JP7132287B2 - 電気化学反応セルスタック - Google Patents

電気化学反応セルスタック Download PDF

Info

Publication number
JP7132287B2
JP7132287B2 JP2020120429A JP2020120429A JP7132287B2 JP 7132287 B2 JP7132287 B2 JP 7132287B2 JP 2020120429 A JP2020120429 A JP 2020120429A JP 2020120429 A JP2020120429 A JP 2020120429A JP 7132287 B2 JP7132287 B2 JP 7132287B2
Authority
JP
Japan
Prior art keywords
separator
conductive
cell stack
electrochemical reaction
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020120429A
Other languages
English (en)
Other versions
JP2022017721A (ja
Inventor
法之 小林
健太 眞邉
哲也 森川
駿太 大橋
信行 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimura SOFC Technology Co Ltd
Original Assignee
Morimura SOFC Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimura SOFC Technology Co Ltd filed Critical Morimura SOFC Technology Co Ltd
Priority to JP2020120429A priority Critical patent/JP7132287B2/ja
Priority to DE102021117551.8A priority patent/DE102021117551A1/de
Publication of JP2022017721A publication Critical patent/JP2022017721A/ja
Application granted granted Critical
Publication of JP7132287B2 publication Critical patent/JP7132287B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本明細書によって開示される技術は、電気化学反応セルスタックに関する。
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物形の燃料電池(以下、「SOFC」という)が知られている。SOFCの構成単位である燃料電池発電単位(以下、単に「発電単位」という)は、固体酸化物を含む電解質層と、電解質層を挟んで所定の方向(以下、「第1の方向」という)に互いに対向する空気極および燃料極とを含む燃料電池単セル(以下、単に「単セル」という)を有している。
SOFCは、一般に、燃料電池スタックの形態で利用される。燃料電池スタックは、複数の発電単位を第1の方向に並べて配置された構造体(以下、「発電ブロック」という)と、発電ブロックを挟んで第1の方向に互いに対向する一対の絶縁部材と、一対の絶縁部材を挟んで第1の方向に互いに対向する一対のエンド部材とを備える。一対のエンド部材は、それぞれ燃料電池スタックの出力端子として機能し、発電単位において生成された電気エネルギーを取り出す(例えば、特許文献1参照)。また、特許文献1では、燃料電池スタックが、空気極に面する空気室と燃料極に面する燃料室とを区画し、単セルの周縁部における一方の電極側から他方の電極側へのガスのリークを抑制するために、中央付近に第1の方向に貫通する略矩形の孔が形成されたフレーム状の金属製のセパレータを備える構成が開示されている。
また、上記構成に加えて、発電ブロックと絶縁部材との間にターミナル部材を備えるとともに、エンド部材に代えて、このターミナル部材を出力端子として機能させる技術が知られている。
特開2018-206475号公報
ターミナル部材を出力端子として機能させ、発電単位において生成された電気エネルギーの良好な取出しを確保することにより燃料電池スタックの電気的性能を維持しつつ、燃料電池スタックを軽量化する技術が望まれていた。
なお、このような課題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」という。)の構成単位である電解単セルを複数備える電解セルスタックにも共通の課題である。なお、本明細書では、燃料電池単セルと電解単セルとをまとめて電気化学反応単セルと呼び、燃料電池スタックと電解セルスタックとをまとめて電気化学反応セルスタックと呼ぶ。また、このような課題は、SOFCやSOECに限らず、他のタイプの電気化学反応セルスタックにも共通の課題である。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される電気化学反応セルスタックは、第1の方向に並べて配置された複数の電気化学反応単位から構成される電気化学反応ブロックであって、各前記電気化学反応単位は、電解質層と、前記電解質層を挟んで前記第1の方向に互いに対向する空気極および燃料極とを含む電気化学反応単セルを有する、電気化学反応ブロックと、前記電気化学反応ブロックに対して前記第1の方向の一方側に配置された第1のターミナル単位であって、前記電気化学反応ブロックに電気的に接続された第1のターミナル単位と、前記第1のターミナル単位に対して前記第1の方向の前記一方側に配置された、絶縁性の第1の絶縁部材と、前記第1の絶縁部材に対して前記第1の方向の前記一方側に配置された、導電性の第1のエンド部材と、を備える電気化学反応セルスタックにおいて、前記第1の絶縁部材には、前記第1の方向に貫く第1の貫通孔が形成されており、前記第1のエンド部材には、前記第1の貫通孔に連通し、かつ、前記第1の方向に貫く第2の貫通孔が形成されており、前記第1のターミナル単位は、前記第1の方向に貫く第3の貫通孔が形成された、導電性のターミナル部材と、前記第1の方向視において前記ターミナル部材の前記第3の貫通孔に重なり、かつ、前記ターミナル部材に対して前記第1の方向の他方側に配置された、導電性の第1の導電部材と、前記第1の方向視において前記ターミナル部材の前記第3の貫通孔に重なり、かつ、前記第1の導電部材に対して前記第1の方向の前記一方側に配置された、導電性の第2の導電部材と、前記第1の導電部材と前記第2の導電部材との間の空間である第1の特定空間に配置された接続部材であって、前記第1の導電部材と前記第2の導電部材とを電気的に接続する接続部材と、第4の貫通孔が形成され、かつ、前記第4の貫通孔を取り囲む部分である貫通孔周囲部が前記第1の導電部材の周縁部と電気的に接続された第1のセパレータであって、前記第1の特定空間と、前記第1の方向における前記第1の導電部材の表面のうち、前記第1の特定空間に面している表面とは反対側の表面に面する第2の特定空間とを区画する、導電性の第1のセパレータと、第5の貫通孔が形成され、かつ、前記第5の貫通孔を取り囲む部分である貫通孔周囲部が前記第2の導電部材の周縁部と電気的に接続された第2のセパレータであって、前記第1の特定空間を画定する、導電性の第2のセパレータと、を備えるターミナル構造であって、前記ターミナル部材は、少なくとも前記第1のセパレータと前記第2のセパレータとに、電気的に接続されている、ターミナル構造を有する。
本電気化学反応セルスタックでは、ターミナル部材と、第1の絶縁部材と、第1のエンド部材とに、それぞれ、第1の方向に貫く第3の貫通孔と、第1の貫通孔と、第2の貫通孔とが形成されている。このため、電気化学反応セルスタックを軽量化することができる。
本電気化学反応セルスタックでは、ターミナル部材を含む第1のターミナル単位が上記ターミナル構造を有している。すなわち、ターミナル部材と電気化学反応ブロックとは、少なくとも2つのセパレータ(第1のセパレータおよび第2のセパレータ)を介して電気的に接続されている。換言すれば、本電気化学反応セルスタックは、電気化学反応単位からターミナル部材への2つ導電経路を有している。このため、電気化学反応単位からターミナル部材への導電経路が1つである構成、すなわち、ターミナル部材が第1のセパレータと第2のセパレータとのうちの一方のみに電気的に接続されている構成と比較して、電気化学反応単位とターミナル部材との間の電気抵抗を低減することができる。また、上記2つの導電経路のうちの一方の導電経路において、電気化学反応単位とターミナル部材との間の電気的接続の不良が発生した場合であっても、他方の導電経路により両者の電気的接続を確保することができる。
従って、本電気化学反応セルスタックによれば、電気化学反応単位において生成された電気エネルギーの良好な取出しを確保することにより、電気化学反応セルスタックの電気的性能を維持しつつ、電気化学反応セルスタックの軽量化を実現することができる。
(2)上記電気化学反応セルスタックにおいて、前記第1のセパレータと前記第2のセパレータとは、それぞれ、前記貫通孔周囲部を含む内側部と、前記内側部より外周側に位置する外側部と、前記内側部と前記外側部とを連結し、かつ、前記内側部と前記外側部との両方に対して、前記第1の方向の前記他方側に突出している連結部と、を有する構成としてもよい。
本電気化学反応セルスタックでは、第1のセパレータおよび第2のセパレータの連結部が、第1の方向に直交する方向(面方向)に容易に伸び縮みするバネのように機能するため、電気化学反応セルスタックの運転時のヒートショック等によって第1のセパレータおよび第2のセパレータを面方向に変形させる荷重がかかっても、第1のセパレータおよび第2のセパレータが連結部の位置で第1の方向に変形することができる。このため、本電気化学反応セルスタックによれば、接続部材や電気化学反応単位等に発生する応力が緩和され、該応力に起因する第1の導電部材と電気化学反応単位との間の電気的接続の不良や第1の導電部材と上記第2の導電部材との間の電気的接続の不良の発生を抑制することができる。
(3)上記電気化学反応セルスタックにおいて、前記第1のセパレータは、前記ターミナル部材と、前記第1の導電部材とに、それぞれ溶接によって接合されており、前記第2のセパレータは、前記ターミナル部材と、前記第2の導電部材とに、それぞれ溶接によって接合されている構成としてもよい。
このため、第1のセパレータとターミナル部材、第1のセパレータと第1の導電部材とが、それぞれ溶接された部分を介して電気的に良好に接続される。また、第2のセパレータについても同様に、第2のセパレータとターミナル部材、第2のセパレータと第2の導電部材とが、それぞれ溶接された部分を介して電気的に良好に接続される。従って、本電気化学反応セルスタックによれば、電気化学反応セルスタックの電気的性能をより効果的に向上させることができる。
(4)上記電気化学反応セルスタックにおいて、前記接続部材は、少なくとも1つの弾性部と、前記第1の導電部材と前記第2の導電部材とを電気的に接続する導電性部であって、前記導電性部の一部分が前記第1の方向において前記第1の導電部材と前記弾性部との間に配置され、前記導電性部の他の一部分が前記第1の方向において前記第2の導電部材と前記弾性部との間に配置された、導電性部と、を有する構成としてもよい。
本電気化学反応セルスタックでは、上記接続部材は、少なくとも1つの弾性部と、第1の導電部材と第2の導電部材とを電気的に接続する導電性部とを有する。そして、導電性部の一部分は、第1の方向において第1の導電部材と弾性部との間に配置され、導電性部の他の一部分は、第1の方向において上記第2の導電部材と弾性部との間に配置されている。このため、本電気化学反応セルスタックによれば、接続部材の導電性部により、第1の導電部材と上記第2の導電部材との電気的接続を確保しつつ、接続部材の弾性部により、電気化学反応セルスタックの運転時における電気化学反応単セルの変形に対する追従性を確保することができ、この結果、電気化学反応単位と第1の導電部材との間の電気的接続の不良の発生を抑制することができる。
(5)上記電気化学反応セルスタックにおいて、前記電気化学反応ブロックに対して前記第1の方向の前記他方側に配置された第2のターミナル単位であって、前記電気化学反応ブロックに電気的に接続された第2のターミナル単位と、前記第2のターミナル単位に対して前記第1の方向の前記他方側に配置された、絶縁性の第2の絶縁部材と、前記第2の絶縁部材に対して前記第1の方向の前記他方側に配置された、導電性の第2のエンド部材と、を備え、前記第2のターミナル単位は、前記ターミナル構造を有する構成としてもよい。
