JP7128309B2 - Chamfered substrate manufacturing method and chamfering apparatus used therefor - Google Patents

Chamfered substrate manufacturing method and chamfering apparatus used therefor Download PDF

Info

Publication number
JP7128309B2
JP7128309B2 JP2021034996A JP2021034996A JP7128309B2 JP 7128309 B2 JP7128309 B2 JP 7128309B2 JP 2021034996 A JP2021034996 A JP 2021034996A JP 2021034996 A JP2021034996 A JP 2021034996A JP 7128309 B2 JP7128309 B2 JP 7128309B2
Authority
JP
Japan
Prior art keywords
workpiece
grinding
sloped surface
chamfered
chamfered portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021034996A
Other languages
Japanese (ja)
Other versions
JP2021094693A (en
Inventor
真一 岸下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2021034996A priority Critical patent/JP7128309B2/en
Publication of JP2021094693A publication Critical patent/JP2021094693A/en
Application granted granted Critical
Publication of JP7128309B2 publication Critical patent/JP7128309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、シリコン、サファイア、化合物、ガラス等の様々な素材、特に半導体ウエーハ、ガラスパネル等の板状被加工材の端面における高精度な面取り基板の製造方法及び装置に関し、平面形状の端部に円形以外の直線部を有する被加工材の端面加工に好適である。 The present invention relates to a method and apparatus for manufacturing a highly accurate chamfered substrate at the end face of various materials such as silicon, sapphire, compounds, and glass, particularly semiconductor wafers, glass panels, and other plate-shaped workpieces. It is suitable for processing the end face of a workpiece having a linear portion other than a circular shape.

近年、ウエーハの品質向上の要求が強く、ウエーハ端面(エッジ部)の加工状態が重要視され、半導体デバイス等の作製に使用されるシリコンウエーハ等の半導体ウエーハは、ハンドリングによるチッピングを防止するため、縁部を研削することで面取り加工が行われ、研磨による鏡面面取り加工が行われている。つまり、半導体製造工程において、ウエーハ製造からデバイス製造に至るまで、エッジ特性の品質改善は必要不可欠なプロセスとなっている。 In recent years, there has been a strong demand for improved quality of wafers, and the processing state of the wafer end face (edge portion) has been emphasized. Chamfering is performed by grinding the edge, and mirror-like chamfering is performed by polishing. In other words, in the semiconductor manufacturing process, from wafer manufacturing to device manufacturing, quality improvement of edge characteristics is an essential process.

シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も含まれる。 Silicon and other materials are hard and brittle, and if the edge of the wafer remains sharp during slicing, it can easily break or chip during handling such as transportation and positioning in subsequent processing steps, and the fragments can damage or contaminate the wafer surface. or In order to prevent this, the end face of the cut wafer is chamfered with a diamond-coated chamfering whetstone. At this time, it also includes adjusting the diameter of the outer circumference, which varies, adjusting the width of the orientation flat (OF), and adjusting the size of a very small notch called a notch.

また、スマートフォンやタブレットに用いられる、薄型化、軽量化が追求されたガラス基板には、マスキング印刷、センサー電極の形成、その後に切断することが行われ、面取りの加工品質、加工面粗さ、マイクロクラックの発生などがガラス基板の端面強度に直接影響する。 In addition, for the glass substrates used in smartphones and tablets, where thinning and weight reduction are pursued, masking printing, formation of sensor electrodes, and then cutting are carried out. The occurrence of microcracks and the like directly affects the edge strength of the glass substrate.

さらに、通常の研削ではレジン砥石の回転軸に対してウエーハWの主面が垂直となる状態で面取り部を研削するが、この場合、面取り部には円周方向の研削痕が発生し易い。そこで、ウエーハに対して例えばレジンボンド砥石(レジン砥石)を傾けてウエーハの面取り部を研削する、いわゆるヘリカル研削を行うことが知られている。 Furthermore, in normal grinding, the chamfered portion is ground with the main surface of the wafer W perpendicular to the rotation axis of the resin grindstone. Therefore, it is known to perform so-called helical grinding, in which, for example, a resin bond grindstone (resin grindstone) is tilted with respect to the wafer to grind the chamfered portion of the wafer.

ヘリカル研削を行うと、通常研削に比べ面取り部の加工歪みを低減させるだけでなく、ウエーハの面取り部と砥石との接触領域が増えて面取り部の表面粗さが改善される効果が得られる。 When helical grinding is performed, not only does processing strain on the chamfered portion be reduced compared to normal grinding, but also the contact area between the chamfered portion of the wafer and the grindstone is increased to improve the surface roughness of the chamfered portion.

さらに、レジン砥石等により半導体ウエーハの面取り部をヘリカル研削する際、面取り部の連続加工を行うとレジン砥石の溝の上下の角度が徐々に変化する結果、ウエーハの面取り部の上下非対称性が一層大きくなる。そのため、上下非対称の形状の溝が周囲に形成された第1の砥石の溝で円盤状のツルアーの縁部を研削してツルアーの縁部を上下非対称の溝形状に成形し、ツルアーと第2の砥石とを相対的に傾けて該第2の砥石の周囲に溝を形成し、第2の砥石により溝方向に対してウエーハを相対的に傾けて上下略対称のレジン砥石を得て、面取り部を精研削することが知られ、例えば特許文献1に記載されている。 Furthermore, when the chamfered portion of a semiconductor wafer is helically ground with a resin grindstone or the like, continuous processing of the chamfered portion gradually changes the vertical angle of the groove of the resin grindstone, resulting in a further asymmetry of the chamfered portion of the wafer. growing. Therefore, the edge of the disk-shaped lure is ground by the groove of the first whetstone having a vertically asymmetric groove formed around it, and the edge of the disk-shaped lure is formed into a vertically asymmetric groove shape. The whetstone is relatively tilted to form a groove around the second whetstone, and the wafer is relatively tilted with respect to the groove direction by the second whetstone to obtain a substantially symmetrical resin whetstone, followed by chamfering. It is known to finely grind the part and is described, for example, in US Pat.

また、面取り用砥石の回転軸をウエーハの回転軸に対して所定角度傾斜させた面取り方法において、外周研削砥石にウエーハ外周部と、OF部用の加工溝を形成することが知られ、例えば特許文献2に記載されている。 In addition, in a chamfering method in which the rotation axis of the grindstone for chamfering is inclined at a predetermined angle with respect to the rotation axis of the wafer, it is known to form processing grooves for the outer peripheral portion of the wafer and the OF portion on the outer peripheral grinding wheel. It is described in Reference 2.

さらに、ノッチ部の面取り幅を一定にするため、砥石を面取り中にウエーハの厚さ方向に相対的に移動させることが知られ、特許文献3に記載されている。 Furthermore, it is known to relatively move the grindstone in the thickness direction of the wafer during chamfering in order to keep the chamfering width of the notch portion constant.

特開2007-165712号公報JP 2007-165712 A 特開2007-21586号公報JP-A-2007-21586 特開2005-153129号公報JP 2005-153129 A

上記従来技術において、特許文献1に記載のものでは、上下非対称の形状の溝が周囲に形成された第1の砥石が必要で、その形状の決定が困難である。また、円形のウエーハの場合は全周で同じ形状で済むので一意的に決定できるが、OFの付いたウエーハ基板、角に円弧が付いた矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部がある場合には、さらに困難であるばかりか、レジン砥石の溝の上下の角度の変化も円形部から非円形部へ移る位置、角部で大きくなり、全周をヘリカル研削することは極めて困難であった。つまり、角を有する基板(ワーク)の角部では砥石の溝の上面と下面のうちの片方のみ当たる片当たりが発生し、良好な面取りができなかった。 In the prior art described above, the one described in Patent Document 1 requires a first grindstone around which grooves having a vertically asymmetrical shape are formed, and it is difficult to determine the shape of the first grindstone. In the case of a circular wafer, the shape can be uniquely determined because the same shape is sufficient for the entire circumference. When there is a part and a non-circular part, not only is it more difficult, but the change in the vertical angle of the groove of the resin grindstone also increases at the position where the circular part moves to the non-circular part and at the corners, and the entire circumference must be helically ground. was extremely difficult to do. In other words, at the corners of the substrate (work) having corners, only one of the upper surface and the lower surface of the groove of the grindstone was hit, and good chamfering was not possible.

特許文献2に記載のものでは、研削工程が複雑化し、円形部が主体で非円形部が少ない場合には良いが、矩形又は多角形の場合には適用が困難であった。 The method described in Patent Literature 2 complicates the grinding process and is good for circular parts with few non-circular parts, but is difficult to apply to rectangular or polygonal parts.

特許文献3に記載のものでは、砥石を面取り中にウエーハの厚さ方向に相対的に移動させながら行わなければならないため、面取りの精度を上げるためにはウエーハあるいは砥石の厚さ方向のコントロールが複雑で困難であった。 In the method disclosed in Patent Document 3, since the grindstone must be moved relatively in the thickness direction of the wafer during chamfering, it is necessary to control the wafer or the grindstone in the thickness direction in order to improve the chamfering accuracy. It was complicated and difficult.

本発明の目的は、上記従来技術の課題を解決し、OF(オリフラ)の付いたウエーハ基板、矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部とを有するものでもヘリカル研削を容易に可能として被加工物と砥石との接触領域を増やし、表面粗さを良好にし、形状崩れを改善することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a helical wafer substrate having an OF (orientation flat), a rectangular or polygonal wafer, a substrate, a cover glass, or the like, even if it has a circular portion and a non-circular portion. To facilitate grinding, increase the contact area between a workpiece and a grindstone, improve the surface roughness, and improve shape collapse.

