回路1Bによって所定の変位を発生させる。合成部24は、変位素子23A,23Bの先端の直交部分に接着される。ロータ25は、合成部24が当接して駆動される被駆動部材である。これら固定部22と、変位素子23A,23Bと、合成部24とは、トラス構造体を構成する。
加圧部21は、固定部22と変位素子23A,23Bと合成部24とを含むトラス構造体をロータ25の方向に加圧し、よって合成部24をロータ25に加圧接触させる。変位素子23A,23Bには、圧電効果により電気信号を変位に変換する積層型の圧電素子が用いられている。合成部24には、安定して高い摩擦係数が得られ、摩耗しにくいタングステンなどの金属材料が用いられる。固定部22には、製造し易く強度が得られるステンレスなどの金属材料が用いられる。また、これらの接着には接着力や強度に優れたエポキシ系樹脂の接着剤が用いられる。加圧部21は、コイルばねなどで構成され、固定部22を被駆動部材である円板状のロータ25の中心方向に加圧する。ロータ25は、鉄、アルミニウムなどの金属で作製され、合成部24との接触による摩耗を防ぐため、その側面にはタフトライド処理、アルマイト処理などの表面処理が施されている。
単相駆動方式は、変位素子23A,23Bのうち一方の変位素子のみに駆動信号を与えてトラス構造体に楕円振動を発生させる。トラス構造体を振動させることで発生する共振周波数には複数の振動モードがある。駆動回路1Bは、この周波数を制御することで横振動と縦振動を同時に起こして楕円振動を導き、この楕円振動によりロータ25を回転させる。この楕円振動の傾きが電流位相差とほぼ同等となることを利用して電気的制御を行う。
VCO(Voltage-controlled oscillator)42は、印加された電圧に応じた周波数の駆動クロックを出力する。パルス生成回路43は、VCO42が出力した駆動クロックに基づき、矩形のパルスを生成する。この矩形パルスは、A相の回路とB相の回路に出力される。
駆動回路1Bは、変位素子23Aに駆動信号を与えるA相の回路と、変位素子23Bに駆動信号を与えるB相の回路に大別される。
A相の回路は、ドライバ11Aと、LCフィルタ12Aと、B相の連動スイッチ13Bと相補的に連動する連動スイッチ13Aと、電流検出抵抗14Aと、検出器16Aと、ヒステリシス補正回路31Aを備える。このドライバ11Aは、2台のアンプをブリッジ接続して構成される。ドライバ11Aの入力側には、パルス生成回路43の出力信号が入力される。ドライバ11Aは、この信号を増幅した信号を第1出力端子から出力し、この信号を増幅して反転した信号を第2出力端子から出力する。ドライバ11Aの第1出力端子と第2出力端子は、LCフィルタ12Aに接続されている。LCフィルタ12Aの2つの出力端子には、連動スイッチ13Aが接続されている。連動スイッチ13Aが開いている場合、LCフィルタ12Aの出力端子から、正弦波信号が出力される。連動スイッチ13Aが閉じている場合、LCフィルタ12Aの出力端端子から信号は出力されない。
LCフィルタ12Aの一方の出力端子は変位素子23Aの一端に接続され、他方の出力端子は、電流検出抵抗14Aを介して変位素子23Aの他端に接続される。
検出器16Aは、電流検出抵抗14Aの両端電圧をコンパレータで比較して検出し、よって変位素子23Aに流れる電流を検知するものである。検出器16Aの出力信号は、二値化されている。
検出器16Aの出力信号は、ヒステリシス補正回路31Aに入力されたのち、セレクタ32に入力される。ヒステリシス補正回路31Aは、電流信号に含まれる誤検出パルスをデジタル処理で除いている。
B相の回路も同様に、ドライバ11Bと、LCフィルタ12Bと、A相の連動スイッチ13Aと相補的に連動する連動スイッチ13Bと、電流検出抵抗14Bと、検出器16Bと、ヒステリシス補正回路31Bを備える。このB相の回路は、A相の回路と同様に接続されている。
以下、ドライバ11A,11Bを区別しないときには、単にドライバ11と記載する。LCフィルタ12A,12Bを区別しないときには、単にLCフィルタ12と記載する。連動スイッチ13A,13Bを区別しないときには、単に連動スイッチ13と記載する。電流検出抵抗14A,14Bを区別しないときには、単に電流検出抵抗14と記載する。検出器16A,16Bを区別しないときには、単に検出器16と記載する。
A相の回路が変位素子23Aを駆動し、かつ変位素子23Aに流れる電流を検出している場合、B相の回路は変位素子23Bを駆動せず、かつ変位素子23Bに流れる電流を検出している。この場合、変位素子23Aに流れる電流は駆動側信号であり、変位素子23Bに流れる電流は非駆動側信号である。A相のヒステリシス補正回路31Aは、変位素子23Aに流れる電流を二値化して、駆動側の位相信号を出力する。B相のヒステリシス補正回路31Bは、変位素子23Bに流れる電流を二値化して、非駆動側の位相信号を出力する。
A相の回路が変位素子23Aを駆動せず、かつ変位素子23Aに流れる電流を検出している場合、B相の回路は変位素子23Bを駆動し、かつ変位素子23Bに流れる電流を検出している。この場合、変位素子23Aに流れる電流は非駆動側信号であり、変位素子23Bに流れる電流は駆動側信号である。A相のヒステリシス補正回路31Aは、変位素子23Aに流れる電流を二値化して、非駆動側の位相信号を出力する。B相のヒステリシス補正回路31Bは、変位素子23Bに流れる電流を二値化して、駆動側の位相信号を出力する。
セレクタ32は、駆動側の相で検出された位相信号を位相差設定回路33に出力し、非駆動側の相で検出された位相信号を、そのまま位相比較器34に出力する。位相差設定回路33は、位相信号を目的の位相差だけ遅らせて出力する。図10ではA相が駆動側なので、A相の位相信号が45°だけ遅れる(図11参照)ことになる。
その後、位相比較器34は、駆動側の位相信号と非駆動側の位相信号とを比較し、ローパスフィルタ41を介してVCO42にフィードバックする。これにより、駆動回路1Bは、駆動側の変位素子23Aの電流波形と、非駆動側の変位素子23Bの電流波形とが目的の位相差となるように制御することができる。