本電気化学反応セルスタックでは、第1のターミナル単位が上記ターミナル構造を有していることに加えて、電気化学反応セルスタックに備えられた第2のターミナル単位も第1のターミナル単位と同等のターミナル構造を有している。すなわち、第2のターミナル単位においても、ターミナル部材は、少なくとも2つのセパレータ(第1のセパレータおよび第2のセパレータ)に電気的に接続されている。換言すれば、第2のターミナル単位においても、電気化学反応単位からターミナル部材への2つ導電経路を有している。このため、第2のターミナル単位においても、電気化学反応単位からターミナル部材への導電経路が1つである構成と比較して、電気化学反応単位とターミナル部材との間の電気抵抗を低減することができる。また、第2のターミナル単位においても、上記2つの導電経路のうちの一方の導電経路において、電気化学反応単位とターミナル部材との間の電気的接続の不良が発生した場合であっても、他方の導電経路により両者の電気的接続を確保することができる。従って、本電気化学反応セルスタックによれば、電気化学反応単位において生成された電気エネルギーの良好な取出しをより効果的に確保することにより、電気化学反応セルスタックの電気的性能をより効果的に維持することができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、電気化学反応単セル(燃料電池単セルまたは電解単セル)、複数の電気化学反応単セルを備える電気化学反応セルスタック(燃料電池スタックまたは電解セルスタック)、それらの製造方法等の形態で実現することが可能である。
本実施形態における燃料電池スタック100の外観構成を示す斜視図 図1のII-IIの位置における燃料電池スタック100のXZ断面構成を示す説明図 図1のIII-IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図 図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図 図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図 燃料極側集電部材148の作製方法の一例を示す説明図 図4のVII-VIIの位置における燃料電池スタック100のXY断面構成を示す説明図 図2に示す断面と同一の位置における燃料電池スタック100aのXZ断面構成を部分的に示す説明図 図3に示す断面と同一の位置における燃料電池スタック100aのYZ断面構成を部分的に示す説明図
A.第1実施形態:
A-1.構成:
(燃料電池スタック100の構成)
図1は、本実施形態における燃料電池スタック100の外観構成を示す斜視図であり、図2は、図1(および後述する図7)のII-IIの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、図3は、図1(および後述する図7)のIII-IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。図4以降についても同様である。
燃料電池スタック100は、複数の(本実施形態では7つの)燃料電池発電単位(以下、単に「発電単位」という。)102と、一対のターミナルプレート70,80と、一対の絶縁シート92,96と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。
一対のターミナルプレート70,80のうちの一方(以下、「上側ターミナルプレート70」という。)は、7つの発電単位102から構成される集合体(以下、「発電ブロック103」という。)の上側に配置されており、一対の絶縁シート92,96のうちの一方(以下、「上側絶縁シート92」という。)は、上側ターミナルプレート70の上側に配置されており、一対のエンドプレート104,106のうちの一方(以下、「上側エンドプレート104」という。)は、上側絶縁シート92の上側に配置されている。また、一対のターミナルプレート70,80のうちの他方(以下、「下側ターミナルプレート80」という。)は、発電ブロック103の下側に配置されており、一対の絶縁シート92,96のうちの他方(以下、「下側絶縁シート96」という。)は、下側ターミナルプレート80の下側に配置されており、一対のエンドプレート104,106のうちの他方(以下、「下側エンドプレート106」という。)は、下側絶縁シート96の下側に配置されている。なお、より詳細には、上側ターミナルプレート70と上側絶縁シート92との間には、後述するカバー用セパレータ60が介在している。
燃料電池スタック100を構成する各層(発電単位102、ターミナルプレート70,80、エンドプレート104,106)のZ軸方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、上側エンドプレート104から下側エンドプレート106にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために燃料電池スタック100の各層に形成された孔も、連通孔108と呼ぶ場合がある。
各連通孔108には上下方向に延びるボルト22が挿通されており、ボルト22とボルト22の両側に嵌められたナット24とによる上下方向の圧縮力によって、燃料電池スタック100は締結されている。なお、図2および図3に示すように、ボルト22の一方の側(上側)に嵌められたナット24と上側エンドプレート104の上側表面との間、および、ボルト22の他方の側(下側)に嵌められたナット24と下側エンドプレート106の下側表面との間には、絶縁シート26が介在している。ただし、後述のガス通路部材27が設けられた箇所では、ナット24と下側エンドプレート106の表面との間に、ガス通路部材27とガス通路部材27の上側および下側のそれぞれに配置された絶縁シート26とが介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成されている。
各ボルト22の軸部の外径は各連通孔108の内径より小さい。そのため、各ボルト22の軸部の外周面と各連通孔108の内周面との間には、空間が確保されている。図1および図2に示すように、燃料電池スタック100のZ軸方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置するボルト22(ボルト22A)と、そのボルト22Aが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102に供給するガス流路である酸化剤ガス供給マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置するボルト22(ボルト22B)と、そのボルト22Bが挿通された連通孔108とにより形成された空間は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出する酸化剤ガス排出マニホールド162として機能する。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
また、図1および図3に示すように、燃料電池スタック100のZ軸方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置するボルト22(ボルト22D)と、そのボルト22Dが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102に供給する燃料ガス供給マニホールド171として機能し、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置するボルト22(ボルト22E)と、そのボルト22Eが挿通された連通孔108とにより形成された空間は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出する燃料ガス排出マニホールド172として機能する。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。
燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。また、図2に示すように、酸化剤ガス供給マニホールド161を形成するボルト22Aの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス供給マニホールド161に連通しており、酸化剤ガス排出マニホールド162を形成するボルト22Bの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス排出マニホールド162に連通している。また、図3に示すように、燃料ガス供給マニホールド171を形成するボルト22Dの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス供給マニホールド171に連通しており、燃料ガス排出マニホールド172を形成するボルト22Eの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス排出マニホールド172に連通している。
(エンドプレート104,106の構成)
一対のエンドプレート104,106は、Z軸方向視での外形が略矩形の平板状の部材であり、例えばステンレス等の導電性材料により形成されている。一対のエンドプレート104,106の中央付近には、それぞれ、Z軸方向に貫通する孔32,34が形成されている。Z軸方向視で、一対のエンドプレート104,106のそれぞれに形成された孔32,34の内周線は、後述する各単セル110を内包している。そのため、各ボルト22およびナット24によるZ軸方向の圧縮力は、主として各発電単位102の周縁部(後述する各単セル110より外周側の部分)に作用する。上側エンドプレート104は、特許請求の範囲における第1のエンド部材に相当し、孔32は、特許請求の範囲における第2の貫通孔に相当する。下側エンドプレート106は、特許請求の範囲における第2のエンド部材に相当する。
(絶縁シート92,96の構成)
一対の絶縁シート92,96は、Z軸方向視での外形が略矩形の平板状の部材であり、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等の絶縁性材料により構成されている。上側絶縁シート92の中央付近には、上側エンドプレート104の孔32に連通し、かつ、Z軸方向に貫通する孔94が形成されている。Z軸方向視で、上側絶縁シート92に形成された孔94の内周線は、後述する各単セル110を内包している。なお、本実施形態では、Z軸方向視で、上側絶縁シート92に形成された孔94の内周線は、上側エンドプレート104に形成された孔32の内周線と略一致している。上側絶縁シート92は、特許請求の範囲における第1の絶縁部材に相当し、孔94は、特許請求の範囲における第1の貫通孔に相当する。下側絶縁シート96は、特許請求の範囲における第2の絶縁部材に相当する。
(ターミナルプレート70,80の構成)
一対のターミナルプレート70,80は、Z軸方向視での外形が略矩形の平板状の部材であり、例えばステンレス等の導電性材料により形成されている。上側ターミナルプレート70の中央付近には、Z軸方向に貫通する孔71が形成されている。Z軸方向視で、上側ターミナルプレート70に形成された孔71の内周線は、後述する各単セル110を内包している。なお、本実施形態では、Z軸方向視で、上側ターミナルプレート70に形成された孔71の内周線は、上側エンドプレート104に形成された孔32の内周線と略一致している。上側ターミナルプレート70は、Z軸方向視で、上側エンドプレート104の外周線から外側に突出した突出部78を備えており、該突出部78は、燃料電池スタック100のプラス側の出力端子として機能する。また、下側ターミナルプレート80は、Z軸方向視で、下側エンドプレート106の外周線から外側に突出した突出部88を備えており、該突出部88は、燃料電池スタック100のマイナス側の出力端子として機能する。上側ターミナルプレート70は、特許請求の範囲におけるターミナル部材に相当し、孔71は、特許請求の範囲における第3の貫通孔に相当する。
(発電単位102の構成)
図4は、図2に示す断面と同一の位置における互いに隣接する2つの発電単位102(最上部に位置する2つの発電単位102)のXZ断面構成を示す説明図であり、図5は、図3に示す断面と同一の位置における互いに隣接する2つの発電単位102(最上部に位置する2つの発電単位102)のYZ断面構成を示す説明図である。
図4および図5に示すように、発電単位102は、燃料電池単セル(以下、「単セル」という。)110と、単セル用セパレータ120と、空気極側フレーム130と、燃料極側フレーム140と、燃料極側集電部材148と、発電単位102の最上層および最下層を構成する一対のインターコネクタ190および一対のIC用セパレータ180とを備えている。単セル用セパレータ120、空気極側フレーム130、燃料極側フレーム140、IC用セパレータ180におけるZ軸方向回りの周縁部には、上述したボルト22が挿通される連通孔108に対応する孔が形成されている。
