JP7139729B2 - 栽培システム及び栽培システムにおける照度制御方法 - Google Patents

栽培システム及び栽培システムにおける照度制御方法 Download PDF

Info

Publication number
JP7139729B2
JP7139729B2 JP2018125162A JP2018125162A JP7139729B2 JP 7139729 B2 JP7139729 B2 JP 7139729B2 JP 2018125162 A JP2018125162 A JP 2018125162A JP 2018125162 A JP2018125162 A JP 2018125162A JP 7139729 B2 JP7139729 B2 JP 7139729B2
Authority
JP
Japan
Prior art keywords
illuminance
ratio
plant
flow rate
cultivation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018125162A
Other languages
English (en)
Other versions
JP2020000188A (ja
Inventor
祥宇 曾
孝明 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2018125162A priority Critical patent/JP7139729B2/ja
Priority to TW108107642A priority patent/TWI703924B/zh
Priority to PCT/JP2019/010642 priority patent/WO2020003641A1/ja
Priority to CN201980031437.2A priority patent/CN112118729B/zh
Publication of JP2020000188A publication Critical patent/JP2020000188A/ja
Application granted granted Critical
Publication of JP7139729B2 publication Critical patent/JP7139729B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/22Shades or blinds for greenhouses, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1407Greenhouses of flexible synthetic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Description