図11は、駆動側位相信号と非駆動側位相信号からの位相比較動作を示す波形図である。
第1グラフは、駆動側信号を示している。この駆動側信号は、A相の変位素子23A(図10参照)に流れる電流である。
第2グラフは、非駆動側信号を示している。この非駆動側信号は、B相の変位素子23B(図10参照)に流れる電流であり、フィードバックの定常状態において45°だけ駆動側信号よりも遅れている。
第3グラフは、ヒステリシス補正後の駆動側の位相信号を示している。この位相信号は、ヒステリシス補正回路31A(図10参照)の出力信号であり、駆動側信号のゼロクロスに対して角度Φだけ遅れている。
第4グラフは、ヒステリシス補正後の非駆動側の位相信号を示している。この位相信号は、ヒステリシス補正回路31B(図10参照)の出力信号であり、非駆動側信号のゼロクロスに対して角度Φだけ遅れている。
第5グラフは、位相差設定後の駆動側位相信号の波形を示している。この位相信号は、位相差設定回路33の出力信号であり、駆動側の位相信号に対して45°だけ遅れている。
図12は、位相差0°における駆動側位相信号と非駆動側位相信号と、位相比較出力信号を示す波形図である。
第1グラフは、ヒステリシス補正後の駆動側の位相信号を示しており、時刻t0と時刻t1で立ち上がる。
第2グラフは、ヒステリシス補正後の非駆動側の位相信号を示しており、時刻t0と時刻t1で立ち上がる。位相比較信号は、これら駆動側の位相信号の立ち上がりエッジと、非駆動側の位相信号の立ち上がりエッジとを比較した信号である。ここで位相差は0°で、両信号は同時に立ち上がるため、位相比較信号は常に0である。
図13は、進み位相における駆動側位相信号と非駆動側位相信号と、位相比較出力信号を示す波形図である。
第1グラフは、ヒステリシス補正後の駆動側の位相信号を示しており、時刻t11と時刻t13で立ち上がる。
第2グラフは、ヒステリシス補正後の非駆動側の位相信号を示しており、時刻t10と時刻t12で立ち上がる。位相比較信号は、これら駆動側の位相信号の立ち上がりエッジと、非駆動側の位相信号の立ち上がりエッジとを比較した信号である。ここで非駆動側は進み位相であるため、位相比較信号は時刻t10~t11で正のパルスになり、時刻t12~t13で正のパルスとなる。
図14は、遅れ位相における駆動側位相信号との非駆動側位相信号と、位相比較出力信号を示す波形図である。
第1グラフは、ヒステリシス補正後の駆動側の位相信号を示しており、時刻t20と時刻t22で立ち上がる。
第2グラフは、ヒステリシス補正後の非駆動側の位相信号を示しており、時刻t21と時刻t23で立ち上がる。位相比較信号は、これら駆動側の位相信号の立ち上がりエッジと、非駆動側の位相信号の立ち上がりエッジとを比較した信号である。ここで非駆動側は遅れ位相であるため、位相比較信号は時刻t20~t21で負のパルスになり、時刻t22~t23で負のパルスとなる。
特開2002-112563号公報
このように、従来の単相駆動における位相比較では、二値化した位相信号に含まれる誤検出パルスを除去する必要がある。また、この位相比較動作は複雑であるため、ヒステリシス補正回路や位相比較器、ローパスフィルタなど、多くの回路を必要とし、かつ、位相制御の精度を確保することが難しい問題があった。
そこで、本発明は、アクチュエータ駆動回路について、簡素な回路構成で精度良く位相制御を行うことを課題とする。
本発明は、上記目的を達成するため、
所定の変位を発生させる一対の変位素子と、
前記一対の変位素子に結合され、当該一対の変位素子の変位により駆動される駆動部材と、
前記駆動部材が当接することによって駆動される被駆動部材と、
を備えるアクチュエータの駆動回路であって、
前記一対の変位素子のうち一方の変位素子に所定の周波数の駆動信号を印加する制御部と
前記一対の変位素子のうち他方の変位素子から検出信号を検出する検出部と、
前記駆動信号から所定位相だけシフトした積分領域パルスを生成するパルス生成部と、
前記積分領域パルスを用いて前記検出信号を積分する積分部と、
を備え、
前記制御部は、
前記積分部の出力信号に基づいて前記駆動信号の位相を制御する、
ことを特徴とするアクチュエータ駆動回路である。
本発明によれば、アクチュエータ駆動回路について、簡素な回路構成で精度良く位相制御を行うことが可能となる。
第1の実施形態におけるアクチュエータ駆動回路の概略を示す構成図である。 位相差0°における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。 進み位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。 遅れ位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。 第2の実施形態におけるアクチュエータ駆動回路の概略を示す構成図である。 位相差0°における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。 進み位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。 遅れ位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。 駆動パルス生成信号と、駆動側アンプ出力信号および積分領域パルスと、位相遅れ状態の非駆動側アンプ出力信号および積分領域パルスを示す波形図である。 アクチュエータ駆動回路の一例の概略を示す構成図である。 駆動側位相信号と非駆動側位相信号からの位相比較動作を示す波形図である。 位相差0°における駆動側位相信号と非駆動側位相信号と、位相比較出力信号を示す波形図である。 進み位相における駆動側位相信号と非駆動側位相信号と、位相比較出力信号を示す波形図である。 遅れ位相における駆動側位相信号との非駆動側位相信号と、位相比較出力信号を示す波形図である。
以降、本発明を実施するための形態を、各図を参照して詳細に説明する。
《第1の実施形態》