上記目的を達成するため、本発明は、角部と直線部とを有する板状の被加工材の端面を研削砥石の研削溝で研削する面取り基板の製造方法であって、前記被加工材の平面を厚さ方向に、前記被加工材の外周形状よりも小さいチャックテーブルで吸着し、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して前記研削砥石の回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接し、前記被加工材の上部の面取り部が前記研削溝の上面斜面に接触し、前記被加工材の下部の面取り部が前記研削溝の下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて前記被加工材の下部の面取り部が前記下面斜面に接触し、前記上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、あるいは、前記被加工材の下部の面取り部が前記下面斜面に接触し、前記被加工材の上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて前記被加工材の上部の面取り部が前記上面斜面に接触し、前記下部の面取り部が前記下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行うIn order to achieve the above object, the present invention provides a chamfered substrate manufacturing method for grinding an end surface of a plate-shaped workpiece having corners and straight portions with a grinding groove of a grinding wheel, the method comprising: A chuck table smaller than the outer peripheral shape of the workpiece is used to suck the plane in the thickness direction, and the rotation axis of the grinding wheel is tilted with respect to the axis in the thickness direction perpendicular to the plane of the workpiece. , the grinding groove is pressed against the end surface of the workpiece in the vertical direction and abutted thereon, the upper chamfered portion of the workpiece is in contact with the upper slope of the ground groove, and the lower chamfered portion of the workpiece is Grinding the upper chamfered portion on the upper sloped surface without contacting the lower sloped surface of the grinding groove is continuously performed on the entire circumference including the corners of the end surface of the workpiece, and then the grinding wheel. is relatively raised in the thickness direction with respect to the work material so that the lower chamfered portion of the work material contacts the lower sloped surface and the upper chamfered portion does not contact the upper sloped surface. The chamfered portion of the lower portion of the workpiece is ground on the inclined surface of the lower surface by continuously grinding the entire circumference including the corners of the end surface of the workpiece, or the chamfered portion of the lower portion of the workpiece is ground on the inclined surface of the lower surface. The lower chamfered portion of the workpiece is ground on the lower sloped surface so that the upper chamfered portion of the workpiece does not contact the upper sloped surface, and the entire circumference including the corners of the end surface of the workpiece is ground. After that, the grinding wheel is lowered relative to the workpiece in the thickness direction so that the upper chamfered portion of the workpiece contacts the upper sloped surface, and the lower chamfered portion is The chamfered portion of the upper portion is continuously ground on the upper sloped surface so that the chamfered portion does not come into contact with the lower sloped surface .

また、上記において、前記研削溝の幅を前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。 In the above, it is preferable that the width of the grinding groove is made larger than the apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.

さらに、上記において、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。 Further, in the above, the upper part of the end face of the workpiece is ground by the grinding groove, and then the grinding wheel is raised in the thickness direction relatively to the workpiece and ground again, or It is preferable that the lower part of the end surface of the workpiece is ground by the grinding groove, and then the grinding wheel is lowered relative to the workpiece in the thickness direction to grind the workpiece again.

さらに、上記において、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。 Further, in the above, the upper or lower part of the end surface of the workpiece is ground over the entire circumference so as to make one round with the grinding groove, and then the grinding wheel is moved relatively to the workpiece. It is preferable to raise or lower in the thickness direction and further grind one round.

さらに、上記において、前記研削砥石の回転軸を3~15°傾けることが好ましい。 Furthermore, in the above, it is preferable to incline the rotation axis of the grinding wheel by 3 to 15 degrees.

さらに、上記において、前記被加工材の端面の加工は、それぞれ前記被加工材の端面の上部の研削、中央部の研削、下部の研削とで行われることが好ましい。 Furthermore, in the above, it is preferable that the processing of the end face of the work material is performed by grinding the upper part, the center part, and the lower part of the end face of the work material, respectively.

さらに、上記において、前記上部の研削、中央部の研削、下部の研削は、それぞれ前記被加工材の端面を全周に渡って前記研削溝で1周するように行われることが好ましい。 Further, in the above, it is preferable that the grinding of the upper portion, the grinding of the central portion, and the grinding of the lower portion be performed so as to make one turn along the grinding groove over the entire circumference of the end surface of the workpiece.

また、本発明は、角部と直線部とを有する板状の被加工材の端面を研削砥石の研削溝で面取り加工する面取り装置において、前記被加工材の平面を厚さ方向に吸着し、前記被加工材の外周形状よりも小さいチャックテーブルと、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接する前記研削砥石と、を備え、前記被加工材の上部の面取り部が前記研削溝の上面斜面に接触し、前記被加工材の下部の面取り部が前記研削溝の下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて前記被加工材の下部の面取り部が前記下面斜面に接触し、前記上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、あるいは、前記被加工材の下部の面取り部が前記下面斜面に接触し、前記被加工材の上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて前記被加工材の上部の面取り部が前記上面斜面に接触し、前記下部の面取り部が前記下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行うものである。 Further, the present invention provides a chamfering device for chamfering an end surface of a plate-shaped work piece having corners and straight portions with a grinding groove of a grinding wheel, wherein the flat surface of the work piece is sucked in the thickness direction, A chuck table that is smaller than the outer peripheral shape of the workpiece, and a rotation axis that is tilted with respect to the axis in the thickness direction that is perpendicular to the plane of the workpiece, so that the grinding groove is perpendicular to the end surface of the workpiece. a chamfered portion of the upper portion of the workpiece contacts the upper sloped surface of the grinding groove, and a chamfered portion of the lower portion of the workpiece contacts the lower sloped surface of the grinding groove. Grinding the chamfered portion of the upper part on the upper slope without contacting the workpiece is continuously performed on the entire circumference including the corners of the end face of the workpiece, and then the grinding wheel is applied to the workpiece. The lower chamfered portion of the workpiece is relatively raised in the thickness direction so that the lower chamfered portion of the workpiece contacts the lower sloped surface, and the upper chamfered portion does not contact the upper sloped surface. Grinding on the lower sloped surface is continuously performed on the entire circumference including the corners of the end surface of the workpiece, or the chamfered portion of the lower part of the workpiece contacts the lower sloped surface, and the workpiece Grinding the chamfered portion of the lower portion on the inclined surface of the lower surface so that the chamfered portion of the upper portion of the material does not contact the inclined surface of the upper surface is continuously performed around the entire circumference including the corners of the end surface of the workpiece, and then and lowering the grinding wheel relative to the workpiece in the thickness direction so that the upper chamfered portion of the workpiece contacts the upper sloped surface and the lower chamfered portion contacts the lower sloped surface. The chamfered portion of the upper portion is ground on the inclined surface of the upper surface so as not to be in contact with each other, and the whole circumference including the corners of the end surface of the workpiece is continuously performed .

さらに、上記のものにおいて、前記研削溝の幅は、前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。 Furthermore, in the above-mentioned apparatus, it is preferable that the width of the grinding groove is made larger than the apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.

さらに、上記のものにおいて、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。 Further, in the above, the upper part of the end surface of the workpiece is ground with the grinding groove, and then the grinding wheel is raised in the thickness direction relative to the workpiece and ground again; Alternatively, it is preferable to grind the lower part of the end face of the workpiece with the grinding groove, and then lower the grinding wheel relative to the workpiece in the thickness direction to grind the workpiece again.

さらに、上記のものにおいて、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。 Further, in the above-described one, the upper or lower part of the end surface of the workpiece is ground over the entire circumference so as to make one round with the grinding groove, and then the grinding wheel is placed relative to the workpiece. It is preferable to raise or lower in the thickness direction and then grind one round.

さらに、上記のものにおいて、前記研削砥石の回転軸は3~15°傾けられたことが好ましい。 Further, in the above, it is preferable that the rotation axis of the grinding wheel is tilted by 3 to 15 degrees.

さらに、上記のものにおいて、前記被加工材の端面の加工は、端面の上部の研削と、中央部の研削と、下部の研削とをそれぞれ行うことが好ましい。 Further, in the above-described device, it is preferable that the end face of the workpiece be processed by grinding the upper part of the end face, grinding the center part, and grinding the lower part of the end face.

本発明によれば、矩形又は多角形の被加工材であっても、ヘリカル研削を可能として、表面粗さを良好にし、形状崩れを少なくすることができる。 According to the present invention, even a rectangular or polygonal workpiece can be helically ground, the surface roughness can be improved, and the shape deformation can be reduced.

本発明の一実施形態に係る面取り装置の主要部を示す平面図1 is a plan view showing the main parts of a chamfering device according to one embodiment of the present invention; FIG. 一実施形態における加工部の構成を示す斜視図(被加工材が円形と直線部)FIG. 2 is a perspective view showing the configuration of a processing portion according to one embodiment (workpieces are circular and linear portions); 図2における平面図Plan view in FIG. 一実施形態における加工部の構成を示す斜視図(被加工材が主に直線部)FIG. 2 is a perspective view showing the configuration of a processing portion in one embodiment (the workpiece is mainly a straight portion); 図4における平面図Plan view in FIG. 被加工材と研削砥石の上下端部との当接を説明する平面図FIG. 4 is a plan view for explaining the contact between the workpiece and the upper and lower ends of the grinding wheel; 従来の板材の端面加工のヘリカル研削を示す斜視図Perspective view showing conventional helical grinding for edge processing of plate material 従来の研削と一実施形態による研削との違いを説明する側面図Side view for explaining the difference between conventional grinding and grinding according to one embodiment 一実施形態による面取り基板の製造方法により加工された被加工材の端面を示す側面図FIG. 2 is a side view showing an end face of a workpiece processed by a chamfered substrate manufacturing method according to one embodiment; 他の実施形態による面取り基板の製造方法を示す側面図Side view showing a method for manufacturing a chamfered substrate according to another embodiment 本発明の実施形態に係る研削砥石と被加工材との詳細を示す側面図FIG. 2 is a side view showing details of a grinding wheel and a workpiece according to an embodiment of the present invention;

以下に、本発明の実施形態について図面を参照して詳細に説明する。この実施形態により発明が限定されるものでなく、実施形態における構成要素には当業者が容易に想定できるもの、あるいは実質的に同一のものも含まれる。 BEST MODE FOR CARRYING OUT THE INVENTION Below, embodiments of the present invention will be described in detail with reference to the drawings. The invention is not limited by these embodiments, and the constituent elements in the embodiments include those that can be easily assumed by those skilled in the art, or those that are substantially the same.

図1は本発明の一実施形態に係る面取り装置の主要部を示す平面図である。面取り装置は、主に供給回収部20、加工部10を有し、その他図示していないが、プリアライメント部、洗浄部、後測定部、搬送部等から構成される。 FIG. 1 is a plan view showing the main part of a chamfering device according to one embodiment of the present invention. The chamfering apparatus mainly has a supply/recovery section 20 and a processing section 10, and also includes a pre-alignment section, a cleaning section, a post-measurement section, a transfer section, and the like (not shown).

ウエーハ加工工程は、スライス→面取り→ラップ→エッチング→ドナーキラー→精面取りの順で行われ、工程間には汚れを取り除くため、各種洗浄が用いられる。シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、面取り工程では切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。 Wafer processing steps are performed in the order of slicing→chamfering→lapping→etching→donor killer→precision chamfering, and various types of cleaning are used between the steps to remove dirt. Silicon, etc. is hard and brittle, and if the edge of the wafer remains sharp during slicing, it can easily break or chip during handling such as transportation and alignment in subsequent processing steps, and the fragments can damage or contaminate the wafer surface. or In order to prevent this, in the chamfering step, the end face of the cut wafer is chamfered with a diamond-coated chamfering grindstone.