本発明は、栽培システム及び栽培システムにおける照度制御方法に関する。
従来、栽培システムとして、温室に設けられた遮光カーテンを開閉することにより、温室内の照度を制御する栽培システムが提案されていた(例えば、特許文献1を参照)。
この栽培システムでは、温室の日射強度を測定する日射計を備え、コンピュータによって、栽培部の過去15分間の日射強度の最大値が、予め設定された最大日射強度以下になるように遮光カーテン装置を制御していた。遮光カーテン装置は、遮光率の異なる2層の遮光カーテンを組み合わせ、それぞれの遮光カーテンが開くか、又は閉じるかの4通りの遮光状態のいずれかとする制御を行っていた。
ここで、上述のような従来の栽培システムでは、日射強度に基づいて、遮光カーテンを4通りの遮光状態のいずれかとする制御しかできなかった。そのため、栽培される植物の状態に応じて、必ずしも最適な照度に制御できないという不都合が生じる場合があった。
特開平8-103173号公報
本発明は、上記のような問題に鑑みてなされたものであり、植物を栽培する栽培システムにおいて、栽培される植物の状態に応じて、より適切な照度に制御することが可能な技術を提供することを目的とする。
上記の課題を解決するための本発明は、
植物の体内における水分の流量を測定する水分流量測定手段と、
前記水分流量測定手段によって測定された、前記植物の体内の水分の流量に基づいて、光源から前記植物に照射される光の照度を制御する照度制御手段と、
を備えたことを特徴とする栽培システムである。
本発明によれば、栽培される植物の光合成速度と強い相関関係にある、植物体内の水分の流量に基づいて、光源から植物に照射される光の照度を制御するようにしたので、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明においては、入力される操作量を制御することによって前記照度を制御する前記照度制御手段について、該操作量の変化に対する、前記水分流量測定手段によって測定された前記植物の体内の水分の流量の変化の比を第1の比とし、
前記第1の比に基づいて、前記照度を制御するようにしてもよい。
これによれば、照度制御手段の操作量を含む第1の比に基づいて照度を制御するようにしたので、照度と植物体内の水分の流量との関係に基づいて、栽培される植物の光合成速度がいかなる状態にあるかをより的確に把握することができる。従って、植物の状態に応
じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明において、前記照度制御手段は、
前記第1の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するようにしてもよい。
ここでは、第1の比が0である場合は、数値として厳密に0である場合に限られず、正又は負にわたってある程度の幅を含む。第1の比が正又は負である場合についても、数値として厳密に0のみが除かれる領域を指すものではない。なお、変化の方向を、増加方向を基準とする場合と、減少方向を基準とする場合によって、第1の比の符号は異なるが、いずれを基準とするかは適宜設定すればよい。
また、本発明においては、前記照度を測定する照度測定手段を備え、
前記照度制御手段は、
前記照度測定手段によって測定された前記照度の変化に対する、前記水分流量測定手段によって測定された前記植物の体内の水分の流量の変化の比を第2の比とし、
前記第2の比に基づいて、前記照度を制御するようにしてもよい。
これによれば、照度測定手段によって測定された照度を含む第2の比に基づいて照度を制御するようにしたので、照度と植物体内の水分の流量との関係に基づいて、栽培される植物の光合成速度がいかなる状態にあるかをより的確に把握することができる。従って、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明においては、前記照度制御手段は、
前記第2の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するようにしてもよい。
ここでは、第2の比が0である場合は、数値として厳密に0である場合に限られず、正又は負にわたってある程度の幅を含む。第2の比が正又は負である場合についても、数値として厳密に0のみが除かれる領域を指すものではない。なお、変化の方向を、増加方向を基準とする場合と、減少方向を基準とする場合によって、第2の比の符号は異なるが、いずれを基準とするかは適宜設定すればよい。
また、本発明においては、前記植物の周囲の空気の飽差を取得する飽差取得手段を備え、
前記照度制御手段は、
前記飽差取得手段によって取得された前記飽差に対する、前記水分流量測定手段によって測定された前記植物の体内の水分の流量の比を第3の比とし、
前記照度測定手段によって測定された前記照度の変化に対する、前記第3の比の変化の比を第4の比とし、
前記第4の比に基づいて、前記照度を制御するようにしてもよい。
これによれば、栽培される植物の光合成速度の状態をより的確に反映した、照度の変化に対する、第3の比の変化の比に基づいて照度を制御するようにしたので、栽培される植物の光合成速度がいかなる状態にあるかのより的確な把握に基づいて照度を制御することができる。従って、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明においては、前記照度制御手段は、
前記第4の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するようにしてもよい。
ここでは、第4の比が0である場合は、数値として厳密に0である場合に限られず、正又は負にわたってある程度の幅を含む。第4の比が正又は負である場合についても、数値として厳密に0のみが除かれる領域を指すものではない。なお、変化の方向を、増加方向を基準とする場合と、減少方向を基準とする場合によって、第4の比の符号は異なるが、いずれを基準とするかは適宜設定すればよい。
また、本発明においては、前記水分流量測定手段は、前記植物の道管内を流れる樹液の流速を測定する樹液流速測定手段であるようにしてもよい。
また、本発明においては、前記照度制御手段は、
前記光源から前記植物へ入射する光の光路を遮蔽する遮光部材と、
前記遮光部材による前記光路の開放割合を制御する開度制御手段と、
を備え、前記開放割合を制御することによって前記照度を制御するようにしてもよい。
これによれば、太陽のような栽培システム外にある光源からの光を利用する場合において、遮光部材の開放割合を制御することにより、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
遮光部材の開放割合は、入射する光の光路のうち開放されている部分の割合に限らず、開放されずに遮蔽されている部分の割合であってもよい。
また、本発明においては、前記照度制御手段は、
前記光源への入力を制御することによって、前記照度を制御するようにしてもよい。
これによれば、栽培システム内に、入力に応じて出力を制御できる光源を有する場合において、光源の入力を制御することにより植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明は、植物を栽培する栽培システムにおいて光源から前記植物に照射される光の照度を制御する方法であって、
前記照度を変化させたときの、前記植物の体内における水分の流量の変化量を取得するステップと、
前記変化量に基づいて、前記照度を制御するステップと、
を含む栽培システムにおける照度制御方法である。
これによれば、照度を変化させたときの、植物体内の水分の流量の変化量に基づいて照度を制御するようにしたので、照度と、光合成速度と強い関係にある植物体内の水分の流量との関係に基づいて、栽培される植物の光合成速度がいかなる状態にあるかをより的確に把握することができる。従って、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明は、植物を栽培する栽培システムにおいて光源から前記植物に照射される光の照度を制御する照度制御手段に入力される操作量を制御して前記照度を制御する方法であって、
前記操作量の変化量を取得するステップと、
前記操作量を変化させたときの、前記植物の体内における水分の流量の変化量を取得するステップと、
前記操作量の変化量に対する、前記植物の体内における水分量の変化量の比である第1
の比を取得するステップと、
前記第1の比に基づいて、前記照度を制御するステップと、
を含む栽培システムにおける照度制御方法である。
これによれば、照度制御手段の操作量を変化させたときの、植物体内の水分の流量の変化量に基づいて照度を制御するようにしたので、照度と、光合成速度と強い関係にある植物体内の水分の流量との関係に基づいて、栽培される植物の光合成速度がいかなる状態にあるかをより的確に把握することができる。従って、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
前記第1の比に基づいて、前記照度を制御するステップは、
前記第1の比が正,負又は0のいずれであるかを判断するステップと、
