JP2016190284A - Manufacturing method of chamfered baseboard and chamfering device used in the same - Google Patents

Manufacturing method of chamfered baseboard and chamfering device used in the same Download PDF

Info

Publication number
JP2016190284A
JP2016190284A JP2015070909A JP2015070909A JP2016190284A JP 2016190284 A JP2016190284 A JP 2016190284A JP 2015070909 A JP2015070909 A JP 2015070909A JP 2015070909 A JP2015070909 A JP 2015070909A JP 2016190284 A JP2016190284 A JP 2016190284A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
grinding wheel
groove
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015070909A
Other languages
Japanese (ja)
Other versions
JP7005120B2 (en
Inventor
真一 岸下
Shinichi Kishishita
真一 岸下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2015070909A priority Critical patent/JP7005120B2/en
Publication of JP2016190284A publication Critical patent/JP2016190284A/en
Priority to JP2021034996A priority patent/JP7128309B2/en
Application granted granted Critical
Publication of JP7005120B2 publication Critical patent/JP7005120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable helical grinding even if a processed material is rectangular or polygonal, to make surface roughness favorable, and to reduce the collapse of a shape.SOLUTION: In a manufacturing method of a chamfered baseboard which grinds an end face of a plate-shaped processed material W by a grinding groove 74 of an external periphery precision grinding wheel 72, a plane of the processed material W is adsorbed to a thickness direction by a chuck table 73 which is smaller than an external peripheral shape of the processed material W, a rotating shaft of the external periphery precision grinding wheel 72 is inclined to an axis in the thickness direction vertical to the plane of the processed material W, the grinding groove 74 is pressed against the end face of the processed material W from a vertical direction, and made to abut thereon, an end face upper part or a lower part of the processed material W is ground by the grinding groove 74, and after that, the external periphery precision grinding wheel 72 is relatively ascended or descended to the thickness direction with respect to the processed material W, and reground.SELECTED DRAWING: Figure 6

Description

本発明は、シリコン、サファイア、化合物、ガラス等の様々な素材、特に半導体ウエーハ、ガラスパネル等の板状被加工材の端面における高精度な面取り基板の製造方法及び装置に関し、平面形状の端部に円形以外の直線部を有する被加工材の端面加工に好適である。   The present invention relates to a highly accurate chamfered substrate manufacturing method and apparatus for various materials such as silicon, sapphire, compound, glass, etc., in particular, end surfaces of plate-like workpieces such as semiconductor wafers and glass panels. It is suitable for end face processing of a workpiece having a straight portion other than a circle.

近年、ウエーハの品質向上の要求が強く、ウエーハ端面(エッジ部)の加工状態が重要視され、半導体デバイス等の作製に使用されるシリコンウエーハ等の半導体ウエーハは、ハンドリングによるチッピングを防止するため、縁部を研削することで面取り加工が行われ、研磨による鏡面面取り加工が行われている。つまり、半導体製造工程において、ウエーハ製造からデバイス製造に至るまで、エッジ特性の品質改善は必要不可欠なプロセスとなっている。   In recent years, there has been a strong demand for wafer quality improvement, and the processing state of the wafer end face (edge part) has been regarded as important, and semiconductor wafers such as silicon wafers used in the manufacture of semiconductor devices and the like prevent chipping due to handling. A chamfering process is performed by grinding the edge, and a mirror chamfering process is performed by polishing. That is, in the semiconductor manufacturing process, the quality improvement of the edge characteristics is an indispensable process from the wafer manufacturing to the device manufacturing.

シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も含まれる。   Silicon and other materials are hard and brittle, and if the edge of the wafer remains sharp during slicing, it can easily crack or chip during handling such as transport and alignment in subsequent processing steps, and fragments can damage or contaminate the wafer surface. Or In order to prevent this, the end face of the cut wafer is chamfered with a chamfering grindstone coated with diamond. At this time, the diameter of the outer periphery with variations is matched to match the width of the orientation flat (OF), and the size of a small notch called a notch is also matched.

また、スマートフォンやタブレットに用いられる、薄型化、軽量化が追求されたガラス基板には、マスキング印刷、センサー電極の形成、その後に切断することが行われ、面取りの加工品質、加工面粗さ、マイクロクラックの発生などがガラス基板の端面強度に直接影響する。   In addition, the glass substrates used in smartphones and tablets that are designed to be thinner and lighter are masked, formed with sensor electrodes, and then cut, resulting in chamfering processing quality, processing surface roughness, The occurrence of micro cracks directly affects the end face strength of the glass substrate.