第1の実施形態の要点は、駆動信号から任意シフトした積分領域パルスを生成する積分領域パルス生成回路と、この積分領域パルスを用いて電流検出信号を積分する積分回路とを備え、この積分値を位相比較出力としてVCOにフィードバックすることである。以下、図1から図4を参照して、第1の実施形態を説明する。
図1は、第1の実施形態におけるアクチュエータ駆動回路の概略を示す構成図である。
第1の実施形態の駆動回路1は、トラス型のアクチュエータ2に接続されて、このアクチュエータ2を回転駆動させる。このアクチュエータ2は、加圧部21と、固定部22と、変位素子23A,23Bと、変位素子23A,23Bにそれぞれ結合された合成部24と、ロータ25を含んで構成される。固定部22は、変位素子23A,23Bの先端が直交するように、これら変位素子23A,23Bの基端を接着して固定する。変位素子23A,23Bは、駆動回路1によって所定の変位を発生させる。合成部24は、変位素子23A,23Bの先端の直交部分に接着(結合)され、これら変位素子23A,23Bの変位により駆動される駆動部材として機能する。ロータ25は、合成部24が当接して駆動される被駆動部材である。これら固定部22と、変位素子23A,23Bと、合成部24とは、トラス構造体を構成する。
加圧部21は、固定部22と変位素子23A,23Bと合成部24とを含むトラス構造体をロータ25の方向に加圧し、よって合成部24をロータ25に加圧接触させる。変位素子23A,23Bには、圧電効果により電気信号を変位に変換する積層型の圧電素子が用いられている。合成部24には、安定して高い摩擦係数が得られ、摩耗しにくいタングステンなどの金属材料が用いられる。固定部22には、製造し易く強度が得られるステンレスなどの金属材料が用いられる。また、これらの接着には接着力や強度に優れたエポキシ系樹脂の接着剤が用いられる。加圧部21は、コイルばねなどで構成され、固定部22を被駆動部材である円板状のロータ25の中心方向に加圧する。ロータ25は、鉄、アルミニウムなどの金属で作製され、合成部24との接触による摩耗を防ぐため、その側面にはタフトライド処理、アルマイト処理などの表面処理が施されている。
以下、第1の実施形態のトラス型アクチュエータにおける単相駆動回路の位相比較動作を簡単に説明する。
VCO42は、印加された電圧に応じた周波数の駆動クロックを出力する。パルス生成回路43は、VCO42が出力した駆動クロックに基づき、矩形のパルスを生成する。この矩形パルスは、A相の回路とB相の回路と積分領域パルス生成回路44に出力される。
駆動回路1は、変位素子23Aに駆動信号を与えるA相の回路と、変位素子23Bに駆動信号を与えるB相の回路に大別される。
A相の回路は、ドライバ11Aと、LCフィルタ12Aと、B相の連動スイッチ13Bと相補的に連動する連動スイッチ13Aと、電流検出抵抗14Aと、検出器15Aを備える。このドライバ11Aは、2台のアンプをブリッジ接続して構成される。ドライバ11Aの入力側には、パルス生成回路43の出力信号が入力される。ドライバ11Aは、この信号を増幅した信号を第1出力端子から出力し、この信号を増幅して反転した信号を第2出力端子から出力する。
ドライバ11Aの第1出力端子と第2出力端子は、LCフィルタ12Aに接続されている。LCフィルタ12Aの2つの出力端子には、連動スイッチ13Aが接続されている。連動スイッチ13Aが開いている場合、LCフィルタ12Aの出力端子から、正弦波信号が出力される。連動スイッチ13Aが閉じている場合、LCフィルタ12Aの出力端端子から信号は出力されない。
LCフィルタ12Aの一方の出力端子は変位素子23Aの一端に接続され、他方の出力端子は、電流検出抵抗14Aを介して変位素子23Aの他端に接続される。
検出器15Aは、電流検出抵抗14Aの両端電圧をアナログで増幅して検出し、変位素子23Aに流れる電流を検知するものである。検出器15Aの出力信号は、セレクタ53に入力される。
B相の回路も同様に、ドライバ11Bと、LCフィルタ12Bと、A相の連動スイッチ13Aと相補的に連動する連動スイッチ13Bと、電流検出抵抗14Bと、検出器15Bを備える。このB相の回路は、A相の回路と同様に接続されている。
A相の回路が変位素子23Aを駆動し、かつ変位素子23Aに流れる電流を検出している場合、B相の回路は変位素子23Bを駆動せず、かつ変位素子23Bに流れる電流を検出している。この場合、変位素子23Aに流れる電流は駆動側信号であり、変位素子23Bに流れる電流は非駆動側信号である。
A相の回路が変位素子23Aを駆動せず、かつ変位素子23Aに流れる電流を検出している場合、B相の回路は変位素子23Bを駆動し、かつ変位素子23Bに流れる電流を検出している。この場合、変位素子23Aに流れる電流は非駆動側信号であり、変位素子23Bに流れる電流は駆動側信号である。
セレクタ53は、非駆動側の相の検出信号(アナログ信号)を積分回路54に出力する。積分領域パルス生成回路44は、駆動パルス生成信号の位相を45°進めて、積分領域パルスを生成する。積分回路54は、積分領域パルスがHレベルならば、非駆動側検出信号を積分する。つまり積分回路54は、積分領域パルスがHレベルの区間(所定の区間)に対応する非駆動側検出信号を積分する。この積分回路54の動作を、図2から図4を用いて説明する。
図2は、位相差0°における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。
第1グラフは、駆動パルス生成信号の波形図である。この駆動パルス生成信号は、所定周期の矩形波である。
第2グラフは、駆動側検出信号の波形図である。この駆動側検出信号は、正弦波であり、図1の検出器15Aの出力信号である。駆動パルス生成信号のエッジである時刻t31において、駆動側検出信号はゼロクロスしている。
第3グラフは、実線で非駆動側の検出信号を示し、破線で積分領域パルスを示している。ハッチング領域は、非駆動側の検出信号の積分領域を示している。
時刻t30は、積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。この時刻t30は、駆動側検出信号のゼロクロス点である時刻t31に対して、45°だけ位相が進んでいる。時刻t33は、積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t33は、時刻t30に対して位相が180°だけ遅れている。