前記第1の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するステップと、
を含むようにしてもよい。
ここでは、第1の比が0である場合には、数値として厳密に0である場合に限られず、正又は負にわたってある程度の幅を含む。第1の比が正又は負である場合についても、数値として厳密に0のみが除かれる領域を指すものではない。なお、変化の方向を、増加方向を基準とする場合と、減少方向を基準とする場合によって、第1の比の符号は異なるが、いずれを基準とするかは適宜設定すればよい。
また、本発明は、植物を栽培する栽培システムにおいて光源から前記植物に照射される光の照度を制御する方法であって、
前記照度を測定するステップと、
前記植物の体内における水分の流量を取得するステップと、
前記照度の変化に対する、前記植物の体内における水分の流量の変化の比である第2の比を取得するステップと、
前記第2の比に基づいて、前記照度を制御するステップと、
を含む栽培システムにおける照度制御方法である。
本発明によれば、照度の変化に対する、植物体内の水分の流量の変化の比である第2の比に基づいて照度を制御するようにしたので、照度と、光合成速度と強い関係にある植物体内の水分の流量との関係に基づいて、栽培される植物の光合成速度がいかなる状態にあるかをより的確に把握することができる。従って、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明においては、前記第2の比に基づいて、前記照度を制御するステップは、
前記第2の比が正,負又は0のいずれであるかを判断するステップと、
前記第2の比が正,負又は0いずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するステップと、
を含むようにしてもよい。
ここでは、第2の比が0である場合には、数値として厳密に0である場合に限られず、正又は負にわたってある程度の幅を含む。第2の比が正又は負である場合についても、数値として厳密に0のみが除かれる領域を指すものではない。なお、変化の方向を、増加方向を基準とする場合と、減少方向を基準とする場合によって、第2の比の符号は異なるが、いずれを基準とするかは適宜設定すればよい。
また、本発明は、植物を栽培する栽培システムにおいて光源から前記植物に照射される
光の照度を制御する方法であって、
前記植物の周囲の空気の飽差に対する、前記植物の体内における水分の流量の比を第3の比とし、
前記照度の変化に対する、前記第3の比の変化の比である第4の比を取得するステップと、
前記第4の比に基づいて、前記照度を制御するステップと、
を含む栽培システムにおける照度制御方法である。
これによれば、栽培される植物の光合成速度の状態をより的確に反映した、照度の変化に対する、第3の比の変化の比に基づいて照度を制御するようにしたので、栽培される植物の光合成速度がいかなる状態にあるかのより的確な把握に基いて照度を制御することができる。従って、植物の状態に応じて、光合成がより活発に行われる、より適切な照度に制御することができる。
また、本発明においては、前記第4の比に基づいて、前記照度を制御するステップは、
前記第4の比が正,負又は0のいずれであるかを判断するステップと、
前記第4の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するステップと、
を含むようにしてもよい。
ここでは、第4の比が0である場合には、数値として厳密に0である場合に限られず、正又は負にわたってある程度の幅を含む。第4の比が正又は負である場合についても、数値として厳密に0のみが除かれる領域を指すものではない。なお、変化の方向を、増加方向を基準とする場合と、減少方向を基準とする場合によって、第4の比の符号は異なるが、いずれを基準とするかは適宜設定すればよい。
本発明によれば、植物を栽培する栽培システムにおいて、栽培される植物の状態に応じて、より適切な照度に制御することが可能な技術を提供することが可能となる。
本発明の実施例1における栽培システムの概略構成を示す図である。 照度と光合成速度との関係を示すグラフである。 照度と樹液流速との関係を示すグラフである。 本発明の実施例1における照度の制御方法を示すフローチャートである。 本発明の実施例2における栽培システムの概略構成を示す図である。 本発明の実施例2における照度の制御方法を示すフローチャートである。 本発明の実施例3における栽培システムの概略構成を示す図である。 本発明の実施例3における照度の制御方法を示すフローチャートである。 本発明の実施例4における栽培システムの概略構成を示す図である。 本発明の実施例4における照度の制御方法を示すフローチャートである。
〔適用例〕
以下、本発明の適用例について、図面を参照しつつ説明する。本発明は例えば、図1に示すような栽培システム1に適用される。栽培システム1は、栽培される植物2に対して、光源である太陽4から照射される光の照度を、入射する光路を遮蔽する遮蔽部材である遮光カーテン5と、遮光カーテン5の開放割合である開度を、植物2の体内の水分の流量を測定する水分流量測定手段である樹液流センサ7によって測定された樹液流速に基づいて制御する。水分流量測定手段による流量は、流量自体のみならず、所定時間当たりの流
量である流速を含み、以下の実施例では、水分流量測定手段として、樹液流速を測定する樹液流センサについて説明する。
植物における照度と光合成速度とは図2に示すように、照度が増加するにつれて光合成速度が増加し、ある照度で光合成速度の変化が一定となり、この照度を超えて増加すると光合成速度が減少するという変化をたどる。光合成速度は、光合成の活発さを示す指標であり、植物の生育段階等の植物自体の条件や、二酸化炭素濃度等の環境条件によっても変化する。このため、光合成がより活発に行わる状態で栽培するためには、図2で最も光合成速度が大きくなる照度(最適照度)となるように、植物2に照射される光の照度を制御する必要がある。
このとき、植物2の体内である道管内を流れる水分の流量である樹液流速は、光合成速度と強い相関関係にある。これは、植物2が光合成のための二酸化炭素を周囲の空気から取り込もうとして気孔を開くときに、気孔を通じて植物2の体内の水分が蒸散してしまい、この蒸散量と樹液流量が相関することによる。
図1に示す栽培システムでは、樹液流センサ7によって測定された樹液流速に基づいて、遮光カーテン5の開度を制御するようにしたので、植物2自体の条件や環境条件等の変動にかかわらず、光合成がより活発に行わる照度となるように照度をリアルタイムで適切に制御することができる。
また、図5に示す実施例2のように、さらに照度測定手段である照度センサ10を備え、照度の変化に対する樹液流速の変化の比に基づいて、遮光カーテン5の開度を制御するシステム21にも適用できる。また、図7に示す実施例3のようにさらに湿度測定手段である湿度センサ11及び温度測定手段である温度センサ12を備え、飽差に対する樹液流速として定義される気孔導度の変化の照度の変化に対する比に基づいて遮光カーテン5の開度を制御する栽培システム31にも適用できる。
本発明は、図9に示す実施例4のように人工の光源13の出力を制御するシステムにも適用できるものである。
〔実施例1〕
以下では、本発明の実施例1に係る栽培システムについて、図面を用いて、より詳細に説明する。
<システム構成>
図1に実施例1に係る栽培システムの概略構成を示す。栽培システム1は、植物2を収容するハウス3を含む。また、栽培システム1は、光源である太陽4から植物2に照射される光線の一部または全部を遮蔽して入射量を制御するために開閉される遮光カーテン5を備える。また、栽培システム1は、遮光カーテン5を経て、植物2に照射される光線を拡散させる拡散フィルム6を備える。さらに、栽培システム1は、植物2の樹液流量を測定する樹液流センサ7と、樹液流センサ7によって測定された樹液流量に基づいて、遮光カーテン5の開度を制御する制御装置8とを備える。
図1には、1本の植物2のみが示されているが、模式的な例示であり、ハウス3内で栽培される植物2の本数は限定されるものではなく、実際には多数本の植物2が栽培される。
遮光カーテン5は、展張されて閉じられ、縮小又は巻き取られて開かれるシート状の部材である。遮光カーテン5の開度は、全開及び全閉の2状態のみではなく、全開から全閉に至るまで無段階で開度を変更できる。後述するように、遮光カーテン5に対して、開動作又は閉動作を指定時間行わせることにより、開度を変更している。また、遮光カーテン
5の開度の変更方法はこれに限られず、全開から全閉に至るまで段階的に変更できるように設定してもよい。遮光カーテン5は、制御装置8と無線で接続され、制御装置8からの遮光カーテン5の開度を設定する制御信号を受信するとともに、必要に応じて現在の開度を示す情報を制御装置8に送信する送受信機能を有する。遮光部材はこのような遮光カーテン5に限られず、複数枚のルーバーを含み、ルーバーの角度によって入射量を制御するブラインドであってもよいし、液晶の透明度を変化させることによって入射量を制御する液晶パネルであってもよい。ここでは、遮光カーテン5が遮光部材に対応し、制御装置8が遮光制御手段に対応し、遮光カーテン5及び制御装置8が照度制御手段に対応する。