面取り工程は、ラッピング工程の後に行なわれることもある。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も行われる。 The chamfering process may also be performed after the lapping process. At this time, the diameter of the outer periphery, which varies, is adjusted, the width of the orientation flat (OF) is adjusted, and the dimensions of minute cutouts called notches are adjusted.

供給回収部20は、面取り加工するウエーハWをウエーハカセット30から加工部10に供給すると共に、面取り加工されたウエーハをウエーハカセット30に回収する。この動作は供給回収ロボット40で行われる。ウエーハカセット30は、カセットテーブル31にセットされ、面取り加工するウエーハWが多数枚収納されている。供給回収ロボット40はウエーハカセット30からウエーハWを1枚ずつ取り出したり、面取り加工されたウエーハをウエーハカセット30に収納したりする。 The supply/recovery unit 20 supplies the wafers W to be chamfered from the wafer cassette 30 to the processing unit 10 and recovers the chamfered wafers to the wafer cassette 30 . This operation is performed by the supply/collection robot 40 . A wafer cassette 30 is set on a cassette table 31 and contains a large number of wafers W to be chamfered. The supply/recovery robot 40 takes out the wafers W one by one from the wafer cassette 30 and stores chamfered wafers in the wafer cassette 30 .

供給回収ロボット40は3軸回転型の搬送アーム50を備えており、搬送アーム50は、その上面部に図示しない吸着パッドを備えている。搬送アーム50は、吸着パッドでウエーハWの裏面を真空吸着してウエーハWを保持する。すなわち、この供給回収ロボット40の搬送アーム50は、ウエーハWを保持した状態で前後、昇降移動、及び旋回することができ、この動作を組み合わせることによりウエーハWの搬送を行う。 The supply/recovery robot 40 has a three-axis rotating transfer arm 50, and the transfer arm 50 has a suction pad (not shown) on its upper surface. The transport arm 50 holds the wafer W by vacuum-sucking the rear surface of the wafer W with a suction pad. That is, the transfer arm 50 of the supply/recovery robot 40 can move back and forth, move up and down, and turn while holding the wafer W. The wafer W is transferred by combining these movements.

加工部10はウエーハ面取り装置の正面部に配置されており、ウエーハWの外周面取りの全加工、すなわち、粗加工から仕上げ加工までを行う。この加工部10は、ウエーハ送り装置60、外周粗研削装置62、ウエーハWを搬送するトランスファーアーム63及び外周精研削装置61から構成されている。 The processing unit 10 is arranged in the front part of the wafer chamfering apparatus, and performs all processing of chamfering the outer circumference of the wafer W, that is, from rough processing to finishing processing. The processing section 10 comprises a wafer feeding device 60 , an outer circumference rough grinding device 62 , a transfer arm 63 for conveying the wafer W, and an outer circumference fine grinding device 61 .

図2は、加工部10の構成を示す斜視図、図3は平面図であり、ウエーハ送り装置60は、ウエーハWを吸着保持するチャックテーブル(ウエーハテーブル)66を有している。このチャックテーブル66は、図示しない駆動手段に駆動されることにより、前後方向(Y軸方向)、左右方向(X軸方向)、及び上下方向(Z軸方向)の各方向に移動するとともに、チャックテーブル駆動モータ65に駆動されることにより中心軸(θ軸)回りに回転する。 2 is a perspective view showing the configuration of the processing unit 10, and FIG. 3 is a plan view. The chuck table 66 is driven by drive means (not shown) to move in the front-back direction (Y-axis direction), the left-right direction (X-axis direction), and the up-down direction (Z-axis direction). It rotates around the central axis (θ axis) by being driven by the table driving motor 65 .

外周粗研削装置62は、ウエーハ送り装置60のチャックテーブル66に対してY軸方向に所定距離離れた位置に配置される。この外周粗研削装置62は、外周粗研モータ67に駆動されて回転する外周粗研スピンドル68を有している。外周粗研スピンドル68は、図示しない駆動手段に駆動されることにより前後方向(Y軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。 The outer circumference rough grinding device 62 is arranged at a position apart from the chuck table 66 of the wafer feeding device 60 by a predetermined distance in the Y-axis direction. The outer circumference rough grinding device 62 has an outer circumference rough grinding spindle 68 driven by an outer circumference rough grinding motor 67 to rotate. The outer circumference rough grinding spindle 68 is configured to be movable in the front-rear direction (Y-axis direction) and the vertical direction (Z-axis direction) by being driven by a driving means (not shown).

外周粗研スピンドル68には、ウエーハWの外周を粗加工(粗研削)する外周粗研削砥石69が装着され、その回転軸となる。外周粗研削砥石69は、その外周面に複数の外周粗研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が粗加工(粗研削)される。 An outer circumference rough grinding grindstone 69 for roughing (roughly grinding) the outer circumference of the wafer W is mounted on the outer circumference rough grinding spindle 68, and serves as the rotating shaft. The outer periphery rough grinding wheel 69 has a plurality of outer periphery rough grinding grooves formed on its outer peripheral surface (formed wheel). rough grinding).

外周精研削装置61は、ウエーハ送り装置60のチャックテーブル66に対してX軸方向に所定距離だけ離れた位置に配置される。この外周精研削装置61は、外周精研モータ70に駆動されて回転する外周精研スピンドル71を有している。外周精研スピンドル71は、図示しない駆動手段に駆動されることにより左右方向(X軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。外周精研スピンドル71には、ウエーハWの外周を仕上げ加工(精研削)する外周精研削砥石72が装着され、その回転軸となる。 The peripheral fine grinding device 61 is arranged at a position separated from the chuck table 66 of the wafer feeding device 60 by a predetermined distance in the X-axis direction. This peripheral fine grinding device 61 has an outer peripheral fine grinding spindle 71 that is rotated by being driven by a peripheral fine grinding motor 70 . The outer periphery precision grinding spindle 71 is configured to be movable in each of the left-right direction (X-axis direction) and the up-down direction (Z-axis direction) by being driven by a driving means (not shown). An outer periphery precision grinding wheel 72 for finishing (precision grinding) the outer periphery of the wafer W is mounted on the outer periphery fine grinding spindle 71, and serves as the rotating shaft.

外周精研削砥石72は、その外周面に外周精研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が仕上げ加工される。 The outer periphery fine grinding wheel 72 has a groove for outer periphery precision grinding formed in its outer peripheral surface (formed wheel), and the outer periphery of the wafer W is finished by pressing the outer periphery of the wafer W against this groove.

このとき、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3~15°、望ましくは6~10°傾斜させた状態で行うヘリカル研削によってウエーハWの外周面取りの仕上げ加工を行う。 At this time, the wafer is ground by helical grinding in a state in which the rotation axis of the outer circumference precision grinding spindle 71 is inclined with respect to the rotation axis of the chuck table 66 in the tangential direction of the outer circumference of the wafer W by 3 to 15°, preferably 6 to 10°. Perform finish machining for chamfering the outer periphery of W.

これにより、砥粒の運動方向がウエーハWの外周の運動方向と交差し、接触面積が増大すること等より、砥石摩耗が抑制され、外周の形状崩れ等を低減できるため、通常の研削に比べて加工面(研削面)の粗さが良好となる。 As a result, the direction of movement of the abrasive grains intersects with the direction of movement of the outer periphery of the wafer W, and the contact area increases. The roughness of the machined surface (grinding surface) is improved.

次に、加工部10の動作について説明する。加工開始前の待機状態では、チャックテーブル66に保持されるウエーハWは、その中心がチャックテーブル66の回転軸と一致するように配置される。このとき、ウエーハWのOF部は所定方向(本例ではY軸方向)を向くように配置される。 Next, the operation of the processing section 10 will be described. In a standby state before starting processing, the wafer W held on the chuck table 66 is arranged so that its center coincides with the rotation axis of the chuck table 66 . At this time, the OF portion of the wafer W is arranged so as to face a predetermined direction (the Y-axis direction in this example).

また、外周粗研削砥石69及び外周精研削砥石72は、ウエーハWからそれぞれ所定距離離れた位置に位置している。具体的には、外周粗研削砥石69の回転中心はウエーハWの回転中心に対してY軸方向に所定距離離れた位置に配置され、かつ外周精研削砥石72の回転中心はウエーハWに対してX軸方向に所定距離離れた位置に配置される。 Further, the outer circumference rough grinding wheel 69 and the outer circumference fine grinding wheel 72 are located at positions separated from the wafer W by a predetermined distance. Specifically, the center of rotation of the outer circumference rough grinding wheel 69 is located at a predetermined distance in the Y-axis direction from the center of rotation of the wafer W, and the center of rotation of the outer periphery fine grinding wheel 72 is positioned with respect to the wafer W. They are arranged at positions separated by a predetermined distance in the X-axis direction.

まず始めに、アライメント動作が行われる。このアライメント動作では、チャックテーブル66に保持されたウエーハWと外周粗研削砥石69及び外周精研削砥石72との上下方向(Z軸方向)について相対的な位置関係が調整される。 First, an alignment operation is performed. In this alignment operation, the relative positional relationship between the wafer W held on the chuck table 66 and the outer circumference rough grinding wheel 69 and the outer circumference fine grinding wheel 72 is adjusted in the vertical direction (Z-axis direction).

アライメント動作が完了したら、外周粗研モータ67が駆動される。次に、外周粗研削砥石69による研削(粗加工)を開始する。具体的には、外周粗研削装置62のY軸モータ(不図示)が駆動され、外周粗研スピンドル68がY軸方向に沿ってチャックテーブル66に向かって送られる。 When the alignment operation is completed, the outer circumference coarse grinding motor 67 is driven. Next, grinding (rough processing) by the outer peripheral rough grinding wheel 69 is started. Specifically, the Y-axis motor (not shown) of the outer periphery rough grinding device 62 is driven, and the outer periphery rough grinding spindle 68 is sent toward the chuck table 66 along the Y-axis direction.

外周粗研削砥石69としては、例えば、直径202mmのダイヤモンド砥粒のメタルボンド砥石で、粒度#800であるものを使用することができる。また、外周粗研スピンドル68は、ボールベアリングを用いたビルトインモータ駆動のスピンドルで、所定の回転速度、例えば回転速度8,000rpmで回転される。 As the outer circumference rough grinding wheel 69, for example, a metal bond wheel with diamond abrasive grains having a diameter of 202 mm and a grain size of #800 can be used. The outer circumference rough grinding spindle 68 is a spindle driven by a built-in motor using ball bearings, and is rotated at a predetermined rotational speed, for example, a rotational speed of 8,000 rpm.