図2において非駆動側の検出信号と駆動側の検出信号の位相差は、45°である。非駆動側の検出信号のゼロクロス点である時刻t32は、駆動側検出信号のゼロクロス点に対して45°だけ位相が遅れており、かつ時刻t30に対して90°だけ位相が遅れている。よって、非駆動側の検出信号の積分領域は、正の領域と負の領域とが等しい。
図3は、進み位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。
第1グラフは、駆動パルス生成信号の波形図である。この駆動パルス生成信号は、所定周期の矩形波である。
第2グラフは、駆動側検出信号の波形図である。この駆動側検出信号は、正弦波であり、図1の検出器15Aの出力信号である。駆動パルス生成信号のエッジである時刻t41において、駆動側検出信号はゼロクロスしている。
第3グラフは、実線で非駆動側の検出信号を示し、破線で積分領域パルスを示している。ハッチング領域は、非駆動側の検出信号の積分領域を示している。
時刻t40は、積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。この時刻t40は、駆動側検出信号のゼロクロス点である時刻t41に対して、45°だけ位相が進んでいる。時刻t43は、積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t43は、時刻t40に対して位相が180°だけ遅れている。
図3において非駆動側の検出信号の位相は、本来の位相(図2の第3グラフ参照)に対して略45°だけ進んでいる。非駆動側の検出信号のゼロクロス点である時刻t42は、駆動側検出信号のゼロクロス点の近傍であり、かつ時刻t30に対して45°だけ位相が遅れている。よって、非駆動側の検出信号の積分領域は、正の領域が負の領域よりも大きい。
図4は、遅れ位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。
第1グラフは、駆動パルス生成信号の波形図である。この駆動パルス生成信号は、所定周期の矩形波である。
第2グラフは、駆動側検出信号の波形図である。この駆動側検出信号は、正弦波であり、図1の検出器15Aの出力信号である。駆動パルス生成信号のエッジである時刻t51において、駆動側検出信号はゼロクロスしている。
第3グラフは、実線で非駆動側の検出信号を示し、破線で積分領域パルスを示している。ハッチング領域は、非駆動側の検出信号の積分領域を示している。
時刻t50は、積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。この時刻t50は、駆動側検出信号のゼロクロス点である時刻t51に対して、45°だけ位相が進んでいる。時刻t53は、積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t53は、時刻t50に対して位相が180°だけ遅れている。
図4において非駆動側の検出信号の位相は、本来の位相(図2の第3グラフ参照)に対して略45°だけ遅れている。非駆動側の検出信号のゼロクロス点である時刻t52は、駆動側検出信号のゼロクロス点に対して略90°だけ遅れており、かつ時刻t50に対して135°だけ位相が遅れている。よって、非駆動側の検出信号の積分領域は、正の領域が負の領域よりも大きい。
図1に戻って説明を続ける。積分回路54は、その積分値である出力信号をVCO42にフィードバックする。これにより、駆動回路1は、駆動側の変位素子23Aの電流波形と、非駆動側の変位素子23Bの電流波形とが目的の位相差(45°)となるように制御することができる。
駆動回路1は、非駆動側の検出信号の積分領域において、非駆動側の検出信号の和が0でなく、正の値を取る場合、VCO42から駆動側の変位素子23Bに出力される電流波形の位相を進ませるよう制御を行う。
また、駆動回路1は、非駆動側の検出信号の積分領域において、非駆動側の検出信号の和が0でなく、負の値を取る場合、VCO42から駆動側の変位素子23Bに出力される電流波形の位相を遅らせるよう制御を行う。
《第1の実施形態の効果》
本発明の駆動回路1は、駆動パルスから位相シフトした積分領域パルスを用いて電流検出信号を積分している。これにより、図10に示したヒステリシス補正回路31A,31Bや位相比較器34、ローパスフィルタ41等の回路を削減できるので、消費電力を削減できる効果がある。
また、電流検出信号を積分することで、外乱ノイズの吸収をしながら精度の高い位相制御を行うことができる。
《第2の実施形態》
図5は、第2の実施形態におけるアクチュエータ駆動回路の概略を示す構成図である。
第2の実施形態の駆動回路1Aは、トラス型のアクチュエータ2に接続されて、このアクチュエータ2を回転駆動させる。このトラス型のアクチュエータ2は、第1の実施形態のアクチュエータ2と同様に構成されており、同様に動作する。
以下、トラス型アクチュエータにおける単相駆動原理回路の位相比較動作を簡単に説明する。
VCO42は、印加された電圧に応じた周波数の駆動クロックを出力する。パルス生成回路43は、VCO42が出力した駆動クロックに基づき、矩形のパルスを生成する。この矩形パルスは、A相の回路とB相の回路と積分領域パルス生成回路44に出力される。
駆動回路1は、変位素子23Aに駆動信号を与えるA相の回路と、変位素子23Bに駆動信号を与えるB相の回路に大別される。
A相の回路は、ドライバ11Aと、LCフィルタ12Aと、B相の連動スイッチ13Bと相補的に連動する連動スイッチ13Aと、電流検出抵抗14Aと、検出器15Aを備える。このドライバ11Aは、2台のアンプをブリッジ接続して構成される。ドライバ11Aの入力側には、パルス生成回路43の出力信号が入力される。ドライバ11Aは、この信号を増幅した信号を第1出力端子から出力し、この信号を増幅して反転した信号を第2出力端子から出力する。