拡散フィルム6は、ハウス3内で栽培される植物2に照射される光線の照度分布が均一化するように、入射する光線を拡散させる機能を有する。拡散フィルム6は、屋根、天井、側壁等の構成部材を拡散フィルム6としてもよいし、構成部材に拡散フィルム6を貼り付けるようにしてもよい。また、入射する光線を拡散させる機能を有する部材であれば、フィルム状の部材に限られない。
図1では、樹液流センサ7は、植物2の茎2aに装着されているが、樹液流センサ7の装着部位は、茎2aに限られず、葉2bや他の部位を選択してもよい。また、多数本の植物2のうち、樹液流センサ7が装着される植物2は、適宜選択することができる。栽培されるすべての植物2に樹液流センサ7を装着してもよいし、選択された複数本の植物2に樹液流センサ7を装着してもよい。ここでは、樹液流センサ7が水分流量測定手段及び樹液流速測定手段に対応する。
樹液流速の測定方法としては、茎熱収支法、ヒートパルス法、熱消散法(グラニエ法)等の種々の方法が提案されており、樹液流センサ7の測定方法は、装着対象の植物2の種類、その部位等の条件に応じて適宜選択することができる。樹液流センサ7は、制御装置8と無線で接続され、測定結果を制御装置8に送信するとともに、必要に応じて制御信号を制御装置8から受信する送受信機能を有する。
制御装置8としては、例えば、樹液流センサ7の測定結果に基づいて、遮光カーテン5の開度を制御するプログラムが予め組み込まれたPLC(プログラマブルロジックコントローラ)を用いることができる。制御装置8は、PLCに限られず、ROM等の記憶装置に記憶された遮光カーテン5の開度を制御するプログラムを読みだしてCPUで実行するPC(パーソナルコンピュータ)を用いることもできる。制御装置8は、樹液流センサ7及び遮光カーテン5との間で送受信を行う通信ユニットを含む。制御装置8と樹液流センサ7,遮光カーテン5等とは、無線によって接続される場合に限られず、有線によって接続されてもよい。
ハウス3には、植物2に培地等を介して水分を供給する灌水装置、ハウス3内の冷房及び/又は暖房を行う温度調整装置、換気装置等の栽培環境を調整する種々の装置を備えることができるが、これらの装置については説明を省略する。
一般に、植物に照射される光の照度と、植物の光合成速度には、図2の、光‐光合成曲線に示される関係があることが知られている。もちろん、植物の光合成速度には、二酸化炭素濃度、気温、湿度等の諸条件も影響するが、ここでは、これらの条件は一定であるものと仮定する。図2に示されるように、照度が増加するにつれて、光合成速度も増加するが、さらに照度が増加すると、光合成速度は減少する。このように、他の条件が一定であるとすると、光合成速度は、ある照度で最大となる。従って、このように光合成速度が最大となる照度に近づくように光源からの入射する光束を制御すれば、光合成が最も活発に行われ、植物の生育が進み、収穫量も多くなることが見込まれる。
また、光合成において、植物では、培地又は土壌から根を介して吸収され、道管によって輸送された水と、光エネルギーによって、表面の気孔から二酸化炭素に含まれる炭素を有機物に固定する。光合成のための二酸化炭素を吸収するために気孔を開くことによって、植物体内の水分も開いた気孔を通じて蒸散する。ここで、道管を通って輸送される樹液流は、光合成によって分解される水と、気孔を通じて蒸散される水とを含み、これが、樹液流センサ7によって測定される。光合成が活発に行われ、時間当たりの二酸化炭素の吸収量が増加すると、開いた気孔を通じて蒸散する水も増加し、樹液流速が増加するため、光合成速度と樹液流速との間には強い相関関係があることが知られている。
従って、照度と樹液流速との関係も、図3に示すように、照度と光合成速度との関係と同様に、照度の増加に応じて樹液流速が増加し、ある照度を超えてさらに照度が増加すると樹液流速が減少するという変化をたどる曲線となる。このような照度と樹液流速との関係から、樹液流センサ7によって樹液流速を測定し、樹液流速が最大となる照度に近づくように遮光カーテンの開度を制御することにより、光合成がもっと活発となる最適な照度とすることができる。このような最適な照度自体は、植物2の種類、生育段階等の植物2自体に関する条件又は二酸化炭素濃度等の他の環境条件の変動により変動するものであるが、樹液流センサ7の測定値を監視することにより、常に、リアルタイムで、最適な照度を実現することができる。
<制御方法>
図4に実施例1に係る遮光カーテンの制御方法を説明するフローチャートを示す。
ステップ1(図ではS1と表記する。以下も同様である。)で、制御装置8からの遮光カーテン5への制御信号を送信し、遮光カーテン5を所定の初期位置に移動する。ステップ2で、樹液流センサ7によって、樹液流速を測定する。制御装置8において、ステップ3で、i=0とおき、ステップ4で、遮光カーテン5の開度を変数b(i)に代入する。ここで、遮光カーテン5の開度は、照度制御手段に対応する遮光カーテン5及び制御装置8に入力される操作量に対応する。遮光カーテン5の開度については、例えば、遮光カーテン5が全て閉じられた状態の開度を0(%)、全て開かれた状態の開度を100(%)と設定する。ステップ5で、ステップ2において測定した樹液流速を変数a(i)に代入して記憶する。ステップ6で、制御装置8からの遮光カーテン5への制御信号を送信し、遮光カーテン5の開動作をT秒間行う。この遮光カーテン5の開動作は、樹液流速の変化の方向が増減又は一定のいずれであるかを、制御の初期段階において、遮光カーテン5の開度の変化によって生じる照度変化によって検出するために行うものである。従って、開動作の時間Tは、そのような樹液流速の有意の変化を検出できるような値を適宜選択すればよい。ステップ7では、遮光カーテン5の開動作後の状態で、樹液流センサ7によって、樹液流速を測定する。制御装置8において、ステップ8では、i=i+1とし、ステップ9で、ステップ6において開動作をT秒間行った後の遮光カーテン5の開度を変数b(i)に代入する。ステップ10で、ステップ7において測定した樹液流速を変数a(i)に代入して記憶する。ステップ11では、制御装置8において、植物2の光合成速度を評価する光合成係数k1としてk1={a(i)-a(i-1)}/{b(i)-b(i-1)}を算出する。ここで、k1は第1の比に対応する。ステップ12では、制御装置8において、ステップ11において算出したk1と0との大小関係を判断する。ステップ12においてk1が正,負又は0のいずれであるかに基づいて、照度の制御を決定する。ここでは、ステップ12における判断がk1>0であれば、ステップ13に進んで、制御装置8からの遮光カーテン5への制御信号を送信し、照度を増加させるために遮光カーテン5の開動作をt1秒行わせる。ステップ12における判断がk1=0であれば、ステップ14に進んで、制御装置8からの遮光カーテン5への制御信号を送信し、照度を維持するために遮光カーテン5を動作させない。ステップ12における判断がk1<0であれば、ステップ15に進んで、制御装置8からの遮光カーテン5への制御信号を送信し、照度を減少させるために遮光カーテン5の閉動作をt2秒行わせる。ステップ13,14又は1
5の後は、ステップ7に戻り、ステップ7~ステップ13,14又は15までの処理を繰り返す。
ここで、k1=0の場合(後述するk2,k3及びk4についても同様である。)は、数値として厳密に0である場合に限られず、正又は負にわたってある程度の幅を含む。第3の比が正又は負である場合についても、数値として厳密に0のみが除かれる領域を指すものではない。
上述の遮光カーテン5の開度制御は、制御装置8が、k1が所定条件を満たしたとき、又は日の入り時刻等の所定のタイミング情報を取得したとき等に終了するように終了条件を適宜設定することができる。また、上述の遮光カーテン5の開度制御は、日の出時刻等の所定のタイミング情報を取得したとき等に開始するように開始条件を適宜設定することができる。
ステップ14においては、制御装置8から遮光カーテン5へ制御信号を送信しないことにより、遮光カーテン5を動作させないようにしてもよい。また、ステップ13におけるk1>0の場合の遮光カーテン5の開動作の時間t1秒と、ステップ15におけるk1<0の場合の遮光カーテン5の閉動作の時間t2とは、t1=t2と設定してもよいし、t1≠t2と設定してもよい。また、制御の過程で、k1の絶対値の大きさに応じてt1,t2の値を変更するようにしてもよい。例えば、k1の絶対値が小さくなるにつれて、t1,t2の値を小さくするようにしてもよい。
このように、光合成速度に強い相関性を有する樹液流速度を樹液流センサ7によって測定し、樹液流速が一定となるような照度にハウス3内が維持されるように、遮光カーテン5の開度を制御することにより、光合成が活発となる最適な照度をリアルタイムで実現することができる。
〔実施例2〕
以下では、図5に基づいて、本発明の実施例2に係る栽培システム21について説明する。
<システム構成>