チャックテーブル66に向かって外周粗研スピンドル68が送られると、ウエーハWの外周が外周粗研削砥石69に形成された外周粗研削用の研削溝に接触し、ウエーハWの外周部が外周粗研削砥石69により研削されて、ウエーハWの外周面取りの粗加工が開始される。 When the outer circumference rough grinding spindle 68 is fed toward the chuck table 66, the outer circumference of the wafer W comes into contact with the grinding groove for outer circumference rough grinding formed in the outer circumference rough grinding grindstone 69, and the outer circumference of the wafer W is subjected to the outer circumference rough grinding. After being ground by the grindstone 69, the rough processing of chamfering the outer periphery of the wafer W is started.

外周粗研削砥石69による粗加工が開始された後、始めは図2のウエーハWは円形であるので、チャックテーブル66に保持されたウエーハWが一定速度で矢印方向に回転を開始する。この回転角度、つまり加工点が直線部となるOF部に至ると、外周粗研スピンドル68をY方向である、チャックテーブル66に向かう方向の送り量を多くすると共に、外周粗研スピンドル68をX方向に直線移動させ直線部を加工する。その後、直線部の加工を終了すると、再び、チャックテーブル66に保持された板状のウエーハWを一定速度で矢印方向に回転させ、残りの円形部を研削して外周粗研削砥石69による粗加工を終了する。 After the rough processing by the outer circumference rough grinding wheel 69 is started, the wafer W held on the chuck table 66 starts rotating at a constant speed in the direction of the arrow since the wafer W in FIG. 2 is circular at first. When this rotation angle, that is, the processing point reaches the OF portion where the processing point is a straight portion, the feed amount of the outer circumference rough grinding spindle 68 in the direction toward the chuck table 66, which is the Y direction, is increased, and the outer circumference rough grinding spindle 68 is moved to the X direction. Move linearly in the direction to process the linear part. After that, when the processing of the linear portion is completed, the plate-shaped wafer W held on the chuck table 66 is rotated again at a constant speed in the direction of the arrow, and the remaining circular portion is ground and rough-processed by the outer circumference rough grinding wheel 69. exit.

次に、外周精研削砥石72による仕上げ加工が同様に行われる。外周精研削砥石72は、ダイヤモンド砥粒のレジンボンド砥石が適している。また、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3~15°、望ましくは6~10°傾斜させた状態でウエーハWの外周面取りの仕上げ加工が行われる。 Next, finish processing is performed in the same manner by the outer peripheral precision grinding wheel 72 . As the peripheral precision grinding wheel 72, a resin-bonded wheel with diamond abrasive grains is suitable. Further, the outer peripheral chamfering of the wafer W is performed while the rotating shaft of the outer periphery precision grinding spindle 71 is inclined with respect to the rotating shaft of the chuck table 66 in the tangential direction of the outer periphery of the wafer W by 3 to 15 degrees, preferably 6 to 10 degrees. Finishing is done.

さらに、外周精研削砥石72の面取り用加工溝はツルアーによって形成されるが、詳しい説明を省略する。また、外周粗研削砥石69としては、例えば、Fe、Cr、Cu等の金属粉等を主成分とし、ダイヤモンド砥粒を混ぜて成形したものが用いられる。ツルアーの材質は、外周粗研削砥石69によって加工することができる一方、外周精研削砥石72を研削することができるものを採用する。 Furthermore, although the processing groove for chamfering of the outer peripheral precision grinding wheel 72 is formed by a truer, detailed description thereof will be omitted. As the outer circumference rough grinding wheel 69, for example, a metal powder such as Fe, Cr, Cu or the like is used as a main component, mixed with diamond abrasive grains and formed. A material that can be processed by the outer peripheral rough grinding wheel 69 and that can be ground by the outer peripheral fine grinding wheel 72 is adopted as the material of the truer.

例えば炭化珪素からなる砥粒を、必要に応じて充填剤等も加えてフェノール樹脂で結合し、これを円盤状のツルアーに成形したものが望ましい。外周精研削砥石72の材質は、ツルアーによって研削することで周囲に研削溝74を形成することができる一方、形成された研磨によってシリコンウエーハ等の面取り部を精研削することができるものを用いる。例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリスチレン樹脂又はポリエチレン樹脂等を主成分とし、ダイヤモンド砥粒や立方晶窒化ホウ素砥粒を混ぜて成形したものが望ましい。 For example, it is preferable that abrasive grains made of silicon carbide are combined with a phenolic resin, if necessary, with a filler or the like added, and formed into a disk-shaped lure. The outer peripheral fine grinding wheel 72 is made of a material that can form a grinding groove 74 around it by grinding with a truer, and that can finely grind the chamfered portion of a silicon wafer or the like by the formed grinding. For example, it is desirable to use phenol resin, epoxy resin, polyimide resin, polystyrene resin, polyethylene resin, or the like as the main component, mixed with diamond abrasive grains or cubic boron nitride abrasive grains.

また、外周精研削砥石72としては、例えば、直径50mmのダイヤモンド砥粒のレジンボンド砥石で、粒度#3000のものが用いられる。外周精研スピンドル71はエアーベアリングを用いたビルトインモータ駆動のスピンドルで、回転速度35,000rpmで回転される。 As the peripheral precision grinding wheel 72, for example, a resin-bonded wheel with diamond abrasive grains having a diameter of 50 mm and a grain size of #3000 is used. The peripheral fine-grinding spindle 71 is a built-in motor-driven spindle using an air bearing, and is rotated at a rotational speed of 35,000 rpm.

図4は被加工材が円形でなく、矩形の場合での加工部の構成を示す斜視図であり、図5は同様に平面図である。被加工材が円形でなく、矩形の場合は、図4、5に示すように、直線部の加工が主となる。 FIG. 4 is a perspective view showing the configuration of the processing portion when the workpiece is not circular but rectangular, and FIG. 5 is a plan view of the same. When the workpiece is not circular but rectangular, as shown in FIGS. 4 and 5, the straight portion is mainly processed.

スマートフォンやタブレットの薄型化、軽量化が進むにつれてガラス基板、カバーガラス、あるいはサファイア、セラミックスが表面に使用され、端面強度が重要となり、鏡面研削において、砥粒によるチッピングの抑制と良好な面粗さが要求される。面取りの加工品質、加工面粗さ、マイクロクラックの発生などはガラス基板の端面強度に直接影響する。 As smartphones and tablets become thinner and lighter, glass substrates, cover glass, sapphire, and ceramics are used for the surface, and edge strength is important. is required. The processing quality of chamfering, the roughness of the processed surface, the generation of microcracks, etc., directly affect the edge strength of the glass substrate.

図4、5はスマートフォンやタブレットにおける矩形のガラスパネルの面取り加工を示しており、外周精研削装置61のX軸モータ(不図示)が駆動され、外周精研スピンドル71がX軸方向に沿ってチャックテーブル73に向かって送られる。 4 and 5 show the chamfering of a rectangular glass panel in a smart phone or tablet, the X-axis motor (not shown) of the peripheral precision grinding device 61 is driven, and the peripheral precision grinding spindle 71 is moved along the X-axis direction. It is sent toward the chuck table 73 .

チャックテーブル73に向かって外周精研スピンドル71が送られると、ガラスパネル(あるいはウエーハ)Wの直線部が外周精研削砥石72に形成された面取り用加工溝である外周精研削用溝に接触し、ガラスパネルWの外周部が外周精研削砥石72によりヘリカル研削されて、ガラスパネルWの外周面取りの加工が開始される。外周精研削砥石72による加工が開始された後、図4、5のガラスパネルWは矩形であるので、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動を開始する。加工点が角部に到達すると、チャックテーブル73は、90°回転しつつY軸方向に移動を行い次の直線部を加工する。以下、同様にガラスパネルWの全外周を加工していく。 When the peripheral precision grinding spindle 71 is fed toward the chuck table 73 , the straight portion of the glass panel (or wafer) W comes into contact with the peripheral precision grinding groove, which is a chamfering processing groove formed in the peripheral precision grinding wheel 72 . , the outer periphery of the glass panel W is helically ground by the outer periphery precision grinding wheel 72, and the processing of chamfering the outer periphery of the glass panel W is started. Since the glass panel W shown in FIGS. 4 and 5 is rectangular, the glass panel W held by the chuck table 73 starts to move at a constant speed in the Y-axis direction after the processing by the outer peripheral precision grinding wheel 72 is started. When the machining point reaches the corner, the chuck table 73 rotates 90° and moves in the Y-axis direction to machine the next straight part. Thereafter, the entire outer circumference of the glass panel W is similarly processed.

また、研削砥石は、ポーラスな表面を有する面取り砥石素材に飽和脂肪酸溶液と共に潤滑剤を含ませ、表面を乾燥させて潤滑剤含浸砥石とし、この潤滑剤を含む砥石を研削時に水冷却して使用することが望ましい。これにより、砥石の切削点へ潤滑剤が確実に供給されて切削点温度を所定温度以下にすることができる。また、冷却液を水としたので、冷却液による環境汚染を防止できる。さらにウエーハ面取り装置では、砥石に潤滑剤を含浸させているので、長期にわたり潤滑剤を切削点に供給可能であり、冷却液を水としたので低温かつ環境に配慮した加工が可能となる。 In addition, the grinding wheel is made by impregnating a chamfering grinding wheel material having a porous surface with a saturated fatty acid solution and a lubricant, drying the surface to obtain a lubricant-impregnated grinding wheel, and using the grinding wheel containing this lubricant after water cooling during grinding. It is desirable to As a result, the lubricant is reliably supplied to the cutting point of the grindstone, and the cutting point temperature can be kept below the predetermined temperature. Moreover, since water is used as the cooling liquid, environmental pollution due to the cooling liquid can be prevented. Furthermore, in the wafer chamfering apparatus, since the grindstone is impregnated with a lubricant, the lubricant can be supplied to the cutting point for a long period of time.

チャックテーブル73は、図5に示すように矩形のガラスパネルWの形状と同様の形状であるが、外周精研削砥石72による加工時にガラスパネルW自体がやや弾性変形するようにガラスパネルWよりも十分に小さくなり、ガラスパネルWはチャックテーブル73よりオーバハングして保持されている。 The chuck table 73 has the same shape as the rectangular glass panel W as shown in FIG. It becomes sufficiently small, and the glass panel W is held overhanging from the chuck table 73 .