ドライバ11Aの第1出力端子と第2出力端子は、LCフィルタ12Aに接続されている。LCフィルタ12Aの2つの出力端子には、連動スイッチ13Aが接続されている。連動スイッチ13Aが開いている場合、LCフィルタ12Aの出力端子から、正弦波信号が出力される。連動スイッチ13Aが閉じている場合、LCフィルタ12Aの出力端端子から信号は出力されない。
LCフィルタ12Aの一方の出力端子は変位素子23Aの一端に接続され、他方の出力端子は、電流検出抵抗14Aを介して変位素子23Aの他端に接続される。
検出器15Aは、電流検出抵抗14Aの両端電圧をアナログで増幅して検出し、よって変位素子23Aに流れる電流を検知するものである。検出器15Aの出力信号は、セレクタ53に入力される。
B相の回路も同様に、ドライバ11Bと、LCフィルタ12Bと、A相の連動スイッチ13Aと相補的に連動する連動スイッチ13Bと、電流検出抵抗14Bと、検出器15Bを備える。このB相の回路は、A相の回路と同様に接続されている。
A相の回路が変位素子23Aを駆動し、かつ変位素子23Aに流れる電流を検出している場合、B相の回路は変位素子23Bを駆動せず、かつ変位素子23Bに流れる電流を検出している。この場合、変位素子23Aに流れる電流は駆動側信号であり、変位素子23Bに流れる電流は非駆動側信号である。
A相の回路が変位素子23Aを駆動せず、かつ変位素子23Aに流れる電流を検出している場合、B相の回路は変位素子23Bを駆動し、かつ変位素子23Bに流れる電流を検出している。この場合、変位素子23Aに流れる電流は非駆動側信号であり、変位素子23Bに流れる電流は駆動側信号である。
第2の実施形態では、非駆動側の検出信号から積分領域パルスを生成することにより、その積分値による電圧変化をVCO42の動作制御に使用するようにした。
積分領域パルス生成回路45は、駆動パルスに対して45°だけ位相が進んだ第2積分領域パルスを生成する。積分回路51Bは、この第2積分領域パルスを用いて非駆動側の検出信号を積分する。第2積分領域パルスで得られる積分値が0の場合、目的の位相差になるよう位相制御が行われる。
以下、図6から図8を参照しつつ、積分値に基づく位相制御について説明する。
図6は、位相差0°における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。
第1グラフは、駆動パルス生成信号の波形図である。この駆動パルス生成信号は、所定周期の矩形波である。
第2グラフは、駆動側検出信号の波形図である。この駆動側検出信号は、正弦波であり、図5の検出器15Aの出力信号である。駆動パルス生成信号のエッジに対して、駆動側検出信号のゼロクロス点は、位相差Φだけ遅れている。位相差Φは、LCフィルタ12Aによって発生する。
第3グラフは、実線で非駆動側の検出信号を示し、破線で積分領域パルスを示している。ハッチング領域は、非駆動側の検出信号の積分領域を示している。
時刻t60は、積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。この時刻t60は、駆動側検出信号のゼロクロス点である時刻t61に対して、45°だけ位相が進んでいる。時刻t63は、積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t63は、時刻t60に対して位相が180°だけ遅れている。
図6において非駆動側の検出信号と駆動側の検出信号の位相差は、45°である。非駆動側の検出信号のゼロクロス点である時刻t62は、駆動側検出信号のゼロクロス点に対して45°だけ位相が遅れており、かつ時刻t60に対して90°だけ位相が遅れている。よって、非駆動側の検出信号の積分領域は、正の領域と負の領域とが等しい。
図7は、進み位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。
第1グラフは、駆動パルス生成信号の波形図である。この駆動パルス生成信号は、所定周期の矩形波である。
第2グラフは、駆動側検出信号の波形図である。この駆動側検出信号は、正弦波であり、図5の検出器15Aの出力信号である。駆動パルス生成信号のエッジに対して、駆動側検出信号のゼロクロス点は、位相差Φだけ遅れている。位相差Φは、LCフィルタ12Aによって発生する。
第3グラフは、実線で非駆動側の検出信号を示し、破線で積分領域パルスを示している。ハッチング領域は、非駆動側の検出信号の積分領域を示している。
時刻t70は、積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。この時刻t70は、駆動側検出信号のゼロクロス点である時刻t71に対して、45°だけ位相が進んでいる。時刻t73は、積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t73は、時刻t70に対して位相が180°だけ遅れている。
図7において非駆動側の検出信号の位相は、本来の位相(図6の第3グラフ参照)に対して略45°だけ進んでいる。非駆動側の検出信号のゼロクロス点である時刻t72は、駆動側検出信号のゼロクロス点の近傍であり、かつ時刻t70に対して45°だけ位相が遅れている。よって、非駆動側の検出信号の積分領域は、正の領域が負の領域よりも大きい。
図8は、遅れ位相における駆動パルス生成信号および駆動側アンプ出力信号と、非駆動側アンプ出力信号と、位相差45°設定時の積分領域パルスを示す波形図である。
第1グラフは、駆動パルス生成信号の波形図である。この駆動パルス生成信号は、所定周期の矩形波である。
第2グラフは、駆動側検出信号の波形図である。この駆動側検出信号は、正弦波であり、図5の検出器15Aの出力信号である。駆動パルス生成信号のエッジに対して、駆動側検出信号のゼロクロス点は、位相差Φだけ遅れている。位相差Φは、LCフィルタ12Aによって発生する。
第3グラフは、実線で非駆動側の検出信号を示し、破線で積分領域パルスを示している。ハッチング領域は、非駆動側の検出信号の積分領域を示している。