単セル110は、電解質層112と、電解質層112のZ軸方向の一方側(上側)に配置された空気極114と、電解質層112のZ軸方向の他方側(下側)に配置された燃料極116と、電解質層112と空気極114との間に配置された中間層118とを備える。なお、本実施形態の単セル110は、燃料極116で単セル110を構成する他の層(電解質層112、空気極114、中間層118)を支持する燃料極支持形の単セルである。
電解質層112は、Z軸方向視で略矩形の平板形状部材であり、固体酸化物(例えば、YSZ(イットリア安定化ジルコニア))を含むように構成されている。すなわち、本実施形態の単セル110は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。空気極114は、Z軸方向視で電解質層112より小さい略矩形の平板形状部材であり、例えばペロブスカイト型酸化物(例えば、LSCF(ランタンストロンチウムコバルト鉄酸化物))を含むように構成されている。燃料極116は、Z軸方向視で電解質層112と略同じ大きさの略矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。中間層118は、Z軸方向視で空気極114と略同じ大きさの略矩形の平板形状部材であり、例えばGDC(ガドリニウムドープセリア)とYSZとを含むように構成されている。中間層118は、空気極114から拡散した元素(例えば、Sr)が電解質層112に含まれる元素(例えば、Zr)と反応して高抵抗な物質(例えば、SrZrO)が生成されることを抑制する機能を有する。
単セル用セパレータ120は、中央付近にZ軸方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。単セル用セパレータ120の上下方向の厚さは、例えば、0.05mm以上、0.2mm以下程度であり、各フレーム130,140の上下方向の厚さ(例えば1mm)より薄い。単セル用セパレータ120における孔121を取り囲む部分(以下、「貫通孔周囲部」という。)は、電解質層112における空気極114の側(上側)の表面の周縁部に対向している。単セル用セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。また、本実施形態では、単セル用セパレータ120における周縁部は、燃料極側フレーム140の上側の表面に、レーザ溶接により接合されている。換言すれば、単セル用セパレータ120と燃料極側フレーム140とが接する位置には、単セル用セパレータ120と燃料極側フレーム140とを接合する溶接部241が形成されている。溶接部241の一部分は、溶接部材(単セル用セパレータ120)の上面に露出しており、溶接部241の一部分は、被溶接部材(燃料極側フレーム140)内まで進入している。また、本実施形態では、溶接部241は、Z軸方向視において、単セル用セパレータ120の周縁部および燃料極側フレーム140の周縁部に連続的に形成されている。このため、燃料電池スタック100における密閉性を向上させることができる。
単セル用セパレータ120は、単セル用セパレータ120の貫通孔周囲部(孔121を取り囲む部分)を含む内側部126と、内側部126より外周側に位置する外側部127と、内側部126と外側部127とを連結する連結部128とを備える。本実施形態では、内側部126および外側部127は、Z軸方向に略直交する方向に延びる略平板状である。また、連結部128は、内側部126と外側部127との両方に対して下側に突出するように湾曲した形状となっている。連結部128における下側(燃料室176側)の部分は凸部となっており、連結部128における上側(空気室166側)の部分は凹部となっている。このため、連結部128は、Z軸方向における位置が内側部126および外側部127とは異なる部分を含んでいる。
単セル用セパレータ120における孔121付近には、ガラスを含むガラスシール部125が配置されている。ガラスシール部125は、接合部124に対して空気室166側に位置しており、単セル用セパレータ120の貫通孔周囲部の表面と、単セル110(本実施形態では電解質層112)の表面との両方に接触するように形成されている。ガラスシール部125により、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリーク(クロスリーク)が効果的に抑制される。
インターコネクタ190は、略矩形の平板形状の平板部150と、平板部150から空気極114側に突出した複数の略柱状の空気極側集電部134とを有する導電性の部材であり、金属(例えば、フェライト系ステンレス)により形成されている。平板部150は、Z軸方向視において上側ターミナルプレート70の孔71に重なるように配置されている。本実施形態では、インターコネクタ190の表面(空気室166に面する表面)に、例えばスピネル型酸化物により構成された導電性の被覆層194が形成されている。以下では、被覆層194に覆われたインターコネクタ190を、単にインターコネクタ190という。インターコネクタ190(より詳細には、インターコネクタ190の各空気極側集電部134)は、例えばスピネル型酸化物により構成された導電性接合材196を介して、単セル110の空気極114に接合されている。また、インターコネクタ190の表面(燃料室176または後述の上側特定空間58に面する表面)には、インターコネクタ190からの汚染物質(例えば、Cr(クロム))の放出・拡散を抑制するために、特定の処理(例えば、アニール処理)が施されていてもよい。インターコネクタ190(後述の最上位インターコネクタ190Xを除く)は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ190は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ190は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ190と同一部材である。また、燃料電池スタック100において最も下側に位置する発電単位102の下側のインターコネクタ190は、導電性接合材196を介して下側ターミナルプレート80に電気的に接続されている。また、燃料電池スタック100において最も上側に位置する発電単位102(以下、「上側特定発電単位102X」ともいう)の上側のインターコネクタ190(以下、「最上位インターコネクタ190X」ともいう)は、IC用セパレータ180(以下、「最上位IC用セパレータ180X」ともいう)および/または後述する他の部材(接続部材48、カバー部材50、カバー用セパレータ60)を介して上側ターミナルプレート70に電気的に接続されている。すなわち、上側ターミナルプレート70は、発電ブロック103に電気的に接続されている。なお、最上位インターコネクタ190Xは、上側ターミナルプレート70に対してZ軸方向の下側に配置されている。最上位インターコネクタ190Xは、特許請求の範囲における第1の導電部材に相当し、最上位IC用セパレータ180Xは、特許請求の範囲における第1のセパレータに相当する。
IC用セパレータ180は、中央付近にZ軸方向に貫通する略矩形の孔181が形成されたフレーム状の部材であり、例えば金属等の導電性材料により形成されている。本実施形態では、IC用セパレータ180における孔181を取り囲む部分(以下、「貫通孔周囲部」という。)は、インターコネクタ190(平板部150)の周縁部における上側の表面に、レーザ溶接により接合されている。換言すれば、IC用セパレータ180とインターコネクタ190とが接する位置には、IC用セパレータ180とインターコネクタ190とを接合する溶接部232が形成されている。溶接部232の一部分は、溶接部材(IC用セパレータ180)の上面に露出しており、溶接部232の一部分は、被溶接部材(インターコネクタ190)内まで進入している。このため、IC用セパレータ180により、一の発電単位102における空気極114に面する空気室166と、その発電単位102に隣接する他の発電単位102における燃料極116に面する燃料室176とが区画され、インターコネクタ190の周縁部における一方の電極側から他方の電極側へのガスのリーク(クロスリーク)が抑制される。本実施形態では、溶接部232は、Z軸方向視において、IC用セパレータ180の貫通孔周囲部およびインターコネクタ190の周縁部に連続的に形成されている。このため、空気室166および176との各ガス室における密閉性を向上させることができる。また、本実施形態では、IC用セパレータ180における周縁部は、燃料極側フレーム140の下側の表面に、レーザ溶接により接合されている。換言すれば、IC用セパレータ180と燃料極側フレーム140とが接する位置には、IC用セパレータ180と燃料極側フレーム140とを接合する溶接部231が形成されている。溶接部231の一部分は、溶接部材(IC用セパレータ180)の下面に露出しており、溶接部231の一部分は、被溶接部材(燃料極側フレーム140)内まで進入している。また、本実施形態では、溶接部231は、Z軸方向視において、IC用セパレータ180の周縁部および燃料極側フレーム140の周縁部に連続的に形成されている。このため、燃料電池スタック100における密閉性を向上させることができる。ある発電単位102に含まれる一対のIC用セパレータ180のうち、上側のIC用セパレータ180は、該発電単位102の空気室166と、該発電単位102に対して上側に隣り合う他の発電単位102の燃料室176とを区画する。また、ある発電単位102に含まれる一対のIC用セパレータ180のうち、下側のIC用セパレータ180は、該発電単位102の燃料室176と、該発電単位102に対して下側に隣り合う他の発電単位102の空気室166とを区画する。このように、IC用セパレータ180により、発電単位102の周縁部における発電単位102間のガスのリークが抑制される。
最上位IC用セパレータ180Xは、IC用セパレータ180と同様に、中央付近にZ軸方向に貫通する略矩形の孔181Xが形成されたフレーム状の部材であり、例えば、金属により形成されている。また、本実施形態では、最上位IC用セパレータ180Xにおける貫通孔周囲部は、最上位インターコネクタ190Xの周縁部における上側の表面に、レーザ溶接により接合されている。換言すれば、最上位IC用セパレータ180Xと最上位インターコネクタ190Xとが接する位置には、最上位IC用セパレータ180Xと最上位インターコネクタ190Xとを接合する溶接部212が形成されている。溶接部212の一部分は、溶接部材(最上位IC用セパレータ180X)の上面に露出しており、溶接部212の一部分は、被溶接部材(最上位インターコネクタ190X)内まで進入している。このため、最上位IC用セパレータ180Xは、その貫通孔周囲部において、最上位インターコネクタ190Xの周縁部と電気的に良好に接続される。本実施形態では、溶接部212は、Z軸方向視において、最上位IC用セパレータ180Xの貫通孔周囲部および最上位インターコネクタ190Xの周縁部に連続的に形成されている。また、本実施形態では、最上位IC用セパレータ180Xにおける周縁部は、上側ターミナルプレート70の下側の表面に、レーザ溶接により接合されている。換言すれば、最上位IC用セパレータ180Xと上側ターミナルプレート70とが接する位置には、最上位IC用セパレータ180Xと上側ターミナルプレート70とを接合する溶接部211が形成されている。溶接部211の一部分は、溶接部材(最上位IC用セパレータ180X)の下面に露出しており、溶接部211の一部分は、被溶接部材(上側ターミナルプレート70)内まで進入している。このため、最上位IC用セパレータ180Xは、その周縁部において、上側ターミナルプレート70の周縁部と電気的に良好に接続される。本実施形態では、溶接部211は、Z軸方向視において、最上位IC用セパレータ180Xの周縁部および上側ターミナルプレート70の周縁部に連続的に形成されている。孔181Xは、特許請求の範囲における第4の貫通孔に相当する。
IC用セパレータ180は、IC用セパレータ180の貫通孔周囲部(孔181を取り囲む部分)を含む内側部186と、内側部186より外周側に位置する外側部187と、内側部186と外側部187とを連結する連結部188とを備える。本実施形態では、内側部186および外側部187は、Z軸方向に略直交する方向に延びる略平板状である。また、連結部188は、内側部186と外側部187との両方に対して下側に突出するように湾曲した形状となっている。連結部188における下側(空気室166側)の部分は凸部となっており、連結部188における上側(燃料室176側)の部分は凹部となっている。このため、連結部188は、Z軸方向における位置が内側部186および外側部187とは異なる部分を含んでいる。
空気極側フレーム130は、中央付近にZ軸方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、単セル用セパレータ120における電解質層112に対向する側とは反対側(上側)の表面の周縁部と、上側のIC用セパレータ180における空気室166に対向する側(下側)の表面の周縁部とに接触しており、両者の間のガスシール性(すなわち、空気室166のガスシール性)を確保するシール部材として機能する。また、空気極側フレーム130によって、発電単位102に含まれる一対のIC用セパレータ180間(すなわち、一対のインターコネクタ190間)が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス供給マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。