さらに、通常の研削ではレジン砥石の回転軸に対してウエーハWの主面が垂直となる状態で面取り部を研削するが、この場合、面取り部には円周方向の研削痕が発生し易い。そこで、ウエーハに対して例えばレジンボンド砥石(レジン砥石)を傾けてウエーハの面取り部を研削する、いわゆるヘリカル研削を行うことが知られている。   Further, in normal grinding, the chamfered portion is ground in a state where the main surface of the wafer W is perpendicular to the rotation axis of the resin grindstone. In this case, circumferential chamfering marks are likely to occur in the chamfered portion. Therefore, it is known to perform so-called helical grinding in which a chamfered portion of a wafer is ground by tilting a resin bond grindstone (resin grindstone) with respect to the wafer, for example.

ヘリカル研削を行うと、通常研削に比べ面取り部の加工歪みを低減させるだけでなく、ウエーハの面取り部と砥石との接触領域が増えて面取り部の表面粗さが改善される効果が得られる。   When the helical grinding is performed, not only the processing distortion of the chamfered portion is reduced as compared with the normal grinding, but also an effect that the contact area between the chamfered portion of the wafer and the grindstone is increased and the surface roughness of the chamfered portion is improved.

さらに、レジン砥石等により半導体ウエーハの面取り部をヘリカル研削する際、面取り部の連続加工を行うとレジン砥石の溝の上下の角度が徐々に変化する結果、ウエーハの面取り部の上下非対称性が一層大きくなる。そのため、上下非対称の形状の溝が周囲に形成された第1の砥石の溝で円盤状のツルアーの縁部を研削してツルアーの縁部を上下非対称の溝形状に成形し、ツルアーと第2の砥石とを相対的に傾けて該第2の砥石の周囲に溝を形成し、第2の砥石により溝方向に対してウエーハを相対的に傾けて上下略対称のレジン砥石を得て、面取り部を精研削することが知られ、例えば特許文献1に記載されている。   Furthermore, when the chamfered portion of a semiconductor wafer is helically ground with a resin grindstone or the like, if the chamfered portion is continuously processed, the vertical angle of the groove of the resin grindstone gradually changes, resulting in a further vertical asymmetry of the chamfered portion of the wafer. growing. Therefore, the edge of the disc-shaped truer is ground with the groove of the first grindstone formed with the groove of the asymmetrical shape up and down to form the edge of the truer into the asymmetrical groove shape, and the second A groove is formed around the second whetstone by relatively tilting the whetstone, and a wafer is tilted relative to the groove direction by the second whetstone to obtain a substantially symmetrical resin whetstone, and chamfered. It is known to finely grind parts, and is described in Patent Document 1, for example.

また、面取り用砥石の回転軸をウエーハの回転軸に対して所定角度傾斜させた面取り方法において、外周研削砥石にウエーハ外周部と、OF部用の加工溝を形成することが知られ、例えば特許文献2に記載されている。   Further, in a chamfering method in which the rotation axis of the chamfering grindstone is inclined at a predetermined angle with respect to the rotation axis of the wafer, it is known to form a wafer outer peripheral portion and a processing groove for the OF portion on the outer peripheral grinding grindstone. It is described in Document 2.

さらに、ノッチ部の面取り幅を一定にするため、砥石を面取り中にウエーハの厚さ方向に相対的に移動させることが知られ、特許文献3に記載されている。   Furthermore, in order to make the chamfer width of the notch portion constant, it is known that the grindstone is relatively moved in the thickness direction of the wafer during chamfering, and is described in Patent Document 3.