時刻t80は、積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。この時刻t80は、駆動側検出信号のゼロクロス点である時刻t81に対して、45°だけ位相が進んでいる。時刻t83は、積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t83は、時刻t80に対して位相が180°だけ遅れている。
図8において非駆動側の検出信号の位相は、本来の位相(図6の第3グラフ参照)に対して略45°だけ遅れている。非駆動側の検出信号のゼロクロス点である時刻t82は、駆動側検出信号のゼロクロス点に対して略90°だけ遅れており、かつ時刻t80に対して135°だけ位相が遅れている。よって、非駆動側の検出信号の積分領域は、正の領域が負の領域よりも大きい。
図5に戻って、積分領域パルス生成回路45の動作を説明する。積分領域パルス生成回路45は更に、駆動パルスに対して90°だけ位相が進んだ第1積分領域パルスを生成する。積分回路51Aは、この第1積分領域パルスを用いて駆動側の検出信号を積分する。減算器52Aは、第2積分領域パルスで得られる積分値から、この第1積分領域パルスで得られる積分値を減算する。減算器52Bは、第1積分領域パルスで得られる積分値から、第2積分領域パルスで得られる積分値を減算する。
図5において、スイッチ55は減算器52Aの側に切り替わっているので、減算器52Aの出力信号がVCO42にフィードバックされる。つまり第2積分領域パルスで得られる積分値と第1積分領域パルスで得られる積分値との差が0の場合、目的の位相差になるよう位相制御が行われる。
なお、非駆動側がA相、駆動側がB相に切り替わった場合、スイッチ55は、減算器52Bの側に切り替わる。このとき、減算器52Bは、第1積分領域パルスで得られる積分値から、第2積分領域パルスで得られる積分値を減算して、VCO42にフィードバックする。
図9は、駆動パルス生成信号と、駆動側アンプ出力信号および積分領域パルスと、位相遅れ状態の非駆動側アンプ出力信号および積分領域パルスを示す波形図である。
第1グラフは、駆動パルス生成信号の波形図である。この駆動パルス生成信号は、所定周期の矩形波である。
第2グラフは、実線で駆動側検出信号を示し、破線で第1積分領域パルスを示している。ハッチング領域は、駆動側の検出信号の積分領域を示している。
この駆動側検出信号は、正弦波であり、図5の検出器15Aの出力信号である。第1積分領域パルスは矩形波であり、駆動パルス生成信号のエッジに対して90°だけ位相が進んでいる。時刻t90は、第1積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。時刻t91は、駆動側検出信号のゼロクロス点であり、駆動パルス生成信号の立ち上がりエッジに対して所定角度だけ位相が遅れている。時刻t92は、第1積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t92は、時刻t90に対して位相が180°だけ遅れている。
第3グラフは、正弦波の実線で制御中の非駆動側検出信号を示し、正弦波の破線で制御後の非駆動側検出信号を示し、矩形の破線で第2積分領域パルスを示している。ハッチング領域は、非駆動側の検出信号の積分領域を示している。
この非駆動側検出信号は、正弦波であり、図5の検出器15Bの出力信号である。非駆動側検出信号の第2積分領域パルスは矩形波であり、駆動パルス生成信号のエッジに対して45°だけ位相が進んでいる。かつ、第2積分領域パルスは、第1積分領域パルスに対して45°だけ位相が遅れている。
時刻t93は、第2積分領域パルスの立ち上がりエッジであり、かつ積分の開始時刻である。時刻t94は、制御中の駆動側検出信号のゼロクロス点であり、時刻t93に対して90°だけ位相が遅れている。時刻t95は、第2積分領域パルスの立ち下がりエッジであり、かつ積分の終了時刻である。この時刻t95は、時刻t93に対して位相が180°だけ遅れている。
駆動側検出信号の積分領域と非駆動側検出信号の積分領域とを比べると、駆動側検出信号の積分領域の方が負の領域が多い。駆動回路1Aは、減算器52Aで非駆動側の積分領域から駆動側の積分領域を減算して、VCO42にフィードバックしている。これにより、非駆動側検出信号は破線で示した制御後の状態となる。つまり、駆動回路1Aは、駆動側検出信号の積分領域と非駆動側検出信号の積分領域が一致するように制御する。
なお、非駆動側がA相、駆動側がB相に切り替わった場合、減算器52Bで非駆動側の積分領域から駆動側の積分領域を減算して、VCO42にフィードバックする。この切り替えは、スイッチ55で行われる。
《第2の実施形態の効果》
駆動パルスから位相シフトした積分領域パルスを用いて電流検出信号を積分している。
これにより、図10に示したヒステリシス補正回路31A,31Bや位相比較器34、ローパスフィルタ41等の回路を削減できるので、消費電力を削減できる効果がある。
また、電流検出信号を積分することで、外乱ノイズの吸収をしながら精度の高い位相制御を行うことができる。
更に、駆動側検出信号を積分して、VCO制御電圧に加算することで、積分領域パルスの位相シフト量を自動で補正できる。
なお、本実施形態においては、A層を駆動側とし、B層を非駆動側としたが、それに限られず、B層を駆動側とし、A層を非駆動側としてもよい。
以下に、この出願の願書に最初に添付した特許請求の範囲に記載した発明を付記する。付記に記載した請求項の項番は、この出願の願書に最初に添付した特許請求の範囲の通りである。
〔付記〕
《請求項1》
所定の変位を発生させる複数の変位素子と、
前記複数の変位素子に結合され、当該複数の変位素子の変位により駆動される駆動部材と、
前記駆動部材が当接することによって駆動される被駆動部材と、
を備えるアクチュエータの駆動回路であって、
前記複数の変位素子のうち一方の変位素子に駆動信号を印加する駆動部と
前記複数の変位素子のうち他方の変位素子から検出信号を検出する検出部と、
前記駆動信号から所定位相だけシフトした積分領域パルスを生成するパルス生成部と、
前記積分領域パルスを用いて前記検出信号を積分する積分部と、