燃料極側フレーム140は、中央付近にZ軸方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、単セル用セパレータ120における電解質層112に対向する側(下側)の表面の周縁部と、下側のIC用セパレータ180における燃料室176に対向する側(上側)の表面の周縁部とに接触している。また、燃料極側フレーム140には、燃料ガス供給マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。
燃料極側集電部材148は、燃料室176内に配置されている。燃料極側集電部材148は、導電性部144と弾性部149とを有する。導電性部144は、燃料極116とインターコネクタ190とを電気的に接続する部分であり、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。導電性部144は、燃料極116の下側の表面に接触した電極対向部145と、インターコネクタ190の上側の表面に接触したインターコネクタ対向部146と、電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを有している。また、弾性部149は、燃料極側集電部材148の弾性を確保するための部分であり、例えば、マイカ等により形成されている。導電性部144のうちのインターコネクタ対向部146は、Z軸方向においてインターコネクタ190と弾性部149との間に配置され、導電性部144のうちの電極対向部145は、Z軸方向において燃料極116と弾性部149との間に配置されている。これにより、燃料極側集電部材148が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電部材148を介した燃料極116とインターコネクタ190との電気的接続が良好に維持される。
図6は、燃料極側集電部材148(および後述する接続部材48)の作製方法の一例を示す説明図である。燃料極側集電部材148は、例えば、図6に示すように、平板状の材料(例えば、厚さ10~200μmのニッケル箔)に切り込みSLを入れ、該材料の上に複数の孔が形成されたシート状の弾性部149を配置した状態で、複数の矩形部分を曲げ起こして弾性部149を挟むように加工することにより作製される。曲げ起こされた各矩形部分が電極対向部145となり、曲げ起こされた部分以外の穴OPが開いた状態の平板部分がインターコネクタ対向部146となり、電極対向部145とインターコネクタ対向部146とをつなぐ部分が連接部147となる。なお、図6では、燃料極側集電部材148の製造方法を示すため、一部の矩形部分について、曲げ起こし加工が完了する前の状態を示している。
なお、上述したように、燃料電池スタック100は、複数の発電単位102を備えており、各発電単位102は、単セル110と一対のインターコネクタ190とを有している。また、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ190は、隣接する2つの発電単位102に共有されている。そのため、本実施形態の燃料電池スタック100は、複数の単セル110と、複数の単セル110について設けられた複数のインターコネクタ190とを備えると言える。
A-2.燃料電池スタック100の動作:
図2および図4に示すように、酸化剤ガス供給マニホールド161の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して酸化剤ガスOGが供給されると、酸化剤ガスOGは、ガス通路部材27の分岐部29および本体部28の孔を介して酸化剤ガス供給マニホールド161に供給され、酸化剤ガス供給マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を介して、空気室166に供給される。また、図3および図5に示すように、燃料ガス供給マニホールド171の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料ガスFGが供給されると、燃料ガスFGは、ガス通路部材27の分岐部29および本体部28の孔を介して燃料ガス供給マニホールド171に供給され、燃料ガス供給マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して、燃料室176に供給される。
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGおよび燃料ガスFGの電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は導電性接合材196を介してインターコネクタ190に電気的に接続され、燃料極116は燃料極側集電部材148を介してインターコネクタ190に電気的に接続されている。すなわち、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。また、燃料電池スタック100において、最も上側に位置する発電単位102(上側特定発電単位102X)の上側のインターコネクタ190(最上位インターコネクタ190X)は上側ターミナルプレート70に電気的に接続されており、最も下側に位置する発電単位102の下側のインターコネクタ190は下側ターミナルプレート80に電気的に接続されている。そのため、燃料電池スタック100の出力端子として機能する一対のターミナルプレート70,80から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
各発電単位102の空気室166から排出された酸化剤オフガスOOGは、図2および図4に示すように、酸化剤ガス排出連通孔133を介して酸化剤ガス排出マニホールド162に排出され、さらに酸化剤ガス排出マニホールド162の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部に排出される。また、各発電単位102の燃料室176から排出された燃料オフガスFOGは、図3および図5に示すように、燃料ガス排出連通孔143を介して燃料ガス排出マニホールド172に排出され、さらに燃料ガス排出マニホールド172の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示しない)を介して燃料電池スタック100の外部に排出される。
A-3.燃料電池スタック100の最上部付近の詳細構成:
次に、本実施形態における燃料電池スタック100の最上部付近の詳細構成について説明する。図7は、図4のVII-VIIの位置における燃料電池スタック100のXY断面構成を示す説明図である。
図4および図5に示すように、本実施形態の燃料電池スタック100は、最も上側に位置する発電単位102(上側特定発電単位102X)より上側に配置されたカバー部材50およびカバー用セパレータ60を備える。カバー部材50は、Z軸方向視で略矩形の平板形状部材であり、導電性材料(例えば金属)により形成されている。また、カバー部材50の表面(後述の上側特定空間58に面する表面)には、カバー部材50からの汚染物質(例えば、Cr(クロム))の放出・拡散を抑制するために、特定の処理(例えば、アニール処理)が施されていてもよい。カバー部材50は、上側ターミナルプレート70に形成された孔71内に配置されている。換言すれば、カバー部材50は、Z軸方向視において上側ターミナルプレート70の孔71に重なり、かつ、最上位インターコネクタ190Xに対してZ軸方向の上側に配置されている。また、カバー部材50は、上側特定発電単位102Xに含まれる上側のインターコネクタ190(最上位インターコネクタ190X)に対してZ軸方向に離間しつつ隣り合っている。すなわち、カバー部材50と、最上位インターコネクタ190Xとの間には、空間(上側ターミナルプレート70の孔71により構成される空間であり、以下、「上側特定空間58」という。)が形成されている。上側特定空間58は、燃料電池スタック100に含まれる複数の単セル110(すべての単セル110)に対して上側に位置している。カバー部材50は、特許請求の範囲における第2の導電部材に相当し、上側特定空間58は、特許請求の範囲における第1の特定空間に相当する。
また、カバー用セパレータ60は、中央付近にZ軸方向に貫通する略矩形の孔61が形成されたフレーム状の部材であり、例えば金属等の導電性材料により形成されている。本実施形態では、カバー用セパレータ60における孔61を取り囲む部分(以下、「貫通孔周囲部」という。)は、カバー部材50の周縁部における上側の表面に、レーザ溶接により接合されている。換言すれば、カバー用セパレータ60とカバー部材50とが接する位置には、カバー用セパレータ60とカバー部材50とを接合する溶接部222が形成されている。溶接部222の一部分は、溶接部材(カバー用セパレータ60)の上面に露出しており、溶接部222の一部分は、被溶接部材(カバー部材50)内まで進入している。このため、カバー用セパレータ60は、その貫通孔周囲部において、カバー部材50の周縁部と電気的に良好に接続される。本実施形態では、溶接部222は、Z軸方向視において、カバー用セパレータ60の貫通孔周囲部およびカバー部材50の周縁部に連続的に形成されている。また、カバー用セパレータ60における周縁部は、上側ターミナルプレート70の上側の表面に、レーザ溶接により接合されている。換言すれば、カバー用セパレータ60と上側ターミナルプレート70とが接する位置には、カバー用セパレータ60と上側ターミナルプレート70とを接合する溶接部221が形成されている。溶接部221の一部分は、溶接部材(カバー用セパレータ60)の上面に露出しており、溶接部221の一部分は、被溶接部材(上側ターミナルプレート70)内まで進入している。このため、カバー用セパレータ60は、その周縁部において、上側ターミナルプレート70の周縁部と電気的に良好に接続される。本実施形態では、溶接部221は、Z軸方向視において、カバー用セパレータ60の周縁部および上側ターミナルプレート70の周縁部に連続的に形成されている(図7参照)。カバー用セパレータ60(および最上位インターコネクタ190Xに接合された最上位IC用セパレータ180X)により、上側特定空間58が画定される。カバー用セパレータ60は、特許請求の範囲における第2のセパレータに相当し、孔61は、特許請求の範囲における第5の貫通孔に相当する。
カバー用セパレータ60は、カバー用セパレータ60の貫通孔周囲部(孔61を取り囲む部分)を含む内側部66と、内側部66より外周側に位置する外側部67と、内側部66と外側部67とを連結する連結部68とを備える。本実施形態では、内側部66および外側部67は、Z軸方向に略直交する方向に延びる略平板状である。また、連結部68は、内側部66と外側部67との両方に対して下側に突出するように湾曲した形状となっている。連結部68における下側(上側特定空間58側)の部分は凸部となっており、連結部68における上側(外部空間側)の部分は凹部となっている。このため、連結部68は、Z軸方向における位置が内側部66および外側部67とは異なる部分を含んでいる。
また、図4、図5および図7に示すように、本実施形態の燃料電池スタック100は、さらに、上側特定空間58に配置された接続部材48を備える。本実施形態では、接続部材48は、燃料極側集電部材148と同様の構成を有している。すなわち、接続部材48は、導電性部44と弾性部49とを有する。導電性部44は、カバー部材50と、最上位インターコネクタ190Xとを電気的に接続する部分であり、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。導電性部44は、カバー部材50の下側の表面に接触したカバー部材対向部45と、最上位インターコネクタ190Xの上側の表面に接触したインターコネクタ対向部46と、カバー部材対向部45とインターコネクタ対向部46とをつなぐ連接部47とを有している。また、弾性部49は、接続部材48の弾性を確保するための部分であり、例えば、マイカ等により形成されている。導電性部44のうちのインターコネクタ対向部46は、Z軸方向において最上位インターコネクタ190Xと弾性部49との間に配置され、導電性部44のうちのカバー部材対向部45は、Z軸方向においてカバー部材50と弾性部49との間に配置されている。なお、本実施形態では、図6に示すように、接続部材48は、上述した燃料極側集電部材148の作製方法と同様の方法により作製される。