実施例2に係る栽培システム21では、実施例1に係る栽培システム1に加えて、ハウス3内の照度を測定する照度センサ10を備える。実施例1に係る栽培システム1と共通する構成については、同様の符号を付して説明を省略する。照度センサ10は、ハウス3内で、植物2に照射される光の照度を測定し得る適宜の位置に配置する。図5は例示であり、照度センサ10の設置位置及び台数は適宜設定することできる。ハウス3内の照度分布を代表する位置に一つ設置してもよいし、ハウス3内を複数のエリアに分割し、エリアごとに照度センサ10を設置するようにしてもよい。また、各樹液流センサ7に対応する照度センサ10を設置するようにしてもよい。ここでは、照度センサ10が照度測定手段に対応する。
実施例1において説明したように、照度と樹液流速度は、図3に示すような関係にある。ここで、樹液流速をa、照度をbとし、光合成速度を評価する光合成係数k2としてk2=Δa/Δbと定める。そうすると、照度が増加するにつれて樹液流速が増加する領域ではk2>0、照度の増加に対して樹液流速が最大となる領域ではk2=0、照度の増加に対して樹液流速が減少する領域ではk2<0となる。従って、制御装置8では、樹液流センサ7の測定結果と、照度センサ10の測定結果から光合成係数k2を算出し、k2と0との大小関係を判断し、それに応じて、遮光カーテン5の開度を制御することにより、ハウス3内の照度を、リアルタイムで、植物2の光合成が活発となる最適な照度とすることができる。
<制御方法>
図6は、実施例2に係る遮光カーテン5の制御方法を示すフローチャートである。
ステップ21で、樹液流センサ7により、植物2の樹液流速を測定する。そして、ステップ22で、照度センサ10により、ハウス3内の照度を測定する。ステップ23では、制御装置8において、ステップ21における樹液流速の測定値aと、ステップ22における照度の測定値bから光合成係数k2=Δa/Δbを算出する。ここでは、k2は第2の比に対応する。ステップ21の樹液流速の測定と、ステップ22の照度の測定は、並行して行うが、サンプリングのタイミングを必ずしも同時にしなくてもよい。重なる時間幅において、それぞれ複数回サンプリングした測定値を処理した情報に基づいて、対応する樹液流速の変化量と照度の変化量を算出し、これらから光合成係数k2を算出すればよい。また、複数の樹液流センサ7や照度センサ10が設けられている場合にも、それぞれの測定結果に対する平均化等の処理を行う。ステップ24では、制御装置8において、算出された光合成係数k2と0との大小関係を判断する。ステップ24においてk2が正,負又は0のいずれであるかに基づいて、照度の制御を決定する。ここでは、ステップ24でk2>0と判断された場合には、ステップ25において、制御装置8からの遮光カーテン5への制御信号を送信し、照度を増加させるために遮光カーテン5の開動作をt3秒間行わせる。また、ステップ24でk2=0と判断された場合には、ステップ26において、制御装置8から遮光カーテン5への制御信号を送信し、照度を維持するために遮光カーテン5を動作させないでおく。そして、ステップ24でk2<0と判断された場合には、ステップ27において、制御装置8から遮光カーテン5への制御信号を送信し、照度を減少させるために遮光カーテン5の閉動作をt4秒間行わせる。ステップ25~27の処理を行った後、ステップ21及びステップ22に戻り、以降ステップ21~ステップ27の処理を所定の時間間隔で繰り返す。
ステップ26においては、制御装置8から遮光カーテン5へ制御信号を送信しないことにより、遮光カーテン5を動作させないようにしてもよい。また、ステップ25におけるk2>0の場合の遮光カーテン5の開動作の時間t3秒と、ステップ27におけるk2<0の場合の遮光カーテン5の閉動作の時間t4とは、t3=t4と設定してもよいし、t3≠t4と設定してもよい。また、制御の過程で、k2の絶対値の大きさに応じてt3,t4の値を変更するようにしてもよい。例えば、k2の絶対値が小さくなるにつれて、t3,t4の値を小さくするようにしてもよい。
〔実施例3〕
以下では、図7に基づいて、本発明の実施例3に係る栽培システム31について説明する。
<システム構成>
実施例3に係る栽培システム31は、実施例2に係る栽培システム21に加えて、ハウス3内の湿度を測定する湿度センサ11と、ハウス3内の温度を測定する温度センサ12を備える。実施例1に係る栽培システム1及び実施例2に係る栽培システム21と共通する構成については、同様の符号を付して説明を省略する。湿度センサ11及び温度センサ12は、ハウス3内の適宜の位置に配置する。図7は例示であり、湿度センサ11及び温度センサ12の設置位置及び台数は適宜設定することができる。ハウス3内の湿度分布、温度分布を代表する位置に一つずつ設置してもよいし、ハウス3内を複数のエリアに分割し、エリアごとに湿度センサ11及び温度センサ12を設置するようにしてもよい。また、各樹液流センサ7に対応する湿度センサ11及び温度センサ12を設置するようにしてもよい。湿度を湿度センサ11、温度を温度センサ12で測定するのではなく、湿度及び温度をともに測定できる温湿度センサを用いてもよい。
実施例2では、光合成速度を評価する光合成係数として、樹液流速aと照度bに対して、Δa/Δbで定義される光合成係数k2を用いた。実施例3では、光合成速度を評価する新たな光合成係数k3を導入する。光合成速度をより的確に評価するには、飽差(ある気温における空気中の飽和水蒸気圧と実際に含まれる水蒸気圧との差)を考慮する必要が
ある。従って、ここでは、飽差をvとし、c=a/vによって定義される気孔導度(気孔伝導度、気孔コンダクタンスともいう)cを用いる。飽差vは、温度並びに当該温度における相対湿度及び飽和水蒸気圧から導出することができる。実際には、気孔導度cは、葉の面積や健康状態等によって定まる係数αを含む、α(a/v)として表されるが、ここでは、αは定数1と仮定して説明する。この気孔導度cを用いて、光合成係数k3を、k3=Δc/Δbとする。従って、制御装置8では、樹液流センサ7の測定結果と、照度センサ10の測定結果と、湿度センサ11及び温度センサ12の測定結果から光合成係数k3を算出し、k3と0との大小関係を判断し、それに応じて、遮光カーテン5の開度を制御する。これにより、ハウス3内の照度を、リアルタイムで、植物2の光合成が活発となる最適な照度とすることができる。ここでは、気孔導度cが第3の比に対応し、光合成係数k3が第4の比に対応する。また、湿度センサ11及び温度センサ12及びこれらの測定結果から飽差を導出する機能を有する制御装置8の一部が飽差取得手段に対応する。
<制御方法>
図8は、実施例3に係る遮光カーテンの制御方法を示すフローチャートである。
ステップ31で、樹液流センサ7により、植物2の樹液流速を測定する。ステップ32で、照度センサにより、ハウス3内の照度を測定する。ステップ33で、湿度センサ11によりハウス3内の湿度を、温度センサ12によりハウス3内の温度をそれぞれ測定する。ステップ34で、樹液流センサ7、照度センサ10、湿度センサ11及び温度センサ12からそれぞれの測定結果を受信した制御装置8において、まず、湿度センサ11及び温度センサ12の測定結果から、飽差vを算出する。ここで、制御装置8は、予め記憶しておいた温度と飽和水蒸気圧のテーブルまたは温度から飽和水蒸気圧を計算する算出式により、温度センサ12によって測定された温度での飽和水蒸気圧を取得し、この飽和水蒸気圧と湿度センサ11の測定結果である相対湿度とから飽差vを求める。そして、制御装置8は、飽差vと樹液流速aとから気孔導度c=a/vを算出し、照度センサ10の測定結果である照度bから、光合成係数k3=Δc/Δbを算出する。ステップ31の樹液流速の測定と、ステップ32の照度の測定と、ステップ33の湿度及び温度の測定は、並行して行うが、サンプリングのタイミングを必ずしも同時にしなくてもよい。重なる時間幅において、それぞれ複数回サンプリングした測定値を処理した情報に基づいて、対応する飽差の変化量と照度の変化量を算出し、これらから光合成係数k3を算出すればよい。
ステップ35では、制御装置8において算出された光合成係数k3と0との大小関係を判断する。ステップ35においてk3が正,負又は0のいずれであるかに基づいて、照度の制御を決定する。ここでは、k3>0と判断された場合には、ステップ36において、制御装置8から遮光カーテン5への制御信号を送信し、照度を増加させるために遮光カーテン5の開動作をt5秒行わせる。また、k3=0と判断された場合には、ステップ37において、制御装置8から遮光カーテン5への制御信号を送信し、照度を維持するために遮光カーテン5を動作させないでおく。そして、k3<0と判断された場合には、ステップ38において、制御装置8から遮光カーテン5への制御信号を送信し、照度を減少させるために遮光カーテン5の閉動作をt6秒行わせる。ステップ36~38の処理を行った後、ステップ31,ステップ32及びステップ33に戻り、以降ステップ31~ステップ38の処理を所定の時間間隔で繰り返す。