前記積分部の出力信号を位相比較出力として、前記駆動信号の周波数を制御する電圧制御部と、
を備えるアクチュエータ駆動回路。
《請求項2》
前記所定位相は、+45度である、
ことを特徴とする請求項1に記載のアクチュエータ駆動回路。
《請求項3》
前記積分部は、前記積分領域パルスの所定の区間に対応する前記検出信号を積分する、
ことを特徴とする請求項1または2に記載のアクチュエータ駆動回路。
《請求項4》
前記電圧制御部は、前記検出信号が前記積分部に積分された値が正の値の場合、前記駆動信号の周波数の位相を進めるよう制御する、
ことを特徴とする請求項1または2に記載のアクチュエータ駆動回路。
《請求項5》
前記電圧制御部は、前記検出信号が前記積分部に積分された値が負の値の場合、前記駆動信号の周波数の位相を遅らせるよう制御する、
ことを特徴とする請求項1または2に記載のアクチュエータ駆動回路。
《請求項6》
所定の変位を発生させる複数の変位素子と、
前記複数の変位素子に結合され、当該複数の変位素子の変位により駆動される駆動部材と、
前記駆動部材が当接することによって駆動される被駆動部材と、
を備えるアクチュエータの駆動回路であって、
前記複数の変位素子のうち一方の変位素子に駆動信号を印加する駆動部と
前記複数の変位素子のうち他方の変位素子から検出信号を検出する検出部と、
前記駆動信号から、第1位相だけシフトした第1積分領域パルス、および、第2位相だけシフトした第2積分領域パルスを生成するパルス生成部と、
前記第1積分領域パルスを用いて前記駆動信号を積分する第1積分部と、
前記第2積分領域パルスを用いて前記検出信号を積分する第2積分部と、
前記第1積分部の出力信号と前記第2積分部の出力信号との差を位相比較出力として、前記駆動信号の周波数を制御する電圧制御部と、
を備えるアクチュエータ駆動回路。
《請求項7》
前記第1位相は-90度であり、
前記第2位相は-45度である、
ことを特徴とする請求項6に記載のアクチュエータ駆動回路。
《請求項8》
請求項1から7のうちいずれか1項に記載のアクチュエータ駆動回路を備える、
ことを特徴とする電子機器。
1,1A,1B 駆動回路
11A,11B ドライバ (駆動部の一部)
12A,12B LCフィルタ (駆動部の一部)
13A,13B 連動スイッチ
14A,14B 電流検出抵抗 (検出部の一部)
15A,15B 検出器 (検出部の一部)
16A,16B 検出器
2 アクチュエータ
21 加圧部
22 固定部
23A,23B 変位素子
24 合成部 (駆動部材)
25 ロータ (被駆動部材)
31A,31B ヒステリシス補正回路
32 セレクタ
33 位相差設定回路
34 位相比較器
41 ローパスフィルタ
42 VCO
43 パルス生成回路
44,45 積分領域パルス生成回路 (パルス生成部)
51A,51B,54 積分回路 (積分部)
52 減算器
53 セレクタ

Claims (10)

  1. 所定の変位を発生させる一対の変位素子と、
    前記一対の変位素子に結合され、当該一対の変位素子の変位により駆動される駆動部材と、
    前記駆動部材が当接することによって駆動される被駆動部材と、
    を備えるアクチュエータの駆動回路であって、
    前記一対の変位素子のうち一方の変位素子に所定の周波数の駆動信号を印加する制御部と、
    前記一対の変位素子のうち他方の変位素子から検出信号を検出する検出部と、
    前記駆動信号から所定位相だけシフトした積分領域パルスを生成するパルス生成部と、
    前記積分領域パルスを用いて前記検出信号を積分する積分部と、
    を備え、
    前記制御部は、
    前記積分部の出力信号に基づいて前記駆動信号の位相を制御する、
    ことを特徴とするアクチュエータ駆動回路。
  2. 前記積分領域パルスは、前記駆動信号の位相を45°進めたものである、
    ことを特徴とする請求項1に記載のアクチュエータ駆動回路。
  3. 前記積分部は、前記積分領域パルスの所定の区間に対応する前記検出信号を積分する、
    ことを特徴とする請求項1または2に記載のアクチュエータ駆動回路。
  4. 前記制御部は、前記検出信号が前記積分部に積分された値が正の値の場合、前記駆動信号の位相を進めるよう制御する、
    ことを特徴とする請求項1または2に記載のアクチュエータ駆動回路。
  5. 前記制御部は、前記検出信号が前記積分部に積分された値が負の値の場合、前記駆動信号の位相を遅らせるよう制御する、
    ことを特徴とする請求項1または2に記載のアクチュエータ駆動回路。
  6. 所定の変位を発生させる一対の変位素子と、
    前記一対の変位素子に結合され、当該一対の変位素子の変位により駆動される駆動部材と、
    前記駆動部材が当接することによって駆動される被駆動部材と、
    を備えるアクチュエータの駆動回路であって、
    前記一対の変位素子のうち一方の変位素子に所定の周波数の駆動信号を印加する制御部と、
    前記一対の変位素子のうち他方の変位素子から検出信号を検出する検出部と、
    前記駆動信号から、第1位相だけシフトした第1積分領域パルス、および、第2位相だけシフトした第2積分領域パルスを生成するパルス生成部と、
    前記第1積分領域パルスを用いて前記駆動信号を積分する第1積分部と、
    前記第2積分領域パルスを用いて前記検出信号を積分する第2積分部と、
    を備え、
    前記制御部は、
    前記第1積分部の出力信号と前記第2積分部の出力信号との差に基づいて前記駆動信号の位相を制御する、
    ことを特徴とするアクチュエータ駆動回路。
  7. 前記第1積分領域パルスは、前記駆動信号の位相を90°進めたものであり、
    前記第2積分領域パルスは、前記駆動信号の位相を45°進めたものである、
    ことを特徴とする請求項6に記載のアクチュエータ駆動回路。
  8. 前記積分領域パルスおよび前記駆動信号は矩形波であり、
    前記検出信号は正弦波である、
    ことを特徴とする請求項1から5のうちいずれか1項に記載のアクチュエータ駆動回路。