具体的には、チャックテーブル73の大さきは、ガラスパネルWのX軸方向の中央からの距離をQとし、チャックテーブル73のX軸方向の中央からの距離をPとすると、Q=(1.3~1.7)P、より望ましくはQ=1.5PとすることがガラスパネルWの吸着による固定及び研削加工の点から良い。つまり、ガラスパネルWの変形や撓み、歪みなどの加工精度への影響を避けると共に、加工時に被加工材、ガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。Y軸方向も同様であり、図5のN=(1.3~1.7)H、より望ましくはN=1.5Hとすることが望ましい。つまり、チャックテーブル73の形状は、被加工材の外周形状よりも小さく、縦横共に、ガラスパネルWの平面形状よりも0.6~0.8倍が望ましい。なお、矩形のガラスパネルWの形状は、縦×横が120mm×60mm程度、厚みが0.5~1.5mm程度であり、矩形のチャックテーブル73は80mm×40mm程度が望ましい。 Specifically, the size of the chuck table 73 is defined as Q=(1 .3 to 1.7) P, more preferably Q=1.5P, is preferable from the standpoint of fixation by adsorption of the glass panel W and grinding. In other words, deformation, deflection, and distortion of the glass panel W are avoided, and the glass panel W itself is slightly elastically deformed during processing, and the peripheral precision grinding wheel 72 is a soft resin-bonded wheel. Combined with that, the shock such as vibration is mitigated. The same applies to the Y-axis direction, and N=(1.3 to 1.7)H in FIG. 5, preferably N=1.5H. In other words, it is desirable that the shape of the chuck table 73 is smaller than the outer peripheral shape of the workpiece, and 0.6 to 0.8 times the plane shape of the glass panel W in both length and width. The shape of the rectangular glass panel W is about 120 mm×60 mm in length×width and about 0.5 to 1.5 mm in thickness, and the rectangular chuck table 73 is preferably about 80 mm×40 mm.

外周精研スピンドル71の回転軸をチャックテーブル73に対してガラスパネルWの外周の接線方向にθ=3~15°、望ましくは6~10°傾斜しているので、ガラスパネルWは外周精研削砥石72の研削溝74に対してこの角度θで当接し、砥粒の運動方向がガラスパネルWの運動方向と交差する。また、傾斜角度があまりに大きいと、研削抵抗の増大、端面における上下角部の欠け、キズなどの点で好ましくない。 Since the rotation axis of the peripheral precision grinding spindle 71 is inclined with respect to the chuck table 73 in the tangential direction of the periphery of the glass panel W by θ=3 to 15°, preferably 6 to 10°, the glass panel W is finely ground on the periphery. Abutting against the grinding groove 74 of the grindstone 72 at this angle θ, the moving direction of the abrasive grains intersects with the moving direction of the glass panel W. On the other hand, if the angle of inclination is too large, it is not preferable in terms of increased grinding resistance, chipping of the upper and lower corners of the end surface, scratches, and the like.

周精研削砥石72の研削溝74の幅yは、外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の上端部が被加工材Wの上面と当接する位置から被加工材Wの下面が研削溝74の下端部に最も近づくが当接しない位置までの距離、つまり、研削溝74を角度θ傾けたときの被加工材の見掛け厚み、右端部からの左端部までの寸法y0よりも広くy>y0となっている。y0は、研削溝74の直径をD、被加工材Wの厚さをtとすると、おおよそDtanθ+t/cosθとなる。研削溝74の幅を広くする方法は予めツールイングするときの転写用の溝を広くしても良いし、ツールイング時のツルアーをZ軸方向に上下に移動して研削溝74を幅広く加工しても良い。 The width y of the grinding groove 74 of the outer periphery precision grinding wheel 72 is determined from the position where the upper end of the grinding groove 74 contacts the upper surface of the workpiece W when the grinding groove 74 of the outer periphery precision grinding wheel 72 is inclined by an angle θ. The distance to the position where the lower surface of the workpiece W is closest to the lower end of the grinding groove 74 but does not contact it, that is, the apparent thickness of the workpiece when the grinding groove 74 is inclined at an angle θ, the left end from the right end y>y0, which is wider than the dimension y0 to Assuming that the diameter of the grinding groove 74 is D and the thickness of the workpiece W is t, y0 is approximately Dtan θ+t/cos θ. As for the method of widening the grinding groove 74, the groove for transfer during tooling may be widened in advance, or the tool may be moved up and down in the Z-axis direction during tooling to widen the grinding groove 74. can be

次に、ヘリカル研削の加工手順を以下に説明する。
図10を参照して、チャックテーブル73に向かって外周精研スピンドル71が送られたとき、研削溝74の右上端部の上面斜面72uがガラスパネルWの上面、右上端部が当接して加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。
Next, a processing procedure for helical grinding will be described below.
Referring to FIG. 10, when the outer peripheral precision grinding spindle 71 is sent toward the chuck table 73, the upper surface slope 72u of the upper right end of the grinding groove 74 contacts the upper surface of the glass panel W and the upper right end to be machined. is started, and then the glass panel W held on the chuck table 73 is moved in the Y-axis direction at a constant speed to be chamfered.

ガラスパネルWの下面は、研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点がガラスパネルWの角R部に到達すると、チャックテーブル73が回転して、角部のRを加工する。このときは円形部を研削するのと同様になり、接触領域が小さくなるので、研削溝74の上面斜面の当接は弱くなり、厚み方向の中央部の研削が主となる。以下、同様にガラスパネルWの外周を1周するまで加工していく。 Since the ground groove 74 is wider than the apparent thickness of the glass panel W, the lower surface of the glass panel W does not come into contact with the lower surface. The central portion and main portion of the glass panel W in the thickness direction are helically ground in contact with the peripheral portion of the grinding groove 74 of the outer peripheral precision grinding wheel 72 . When the processing point reaches the rounded corner portion of the glass panel W, the chuck table 73 rotates to process the rounded corner portion. At this time, it is the same as grinding a circular portion, and since the contact area becomes small, the contact of the upper surface slope of the ground groove 74 becomes weak, and the central portion in the thickness direction is mainly ground. Thereafter, processing is continued in the same manner until the outer periphery of the glass panel W is made one round.

記の加工が1周した点で、外周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に降下させ、研削溝74の下面斜面がガラスパネルWの下面、左下端部の下面斜面72dが当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがX軸方向に一定速度で移動して2周目の面取りを行う。 At the point where the above processing has completed one round , the outer peripheral fine grinding wheel 72 is raised in the Z-axis direction, or the chuck table 73 is lowered in the Z-axis direction, and the lower surface slope of the grinding groove 74 is the lower surface of the glass panel W , the left side. 72 d of lower surface slopes of a lower end part contact|abut. That is, the grinding wheel is raised in the thickness direction relative to the workpiece. After that, the glass panel W held on the chuck table 73 is moved in the X-axis direction at a constant speed to perform the chamfering of the second round.

ガラスパネルWの上面は研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。 Since the grinding groove 74 is wider than the apparent thickness of the glass panel W, the upper surface of the glass panel W does not come into contact with it. The central portion and main portion of the glass panel W in the thickness direction are helically ground in contact with the peripheral portion of the grinding groove 74 of the outer peripheral precision grinding wheel 72 .

以上のように、ガラスパネルWに対して外周精研削砥石72の研削溝74を角度θで傾斜させて当接し、砥粒の運動方向がガラスパネルWの運動方向と交差するようにし、かつ、外周精研削砥石72の研削溝74の幅を被加工材に対して外周精研削砥石72を角度θ傾けたときの被加工材の見掛け厚みよりも幅広とすること、外周精研削砥石72をZ軸方向に上下することにより、OF等の直線部、又は矩形、多角形等の材料の面取り加工にヘリカル研削を適用することが可能となる。これにより、端面の面粗さ、加工歪を小さくし、高番手の砥石でも長時間の使用が可能である。 As described above, the grinding groove 74 of the outer periphery precision grinding wheel 72 is inclined at an angle θ and abuts against the glass panel W so that the movement direction of the abrasive grains intersects the movement direction of the glass panel W, and The width of the grinding groove 74 of the outer periphery precision grinding wheel 72 is made wider than the apparent thickness of the workpiece when the outer periphery fine grinding wheel 72 is tilted with respect to the workpiece by an angle θ. By moving up and down in the axial direction, it is possible to apply helical grinding to the chamfering of materials such as linear portions such as OFs, and rectangular and polygonal shapes. As a result, the surface roughness of the end face and processing strain are reduced, and even a high-grit grindstone can be used for a long time.

ここで、本発明者は、θの角度をより大きくして、ガラスパネルWの上面の右上端部が上面斜面72u当接し、かつ、ガラスパネルWの下面の左下端部に下面斜面72dが当接するようにして研削を行う評価を実施した。すると、ガラスパネルWの角部のRを研削する際、必ず、ガラスパネルWは、上面斜面72uと下面斜面72dとのうち片方しか当接できない状況が発生することを見いだした。このため、ガラスパネルWの角部においては、必ず上面か下面のうちのどちらかに研削が十分で無い部分が発生することが判明した。 Here, the present inventor made the angle θ larger so that the upper right end of the upper surface of the glass panel W abuts against the upper sloped surface 72u, and the lower left end of the lower surface of the glass panel W abuts against the lower sloped surface 72d. An evaluation was carried out in which grinding was performed in contact with each other. Then, when grinding the corners of the glass panel W, it was found that the glass panel W always comes into contact with only one of the upper slope 72u and the lower slope 72d. For this reason, it has been found that at the corners of the glass panel W, either the upper surface or the lower surface is always insufficiently ground.

よって、本発明者は、ヘリカル研磨を行う際、θ、y、ガラスパネルWの厚みtの関係は、「ガラスパネルWの上面又は下面のうちどちらか一方のみが研削溝74の端部(上面斜面72uまたは下面斜面72d)に接触し、もう一方は端部に接触しない」(条件1)ようにθ、y、tが選択されなければならないことを見いだした。よって、それらのパラメータのうち、どれかが決まっているならば、変更可能なパラメータを調整することによって上記条件1を満たさなければならない。その際、条件1を満たす範囲で、なるべくy0がyに近い値である方が好ましいことが判明した。それにより、研削溝74の大部分を使用できるので、砥石の寿命も長くなるからである。 Therefore, when performing helical polishing, the inventor believes that the relationship between θ 1 , y, and the thickness t of the glass panel W is such that "only one of the upper surface and the lower surface of the glass panel W is the edge of the grinding groove 74 (the upper surface We have found that θ, y, t must be chosen such that the slope 72u or the lower slope 72d) is in contact and the other is not in contact with the edge” (Condition 1). Therefore, if any of these parameters are fixed, Condition 1 above must be satisfied by adjusting the changeable parameters. At that time, it was found that it is preferable for y0 to be a value as close to y as possible within the range that satisfies condition 1. This is because most of the grinding grooves 74 can be used, and the life of the grindstone is extended.