ステップ37においては、制御装置8から遮光カーテン5への制御信号を送信しないことにより、遮光カーテン5を動作させないようにしてもよい。また、ステップ36におけるk3>0の場合の遮光カーテン5の開動作の時間t5秒と、ステップ38におけるk3<0の場合の遮光カーテン5の閉動作の時間t6とは、t5=t6と設定してもよいし、t5≠t6と設定してもよい。また、制御の過程で、k3の絶対値の大きさに応じてt5,t6の値を変更するようにしてもよい。例えば、k3の絶対値が小さくなるにつれて、t5,t6の値を小さくするようにしてもよい。
〔実施例4〕
以下では、図9に基づいて、本発明の実施例4に係る栽培システム41について説明する。
<システム構成>
実施例4に係る栽培システム41は、実施例1に係る栽培システム1における光源である太陽4に代えて、人工光を照射するLED等の光源13を用いる。このため、実施例4に係る栽培システム41は、ハウス3内の植物2に照射される光線の照度を調整する遮光カーテン5を備えない。図9は模式的な例示であるため、植物2を一つのみ示しているが、実際には複数の植物2,…2がハウス3内に配置される。これら複数の植物2,…2に対する光線の照度分布を均一化するために、実施例1に係る栽培システム1では拡散フィルム6を用いていた。しかし、実施例4に係る栽培システム41では、複数の光源13,…13をハウス3内の適宜の位置に配置することにより、複数の植物2,…2に対する光線の照度分布を均一化することができるので、拡散フィルム6を備えない。栽培システム41は、遮光カーテン5及び拡散フィルム6を備えない点を除いては、栽培システム1と共通の構成を備える。実施例1に係る栽培システム1と共通する構成については、同様の符号を付して説明を省略する。ただし、栽培システム41では、制御装置8は、遮光カーテン5の開度を制御するのではなく、光源13の光度を制御する。上述の栽培システム41では、拡散フィルム6を備えないこととしているが、光源13からの光線を拡散させるために拡散フィルム6を用いてもよい。ここでは、制御装置8が照度制御手段に対応する。
図3に示すように、照度の増加に応じて樹液流速が増加し、ある照度で樹液流速の変化が一定となり、さらに照度が増加すると樹液流速が減少するという変化をたどる曲線となる。このような照度と樹液流速との関係から、樹液流センサ7によって樹液流速を測定し、樹液流速の最大となるような照度に近づくように光源13の光度を制御することにより、光合成がもっと活発となる最適な照度とすることができる。このような最適な照度自体は、植物2の種類、生育段階等の植物2自体に関する条件又は二酸化炭素濃度等の他の環境条件の変動により変動するものであるが、樹液流センサ7の測定値を監視することにより、常に、リアルタイムで、最適な照度を実現することができる。
<制御方法>
図10は、実施例4に係る光源13の制御方法を説明するフローチャートを示す。
ステップ41で、制御装置から光源13への制御信号を送信し、光源13の入力電流を初期値I0に設定する。本実施例では、光源の光強度、ひいては植物2に照射される光の照度を制御するために光源13への入力電流を制御する場合を例に説明するが、光源13の光強度を制御するために入力される操作量は、光源13に応じて、電圧、電力等適宜選択することができる。ステップ42で、樹液流センサ7によって、樹液流速を測定する。制御装置8において、ステップ43で、i=0とおく。ステップ44で、光源13への入力電流値(ここでは、初期値I0)を変数I(i)に代入する。ステップ45で、ステップ42において測定した樹液流速をa(i)に代入して記憶する。ステップ46で、制御装置8からの光源13への制御信号を送信し、光源13への入力電流値をI0+ΔIに設定する。この光源への入力電流値の変更は、樹液流速の変化の方向が増減又は一定のいずれであるかを、制御の初期段階において、光源13への入力電流値の変化によって検出するために行うものである。従って、入力電流値の変化量ΔIは、そのような樹液流速の有意の変化を検出できるような値を適宜選択すればよい。ステップ47では、光源13への入力電流の変更後の状態で、樹液流センサ7によって、樹液流速を測定する。ステップ48では、i=i+1とする。ステップ49で、ステップ46において設定した入力電流値(ここでは、I0+ΔI)を変数I(i)に代入する。ステップ50で、ステップ47において測定した樹液流速を変数a(i)に代入して記憶する。ステップ51では、制御装置8において、植物2の光合成を評価する光合成係数k4としてk4={a(i)-a(i-1)}/{I(i)-I(i-1)}を算出する。ここでは、k4は第1の比に対応
する。ステップ52では、制御装置8において、ステップ51において算出したk4と0との大小関係を判断する。ステップ52においてk4が正,負又は0のいずれであるかに基づいて、照度の制御を決定する。ここでは、ステップ52における判断がk4>0であれば、ステップ53に進んで、制御装置8から光源13への制御信号を送信し、光強度を増加させるために光源13への入力電流をI1増加させる。ステップ52における判断がk4=0であれば、ステップ54に進んで、制御装置8からの光源13への制御信号を送信し、光源13への入力電流を変更しない。ステップ52における判断がk4<0であれば、ステップ55に進んで、制御装置8から制御信号を送信し、光強度を減少させるために光源13への入力電流をI2減少させる。ステップ53,54又は55の次は、ステップ47に戻り、ステップ47~ステップ53,54又は55までの処理を繰り返す。ステップ53におけるk4>0の場合の光源13への入力電流の増加量I1と、ステップ55におけるk4<0の場合の光源13への入力電流の減少量I2とは、I1=I2と設定してもよいし、I1≠I2と設定してもよい。また、制御の過程でk4の絶対値の大きさに応じてI1,I2の値を変更するようにしてもよい。例えば、k4の絶対値が小さくなるにつれて、I1,I2の値を小さくするようにしてもよい。
上述の光源13への入力電流制御は、k4が所定条件を満たしたとき等に終了するように終了条件を適宜設定することができる。また、開始条件も、植物2の生育段階の進行や、光源13の劣化等の所定のタイミング情報を取得したとき等に開始するように開始条件を適宜設定することができる。
上述の実施例4に係る栽培システム41に加えて、また、実施例2に係る栽培システム21のように、さらに照度センサ10を備え、光合成係数k2=Δa/Δbと0との大小関係に応じて、光源13の入力電流を制御するようにしてもよい。さらに、実施例3に係る栽培システム31のように、さらに湿度センサ11及び温度センサ12を備え、光合成係数k3=Δc/Δbと0との大小関係に応じて、光源13の入力電流を制御するようにしてもよい。
なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
植物(2)の体内における水分の流量を測定する水分流量測定手段(7)と、
前記水分流量測定手段(7)によって測定された、前記植物(2)の体内の水分の流量に基づいて、光源(4,13)から前記植物(2)に照射される光の照度を制御する照度制御手段(5及び8,8)と、
を備えたことを特徴とする栽培システム(1,21,31,41)。
<発明2>
植物(2)を栽培する栽培システム(1,41)において光源(4,13)から前記植物(2)に照射される光の照度を制御する照度制御手段に入力される操作量を制御して前記照度を制御する方法であって、
前記操作量の変化量を取得するステップ(S4,S9)と、
前記照度を変化させたときの、前記植物の体内における水分の流量の変化量を取得するステップ(S5,S10,S45,S50)と、
前記操作量の変化量に対する、前記植物の体内における水分量の変化量の比である第1の比(k1,k4)を取得するステップ(S11,S51)と、
前記第1の比(k1,k4)に基づいて、前記照度を制御するステップ(S12~S15,S52~S55)と、
を含む栽培システムにおける照度制御方法。
<発明3>
植物(2)を栽培する栽培システム(21)において、光源(4)から前記植物(2)
に照射される光の照度を制御する方法であって、
前記照度を測定するステップ(S22)と、
前記植物の体内における水分の流量を取得するステップ(S21)と、
前記照度の変化に対する、前記植物の体内における水分の流量の変化の比である第2の比(k2)を取得するステップ(S23)と、
前記第2の比に基づいて、前記照度を制御するステップ(S24~S27)と、
を含む栽培システムにおける照度制御方法。
<発明4>
植物(2)を栽培する栽培システムにおいて、光源(4)から前記植物(2)に照射される光の照度を制御する方法であって、
前記植物(2)の周囲の空気の飽差に対する、前記植物(2)の体内における水分の流量の比を第3の比(c)とし、
前記照度の変化に対する、前記第3の比(c)の変化の比である第4の比(k3)を取得するステップ(S34)と、
前記第4の比に基づいて、前記照度を制御するステップ(S35~38)と、
を含む栽培システムにおける照度制御方法。
1 :栽培システム
2 :植物
3 :ハウス
4 :太陽
5 :遮光カーテン
6 :拡散フィルム
7 :樹液流センサ
8 :制御装置