特開2007−165712号公報JP 2007-165712 A 特開2007−21586号公報JP 2007-21586 A 特開2005−153129号公報JP 2005-153129 A

上記従来技術において、特許文献1に記載のものでは、上下非対称の形状の溝が周囲に形成された第1の砥石が必要で、その形状の決定が困難である。また、円形のウエーハの場合は全周で同じ形状で済むので一意的に決定できるが、OFの付いたウエーハ基板、角に円弧が付いた矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部がある場合には、さらに困難であるばかりか、レジン砥石の溝の上下の角度の変化も円形部から非円形部へ移る位置、角部で大きくなり、全周をヘリカル研削することは極めて困難であった。つまり、角を有する基板(ワーク)の角部では砥石の溝の上面と下面のうちの片方のみ当たる片当たりが発生し、良好な面取りができなかった。   In the above prior art, the one described in Patent Document 1 requires a first grindstone in which a groove having a vertically asymmetric shape is formed around it, and its shape is difficult to determine. In the case of a circular wafer, the same shape can be used for the entire circumference, so it can be determined uniquely, but it can be determined by using a wafer substrate with an OF, a rectangular or polygonal wafer with an arc at a corner, a substrate, a cover glass, etc. If there is a part and a non-circular part, it is not only more difficult, but also the change in the vertical angle of the groove of the resin grindstone becomes larger at the position where it moves from the circular part to the non-circular part, and the entire circumference is helically ground. It was extremely difficult to do. In other words, at the corner portion of the substrate (work) having a corner, one-side contact with only one of the upper surface and the lower surface of the grindstone groove occurred, and good chamfering could not be performed.

特許文献2に記載のものでは、研削工程が複雑化し、円形部が主体で非円形部が少ない場合には良いが、矩形又は多角形の場合には適用が困難であった。   The one described in Patent Document 2 is good when the grinding process is complicated and the main part is a circular part and the number of non-circular parts is small, but application is difficult in the case of a rectangle or a polygon.

特許文献3に記載のものでは、砥石を面取り中にウエーハの厚さ方向に相対的に移動させながら行わなければならないため、面取りの精度を上げるためにはウエーハあるいは砥石の厚さ方向のコントロールが複雑で困難であった。   In the thing of patent document 3, since it must carry out, moving a grindstone relatively in the thickness direction of a wafer during chamfering, in order to raise the accuracy of chamfering, control of the thickness direction of a wafer or a grindstone is required. It was complicated and difficult.

本発明の目的は、上記従来技術の課題を解決し、OF(オリフラ)の付いたウエーハ基板、矩形又は多角形のウエーハ、基板、カバーガラス等で円形部と非円形部とを有するものでもヘリカル研削を容易に可能として被加工物と砥石との接触領域を増やし、表面粗さを良好にし、形状崩れを改善することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, and even a wafer substrate with an OF (orientation flat), a rectangular or polygonal wafer, a substrate, a cover glass or the like having a circular portion and a non-circular portion is helical. The object is to make grinding easy and increase the contact area between the workpiece and the grindstone, to improve the surface roughness and to improve the shape collapse.

上記目的を達成するため、本発明は、板状の被加工材の端面を研削砥石の研削溝で研削する面取り基板の製造方法であって、前記被加工材の平面を厚さ方向に、前記被加工材の外周形状よりも小さいチャックテーブルで吸着し、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して前記研削砥石の回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接し、前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削する。   In order to achieve the above object, the present invention provides a method for manufacturing a chamfered substrate in which an end surface of a plate-like workpiece is ground with a grinding groove of a grinding wheel, wherein the plane of the workpiece is in the thickness direction, Adsorbed by a chuck table smaller than the outer peripheral shape of the workpiece, tilting the rotation axis of the grinding wheel with respect to the axis in the thickness direction perpendicular to the plane of the workpiece, and grinding the grinding groove into the workpiece Pressing and contacting the end surface of the material from the vertical direction, grinding the upper or lower portion of the end surface of the workpiece with the grinding groove, and then the grinding wheel relative to the workpiece in the thickness direction Grind again by raising or lowering.

また、上記において、前記研削溝の幅を前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。   In the above, it is preferable that the width of the grinding groove is larger than the apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.

さらに、上記において、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。   Further, in the above, the upper part of the end face of the workpiece is ground with the grinding groove, and then the grinding wheel is raised in the thickness direction relative to the workpiece to be ground again, or It is preferable that the lower part of the end face of the workpiece is ground with the grinding groove, and then the grinding wheel is lowered relative to the workpiece in the thickness direction and is ground again.

さらに、上記において、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。   Further, in the above, the upper or lower part of the end face of the workpiece is ground so as to make one round with the grinding groove over the entire circumference, and then the grinding wheel is relatively moved with respect to the workpiece. It is preferable to perform one round grinding by raising or lowering in the thickness direction.