本実施形態の燃料電池スタック100は、その最上部付近において、上側ターミナル単位270を有している。上側ターミナル単位270は、以下に説明するターミナル構造を有している。すなわち、上側ターミナル単位270は、発電ブロック103に対してZ軸方向の一方側(上側)に配置されており、上側ターミナルプレート70と、最上位インターコネクタ190Xと、カバー部材50と、接続部材48と、最上位IC用セパレータ180Xと、カバー用セパレータ60とを備えている。上述のように、上側ターミナルプレート70は、発電ブロック103に電気的に接続されている。このため、上側ターミナルプレート70を含む上側ターミナル単位270も、発電ブロック103に電気的に接続されている。また、上側ターミナル単位270において、上側ターミナルプレート70は、上述のように、最上位IC用セパレータ180Xとカバー用セパレータ60とに、それぞれ、レーザ溶接により接合されている。換言すれば、上側ターミナルプレート70は、両者にそれぞれ電気的に接続されている。なお、上側ターミナル単位270において、カバー用セパレータ60は、最も上側に配置されており、上側絶縁シート92は、カバー用セパレータ60の上側に配置されている。換言すれば、上側絶縁シート92は、上側ターミナル単位270に対してZ軸方向の一方側(上側)に配置されている。また、最上位IC用セパレータ180Xは、上側特定空間58と、上側特定発電単位102Xの空気室166とを区画する。上側特定発電単位102Xの空気室166は、Z軸方向における最上位インターコネクタ190Xの表面のうち、上側特定空間58に面している表面(上側表面)とは反対側の表面(下側表面)に面する空間である。上側特定発電単位102Xの空気室166は、特許請求の範囲における第2の特定空間に相当する。上側ターミナル単位270は、特許請求の範囲における第1のターミナル単位に相当する。
上述したように、本実施形態の燃料電池スタック100では、最上位インターコネクタ190Xの表面(上側特定空間58に面する表面)には、特定の処理(例えば、アニール処理)が施されることがある。この場合、上記表面に被膜(例えば、アルミナ被膜やクロミア被膜)が形成されることがある。被膜は最上位インターコネクタ190Xより電気抵抗が高いため、最上位インターコネクタ190Xと最上位IC用セパレータ180Xとの間の電気的接続が低下し、その結果、燃料電池スタック100の電気的性能が低下するおそれがある。本実施形態の燃料電池スタック100では、上述の通り、最上位インターコネクタ190Xと最上位IC用セパレータ180Xとを接合する溶接部212が形成されているため、溶接部212を介して最上位インターコネクタ190Xと最上位IC用セパレータ180Xとが良好に電気的に接続され、その結果、最上位IC用セパレータ180Xを介して最上位インターコネクタ190Xと上側ターミナルプレート70とが良好に電気的に接続される。カバー部材50についても同様である。すなわち、溶接部222が形成されているため、溶接部222を介してカバー部材50とカバー用セパレータ60とが良好に電気的に接続され、その結果、カバー用セパレータ60を介してカバー部材50と上側ターミナルプレート70とが良好に電気的に接続される。
図5および図7に示すように、本実施形態の燃料電池スタック100では、接続部材48が配置される上側特定空間58は、燃料ガス供給マニホールド171と連通している一方、燃料ガス排出マニホールド172と連通していない。すなわち、上側ターミナルプレート70には、燃料ガス供給マニホールド171と上側特定空間58とを連通する燃料ガス供給連通孔72が形成されているが、上側特定空間58と燃料ガス排出マニホールド172とを連通するガス流路は形成されていない。なお、燃料ガス供給マニホールド171に流通するガス(燃料ガスFG)中の還元ガスの濃度は、燃料ガス排出マニホールド172に流通するガス(燃料オフガスFOG)中の還元ガスの濃度より高いため、上側特定空間58は、燃料ガス供給マニホールド171および燃料ガス排出マニホールド172のうち、流通するガス中の還元ガスの濃度が高い方と連通していると言える。なお、本明細書において、上側特定空間58が、あるマニホールド(例えば、燃料ガス排出マニホールド172)に連通していないとは、上側特定空間58と該マニホールドとを連通する専用のガス流路が存在しないことを意味し、上側特定空間58が単セル110の燃料室176や他のマニホールドを介して該マニホールドと連通している形態を含まない。
上述したように、燃料電池スタック100の運転動作の際には、燃料ガスFGが、燃料ガス供給マニホールド171に供給され、燃料ガス供給マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して燃料室176に供給される。ここで、本実施形態の燃料電池スタック100では、接続部材48が配置される上側特定空間58が、燃料ガス供給マニホールド171と連通しているため、燃料ガス供給マニホールド171に供給された燃料ガスFGは、燃料ガス供給連通孔72を介して上側特定空間58にも供給される。これにより、上側特定空間58が還元雰囲気となる。
ただし、各燃料室176は燃料ガス排出マニホールド172に連通している一方、上側特定空間58は燃料ガス排出マニホールド172には連通していない。そのため、燃料ガス供給マニホールド171から流入した燃料ガスFGによって上側特定空間58が満たされた後は、各燃料室176と比べて上側特定空間58の圧力が高くなるため、上側特定空間58へのさらなる燃料ガスFGの流入は抑制される。
A-4.本実施形態の効果:
以上説明したように、本実施形態の燃料電池スタック100は、Z軸方向に並べて配置された複数の発電単位102から構成される発電ブロック103を備える。各発電単位102は、電解質層112と、電解質層112を挟んでZ軸方向に互いに対向する空気極114および燃料極116とを含む単セル110を有する。燃料電池スタック100は、また、発電ブロック103に対してZ軸方向の上側に配置された上側ターミナル単位270と、上側ターミナル単位270に対してZ軸方向の上側に配置された上側絶縁シート92と、上側絶縁シート92に対してZ軸方向の上側に配置された上側エンドプレート104と、を備える。上側ターミナル単位270は、発電ブロック103に電気的に接続されている。上側絶縁シート92には、孔94が形成されており、上側エンドプレート104には、孔32が形成されている。また、上側ターミナル単位270は、ターミナル構造を有している。すなわち、上側ターミナル単位270は、孔71が形成された上側ターミナルプレート70と、上側ターミナルプレート70に対してZ軸方向の下側に配置された最上位インターコネクタ190Xと、最上位インターコネクタ190Xに対してZ軸方向の上側に配置されたカバー部材50と、最上位インターコネクタ190Xとカバー部材50との間の空間である上側特定空間58に配置された接続部材48と、を備える。接続部材48は、最上位インターコネクタ190Xとカバー部材50とを電気的に接続する。上側ターミナル単位270は、さらに、孔181Xが形成された最上位IC用セパレータ180Xと、孔61が形成されたカバー用セパレータ60と、を備える。最上位IC用セパレータ180Xの貫通孔周囲部は、最上位インターコネクタ190Xの周縁部と電気的に接続されている。カバー用セパレータ60の貫通孔周囲部は、カバー部材50の周縁部と電気的に接続されている。上側ターミナル単位270において、上側ターミナルプレート70は、最上位IC用セパレータ180Xとカバー用セパレータ60とに、電気的に接続されている。
本実施形態の燃料電池スタック100では、上側ターミナルプレート70と、上側絶縁シート92と、上側エンドプレート104とに、それぞれ、Z軸方向に貫く孔71と、孔94と、孔32とが形成されている。このため、燃料電池スタック100を軽量化することができる。また、本実施形態の燃料電池スタック100では、上側ターミナルプレート70を含む上側ターミナル単位270が上記ターミナル構造を有している。すなわち、上側ターミナルプレート70と発電ブロック103とは、2つのセパレータ(最上位IC用セパレータ180Xおよびカバー用セパレータ60)を介して電気的に接続されている。換言すれば、燃料電池スタック100は、発電単位102から上側ターミナルプレート70への2つ導電経路を有している。このため、発電単位102から上側ターミナルプレート70への導電経路が1つである構成、すなわち、上側ターミナルプレート70が最上位IC用セパレータ180Xとカバー用セパレータ60とのうちの一方のみに電気的に接続されている構成と比較して、発電単位102と上側ターミナルプレート70との間の電気抵抗を低減することができる。また、上記2つの導電経路のうちの一方の導電経路において、発電単位102と上側ターミナルプレート70との間の電気的接続の不良が発生した場合であっても、他方の導電経路により両者の電気的接続を確保することができる。従って、燃料電池スタック100によれば、発電単位102において生成された電気エネルギーの良好な取出しを確保することにより、燃料電池スタック100の電気的性能を維持しつつ、燃料電池スタック100の軽量化を実現することができる。
また、本実施形態の燃料電池スタック100において、最上位IC用セパレータ180Xとカバー用セパレータ60とは、それぞれ、貫通孔周囲部を含む内側部186,66と、内側部186,66より外周側に位置する外側部187,67と、内側部186,66と外側部187,67とを連結し、かつ、内側部186,66と外側部187,67との両方に対して、Z軸方向の下側に突出している連結部188,68と、を有している。
本実施形態の燃料電池スタック100では、最上位IC用セパレータ180Xおよびカバー用セパレータ60の連結部188,68が、Z軸方向に直交する方向(面方向)に容易に伸び縮みするバネのように機能するため、燃料電池スタック100の運転時のヒートショック等によって最上位IC用セパレータ180Xおよびカバー用セパレータ60を面方向に変形させる荷重がかかっても、最上位IC用セパレータ180Xおよびカバー用セパレータ60が連結部188,68の位置でZ軸方向に変形することができる。このため、燃料電池スタック100によれば、接続部材48や発電単位102等に発生する応力が緩和され、該応力に起因する最上位インターコネクタ190Xと発電単位102との間の電気的接続の不良や最上位インターコネクタ190Xと上記カバー部材50との間の電気的接続の不良の発生を抑制することができる。
また、本実施形態の燃料電池スタック100において、最上位IC用セパレータ180Xは、上側ターミナルプレート70と、最上位インターコネクタ190Xとに、それぞれ溶接によって接合されており、カバー用セパレータ60は、上側ターミナルプレート70と、カバー部材50とに、それぞれ溶接によって接合されている。
このため、最上位IC用セパレータ180Xと上側ターミナルプレート70、最上位IC用セパレータ180Xと最上位インターコネクタ190Xとが、それぞれ溶接された部分(溶接部211,212)を介して電気的に良好に接続される。また、カバー用セパレータ60についても同様に、カバー用セパレータ60と上側ターミナルプレート70、カバー用セパレータ60とカバー部材50とが、それぞれ溶接された部分(溶接部221,222)を介して電気的に良好に接続される。従って、燃料電池スタック100によれば、燃料電池スタック100の電気的性能をより効果的に向上させることができる。
また、本実施形態の燃料電池スタック100において、接続部材48は、弾性部49と、最上位インターコネクタ190Xとカバー部材50とを電気的に接続する導電性部44と、を有する。導電性部44の一部分は、Z軸方向において最上位インターコネクタ190Xと弾性部49との間に配置され、導電性部44の他の一部分は、Z軸方向においてカバー部材50と弾性部49との間に配置されている。
本実施形態の燃料電池スタック100では、上記接続部材48は、弾性部49と、最上位インターコネクタ190Xとカバー部材50とを電気的に接続する導電性部44とを有する。そして、導電性部44の一部分は、Z軸方向において最上位インターコネクタ190Xと弾性部49との間に配置され、導電性部44の他の一部分は、Z軸方向において上記カバー部材50と弾性部49との間に配置されている。このため、本実施形態の燃料電池スタック100によれば、接続部材48の導電性部44により、最上位インターコネクタ190Xと上記カバー部材50との電気的接続を確保しつつ、接続部材48の弾性部49により、燃料電池スタック100の運転時における単セル110の変形に対する追従性を確保することができ、この結果、発電単位102と最上位インターコネクタ190Xとの間の電気的接続の不良の発生を抑制することができる。
B.第2実施形態:
図8および図9は、第2実施形態における燃料電池スタック100aの構成を概略的に示す説明図である。図8には、第2実施形態の燃料電池スタック100aの構成のうち、図2に示すX1部と同等の部分の構成が拡大して示されている。図9には、第2実施形態の燃料電池スタック100aの構成のうち、図3に示すX1部と同等の部分の構成が拡大して示されている。以下では、第2実施形態の燃料電池スタック100aの構成のうち、上述した第1実施形態の燃料電池スタック100の構成と同等の構成については、同一の符号を付すことによってその説明を適宜省略する。