Claims (15)

  1. 植物の体内における水分の流量を測定する水分流量測定手段と、
    前記水分流量測定手段によって測定された、前記植物の体内の水分の流量に基づいて、光源から前記植物に照射される光の照度を制御する照度制御手段と、
    を備え、
    入力される操作量を制御することによって前記照度を制御する前記照度制御手段について、該操作量の変化に対する、前記水分流量測定手段によって測定された前記植物の体内の水分の流量の変化の比を第1の比とし、
    前記第1の比に基づいて、前記照度を制御することを特徴とする栽培システム。
  2. 前記照度制御手段は、
    前記第1の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定することを特徴とする請求項に記載の栽培システム。
  3. 植物の体内における水分の流量を測定する水分流量測定手段と、
    前記水分流量測定手段によって測定された、前記植物の体内の水分の流量に基づいて、光源から前記植物に照射される光の照度を制御する照度制御手段と、
    前記照度を測定する照度測定手段を備え、
    前記照度制御手段は、
    前記照度測定手段によって測定された前記照度の変化に対する、前記水分流量測定手段によって測定された前記植物の体内の水分の流量の変化の比を第2の比とし、
    前記第2の比に基づいて、前記照度を制御することを特徴とする栽培システム。
  4. 前記照度制御手段は、
    前記第2の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定することを特徴とする請求項に記載の栽培システム。
  5. 前記植物の周囲の空気の飽差を取得する飽差取得手段を備え、
    前記照度制御手段は、
    前記飽差取得手段によって取得された前記飽差に対する、前記水分流量測定手段によって測定された前記植物の体内の水分の流量の比を第3の比とし、
    前記照度測定手段によって測定された前記照度の変化に対する、前記第3の比の変化の比を第4の比とし、
    前記第4の比に基づいて、前記照度を制御することを特徴とする請求項に記載の栽培システム。
  6. 前記照度制御手段は、
    前記第4の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定することを特徴とする請求項に記載の栽培システム。
  7. 前記水分流量測定手段は、前記植物の道管内を流れる樹液の流速を測定する樹液流速測定手段であることを特徴とする請求項1乃至のいずれか1項に記載の栽培システム。
  8. 前記照度制御手段は、
    前記光源から前記植物へ入射する光の光路を遮蔽する遮光部材と、
    前記遮光部材による前記光路の開放割合を制御する開度制御手段と、
    を備え、前記開放割合を制御することによって前記照度を制御することを特徴とする請求項1乃至のいずれか1項に記載の栽培システム。
  9. 前記照度制御手段は、
    前記光源への入力を制御することによって、前記照度を制御することを特徴とする請求項1乃至のいずれか1項に記載の栽培システム。
  10. 植物を栽培する栽培システムにおいて光源から前記植物に照射される光の照度を制御する照度制御手段に入力される操作量を制御して前記照度を制御する方法であって、
    前記操作量の変化量を取得するステップと、
    前記操作量を変化させたときの、前記植物の体内における水分の流量の変化量を取得するステップと、
    前記操作量の変化量に対する、前記植物の体内における水分量の変化量の比である第1の比を取得するステップと、
    前記第1の比に基づいて、前記照度を制御するステップと、
    を含む栽培システムにおける照度制御方法。
  11. 前記第1の比に基づいて、前記照度を制御するステップは、
    前記第1の比が正,負又は0のいずれであるかを判断するステップと、
    前記第1の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するステップと、
    を含むことを特徴とする請求項10に記載の栽培システムにおける照度制御方法。
  12. 植物を栽培する栽培システムにおいて光源から前記植物に照射される光の照度を制御する方法であって、
    前記照度を測定するステップと、
    前記植物の体内における水分の流量を取得するステップと、
    前記照度の変化に対する、前記植物の体内における水分の流量の変化の比である第2の比を取得するステップと、
    前記第2の比に基づいて、前記照度を制御するステップと、
    を含む栽培システムにおける照度制御方法。
  13. 前記第2の比に基づいて、前記照度を制御するステップは、
    前記第2の比が正,負又は0のいずれであるかを判断するステップと、
    前記第2の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するステップと、
    を含むことを特徴とする請求項12に記載の栽培システムにおける照度制御方法。
  14. 植物を栽培する栽培システムにおいて光源から前記植物に照射される光の照度を制御する方法であって、
    前記植物の周囲の空気の飽差に対する、前記植物の体内における水分の流量の比を第3の比とし、
    前記照度の変化に対する、前記第3の比の変化の比である第4の比を取得するステップと、
    前記第4の比に基づいて、前記照度を制御するステップと、
    を含む栽培システムにおける照度制御方法。
  15. 前記第4の比に基づいて、前記照度を制御するステップは、
    前記第4の比が正,負又は0のいずれであるかを判断するステップと、
    前記第4の比が正,負又は0のいずれであるかに基づいて、前記照度を増加させるか、維持するか又は減少させるかを決定するステップと、
    を含む請求項14に記載の栽培システムにおける照度制御方法。
JP2018125162A 2018-06-29 2018-06-29 栽培システム及び栽培システムにおける照度制御方法 Active JP7139729B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018125162A JP7139729B2 (ja) 2018-06-29 2018-06-29 栽培システム及び栽培システムにおける照度制御方法
TW108107642A TWI703924B (zh) 2018-06-29 2019-03-07 栽培系統以及栽培系統的照度控制方法
PCT/JP2019/010642 WO2020003641A1 (ja) 2018-06-29 2019-03-14 栽培システム及び栽培システムにおける照度制御方法
CN201980031437.2A CN112118729B (zh) 2018-06-29 2019-03-14 栽培系统及栽培系统中的照度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125162A JP7139729B2 (ja) 2018-06-29 2018-06-29 栽培システム及び栽培システムにおける照度制御方法