は、円形部の加工と直線部の加工とでガラスパネルWの厚み方向の上下端部で外周精研削砥石72と研削溝74との当接の違いを説明する平面図であり、外周精研削砥石72の研削溝74の円筒部と直線ワークW1の接触領域は、円筒部と円形ワークW2の接触領域より大きいだけでなく、研削溝74の上下端部の上面斜面72uあるいは下面斜面72dとの直線ワークW1の接触域Lは円形ワークW2の接触域Mより大きい。 FIG. 6 is a plan view for explaining the difference in abutment between the outer periphery precision grinding wheel 72 and the grinding groove 74 at the upper and lower ends in the thickness direction of the glass panel W between processing the circular portion and processing the straight portion. The contact area between the cylindrical portion of the grinding groove 74 of the precision grinding wheel 72 and the linear workpiece W1 is not only larger than the contact area between the cylindrical portion and the circular workpiece W2, but also the upper inclined surface 72u or the lower inclined surface 72d of the upper and lower ends of the grinding groove 74. The contact area L of the straight work W1 with is larger than the contact area M of the circular work W2.

したがって、直線ワークW1での研削抵抗は円形ワークW2の研削抵抗より大きいだけでなく、研削溝74の厚み方向の幅を円形ワークW2に合わせて面取り加工すると、直線ワークW1を面取り加工することができなくなる。また、円形ワークW2に対して上下対称に面取り加工ができるように研削溝74を作成したとしても、それを直線ワークW1に対して面取り加工すると上下面の形状が異なったものとなる。 Therefore, not only is the grinding resistance of the linear workpiece W1 greater than that of the circular workpiece W2, but if the width of the grinding groove 74 in the thickness direction is matched to the circular workpiece W2, the linear workpiece W1 can be chamfered. become unable. Further, even if the grinding grooves 74 are formed so that the circular work W2 can be chamfered vertically symmetrically, the chamfering of the straight work W1 results in different top and bottom shapes.

は、従来の板材の端面加工に対して平面研削盤80に1軸を追加した軸傾斜方式によるヘリカル研削の例を示す。図に示すように、精密ステージ81を傾斜角度αで配置し、砥石82の最下点を被加工材83が通過するようにしたものである。砥石82は被加工材83よりも幅広であり、バイス84によって両面を加工面の近くまで固定されている。 FIG. 7 shows an example of helical grinding by an axis tilting method in which one axis is added to a surface grinding machine 80 for conventional end surface processing of a plate material. As shown in FIG. 7 , the precision stage 81 is arranged at an inclination angle α so that the workpiece 83 passes through the lowest point of the grindstone 82 . The whetstone 82 is wider than the material 83 to be processed, and is fixed on both sides by a vise 84 close to the surface to be processed.

この方法では、図8(a)に示すように、被加工材83がバイス84によって、しっかりと固定されている点、砥石82の回転軸が加工面と水平となる点等より、砥石82が矢印Vのように押し付けられ、砥石82の振れ等が被加工材83へ衝撃となり、加工面にダメージを与える。また、研削によるキリコが加工面に落下することより、加工面にキリコによる傷、引っ掻きによる条痕が生じる。 In this method, as shown in FIG. 8(a) , the work piece 83 is firmly fixed by a vise 84, and the rotation axis of the grindstone 82 is parallel to the processing surface. It is pressed in the direction of arrow V, and vibration of the grindstone 82 or the like impacts the material 83 to be processed and damages the surface to be processed. In addition, since the chip by grinding falls on the processing surface, scratches caused by the chip and streaks caused by scratching are generated on the processing surface.

これに対して、本発明では、被加工材Wに対して外周精研削砥石72の研削溝74を角度θ傾けている。また、チャックテーブル73はガラスパネルWの平面を載置し、この表面をエアーコンプレッサーやブロワー等で減圧し、ガラスパネルWを吸着し固定する。ガラスパネルWをチャックテーブル73よりオーバハングして垂直方向に吸着して保持した図(b)の場合は、外周精研削砥石72の研削溝74が加工面に対して垂直に当接し、外周精研削砥石72による押し付け力が矢印Hのように働く。 On the other hand , in the present invention, the grinding groove 74 of the outer peripheral precision grinding wheel 72 is inclined at an angle θ with respect to the workpiece W. As shown in FIG. The flat surface of the glass panel W is placed on the chuck table 73, and the pressure of this surface is reduced by an air compressor, a blower, or the like, and the glass panel W is adsorbed and fixed. In the case of FIG. 8B , in which the glass panel W is overhanged from the chuck table 73 and held by suction in the vertical direction, the grinding groove 74 of the outer periphery fine grinding wheel 72 is in vertical contact with the processing surface, and the outer periphery is precisely ground. A pressing force by the grinding wheel 72 works as indicated by an arrow H.

したがって、加工時に被加工材、例えばガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。したがって、加工面にキズ等のダメージを与えことがなく、研削によるキリコは矢視のように排出され、加工面に落下することがなく、加工面にキリコによる傷、引っ掻きによる条痕を生じることがない。 Therefore, the material to be processed, for example, the glass panel W itself is slightly elastically deformed during processing, and together with the fact that the peripheral precision grinding wheel 72 is a soft resin-bonded wheel, the impact such as vibration is mitigated. Therefore, there is no damage such as scratches on the machined surface, and the chips produced by grinding are discharged as shown by the arrow, and do not fall on the machined surface. There is no

は、以上の面取り基板の製造方法により加工された被加工材の端面を示す側面図であり、レジン砥石である外周精研削砥石72で研削後の条痕の状態を斜線で示している。研削溝74は被加工材(基板、ワーク)の厚みに対して幅を十分大きくし、被加工材に対して6~10°の斜め角度で当接させ、研削溝74の上面と下面のうち片面のみワークに当接するようにし、他方には当てないように面取りを行った。実際には、上面を当接させた研削を被加工材の端面の全周に対して1周行い、次に下面を当接させ、さらに1周させて合計2周の研磨、面取りを行った。 FIG. 9 is a side view showing an end face of a workpiece processed by the method for manufacturing a chamfered substrate described above, and the state of streaks after grinding with the outer peripheral fine grinding wheel 72, which is a resin wheel, is shown by oblique lines. . The grinding groove 74 has a sufficiently large width relative to the thickness of the workpiece (substrate, work), and is brought into contact with the workpiece at an oblique angle of 6 to 10°. Chamfering was performed so that only one side was in contact with the work and the other side was not in contact. In practice, grinding with the upper surface in contact was carried out once around the entire circumference of the end face of the workpiece, then the lower surface was brought into contact with the workpiece, and then another round was carried out to perform a total of two rounds of polishing and chamfering. .

従来のヘリカル研削による面取り加工では角部、直線部を有する被加工材で砥石の研削溝の上面と下面のうち片方のみ強く当たる片当たりが発生し良好な面取りが出来なかったが、図に示すように厚み方向の中央部Cが砥石を傾斜させた角度に応じたヘリカル研削の特有な条痕となり、良好な面粗さで形状崩れを生じていない。 In the chamfering process by conventional helical grinding, it was not possible to perform good chamfering because only one of the upper and lower surfaces of the grinding groove of the grindstone hit hard on the work piece with corners and straight parts. As shown, the central portion C in the thickness direction becomes a peculiar streak of helical grinding according to the angle at which the grindstone is inclined, and the surface roughness is good and the shape does not collapse.

また、上下両端も角度、大きさ共に対称、図でTu、Tdの幅も均等であり、研削溝の端部で被加工材の端面の角部がヘリカル研削されたことによる条痕、角度、方向は研削溝の端部が当たっている分だけ異なり、それが明確に現れている。 In addition, both the upper and lower ends are symmetrical in terms of angle and size, and the widths of Tu and Td in the figure are also uniform. The direction differs by the amount of contact of the edge of the ground groove, which is clearly shown.

さらに、スマートフォンやタブレットの薄型化、軽量化に伴って、従来、ガラス基板を所定の大きさに切断してから、化学強化を行い、その後に、マスキング印刷を行い、センサー電極を形成していた。それに対して、上記の面取り基板の製造方法によれば、大きなガラス基板のまま化学強化処理を施した後、マスキング印刷、センサー電極形成を形成し、その後に、切断、面取り加工を行っても、つまり、端面に化学強化されていない状態でも良好な加工面粗さが得られ、マイクロクラックの発生を抑えることができる。そして、その結果、生産効率が極めて向上し、実用上で十分な端面強度を得ることができる。 Furthermore, as smartphones and tablets become thinner and lighter, conventionally, the glass substrate is cut to a predetermined size, chemically strengthened, and then masked and printed to form sensor electrodes. . On the other hand, according to the method for manufacturing a chamfered substrate, even if a large glass substrate is chemically strengthened as it is, masking printing is performed, sensor electrodes are formed, and then cutting and chamfering are performed. In other words, even when the end face is not chemically strengthened, a good machined surface roughness can be obtained, and the occurrence of microcracks can be suppressed. As a result, production efficiency is significantly improved, and practically sufficient end face strength can be obtained.

さらに、面粗さ、形状の対称性のみならず、研削溝を1回修正(ツールイング)した後、研削能力の低下、所定の外周面幅、外周角度、外周形状を満たさなくなるまでに連続して加工できる枚数も増加できる。さらに、レジン砥石である外周精研削砥石72のツールイングを繰り返し、面取り加工を連続した場合、摩耗によりレジン砥石が所定の直径以下となって、使用不可能となるまでに加工できる枚数も多くすることができる。 Furthermore, not only the surface roughness and shape symmetry, but also the reduction in grinding ability after one time correction (tooling) of the grinding groove, the predetermined outer peripheral surface width, outer peripheral angle, and outer peripheral shape are not satisfied. Also, the number of sheets that can be processed can be increased. Furthermore, when the resin grindstone 72, which is a resin grindstone, is repeatedly tooled and chamfered continuously, the diameter of the resin grindstone becomes less than a predetermined diameter due to wear, and the number of sheets that can be processed increases before it becomes unusable. be able to.

以上、外周精研削砥石72を用いたヘリカル研削として説明したが、粗研削時、つまり、外周粗研削砥石69を用いるときも同様に2周するヘリカル研削を行っても良い。これによれば、精研削時、外周精研削砥石72の研削溝74の摩耗、目詰まり、溝形状の変形を防いで、より良好な面取り加工を行うことができる。 Although helical grinding using the outer periphery fine grinding wheel 72 has been described above, helical grinding may be performed in two turns during rough grinding, that is, when the outer periphery rough grinding wheel 69 is used. According to this, it is possible to prevent wear, clogging, and deformation of the groove shape of the grinding groove 74 of the outer peripheral fine grinding wheel 72 during fine grinding, and perform better chamfering.