さらに、上記において、前記研削砥石の回転軸を3〜15°傾けることが好ましい。   Furthermore, in the above, it is preferable to tilt the rotation axis of the grinding wheel 3 to 15 °.

さらに、上記において、前記被加工材の端面の加工は、それぞれ前記被加工材の端面の上部の研削、中央部の研削、下部の研削とで行われることが好ましい。   Further, in the above, it is preferable that the processing of the end surface of the workpiece is performed by grinding the upper portion of the end surface of the workpiece, grinding the central portion, and grinding the lower portion, respectively.

さらに、上記において、前記上部の研削、中央部の研削、下部の研削は、それぞれ前記被加工材の端面を全周に渡って前記研削溝で1周するように行われることが好ましい。   Furthermore, in the above, it is preferable that the grinding of the upper part, the grinding of the central part, and the grinding of the lower part are performed so as to make one round of the end face of the workpiece with the grinding groove over the entire circumference.

また、本発明は、板状の被加工材の端面を研削砥石の研削溝で面取り加工する面取り装置において、前記被加工材の平面を厚さ方向に吸着し、前記被加工材の外周形状よりも小さいチャックテーブルと、前記被加工材の平面に垂直となる前記厚さ方向の軸に対して回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接する前記研削砥石と、を備え、前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削するものである。   Further, the present invention provides a chamfering device for chamfering an end surface of a plate-shaped workpiece with a grinding groove of a grinding wheel, and adsorbs a plane of the workpiece in the thickness direction, and the outer peripheral shape of the workpiece The grinding table which is also in contact with the smaller chuck table and the axis of rotation with respect to the axis in the thickness direction perpendicular to the plane of the workpiece and pressing the grinding groove against the end face of the workpiece from the perpendicular direction Grinding the upper or lower part of the end face of the workpiece with the grinding groove, and then raising or lowering the grinding wheel relative to the workpiece in the thickness direction. Grind again.

さらに、上記のものにおいて、前記研削溝の幅は、前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことが好ましい。   Furthermore, in the above, it is preferable that the width of the grinding groove is larger than the apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.

さらに、上記のものにおいて、前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することが好ましい。   Further, in the above, the upper part of the end face of the workpiece is ground with the grinding groove, and then the grinding wheel is raised relative to the workpiece in the thickness direction and is ground again. Alternatively, it is preferable that the lower part of the end face of the workpiece is ground with the grinding groove, and then the grinding wheel is lowered relative to the workpiece in the thickness direction and is ground again.

さらに、上記のものにおいて、前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することが好ましい。   Further, in the above, the upper or lower part of the end face of the workpiece is ground so as to make one round with the grinding groove over the entire circumference, and then the grinding wheel is relatively relative to the workpiece. Further, it is preferable to perform one round grinding by raising or lowering in the thickness direction.

さらに、上記のものにおいて、前記研削砥石の回転軸は3〜15°傾けられたことが好ましい。   Furthermore, in the above, it is preferable that the rotation axis of the grinding wheel is inclined by 3 to 15 °.

さらに、上記のものにおいて、前記被加工材の端面の加工は、端面の上部の研削と、中央部の研削と、下部の研削とをそれぞれ行うことが好ましい。   Furthermore, in the above-mentioned thing, it is preferable that the processing of the end surface of the workpiece is performed by grinding the upper portion of the end surface, grinding the central portion, and grinding the lower portion.

本発明によれば、矩形又は多角形の被加工材であっても、ヘリカル研削を可能として、表面粗さを良好にし、形状崩れを少なくすることができる。   According to the present invention, even a rectangular or polygonal workpiece can be subjected to helical grinding, the surface roughness can be improved, and the shape collapse can be reduced.