Publications (2)

Publication Number Publication Date
JP2020000188A JP2020000188A (ja) 2020-01-09
JP7139729B2 true JP7139729B2 (ja) 2022-09-21

Family

ID=68986350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125162A Active JP7139729B2 (ja) 2018-06-29 2018-06-29 栽培システム及び栽培システムにおける照度制御方法

Country Status (4)

Country Link
JP (1) JP7139729B2 (ja)
CN (1) CN112118729B (ja)
TW (1) TWI703924B (ja)
WO (1) WO2020003641A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7390655B2 (ja) * 2020-02-18 2023-12-04 学校法人立命館 植物育成システム、コントローラ、植物育成方法、及び、コンピュータプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518106A (ja) 2013-03-05 2016-06-23 シャント テクノロジーズ, インコーポレイテッドXiant Technologies,Inc. 光子変調管理システム
JP2017035025A (ja) 2015-08-10 2017-02-16 富士電機株式会社 環境制御システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2249801T3 (es) * 1996-06-07 2006-04-01 Toyota Jidosha Kabushiki Kaisha Aparato de apertura y cierre de ventanas.
US6433711B1 (en) * 1999-12-14 2002-08-13 Texas Instruments Incorporated System and method for offset error compensation in comparators
CN200994322Y (zh) * 2006-11-11 2007-12-26 天津科技大学 基于作物声发射技术的作物视情灌溉装置
CN101176419A (zh) * 2006-11-11 2008-05-14 天津科技大学 基于作物水胁迫声发射特性检测的视情灌溉系统
JP2011120557A (ja) * 2009-12-14 2011-06-23 Tokyo Univ Of Agriculture & Technology 植物栽培システム
CN102281615B (zh) * 2010-06-12 2014-01-29 晨星软件研发(深圳)有限公司 通信装置及其控制方法
CN201984079U (zh) * 2011-02-24 2011-09-21 浙江大学 一种基于激光热脉冲的植物茎流及蒸腾耗水检测装置
CN102523954B (zh) * 2011-12-29 2014-04-09 北京农业智能装备技术研究中心 适用于温室环境的二氧化碳的测控与校对系统、方法
CN102680002B (zh) * 2012-05-16 2015-05-06 清华大学 汽车用微机械陀螺零点电压的在线标定方法
JP6361192B2 (ja) * 2014-03-14 2018-07-25 オムロン株式会社 多光軸光電センサシステム、多光軸光電センサシステムの制御方法、プログラムおよび記録媒体
JP6375802B2 (ja) * 2014-09-09 2018-08-22 トヨタ紡織株式会社 植物の育成方法及び植物育成装置
CN105137940B (zh) * 2015-09-01 2017-11-03 徐州工业职业技术学院 物联网大棚农业生长监控系统
US20170219552A1 (en) * 2016-02-02 2017-08-03 Reinoud Jacob HARTMAN Method and apparatus for determining the rate of sap-content variation in living plants, and relating that to soil water tension, and transmitting the collected information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518106A (ja) 2013-03-05 2016-06-23 シャント テクノロジーズ, インコーポレイテッドXiant Technologies,Inc. 光子変調管理システム
JP2017035025A (ja) 2015-08-10 2017-02-16 富士電機株式会社 環境制御システム

Also Published As

Publication number Publication date
CN112118729B (zh) 2022-03-29
TWI703924B (zh) 2020-09-11
WO2020003641A1 (ja) 2020-01-02
JP2020000188A (ja) 2020-01-09
TW202000010A (zh) 2020-01-01
CN112118729A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
JP6391004B2 (ja) 水耕栽培装置
KR101296842B1 (ko) 태양광 병용형 식물공장의 생산효율 향상 및 에너지 절감을 위한 지능형 인공광 제어 시스템
WO2016194312A1 (ja) 水耕栽培装置
JP2018156693A (ja) 計測機器の異常判定システムおよびこれを用いた農業設備の環境制御システム
Stanghellini et al. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop
JP7139729B2 (ja) 栽培システム及び栽培システムにおける照度制御方法
WO2021140940A1 (ja) 農産物栽培支援装置、農産物栽培システム、および農産物栽培支援方法
KR20120014305A (ko) 엘이디 수경재배 다단형 식물 냉장고
KR101031820B1 (ko) 온실환경 자동제어 방법 및 시스템
KR102192637B1 (ko) 온실의 이산화탄소 시비 시스템
CN107656564B (zh) 农业用温室内环境控制装置
KR20100032978A (ko) 원예시설 생육환경 조절장치
JP5113595B2 (ja) 建物内植物生育システム、及び建物内植物生育システムの制御方法
JP6210384B2 (ja) トマト栽培用自動調光制御方法およびその装置
KR20120119126A (ko) 식물생육 조절장치
Kaukoranta et al. Detection of water deficit in greenhouse cucumber by infrared thermography and reference surfaces
JP6233623B2 (ja) 植物育成のための光制御装置、光制御方法、光制御プログラム及び光制御のためのデータ収集装置
JP7295565B2 (ja) 生育環境制御プログラム、生育環境制御方法及び生育環境制御装置
KR20130067904A (ko) 조명 자동 제어 방법 및 그 장치
KR102134397B1 (ko) 작물활성지수 기반 시설원예 복합환경 제어시스템 및 방법
JP2016214147A (ja) 水耕栽培装置
KR101772121B1 (ko) 도시 농장 제어 시스템에서의 식물 생장 제어 장치 및 방법
KR102154390B1 (ko) 수액유속에 기초한 관개 제어 시스템 및 방법
KR100528135B1 (ko) 원예시설의 차광조절장치
RU2403705C1 (ru) Способ автоматического управления температурно-световым режимом в теплице

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R150 Certificate of patent or registration of utility model

Ref document number: 7139729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150