また、被加工材の端面の上部を全周に渡って研削溝74で1周するように研削(上部の研削)し、その後、研削砥石69あるいは72を被加工材の厚さ方向に相対的に上昇させて、さらに下部を1周研削(下部の研削)することとしたが、この順序は逆でも良いし、被加工材の端面の上部、下部に研削溝74の端部である上面斜面72u、下面斜面72dのいずれも当てない中央部の研削を別途に行っても良い。 In addition, the upper part of the end surface of the workpiece is ground over the entire circumference so as to make one round with the grinding groove 74 (upper grinding), and then the grinding wheel 69 or 72 is moved relative to the thickness direction of the workpiece. and then grind the lower part one round (grinding of the lower part), but this order may be reversed, and the upper surface slope, which is the end of the grinding groove 74, is formed on the upper and lower parts of the end surface of the workpiece. Grinding of the central portion, which does not contact with neither 72u nor the lower slope 72d, may be performed separately.

10は、中央部の研削を示している。中央部の研削は、外周精研スピンドル71に向かってチャックテーブル73が送られたとき、研削溝74の右上端部の上面斜面72u及び左下端部の下面斜面72dがいずれもガラスパネルWの上面及び下面に当接しないで加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。研削溝74が、ガラスパネルWの見掛け厚みy0、すなわち外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の直径をD、被加工材であるガラスパネルWの厚さtとの双方を考慮した厚みよりも十分、少なくとも20~30%幅広となっている。 FIG. 10 shows the central grinding . Grinding of the central portion is performed when the chuck table 73 is fed toward the outer periphery precision grinding spindle 71, and the upper slope 72u at the upper right end of the grinding groove 74 and the lower slope 72d at the lower left end of the grinding groove 74 both face the glass panel W. Processing is started without contacting the upper and lower surfaces, and then the glass panel W held by the chuck table 73 is moved at a constant speed in the Y-axis direction to be chamfered. When the grinding groove 74 has an apparent thickness y 0 of the glass panel W, that is, when the grinding groove 74 of the outer peripheral precision grinding wheel 72 is inclined at an angle θ, the diameter of the grinding groove 74 is D, and the thickness of the glass panel W as the work material. It is at least 20-30% wider than the thickness considering both t.

ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点が角のR部に到達すると、チャックテーブル73を回転させて、角部のRを加工する。ガラスパネルWの厚み方向の端部を研削溝74の上下斜面(あるいは上下端部)で研削しないので、上下非対称性に影響なく、ガラスパネルWの外周形状に係わらず加工することに適し、図2に示したような円形部が主体でOF部のような直線部がある場合に、形状を削り出すのには都合が良い。 The central portion and main portion of the glass panel W in the thickness direction are helically ground in contact with the peripheral portion of the grinding groove 74 of the outer peripheral precision grinding wheel 72 . When the processing point reaches the rounded portion of the corner, the chuck table 73 is rotated to process the rounded portion of the corner. Since the edge in the thickness direction of the glass panel W is not ground by the upper and lower slopes (or the upper and lower ends) of the grinding groove 74, it is suitable for processing regardless of the outer peripheral shape of the glass panel W without affecting the vertical asymmetry. 2, it is convenient for cutting out the shape when the circular portion is the main component and the linear portion such as the OF portion is present.

図10の状態から外周精研削砥石72をZ軸方向に下降、あるいはチャックテーブル73をZ軸方向に上昇させ、研削溝74の右上端部の上面斜面72uにガラスパネルWの上面、図で右上端部を当接させる。つまり、研削砥石を被加工材に対して相対的に厚さ方向に下降させる。その後、チャックテーブル73に保持されたガラスパネルWをY軸方向に一定速度で移動してヘリカル研削による面取り加工が行われる。 From the state of FIG. 10 , the outer peripheral fine grinding wheel 72 is lowered in the Z-axis direction, or the chuck table 73 is raised in the Z-axis direction, and the upper surface of the glass panel W is placed on the upper surface slope 72u at the upper right end of the grinding groove 74, which is the upper right in the figure. Abut the ends. That is, the grinding wheel is lowered in the thickness direction relative to the workpiece. After that, the glass panel W held on the chuck table 73 is moved in the Y-axis direction at a constant speed to be chamfered by helical grinding.

周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に下降させ、研削溝74の下面斜面が、ガラスパネルWの下面、図で左下端部の下面斜面72dに当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して3周目の面取りを行う。 The outer peripheral precision grinding wheel 72 is raised in the Z-axis direction, or the chuck table 73 is lowered in the Z-axis direction, so that the lower slope of the grinding groove 74 contacts the lower surface of the glass panel W, which is the lower left lower slope 72d in the figure. make contact. That is, the grinding wheel is raised in the thickness direction relative to the workpiece. After that, the glass panel W held by the chuck table 73 is moved in the Y-axis direction at a constant speed, and chamfering is performed for the third round.

央部の研削(a)、上部の研削(b)、下部の研削(c)の順で説明したが、これに限ることなく、上部の研削(b)、中央部の研削(a)、下部の研削(c)の順など任意でも良い。ただし、中央部の研削(a)を先に行うことが、先に形状を削り出すことができる点、その後、より慎重、正確に上部の研削(b)、下部の研削(c)を行える点で優れている。 Grinding of the central portion (a), grinding of the upper portion (b), and grinding of the lower portion (c) were explained in this order, but without being limited to this, grinding of the upper portion (b), grinding of the central portion (a), The order of grinding (c) of the lower part may be arbitrary. However, grinding the center part (a) first makes it possible to cut out the shape first, and then it is possible to grind the upper part (b) and the lower part (c) more carefully and accurately. Excellent at

また、被加工材として、特に、図2に示したような円形部が主体でOF部のような直線部がある場合に、中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ、被加工材の外周を1周する必要はない。例えば、円形部は上部の研削(b)、下部の研削(c)だけを行い、直線部は中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ行えば良く、面粗さを良好にし、形状崩れを生じないで加工時間を短縮、研削溝74の摩耗、目詰まり、溝形状の変形を防ぐことができる。 In addition, when the work material has a circular portion as shown in FIG. Each grind (c) does not need to go around the circumference of the workpiece. For example, if the circular part is ground only at the upper part (b) and the lower part (c), and the straight part is grinded at the central part (a), the upper part is ground (b) and the lower part is ground (c), respectively. It is possible to improve the surface roughness, shorten the processing time without causing shape collapse, and prevent abrasion, clogging, and deformation of the groove shape.

図11は、外周精研削砥石72の研削溝74の上面斜面72u及び下面斜面72dとの関係の詳細であり、研削溝74の斜面と面取り角度の関係を説明する。図11は外周精研削砥石72を傾けないで、被加工材Wへ当接させた状態であり、面取り角度が研削溝74の上面斜面72u及び下面斜面72dの角度と一致している。 FIG. 11 shows details of the relationship between the upper surface slope 72u and the lower surface slope 72d of the grinding groove 74 of the outer peripheral precision grinding wheel 72, and explains the relationship between the slope of the grinding groove 74 and the chamfering angle. FIG. 11 shows a state in which the outer peripheral precision grinding wheel 72 is not tilted and is brought into contact with the workpiece W, and the chamfering angle coincides with the angle of the upper slope 72u and the lower slope 72d of the grinding groove 74. FIG.

ヘリカル研削を行うため、外周精研削砥石72を傾けた角度は、3~15°、望ましくは6~10°であるので、加工がわずかに開始されれば、上面斜面72uと被加工材Wの上面との接触領域は図11と大きな違いはない。したがって、図で既に示したように、被加工材Wの上下両端(Tu、Tdの領域)も中央部Cと比べて条痕が斜面の分、異なる向きの条痕となり、ヘリカル研削の効果が十分に得られ、中央部と遜色なく加工歪み、表面粗さが改善される。この三つの条痕が現れるのが、以上の実施の形態の特徴でもある。 In order to perform helical grinding, the angle at which the outer peripheral precision grinding wheel 72 is inclined is 3 to 15°, preferably 6 to 10°. The contact area with the upper surface of is not much different from that in FIG. Therefore, as already shown in FIG. 9 , the upper and lower ends (regions of Tu and Td) of the material W to be processed also have streaks in different directions as compared with the central portion C due to the slopes, and the effect of helical grinding is obtained. is sufficiently obtained, and processing distortion and surface roughness are improved to the same extent as in the central portion. The appearance of these three streaks is also a feature of the above embodiment.

なお、説明を分かりやすくするため、図11の外周精研削砥石72を傾けないことで、研削溝74の斜面を面取り角度と一致させてもよい。それに対して、逆に、外周精研削砥石72を傾け斜面を被加工材Wの面取り角度と一致させても良い。これにより、加工の開始時点、研削量が少ない場合でも、上面斜面72uと被加工材Wの上面との接触領域が増えて、被加工材Wの上下両端の表面粗さが改善される。 In order to make the explanation easier to understand, the slope of the grinding groove 74 may be matched with the chamfering angle by not inclining the outer circumference precision grinding wheel 72 in FIG. 11 . Conversely, the outer peripheral precision grinding wheel 72 may be inclined so that the inclined plane coincides with the chamfering angle of the workpiece W. As shown in FIG. As a result, even if the amount of grinding is small at the start of machining, the contact area between the upper surface slope 72u and the upper surface of the workpiece W increases, and the surface roughness of the upper and lower ends of the workpiece W is improved.