図8および図9に示すように、第2実施形態の燃料電池スタック100aでは、主に、第1実施形態の燃料電池スタック100における下側ターミナルプレート80に代えて、下側ターミナル単位280を備えている。下側ターミナル単位280は、第1実施形態における上側ターミナル単位270のターミナル構造と同等の構造を有している。すなわち、下側ターミナル単位280は、発電ブロック103に対してZ軸方向の他方側(下側)に配置されており、下側ターミナルプレート80aと、最下位インターコネクタ190Yと、カバー部材50aと、接続部材48aと、最下位IC用セパレータ180Yと、カバー用セパレータ60aとを備えている。
下側ターミナルプレート80aは、第1実施形態の上側ターミナルプレート70と同様の構成を有している。すなわち、下側ターミナルプレート80aは、Z軸方向視での外形が略矩形の平板状の部材であり、その中央付近には、Z軸方向に貫通する孔81が形成されている。Z軸方向視で、下側ターミナルプレート80aに形成された孔81の内周線は、上述の各単セル110を内包している。なお、本実施形態では、Z軸方向視で、下側ターミナルプレート80aに形成された孔81の内周線は、下側エンドプレート106に形成された孔34の内周線と略一致している。下側ターミナルプレート80aは、第1実施形態の下側ターミナルプレート80と同様に、Z軸方向視で、下側エンドプレート106の外周線から外側に突出した突出部88を備えており、該突出部88は、燃料電池スタック100のマイナス側の出力端子として機能する。下側ターミナルプレート80aは、特許請求の範囲におけるターミナル部材に相当し、孔81は、特許請求の範囲における第3の貫通孔に相当する。
最下位インターコネクタ190Yは、第1実施形態の最上位インターコネクタ190Xと同様の構成を有している。第2実施形態において、最下位インターコネクタ190Yは、Z軸方向視において下側ターミナルプレート80aの孔81に重なり、かつ、下側ターミナルプレート80aに対して下側に配置されている。最下位インターコネクタ190Yは、最下位IC用セパレータ180Yおよび/または後述する他の部材(接続部材48a、カバー部材50a、カバー用セパレータ60a)を介して電気的に接続されている。すなわち、下側ターミナルプレート80aは、発電ブロック103に電気的に接続されている。なお、最下位インターコネクタ190Yは、下側ターミナルプレート80aに対してZ軸方向の下側に配置されている。最下位インターコネクタ190Yは、特許請求の範囲における第1の導電部材に相当する。
最下位IC用セパレータ180Yは、第1実施形態の最上位IC用セパレータ180Xと同様の構成を有している。すなわち、最下位IC用セパレータ180Yは、中央付近にZ軸方向に貫通する略矩形の孔181Yが形成されたフレーム状の部材であり、例えば、金属により形成されている。また、本実施形態では、最下位IC用セパレータ180Yにおける貫通孔周囲部は、最下位インターコネクタ190Yの周縁部における上側の表面に、レーザ溶接により接合されている。換言すれば、最下位IC用セパレータ180Yと最下位インターコネクタ190Yとが接する位置には、最下位IC用セパレータ180Yと最下位インターコネクタ190Yとを接合する溶接部212aが形成されている。溶接部212aの一部分は、溶接部材(最下位IC用セパレータ180Y)の上面に露出しており、溶接部212aの一部分は、被溶接部材(最下位インターコネクタ190Y)内まで進入している。このため、最下位IC用セパレータ180Yは、その貫通孔周囲部において、最下位インターコネクタ190Yの周縁部と電気的に良好に接続される。本実施形態では、溶接部212aは、Z軸方向視において、最下位IC用セパレータ180Yの貫通孔周囲部および最下位インターコネクタ190Yの周縁部に連続的に形成されている。また、本実施形態では、最下位IC用セパレータ180Yにおける周縁部は、下側ターミナルプレート80aの下側の表面に、レーザ溶接により接合されている。換言すれば、最下位IC用セパレータ180Yと下側ターミナルプレート80aとが接する位置には、最下位IC用セパレータ180Yと下側ターミナルプレート80aとを接合する溶接部211aが形成されている。溶接部211aの一部分は、溶接部材(最下位IC用セパレータ180Y)の下面に露出しており、溶接部211aの一部分は、被溶接部材(下側ターミナルプレート80a)内まで進入している。このため、最下位IC用セパレータ180Yは、その周縁部において、下側ターミナルプレート80aの周縁部と電気的に良好に接続される。本実施形態では、溶接部211aは、Z軸方向視において、最下位IC用セパレータ180Yの周縁部および下側ターミナルプレート80aの周縁部に連続的に形成されている。最下位IC用セパレータ180Yは、特許請求の範囲における第1のセパレータに相当し、孔181Yは、特許請求の範囲における第4の貫通孔に相当する。
本実施形態において、カバー部材50aおよびカバー用セパレータ60aは、最も下側に位置する発電単位102(下側特定発電単位102Y)より下側に配置されている。カバー部材50aおよびカバー用セパレータ60aは、それぞれ、第1実施形態のカバー部材50およびカバー用セパレータ60と同様の構成を有している。すなわち、カバー部材50aは、Z軸方向視で略矩形の平板形状部材であり、導電性材料(例えば金属)により形成されている。カバー部材50aは、導電性接合材196を介して下側特定発電単位102Yの下側のインターコネクタ190に電気的に接続されている。また、カバー部材50aの表面(下側特定発電単位102Yの空気室166および/または後述の第1の下側特定空間58aに面する表面)には、特定の処理(例えば、アニール処理)が施されていてもよい。なお、カバー部材50aの表面のうち、導電性接合材196と接している部分にも、上記特定の処理が施されていてもよい。カバー部材50aと下側特定発電単位102Yとの電気的接続が低下することを抑制するためである。カバー部材50aは、下側ターミナルプレート80aに形成された孔81内に配置されている。換言すれば、カバー部材50aは、Z軸方向視において下側ターミナルプレート80aの孔81に重なり、かつ、最下位インターコネクタ190Yに対してZ軸方向の上側に配置されている。また、カバー部材50aは、最下位インターコネクタ190Yに対してZ軸方向に離間しつつ隣り合っている。すなわち、カバー部材50aと、最下位インターコネクタ190Yとの間には、空間(下側ターミナルプレート80aの孔81により構成される空間であり、以下、「第1の下側特定空間58a」という。)が形成されている。第1の下側特定空間58aは、燃料電池スタック100aに含まれる複数の単セル110(すべての単セル110)に対して下側に位置している。カバー部材50aは、特許請求の範囲における第2の導電部材に相当し、第1の下側特定空間58aは、特許請求の範囲における第1の特定空間に相当する。
また、カバー用セパレータ60aは、中央付近にZ軸方向に貫通する略矩形の孔61aが形成されたフレーム状の部材であり、例えば金属等の導電性材料により形成されている。本実施形態では、カバー用セパレータ60aにおける孔61aを取り囲む部分(以下、「貫通孔周囲部」という。)は、カバー部材50aの周縁部における上側の表面に、レーザ溶接により接合されている。換言すれば、カバー用セパレータ60aとカバー部材50aとが接する位置には、カバー用セパレータ60aとカバー部材50aとを接合する溶接部222aが形成されている。溶接部222aの一部分は、溶接部材(カバー用セパレータ60a)の上面に露出しており、溶接部222aの一部分は、被溶接部材(カバー部材50)内まで進入している。このため、カバー用セパレータ60aは、その貫通孔周囲部において、カバー部材50aの周縁部と電気的に良好に接続される。本実施形態では、溶接部222aは、Z軸方向視において、カバー用セパレータ60aの貫通孔周囲部およびカバー部材50aの周縁部に連続的に形成されている。また、カバー用セパレータ60aにおける周縁部は、下側ターミナルプレート80aの上側の表面に、レーザ溶接により接合されている。換言すれば、カバー用セパレータ60aと下側ターミナルプレート80aとが接する位置には、カバー用セパレータ60aと下側ターミナルプレート80aとを接合する溶接部221aが形成されている。溶接部221aの一部分は、溶接部材(カバー用セパレータ60a)の上面に露出しており、溶接部221aの一部分は、被溶接部材(下側ターミナルプレート80a)内まで進入している。このため、カバー用セパレータ60aは、その周縁部において、下側ターミナルプレート80aの周縁部と電気的に良好に接続される。本実施形態では、溶接部221aは、Z軸方向視において、カバー用セパレータ60aの周縁部および下側ターミナルプレート80aの周縁部に連続的に形成されている。カバー用セパレータ60a(および最下位インターコネクタ190Yに接合された最下位IC用セパレータ180Y)により、第1の下側特定空間58aが画定される。なお、カバー用セパレータ60aは、第1実施形態のカバー用セパレータ60と同様に、カバー用セパレータ60aの貫通孔周囲部(孔61aを取り囲む部分)を含む内側部66と、内側部66より外周側に位置する外側部67と、内側部66と外側部67とを連結する連結部68とを備えている。カバー用セパレータ60aは、特許請求の範囲における第2のセパレータに相当し、孔61aは、特許請求の範囲における第5の貫通孔に相当する。
本実施形態において、接続部材48aは、第1の下側特定空間58aに配置されている。接続部材48aは、第1実施形態の接続部材48と同様の構成を有している。すなわち、接続部材48aは、導電性部44と弾性部49とを有する。導電性部44は、カバー部材50aと、最下位インターコネクタ190Yとを電気的に接続する部分であり、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。導電性部44は、カバー部材50aの下側の表面に接触したカバー部材対向部45と、最下位インターコネクタ190Yの上側の表面に接触したインターコネクタ対向部46と、カバー部材対向部45とインターコネクタ対向部46とをつなぐ連接部47とを有している。また、弾性部49は、接続部材48aの弾性を確保するための部分であり、例えば、マイカ等により形成されている。導電性部44のうちのインターコネクタ対向部46は、Z軸方向において最下位インターコネクタ190Yと弾性部49との間に配置され、導電性部44のうちのカバー部材対向部45は、Z軸方向においてカバー部材50aと弾性部49との間に配置されている。なお、本実施形態では、図6に示すように、接続部材48aは、上述した接続部材48の作製方法と同様の方法により作製される。
本実施形態の燃料電池スタック100は、その最下部付近において、下側ターミナル単位280を有している。上述のように、下側ターミナルプレート80aは、発電ブロック103に電気的に接続されている。このため、下側ターミナルプレート80aを含む下側ターミナル単位280も、発電ブロック103に電気的に接続されている。また、下側ターミナル単位280において、下側ターミナルプレート80aは、上述のように、最下位IC用セパレータ180Yとカバー用セパレータ60aとに、それぞれ、レーザ溶接により接合されている。換言すれば、下側ターミナルプレート80aは、両者にそれぞれ電気的に接続されている。なお、下側ターミナル単位280において、最下位インターコネクタ190Yは、最も下側に配置されており、下側絶縁シート96は、最下位インターコネクタ190Yの下側に配置されている。換言すれば、下側絶縁シート96は、下側ターミナル単位280に対してZ軸方向の他方側(下側)に配置されている。なお、Z軸方向において、最下位インターコネクタ190Yと下側絶縁シート96との間には、平板部材83が配置されている。また、最下位IC用セパレータ180Yは、第1の下側特定空間58aと、第2の下側特定空間59とを区画する。第2の下側特定空間59は、Z軸方向における最下位インターコネクタ190Yの表面のうち、第1の下側特定空間58aに面している表面(上側表面)とは反対側の表面(下側表面)に面する空間である。第2の下側特定空間59は、特許請求の範囲における第2の特定空間に相当する。下側ターミナル単位280は、特許請求の範囲における第2のターミナル単位に相当する。
平板部材83は、Z軸方向視での外形が略矩形の平板状の部材であり、例えばステンレス等の導電性材料により形成されている。平板部材83のZ軸方向回りの周縁部には、下側ターミナルプレート80aおよび下側絶縁シート96と同様に、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通している。