本発明の一実施形態に係る面取り装置の主要部を示す平面図。The top view which shows the principal part of the chamfering apparatus which concerns on one Embodiment of this invention. 一実施形態における加工部の構成を示す斜視図。(被加工材が円形と直線部)The perspective view which shows the structure of the process part in one Embodiment. (Work material is circular and straight part) 図2における平面図。The top view in FIG. 一実施形態における加工部の構成を示す斜視図。(被加工材が主に直線部)The perspective view which shows the structure of the process part in one Embodiment. (Work material is mainly straight part) 図4における平面図。The top view in FIG. 一実施形態における研削溝と被加工材との関係を示す側面図。(上面の加工)The side view which shows the relationship between the grinding groove | channel and workpiece in one Embodiment. (Top surface processing) 一実施形態における研削溝と被加工材との関係を示す側面図。(下面の加工)The side view which shows the relationship between the grinding groove | channel and workpiece in one Embodiment. (Processing of the bottom surface) 被加工材と研削砥石の上下端部との当接を説明する平面図。The top view explaining contact | abutting with a workpiece and the upper-lower-end part of a grinding wheel. 従来の板材の端面加工のヘリカル研削を示す斜視図。The perspective view which shows the helical grinding of the end surface processing of the conventional board | plate material. 従来の研削と一実施形態による研削との違いを説明する側面図。The side view explaining the difference between the conventional grinding and grinding by one embodiment. 一実施形態による面取り基板の製造方法により加工された被加工材の端面を示す側面図。The side view which shows the end surface of the workpiece processed by the manufacturing method of the chamfer board | substrate by one Embodiment. 他の実施形態による面取り基板の製造方法の手順を示す側面図。The side view which shows the procedure of the manufacturing method of the chamfer board | substrate by other embodiment. 本発明の実施形態に係る研削砥石と被加工材との詳細を示す側面図。The side view which shows the detail of the grinding wheel and workpiece which concern on embodiment of this invention.

以下に、本発明の実施形態について図面を参照して詳細に説明する。この実施形態により発明が限定されるものでなく、実施形態における構成要素には当業者が容易に想定できるもの、あるいは実質的に同一のものも含まれる。   Embodiments of the present invention will be described below in detail with reference to the drawings. The invention is not limited to the embodiments, and constituent elements in the embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

図1は本発明の一実施形態に係る面取り装置の主要部を示す平面図である。面取り装置は、主に供給回収部20、加工部10を有し、その他図示していないが、プリアライメント部、洗浄部、後測定部、搬送部等から構成される。   FIG. 1 is a plan view showing a main part of a chamfering apparatus according to an embodiment of the present invention. The chamfering apparatus mainly includes a supply / recovery unit 20 and a processing unit 10, and includes a pre-alignment unit, a cleaning unit, a post-measurement unit, a transport unit, and the like, although not shown.

ウエーハ加工工程は、スライス→面取り→ラップ→エッチング→ドナーキラー→精面取りの順で行われ、工程間には汚れを取り除くため、各種洗浄が用いられる。シリコン等は固くてもろく、ウエーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウエーハ表面を傷つけたり汚染したりする。これを防ぐため、面取り工程では切り出されたウエーハの端面をダイヤモンドでコートされた面取り砥石で面取りする。   The wafer processing step is performed in the order of slicing → chamfering → lapping → etching → donor killer → fine chamfering, and various cleanings are used to remove dirt between the processes. Silicon and other materials are hard and brittle, and if the edge of the wafer remains sharp during slicing, it can easily crack or chip during handling such as transport and alignment in subsequent processing steps, and fragments can damage or contaminate the wafer surface. Or In order to prevent this, in the chamfering process, the end surface of the cut wafer is chamfered with a chamfering grindstone coated with diamond.

面取り工程は、ラッピング工程の後に行なわれることもある。この時、バラツキのある外周の直径を合わせ、オリエンテーションフラット(OF)の幅の長さを合わせる事や、ノッチと呼ばれる微少な切り欠きの寸法を合わせる事も行われる。   The chamfering process may be performed after the lapping process. At this time, the diameter of the outer periphery with variations is matched, the length of the width of the orientation flat (OF) is matched, and the size of a small notch called a notch is also matched.

供給回収部20は、面取り加工するウエーハWをウエーハカセット30から加工部10に供給すると共に、面取り加工されたウエーハをウエーハカセット30に回収する。この動作は供給回収ロボット40で行われる。ウエーハカセット30は、カセットテーブル31にセットされ、面取り加工するウエーハWが多数枚収納されている。供給回収ロボット40はウエーハカセット30からウエーハWを1枚ずつ取り出したり、面取り加工されたウエーハをウエーハカセット30に収納したりする。   The supply / recovery unit 20 supplies the wafer W to be chamfered from the wafer cassette 30 to the processing unit 10 and collects the chamfered wafer to the wafer cassette 30. This operation is performed by the supply / recovery robot 40. The wafer cassette 30 is set on a cassette table 31 and stores a number of wafers W to be chamfered. The supply / recovery robot 40 takes out the wafers W one by one from the wafer cassette 30 and stores the chamfered wafers in the wafer cassette 30.