10…加工部、20…供給回収部、30…ウエーハカセット、31…カセットテーブル、40…供給回収ロボット、50…搬送アーム、60…ウエーハ送り装置、61…外周精研削装置、62…外周粗研削装置、65…チャックテーブル駆動モータ、66…チャックテーブル、67…外周粗研モータ、68…外周粗研スピンドル(回転軸)、69…外周粗研削砥石、70…外周精研モータ、71…外周精研スピンドル(回転軸)、72…外周精研削砥石、72d…下面斜面、72u…上面斜面、73…チャックテーブル、74…研削溝、80…平面研削盤、81…精密ステージ、82…砥石、83…被加工材、84…バイス、W…ウエーハ、ガラスパネル、被加工 DESCRIPTION OF SYMBOLS 10... Processing part 20... Supply recovery part 30... Wafer cassette 31... Cassette table 40... Supply recovery robot 50... Transfer arm 60... Wafer feeding device 61... Periphery precision grinding device 62... Periphery rough grinding Apparatus 65 Chuck table drive motor 66 Chuck table 67 Peripheral rough grinding motor 68 Peripheral rough grinding spindle (rotating shaft) 69 Peripheral rough grinding wheel 70 Peripheral fine grinding motor 71 Peripheral fine grinding Grinding spindle (rotating shaft) 72 Peripheral precision grinding wheel 72d Lower slope 72u Upper slope 73 Chuck table 74 Grinding groove 80 Surface grinder 81 Precision stage 82 Grindstone 83 ... Workpiece, 84 ... Vise, W ... Wafer, glass panel, Workpiece

Claims (8)

角部と直線部とを有する板状の被加工材の端面を研削砥石の研削溝で研削する面取り基板の製造方法であって、
前記被加工材の平面を厚さ方向に、前記被加工材の外周形状よりも小さいチャックテーブルで吸着し、
前記被加工材の平面に垂直となる前記厚さ方向の軸に対して前記研削砥石の回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接し、
前記被加工材の上部の面取り部が前記研削溝の上面斜面に接触し、前記被加工材の下部の面取り部が前記研削溝の下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて前記被加工材の下部の面取り部が前記下面斜面に接触し、前記上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
あるいは、前記被加工材の下部の面取り部が前記下面斜面に接触し、前記被加工材の上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて前記被加工材の上部の面取り部が前記上面斜面に接触し、前記下部の面取り部が前記下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
前記チャックテーブルは、前記被加工材の外周形状よりも0.6~0.8倍小さくしたことを特徴とする面取り基板の製造方法。
A chamfered substrate manufacturing method for grinding an end face of a plate-shaped workpiece having a corner portion and a straight portion with a grinding groove of a grinding wheel, comprising:
sucking the plane of the workpiece in the thickness direction with a chuck table smaller than the outer peripheral shape of the workpiece;
tilting the axis of rotation of the grinding wheel with respect to the axis in the thickness direction perpendicular to the plane of the workpiece, and pressing the grinding groove against the end surface of the workpiece from the vertical direction to abut;
The upper chamfered portion of the workpiece contacts the upper sloped surface of the grinding groove, and the lower chamfered portion of the workpiece does not contact the lower sloped surface of the ground groove. Grinding on the slope is continuously performed on the entire circumference including the corners of the end face of the workpiece,
After that, the grinding wheel is raised in the thickness direction relative to the workpiece so that the lower chamfered portion of the workpiece contacts the lower sloped surface, and the upper chamfered portion contacts the upper sloped surface. Grinding the chamfered portion of the lower part on the lower sloped surface continuously around the entire circumference including the corners of the end surface of the workpiece,
Alternatively, the lower chamfered portion of the workpiece is ground on the lower sloped surface so that the lower chamfered portion of the workpiece contacts the lower sloped surface and the upper chamfered portion of the workpiece does not contact the upper sloped surface. Continuously perform the entire circumference including the corners of the end face of the work material,
After that, the grinding wheel is lowered relative to the workpiece in the thickness direction so that the upper chamfered portion of the workpiece contacts the upper sloped surface, and the lower chamfered portion contacts the lower sloped surface. Grinding the chamfered portion of the upper portion on the upper sloped surface continuously around the entire circumference including the corners of the end face of the workpiece, so as not to contact the
A method of manufacturing a chamfered substrate , wherein the chuck table is 0.6 to 0.8 times smaller than the outer peripheral shape of the workpiece .
請求項1に記載の面取り基板の製造方法であって、
前記研削溝の幅を前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate according to claim 1,
A method of manufacturing a chamfered substrate, wherein the width of the grinding groove is made larger than the apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.
請求項1または2に記載の面取り基板の製造方法であって、
前記研削砥石の回転軸を3~15°傾けることを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate according to claim 1 or 2,
A method for producing a chamfered substrate, characterized in that the rotation axis of the grinding wheel is inclined by 3 to 15°.
請求項1に記載の面取り基板の製造方法であって、
前記被加工材の端面の加工は、それぞれ記被加工材の端面の上部の研削、中央部の研削、下部の研削とで行われることを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate according to claim 1,
A method of manufacturing a chamfered substrate, wherein the processing of the end surface of the workpiece is performed by grinding the upper portion, the center portion, and the lower portion of the end surface of the workpiece, respectively.
角部と直線部とを有する板状の被加工材の端面を研削砥石の研削溝で面取り加工する面取り装置において、
前記被加工材の平面を厚さ方向に吸着し、前記被加工材の外周形状よりも小さいチャックテーブルと、
前記被加工材の平面に垂直となる前記厚さ方向の軸に対して回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接する前記研削砥石と、
を備え、
前記被加工材の上部の面取り部が前記研削溝の上面斜面に接触し、前記被加工材の下部の面取り部が前記研削溝の下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて前記被加工材の下部の面取り部が前記下面斜面に接触し、前記上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
あるいは、前記被加工材の下部の面取り部が前記下面斜面に接触し、前記被加工材の上部の面取り部が前記上面斜面に接触しないようにして前記下部の面取り部を前記下面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて前記被加工材の上部の面取り部が前記上面斜面に接触し、前記下部の面取り部が前記下面斜面に接触しないようにして前記上部の面取り部を前記上面斜面で研削することを前記被加工材の端面の角部を含む全周を連続して行い、
前記チャックテーブルは、前記被加工材の外周形状よりも0.6~0.8倍小さくしたことを特徴とする面取り装置。
A chamfering device for chamfering an end face of a plate-shaped workpiece having a corner portion and a straight portion with a grinding groove of a grinding wheel,
a chuck table that adsorbs the plane of the workpiece in the thickness direction and is smaller than the outer peripheral shape of the workpiece;
the grinding wheel that tilts its rotation axis with respect to the axis in the thickness direction that is perpendicular to the plane of the workpiece, and presses the grinding groove against the end surface of the workpiece from the vertical direction to abut it;
with
The upper chamfered portion of the workpiece contacts the upper sloped surface of the grinding groove, and the lower chamfered portion of the workpiece does not contact the lower sloped surface of the ground groove. Grinding on the slope is continuously performed on the entire circumference including the corners of the end face of the workpiece,
After that, the grinding wheel is raised in the thickness direction relative to the workpiece so that the lower chamfered portion of the workpiece contacts the lower sloped surface, and the upper chamfered portion contacts the upper sloped surface. Grinding the chamfered portion of the lower part on the lower sloped surface continuously around the entire circumference including the corners of the end surface of the workpiece,
Alternatively, the lower chamfered portion of the workpiece is ground on the lower sloped surface so that the lower chamfered portion of the workpiece contacts the lower sloped surface and the upper chamfered portion of the workpiece does not contact the upper sloped surface. Continuously perform the entire circumference including the corners of the end face of the work material,
After that, the grinding wheel is lowered relative to the workpiece in the thickness direction so that the upper chamfered portion of the workpiece contacts the upper sloped surface, and the lower chamfered portion contacts the lower sloped surface. Grinding the chamfered portion of the upper portion on the upper sloped surface continuously around the entire circumference including the corners of the end face of the workpiece, so as not to contact the
The chamfering apparatus , wherein the chuck table is 0.6 to 0.8 times smaller than the outer peripheral shape of the workpiece .
請求項5に記載の面取り装置において、
前記研削溝の幅は、前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことを特徴とする面取り装置。
In the chamfering device according to claim 5,
A chamfering device, wherein the width of the grinding groove is set larger than the apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.
請求項5または6に記載の面取り装置において、
前記研削砥石の回転軸は3~15°傾けられたことを特徴とする面取り装置。
In the chamfering device according to claim 5 or 6,
A chamfering device, wherein the rotation axis of the grinding wheel is inclined by 3 to 15 degrees.
請求項5に記載の面取り装置において、
前記被加工材の端面の加工は、端面の上部の研削と、中央部の研削と、下部の研削とをそれぞれ行うことを特徴とする面取り装置。
In the chamfering device according to claim 5,
A chamfering apparatus, wherein the end surface of the workpiece is processed by grinding an upper portion, a central portion, and a lower portion of the end surface.
JP2021034996A 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor Active JP7128309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021034996A JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070909A JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it
JP2021034996A JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015070909A Division JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it

Publications (2)

Publication Number Publication Date
JP2021094693A JP2021094693A (en) 2021-06-24
JP7128309B2 true JP7128309B2 (en) 2022-08-30

Family

ID=57245175

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015070909A Active JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it
JP2021034996A Active JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015070909A Active JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it

Country Status (1)

Country Link
JP (2) JP7005120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240837B1 (en) * 2017-11-28 2021-04-14 현대중공업 주식회사 Propulsion system for twin-screw ship
CN111037370B (en) * 2019-11-29 2021-04-27 上海磐盟电子材料有限公司 Round crystal chamfering process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042887A (en) 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2002160147A (en) 2000-11-21 2002-06-04 Asahi Glass Co Ltd Edge polishing method for plate glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969505B2 (en) * 1997-12-04 2007-09-05 株式会社クリスタル光学 Chamfering method and apparatus
JP3830291B2 (en) 1998-12-02 2006-10-04 シーグ株式会社 Method for making a grinding wheel
JP2007030119A (en) * 2005-07-28 2007-02-08 Tokyo Seimitsu Co Ltd Wafer chamfering device and wafer chamfering method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042887A (en) 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2002160147A (en) 2000-11-21 2002-06-04 Asahi Glass Co Ltd Edge polishing method for plate glass

Also Published As

Publication number Publication date
JP7005120B2 (en) 2022-01-21
JP2016190284A (en) 2016-11-10
JP2021094693A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP4441823B2 (en) Truing method and chamfering device for chamfering grindstone
JP4986568B2 (en) Wafer grinding method
JP7481518B2 (en) Truing method and chamfering device
JP7128309B2 (en) Chamfered substrate manufacturing method and chamfering apparatus used therefor
JP6789645B2 (en) Chamfering equipment
JP6608604B2 (en) Chamfered substrate and method for manufacturing liquid crystal display device
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JP2007061978A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP2006159334A (en) Dicing dressing table structure and dicer
JP2007044853A (en) Method and apparatus for chamfering wafer
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
JP6725831B2 (en) Work processing device
JP6590049B2 (en) End face processing equipment for plate
JP2001308049A (en) Method of compensating shifting velocity of a processing means in processing of board
JP7024039B2 (en) Chamfering equipment
JP2005153129A (en) Chamfering method of notch part of notched wafer
JP2014226767A (en) Wafer chamfer device and wafer chamfer method
JP7324889B2 (en) chamfering system
JP2009142927A (en) Wafer chamfering device and wafer chamfering method
KR20230175103A (en) Forming method for truer
JP2007021586A (en) Truing method for chamfering grinding wheel
KR20170087300A (en) Edge grinding apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7128309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150