上述したように、本実施形態の燃料電池スタック100aでは、最下位インターコネクタ190Yの表面(第1の下側特定空間58aに面する表面)には、特定の処理(例えば、アニール処理)が施されることがある。この場合、上記表面に被膜(例えば、アルミナ被膜やクロミア被膜)が形成されることがある。被膜は最下位インターコネクタ190Yより電気抵抗が高いため、最下位インターコネクタ190Yと最下位IC用セパレータ180Yとの間の電気的接続が低下し、その結果、燃料電池スタック100aの電気的性能が低下するおそれがある。本実施形態の燃料電池スタック100aでは、上述の通り、最下位インターコネクタ190Yと最下位IC用セパレータ180Yとを接合する溶接部212aが形成されているため、溶接部212aを介して最下位インターコネクタ190Yと最下位IC用セパレータ180Yとが良好に電気的に接続され、その結果、最下位IC用セパレータ180Yを介して最下位インターコネクタ190Yと下側ターミナルプレート80aとが良好に電気的に接続される。カバー部材50aについても同様である。すなわち、溶接部222aが形成されているため、溶接部222aを介してカバー部材50aとカバー用セパレータ60aとが良好に電気的に接続され、その結果、カバー用セパレータ60aを介してカバー部材50aと下側ターミナルプレート80aとが良好に電気的に接続される。
図9に示すように、本実施形態の燃料電池スタック100aでは、接続部材48aが配置される第1の下側特定空間58aは、燃料ガス供給マニホールド171と連通している一方、燃料ガス排出マニホールド172と連通していない。すなわち、下側ターミナルプレート80aには、燃料ガス供給マニホールド171と第1の下側特定空間58aとを連通する燃料ガス供給連通孔82が形成されているが、第1の下側特定空間58aと燃料ガス排出マニホールド172とを連通するガス流路は形成されていない。なお、燃料ガス供給マニホールド171に流通するガス(燃料ガスFG)中の還元ガスの濃度は、燃料ガス排出マニホールド172に流通するガス(燃料オフガスFOG)中の還元ガスの濃度より高いため、第1の下側特定空間58aは、燃料ガス供給マニホールド171および燃料ガス排出マニホールド172のうち、流通するガス中の還元ガスの濃度が高い方と連通していると言える。なお、本明細書において、第1の下側特定空間58aが、あるマニホールド(例えば、燃料ガス排出マニホールド172)に連通していないとは、第1の下側特定空間58aと該マニホールドとを連通する専用のガス流路が存在しないことを意味し、第1の下側特定空間58aが単セル110の燃料室176や他のマニホールドを介して該マニホールドと連通している形態を含まない。
上述したように、燃料電池スタック100aの運転動作の際には、燃料ガスFGが、燃料ガス供給マニホールド171に供給され、燃料ガス供給マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して燃料室176に供給される。ここで、本実施形態の燃料電池スタック100aでは、接続部材48aが配置される第1の下側特定空間58aが、燃料ガス供給マニホールド171と連通しているため、燃料ガス供給マニホールド171に供給された燃料ガスFGは、燃料ガス供給連通孔82を介して第1の下側特定空間58aにも供給される。これにより、第1の下側特定空間58aが還元雰囲気となる。
ただし、各燃料室176は燃料ガス排出マニホールド172に連通している一方、第1の下側特定空間58aは燃料ガス排出マニホールド172には連通していない。そのため、燃料ガス供給マニホールド171から流入した燃料ガスFGによって第1の下側特定空間58aが満たされた後は、各燃料室176と比べて第1の下側特定空間58aの圧力が高くなるため、第1の下側特定空間58aへのさらなる燃料ガスFGの流入は抑制される。
本実施形態の燃料電池スタック100aでは、上側ターミナル単位270が上記ターミナル構造を有していることに加えて、燃料電池スタック100aに備えられた下側ターミナル単位280も上側ターミナル単位270と同等のターミナル構造を有している。すなわち、下側ターミナル単位280においても、下側ターミナルプレート80aは、2つのセパレータ(最下位IC用セパレータ180Yおよびカバー用セパレータ60a)に電気的に接続されている。換言すれば、下側ターミナル単位280においても、発電単位102から下側ターミナルプレート80aへの2つ導電経路を有している。このため、下側ターミナル単位280においても、発電単位102から下側ターミナルプレート80aへの導電経路が1つである構成と比較して、発電単位102と下側ターミナルプレート80aとの間の電気抵抗を低減することができる。また、下側ターミナル単位280においても、上記2つの導電経路のうちの一方の導電経路において、発電単位102と下側ターミナルプレート80aとの間の電気的接続の不良が発生した場合であっても、他方の導電経路により両者の電気的接続を確保することができる。従って、本実施形態の燃料電池スタック100aによれば、発電単位102において生成された電気エネルギーの良好な取出しをより効果的に確保することにより、燃料電池スタック100aの電気的性能をより効果的に維持することができる。
C.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態における燃料電池スタック100の構成や燃料電池スタック100を構成する各部分の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、接続部材48が配置される上側特定空間58は、燃料ガス供給マニホールド171に連通し、燃料ガス排出マニホールド172に連通していないが、反対に、上側特定空間58は、燃料ガス排出マニホールド172に連通し、燃料ガス供給マニホールド171に連通していないとしてもよい。このような構成を採用しても、燃料ガス排出マニホールド172から流入するガス(燃料オフガスFOG)によって上側特定空間58が還元雰囲気に維持され、接続部材48の導電性部44の酸化が抑制され、該酸化に伴う電気抵抗の増大に起因する、導電性部44を介したインターコネクタ190とカバー部材50との間の電気的接続の不良の発生を抑制することができる。また、上側特定空間58が燃料ガス供給マニホールド171とは連通していないため、燃料ガス排出マニホールド172から流入したガス(燃料オフガスFOG)によって上側特定空間58が満たされた後には、上側特定空間58へのガスのさらなる流入が抑制され、発電に寄与しない上側特定空間58へのガスの流通を抑制することができ、燃料電池スタック100の効率を向上させることができる。このように、上側特定空間58が、燃料ガス供給マニホールド171と燃料ガス排出マニホールド172との一方と連通し、他方と連通していない構成を採用すれば、燃料電池スタック100の効率の低下を抑制しつつ、上側特定空間58内に配置された接続部材48の導電性部44の酸化に起因するインターコネクタ190とカバー部材50との間の電気的接続の不良の発生を抑制することができる。なお、燃料電池スタック100aにおける第1の下側特定空間58aについても、上記と同様である。
また、上記実施形態における接続部材48の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、接続部材48のカバー部材対向部45とインターコネクタ対向部46とがZ軸方向に並んだ位置にあり、両者の間に弾性部49が挟持された構成であるが、例えば特開2016-66415号公報に記載されているように、カバー部材対向部45とインターコネクタ対向部46とがZ軸方向に並ばず、カバー部材対向部45とインターコネクタ190との間に一の弾性部49が挟持され、インターコネクタ対向部46とカバー部材50との間に他の一の弾性部49が挟持された構成を採用してもよい。このような構成であっても、導電性部44の一部分(インターコネクタ対向部46)がZ軸方向においてインターコネクタ190と弾性部49との間に配置され、導電性部44の他の一部分(カバー部材対向部45)がZ軸方向においてカバー部材50と弾性部49との間に配置された構成とすることができ、接続部材48の導電性部44により、インターコネクタ190とカバー部材50との電気的接続を確保しつつ、接続部材48の弾性部49により、燃料電池スタック100の運転時における単セル110の変形に対する追従性を確保することができる。なお、燃料電池スタック100aにおける接続部材48aについても、上記と同様である。
また、上記実施形態における接続部材48は、最上位インターコネクタ190Xとカバー部材50との電気的接続を確保可能な構成であればよい。すなわち、上記構成に代えて、インターコネクタ190における空気極側集電部134と同様の構成を採用してもよい。具体的には、接続部材48は、カバー部材50から上側特定空間58側に複数の略柱状の導電性部材が突出するように構成されていてもよい。なお、燃料電池スタック100aにおける接続部材48aについても、上記と同様である。
また、上記実施形態では、最上位IC用セパレータ180Xは、上側ターミナルプレート70と、最上位インターコネクタ190Xとに、それぞれ溶接によって接合されており、カバー用セパレータ60は、上側ターミナルプレート70と、カバー部材50とに、それぞれ溶接によって接合されているが、その全てまたは少なくとも一部が溶接と異なる方法により互いに電気的に接続されていてもよい。また、燃料電池スタック100aにおける最下位IC用セパレータ180Yおよびカバー用セパレータ60aについても、上記と同様である。また、燃料電池スタック100,100aにおけるIC用セパレータ180についても、上記と同様である。
また、上記実施形態では、IC用セパレータ180およびカバー用セパレータ60の連結部188,68が、内側部186,66および外側部187,67より下側に突出するように湾曲した形状となっているが、反対に上側に突出するように湾曲した形状となっていてもよい。このような構成においても、IC用セパレータ180およびカバー用セパレータ60が、Z軸方向における位置が内側部186,66および外側部187,67とは異なる連結部188,68を含んでいるので、Z軸方向に垂直な方向に容易に伸び縮みするばね性を有し、接続部材48や単セル110等に発生する応力を緩和することができ、該応力に起因するインターコネクタ190と単セル110との間の電気的接続の不良やインターコネクタ190とカバー部材50との間の電気的接続の不良の発生を抑制することができる。なお、燃料電池スタック100aにおけるカバー用セパレータ60aについても、上記と同様である。
また、上記実施形態では、一対のエンドプレート104,106に孔32,34が形成されているが、一対のエンドプレート104,106の少なくとも一方について該孔32,34が形成されていなくてもよい。
また、上記実施形態では、インターコネクタ190は導電性の被覆層194を含んでいるが、インターコネクタ190が該被覆層194を含んでいなくてもよい。また、上記実施形態では、単セル110が中間層118を有しているが、単セル110が中間層118を有さないとしてもよい。また、上記実施形態において、燃料電池スタック100に含まれる単セル110の個数(発電単位102の個数)は、あくまで一例であり、単セル110の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。また、上記実施形態における各部材を構成する材料は、あくまで例示であり、各部材が他の材料により構成されていてもよい。
また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行う燃料電池スタック100を対象としているが、本明細書に開示される技術は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解単セルを複数備える電解セルスタックにも同様に適用可能である。
また、上記実施形態では、固体酸化物形燃料電池(SOFC)を例に説明したが、本明細書に開示される技術は、溶融炭酸塩形燃料電池(MCFC)といった他のタイプの燃料電池(または電解セル)にも適用可能である。