  9. 前記第1積分領域パルス、前記第2積分領域パルスおよび前記駆動信号は矩形波であり、
    前記検出信号は正弦波である、
    ことを特徴とする請求項6または7に記載のアクチュエータ駆動回路。
  10. 請求項1からのうちいずれか1項に記載のアクチュエータ駆動回路を備える、
    ことを特徴とする電子機器。
JP2018149056A 2018-08-08 2018-08-08 アクチュエータ駆動回路および電子機器 Active JP7155729B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149056A JP7155729B2 (ja) 2018-08-08 2018-08-08 アクチュエータ駆動回路および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149056A JP7155729B2 (ja) 2018-08-08 2018-08-08 アクチュエータ駆動回路および電子機器

Publications (3)

Publication Number Publication Date
JP2020025412A JP2020025412A (ja) 2020-02-13
JP2020025412A5 JP2020025412A5 (ja) 2021-09-02
JP7155729B2 true JP7155729B2 (ja) 2022-10-19

Family

ID=69619079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149056A Active JP7155729B2 (ja) 2018-08-08 2018-08-08 アクチュエータ駆動回路および電子機器

Country Status (1)

Country Link
JP (1) JP7155729B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258278A (ja) 2000-03-15 2001-09-21 Minolta Co Ltd トラス型アクチュエータの駆動制御装置
JP2002112563A (ja) 2000-09-29 2002-04-12 Minolta Co Ltd アクチュエータの駆動方法および装置
JP2002281770A (ja) 2001-03-21 2002-09-27 Minolta Co Ltd 圧電アクチュエータ
JP2005057890A (ja) 2003-08-04 2005-03-03 Minolta Co Ltd アクチュエータの駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258278A (ja) 2000-03-15 2001-09-21 Minolta Co Ltd トラス型アクチュエータの駆動制御装置
JP2002112563A (ja) 2000-09-29 2002-04-12 Minolta Co Ltd アクチュエータの駆動方法および装置
JP2002281770A (ja) 2001-03-21 2002-09-27 Minolta Co Ltd 圧電アクチュエータ
JP2005057890A (ja) 2003-08-04 2005-03-03 Minolta Co Ltd アクチュエータの駆動装置

Also Published As

Publication number Publication date
JP2020025412A (ja) 2020-02-13

Similar Documents

Publication Publication Date Title
KR101944237B1 (ko) Mems 자이로스코프를 위한 디지털 제어기
JP6687130B2 (ja) 力フィードバック機能を備えた二次センスループ
JP4506704B2 (ja) 圧電アクチュエータ
JPH03145976A (ja) 超音波モータの駆動装置
KR19990088666A (ko) 진동형액추에이터장치
JP2002112563A (ja) アクチュエータの駆動方法および装置
JP5037767B2 (ja) 振動型アクチュエータの制御装置
JP6172975B2 (ja) 振動型アクチュエータの不要振動検出装置、駆動制御装置、振動型アクチュエータ、および電子機器
JP5792951B2 (ja) 振動型アクチュエータの制御装置
JP7155729B2 (ja) アクチュエータ駆動回路および電子機器
US20140340162A1 (en) Oscillator
US8656775B2 (en) Vibratory gyro-sensor and vibratory gyro circuit
JP2995789B2 (ja) 超音波モータの駆動装置
JP2010104235A (ja) 圧電アクチュエータ
KR101298289B1 (ko) 자이로센서 구동회로, 자이로센서 시스템 및 자이로센서 구동방법
JP4139131B2 (ja) 超音波モータの駆動回路
JP4385602B2 (ja) 共振制御装置
CN109693914B (zh) 振动系统的控制装置以及工件搬送装置
JP4905107B2 (ja) 球状表面弾性波素子を用いた計測装置
JP2683237B2 (ja) 超音波モータの駆動回路
JP2013207737A (ja) 位相検出回路、半導体装置及び位相検出方法
JP5637195B2 (ja) 圧電アクチュエータ
WO2021246015A1 (ja) 駆動制御装置及び超音波モータシステム
WO2024075506A1 (ja) 振動型アクチュエータの駆動装置及びその駆動方法
WO2021241393A1 (ja) 駆動装置、変調波レゾルバ装置、及び回転角の検出方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7155729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150