供給回収ロボット40は3軸回転型の搬送アーム50を備えており、搬送アーム50は、その上面部に図示しない吸着パッドを備えている。搬送アーム50は、吸着パッドでウエーハWの裏面を真空吸着してウエーハWを保持する。すなわち、この供給回収ロボット40の搬送アーム50は、ウエーハWを保持した状態で前後、昇降移動、及び旋回することができ、この動作を組み合わせることによりウエーハWの搬送を行う。   The supply / recovery robot 40 includes a three-axis rotation type transfer arm 50, and the transfer arm 50 includes a suction pad (not shown) on an upper surface thereof. The transfer arm 50 holds the wafer W by vacuum suction of the back surface of the wafer W with a suction pad. That is, the transfer arm 50 of the supply / recovery robot 40 can move up and down, move up and down, and turn while holding the wafer W, and the wafer W is transferred by combining these operations.

加工部10はウエーハ面取り装置の正面部に配置されており、ウエーハWの外周面取りの全加工、すなわち、粗加工から仕上げ加工までを行う。この加工部10は、ウエーハ送り装置60、外周粗研削装置62、ウエーハWを搬送するトランスファーアーム63及び外周精研削装置61から構成されている。   The processing unit 10 is disposed in the front portion of the wafer chamfering apparatus, and performs all processing of the outer peripheral chamfering of the wafer W, that is, roughing to finishing. The processing unit 10 includes a wafer feeding device 60, an outer periphery rough grinding device 62, a transfer arm 63 that conveys the wafer W, and an outer periphery fine grinding device 61.

図2は、加工部10の構成を示す斜視図、図3は平面図であり、ウエーハ送り装置60は、ウエーハWを吸着保持するチャックテーブル(ウエーハテーブル)66を有している。このチャックテーブル66は、図示しない駆動手段に駆動されることにより、前後方向(Y軸方向)、左右方向(X軸方向)、及び上下方向(Z軸方向)の各方向に移動するとともに、チャックテーブル駆動モータ65に駆動されることにより中心軸(θ軸)回りに回転する。   FIG. 2 is a perspective view showing the configuration of the processing unit 10, FIG. 3 is a plan view, and the wafer feeding device 60 has a chuck table (wafer table) 66 that holds the wafer W by suction. The chuck table 66 is driven by driving means (not shown) to move in the front-rear direction (Y-axis direction), the left-right direction (X-axis direction), and the vertical direction (Z-axis direction). By being driven by the table drive motor 65, it rotates around the central axis (θ axis).

外周粗研削装置62は、ウエーハ送り装置60のチャックテーブル66に対してY軸方向に所定距離離れた位置に配置される。この外周粗研削装置62は、外周粗研モータ67に駆動されて回転する外周粗研スピンドル68を有している。外周粗研スピンドル68は、図示しない駆動手段に駆動されることにより前後方向(Y軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。   The outer peripheral rough grinding device 62 is disposed at a position separated from the chuck table 66 of the wafer feeding device 60 by a predetermined distance in the Y-axis direction. This outer peripheral rough grinding device 62 has an outer peripheral rough grinding spindle 68 that is driven by an outer peripheral rough grinding motor 67 to rotate. The outer periphery roughing spindle 68 is configured to be movable in the front-rear direction (Y-axis direction) and the vertical direction (Z-axis direction) by being driven by a driving unit (not shown).

外周粗研スピンドル68には、ウエーハWの外周を粗加工(粗研削)する外周粗研削砥石69が装着され、その回転軸となる。外周粗研削砥石69は、その外周面に複数の外周粗研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が粗加工(粗研削)される。   A peripheral rough grinding spindle 69 for roughing (rough grinding) the outer periphery of the wafer W is mounted on the peripheral rough grinding spindle 68, and serves as a rotation axis thereof. The outer peripheral rough grinding wheel 69 has a plurality of outer peripheral rough grinding grooves formed on the outer peripheral surface thereof (general shape grindstone). By pressing the outer periphery of the wafer W against this groove, the outer periphery of the wafer W is roughened ( Rough grinding).