22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 32,34:孔 44:導電性部 45:カバー部材対向部 46:インターコネクタ対向部 47:連接部 48:接続部材 48a:接続部材 49:弾性部 50:カバー部材 50a:カバー部材 58:上側特定空間 58a:第1の下側特定空間 59:第2の下側特定空間 60:カバー用セパレータ 60a:カバー用セパレータ 61:孔 61a:孔 66:内側部 67:外側部 68:連結部 70:上側ターミナルプレート 71:孔 72:燃料ガス供給連通孔 78:突出部 80:下側ターミナルプレート 80a:下側ターミナルプレート 81:孔 82:燃料ガス供給連通孔 83:平板部材 88:突出部 92:上側絶縁シート 94:孔 96:下側絶縁シート 100:燃料電池スタック 100a:燃料電池スタック 102:発電単位 102X:上側特定発電単位 102Y:下側特定発電単位 103:発電ブロック 104:上側エンドプレート 106:下側エンドプレート 108:連通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 118:中間層 120:単セル用セパレータ 121:孔 124:接合部 125:ガラスシール部 126:内側部 127:外側部 128:連結部 130:空気極側フレーム 131:孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電部 140:燃料極側フレーム 141:孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:導電性部 145:電極対向部 146:インターコネクタ対向部 147:連接部 148:燃料極側集電部材 149:弾性部 150:平板部 161:酸化剤ガス供給マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス供給マニホールド 172:燃料ガス排出マニホールド 176:燃料室 180:IC用セパレータ 180X:最上位IC用セパレータ 180Y:最下位IC用セパレータ 181:孔 181X:孔 181Y:孔 186:内側部 187:外側部 188:連結部 190:インターコネクタ 190X:最上位インターコネクタ 190Y:最下位インターコネクタ 194:被覆層 196:導電性接合材 211:溶接部 211a:溶接部 212:溶接部 212a:溶接部 221:溶接部 221a:溶接部 222:溶接部 222a:溶接部 231:溶接部 232:溶接部 241:溶接部 270:上側ターミナル単位 280:下側ターミナル単位 FG:燃料ガス FOG:燃料オフガス OG:酸化剤ガス OOG:酸化剤オフガス OP:穴 SL:切り込み

Claims (6)

  1. 第1の方向に並べて配置された複数の電気化学反応単位から構成される電気化学反応ブロックであって、各前記電気化学反応単位は、電解質層と、前記電解質層を挟んで前記第1の方向に互いに対向する空気極および燃料極とを含む電気化学反応単セルを有する、電気化学反応ブロックと、
    前記電気化学反応ブロックに対して前記第1の方向の一方側に配置された第1のターミナル単位であって、前記電気化学反応ブロックに電気的に接続された第1のターミナル単位と、
    前記第1のターミナル単位に対して前記第1の方向の前記一方側に配置された、絶縁性の第1の絶縁部材と、
    前記第1の絶縁部材に対して前記第1の方向の前記一方側に配置された、導電性の第1のエンド部材と、
    を備える電気化学反応セルスタックにおいて、
    前記第1の絶縁部材には、前記第1の方向に貫く第1の貫通孔が形成されており、
    前記第1のエンド部材には、前記第1の貫通孔に連通し、かつ、前記第1の方向に貫く第2の貫通孔が形成されており、
    前記第1のターミナル単位は、
    前記第1の方向に貫く第3の貫通孔が形成された、導電性のターミナル部材と、
    前記第1の方向視において前記ターミナル部材の前記第3の貫通孔に重なり、かつ、前記ターミナル部材に対して前記第1の方向の他方側に配置された、導電性の第1の導電部材と、
    前記第1の方向視において前記ターミナル部材の前記第3の貫通孔に重なり、かつ、前記第1の導電部材に対して前記第1の方向の前記一方側に配置された、導電性の第2の導電部材と、
    前記第1の導電部材と前記第2の導電部材との間の空間である第1の特定空間に配置された接続部材であって、前記第1の導電部材と前記第2の導電部材とを電気的に接続する接続部材と、
    第4の貫通孔が形成され、かつ、前記第4の貫通孔を取り囲む部分である貫通孔周囲部が前記第1の導電部材の周縁部と電気的に接続された第1のセパレータであって、前記第1の特定空間と、前記第1の方向における前記第1の導電部材の表面のうち、前記第1の特定空間に面している表面とは反対側の表面に面する第2の特定空間とを区画する、導電性の第1のセパレータと、
    第5の貫通孔が形成され、かつ、前記第5の貫通孔を取り囲む部分である貫通孔周囲部が前記第2の導電部材の周縁部と電気的に接続された第2のセパレータであって、前記第1の特定空間を画定する、導電性の第2のセパレータと、を備えるターミナル構造であって、
    前記ターミナル部材は、少なくとも前記第1のセパレータと前記第2のセパレータとに、電気的に接続されている、ターミナル構造を有する、
    ことを特徴とする電気化学反応セルスタック。
  2. 請求項1に記載の電気化学反応セルスタックにおいて、
    前記第1のセパレータと前記第2のセパレータとは、それぞれ、
    前記貫通孔周囲部を含む内側部と、
    前記内側部より外周側に位置する外側部と、
    前記内側部と前記外側部とを連結し、かつ、前記内側部と前記外側部との両方に対して、前記第1の方向の前記他方側に突出している連結部と、を有する、
    ことを特徴とする電気化学反応セルスタック。
  3. 請求項1または請求項2に記載の電気化学反応セルスタックにおいて、
    前記第1のセパレータは、前記ターミナル部材と、前記第1の導電部材とに、それぞれ溶接によって接合されており、
    前記第2のセパレータは、前記ターミナル部材と、前記第2の導電部材とに、それぞれ溶接によって接合されている、
    ことを特徴とする電気化学反応セルスタック。
  4. 請求項1から請求項3までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記接続部材は、
    少なくとも1つの弾性部と、
    前記第1の導電部材と前記第2の導電部材とを電気的に接続する導電性部であって、前記導電性部の一部分が前記第1の方向において前記第1の導電部材と前記弾性部との間に配置され、前記導電性部の他の一部分が前記第1の方向において前記第2の導電部材と前記弾性部との間に配置された、導電性部と、
    を有する、
    ことを特徴とする電気化学反応セルスタック。
  5. 請求項1から請求項4までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記電気化学反応ブロックに対して前記第1の方向の前記他方側に配置された第2のターミナル単位であって、前記電気化学反応ブロックに電気的に接続された第2のターミナル単位と、
    前記第2のターミナル単位に対して前記第1の方向の前記他方側に配置された、絶縁性の第2の絶縁部材と、
    前記第2の絶縁部材に対して前記第1の方向の前記他方側に配置された、導電性の第2のエンド部材と、を備え、
    前記第2のターミナル単位は、前記ターミナル構造を有する、
    ことを特徴とする電気化学反応セルスタック。
  6. 請求項1から請求項5までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記電気化学反応単セルは、燃料電池単セルである、
    ことを特徴とする電気化学反応セルスタック。
JP2020120429A 2020-07-14 2020-07-14 電気化学反応セルスタック Active JP7132287B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020120429A JP7132287B2 (ja) 2020-07-14 2020-07-14 電気化学反応セルスタック
DE102021117551.8A DE102021117551A1 (de) 2020-07-14 2021-07-07 Elektrochemischer Reaktionszellenstapel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020120429A JP7132287B2 (ja) 2020-07-14 2020-07-14 電気化学反応セルスタック

Publications (2)

Publication Number Publication Date
JP2022017721A JP2022017721A (ja) 2022-01-26
JP7132287B2 true JP7132287B2 (ja) 2022-09-06

Family

ID=79021229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020120429A Active JP7132287B2 (ja) 2020-07-14 2020-07-14 電気化学反応セルスタック

Country Status (2)

Country Link
JP (1) JP7132287B2 (ja)
DE (1) DE102021117551A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317490A (ja) 2006-05-25 2007-12-06 Ngk Spark Plug Co Ltd 固体電解質形燃料電池スタック
JP2015159106A (ja) 2014-01-23 2015-09-03 日本特殊陶業株式会社 燃料電池カセット及びその製造方法、燃料電池スタック
JP2015204261A (ja) 2014-04-16 2015-11-16 日本特殊陶業株式会社 燃料電池スタック
JP2020009744A (ja) 2018-06-29 2020-01-16 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317222B2 (ja) 2014-09-22 2018-04-25 日本特殊陶業株式会社 固体酸化物形燃料電池スタック
JP6890040B2 (ja) 2017-05-30 2021-06-18 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317490A (ja) 2006-05-25 2007-12-06 Ngk Spark Plug Co Ltd 固体電解質形燃料電池スタック
JP2015159106A (ja) 2014-01-23 2015-09-03 日本特殊陶業株式会社 燃料電池カセット及びその製造方法、燃料電池スタック
JP2015204261A (ja) 2014-04-16 2015-11-16 日本特殊陶業株式会社 燃料電池スタック
JP2020009744A (ja) 2018-06-29 2020-01-16 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック

Also Published As

Publication number Publication date
DE102021117551A1 (de) 2022-01-20
JP2022017721A (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
JP6868051B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7254755B2 (ja) 電気化学反応セルスタックの製造方法
JP6917416B2 (ja) 電気化学反応セルスタック
JP2019200877A (ja) 電気化学反応単位および電気化学反応セルスタック
JP7210508B2 (ja) 電気化学反応セルスタック
JP6835768B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6893126B2 (ja) 電気化学反応セルスタック
JP7194242B1 (ja) 電気化学反応セルスタック
JP6945035B1 (ja) 電気化学反応セルスタック
JP7132287B2 (ja) 電気化学反応セルスタック
JP6873944B2 (ja) 電気化学反応セルスタック
JP2018041569A (ja) 電気化学反応単位および電気化学反応セルスタック
JP7232224B2 (ja) 電気化学反応セルスタック
JP7112443B2 (ja) 電気化学反応セルスタック
JP7316258B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7507738B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7186199B2 (ja) 電気化学反応セルスタック
JP2019200878A (ja) 電気化学反応単位および電気化学反応セルスタック
JP7159249B2 (ja) 電気化学反応セルスタックおよびic-単セル複合体
JP7071422B2 (ja) 電気化学反応セルスタック
JP7301094B2 (ja) 電気化学反応セルスタック
JP7169333B2 (ja) 電気化学反応セルスタック
JP6893127B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7249981B2 (ja) 電気化学反応セルスタック
JP7159126B2 (ja) 電気化学反応セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7132287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150