外周精研削装置61は、ウエーハ送り装置60のチャックテーブル66に対してX軸方向に所定距離だけ離れた位置に配置される。この外周精研削装置61は、外周精研モータ70に駆動されて回転する外周精研スピンドル71を有している。外周精研スピンドル71は、図示しない駆動手段に駆動されることにより左右方向(X軸方向)及び上下方向(Z軸方向)の各方向に移動可能に構成される。外周精研スピンドル71には、ウエーハWの外周を仕上げ加工(精研削)する外周精研削砥石72が装着され、その回転軸となる。   The peripheral grinding device 61 is disposed at a position away from the chuck table 66 of the wafer feeding device 60 by a predetermined distance in the X-axis direction. The outer peripheral fine grinding device 61 has an outer peripheral fine grinding spindle 71 that is driven by the outer peripheral fine grinding motor 70 to rotate. The outer peripheral precision spindle 71 is configured to be movable in the left and right direction (X-axis direction) and the vertical direction (Z-axis direction) by being driven by a driving means (not shown). The outer peripheral fine grinding spindle 71 is equipped with an outer peripheral fine grinding wheel 72 for finishing the outer periphery of the wafer W (fine grinding), and serves as a rotating shaft thereof.

外周精研削砥石72は、その外周面に外周精研削用溝が形成されており(総形砥石)、この溝にウエーハWの外周を押し当てることにより、ウエーハWの外周が仕上げ加工される。   The peripheral grinding wheel 72 has a circumferential grinding groove formed on its outer peripheral surface (total grinding wheel), and the outer circumference of the wafer W is finished by pressing the outer circumference of the wafer W against this groove.

このとき、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3〜15°、望ましくは6〜10°傾斜させた状態で行うヘリカル研削によってウエーハWの外周面取りの仕上げ加工を行う。   At this time, the wafer is subjected to helical grinding performed by tilting the rotation axis of the outer peripheral fine spindle 71 with respect to the rotation axis of the chuck table 66 in the tangential direction of the outer periphery of the wafer W by 3 to 15 °, preferably 6 to 10 °. Finish the outer chamfering of W.

これにより、砥粒の運動方向がウエーハWの外周の運動方向と交差し、接触面積が増大すること等より、砥石摩耗が抑制され、外周の形状崩れ等を低減できるため、通常の研削に比べて加工面(研削面)の粗さが良好となる。   As a result, the movement direction of the abrasive grains intersects with the movement direction of the outer periphery of the wafer W, the contact area increases, etc., so that the wear of the grinding wheel is suppressed and the shape deformation of the outer periphery can be reduced. As a result, the roughness of the processed surface (grind surface) is improved.

次に、加工部10の動作について説明する。加工開始前の待機状態では、チャックテーブル66に保持されるウエーハWは、その中心がチャックテーブル66の回転軸と一致するように配置される。このとき、ウエーハWのOF部は所定方向(本例ではY軸方向)を向くように配置される。   Next, the operation of the processing unit 10 will be described. In the standby state before the start of processing, the wafer W held on the chuck table 66 is arranged so that the center thereof coincides with the rotation axis of the chuck table 66. At this time, the OF portion of the wafer W is disposed so as to face a predetermined direction (in this example, the Y-axis direction).

また、外周粗研削砥石69及び外周精研削砥石72は、ウエーハWからそれぞれ所定距離離れた位置に位置している。具体的には、外周粗研削砥石69の回転中心はウエーハWの回転中心に対してY軸方向に所定距離離れた位置に配置され、かつ外周精研削砥石72の回転中心はウエーハWに対してX軸方向に所定距離離れた位置に配置される。   Further, the outer peripheral rough grinding wheel 69 and the outer peripheral fine grinding wheel 72 are located at positions away from the wafer W by a predetermined distance. Specifically, the rotation center of the outer peripheral rough grinding wheel 69 is disposed at a position separated from the rotation center of the wafer W by a predetermined distance in the Y-axis direction, and the rotation center of the outer peripheral grinding wheel 72 is relative to the wafer W. It is arranged at a position separated by a predetermined distance in the X-axis direction.

まず始めに、アライメント動作が行われる。このアライメント動作では、チャックテーブル66に保持されたウエーハWと外周粗研削砥石69及び外周精研削砥石72との上下方向(Z軸方向)について相対的な位置関係が調整される。   First, an alignment operation is performed. In this alignment operation, the relative positional relationship between the wafer W held on the chuck table 66, the outer peripheral rough grinding wheel 69, and the outer peripheral fine grinding wheel 72 in the vertical direction (Z-axis direction) is adjusted.

アライメント動作が完了したら、外周粗研モータ67が駆動される。次に、外周粗研削砥石69による研削(粗加工)を開始する。具体的には、外周粗研削装置62のY軸モータ(不図示)が駆動され、外周粗研スピンドル68がY軸方向に沿ってチャックテーブル66に向かって送られる。   When the alignment operation is completed, the outer periphery roughing motor 67 is driven. Next, grinding (rough machining) by the outer periphery rough grinding wheel 69 is started. Specifically, a Y-axis motor (not shown) of the outer peripheral rough grinding device 62 is driven, and the outer peripheral rough grinding spindle 68 is fed toward the chuck table 66 along the Y-axis direction.

外周粗研削砥石69としては、例えば、直径202mmのダイヤモンド砥粒のメタルボンド砥石で、粒度#800であるものを使用することができる。また、外周粗研スピンドル68は、ボールベアリングを用いたビルトインモータ駆動のスピンドルで、所定の回転速度、例えば回転速度8,000rpmで回転される。   As the outer peripheral rough grinding grindstone 69, for example, a diamond bond metal bond grindstone having a diameter of 202 mm and having a particle size of # 800 can be used. The outer periphery roughing spindle 68 is a built-in motor driven spindle using a ball bearing, and is rotated at a predetermined rotational speed, for example, a rotational speed of 8,000 rpm.

チャックテーブル66に向かって外周粗研スピンドル68が送られると、ウエーハWの外周が外周粗研削砥石69に形成された外周粗研削用の研削溝に接触し、ウエーハWの外周部が外周粗研削砥石69により研削されて、ウエーハWの外周面取りの粗加工が開始される。   When the outer periphery roughing spindle 68 is fed toward the chuck table 66, the outer periphery of the wafer W comes into contact with the outer peripheral rough grinding grinding groove formed on the outer peripheral rough grinding wheel 69, and the outer periphery of the wafer W is outer peripheral rough grinding. After being ground by the grindstone 69, rough machining of the outer peripheral chamfer of the wafer W is started.

外周粗研削砥石69による粗加工が開始された後、始めは図2のウエーハWは円形であるので、チャックテーブル66に保持されたウエーハWが一定速度で矢印方向に回転を開始する。この回転角度、つまり加工点が直線部となるOF部に至ると、外周粗研スピンドル68をY方向である、チャックテーブル66に向かう方向の送り量を多くすると共に、外周粗研スピンドル68をX方向に直線移動させ直線部を加工する。その後、直線部の加工を終了すると、再び、チャックテーブル66に保持された板状のウエーハWを一定速度で矢印方向に回転させ、残りの円形部を研削して外周粗研削砥石69による粗加工を終了する。   Since the wafer W in FIG. 2 is initially circular after the rough machining by the outer peripheral rough grinding wheel 69 is started, the wafer W held on the chuck table 66 starts to rotate in the arrow direction at a constant speed. When this rotational angle, that is, the OF portion where the machining point is a straight line portion, the feed amount in the direction toward the chuck table 66 in the Y direction is increased, and the outer periphery spindle 68 is moved in the X direction. Move the straight line in the direction to process the straight part. Thereafter, when the processing of the linear portion is finished, the plate-like wafer W held on the chuck table 66 is rotated again in the direction of the arrow at a constant speed, the remaining circular portion is ground, and rough processing by the outer peripheral rough grinding wheel 69 is performed. Exit.

次に、外周精研削砥石72による仕上げ加工が同様に行われる。外周精研削砥石72は、ダイヤモンド砥粒のレジンボンド砥石が適している。また、外周精研スピンドル71の回転軸をチャックテーブル66の回転軸に対してウエーハWの外周の接線方向に3〜15°、望ましくは6〜10°傾斜させた状態でウエーハWの外周面取りの仕上げ加工が行われる。   Next, the finishing process by the outer peripheral grinding wheel 72 is performed in the same manner. As the outer peripheral grinding wheel 72, a resin bond grinding wheel of diamond abrasive grains is suitable. Further, the outer circumferential chamfering of the wafer W is performed with the rotation axis of the outer peripheral fine spindle 71 inclined at 3 to 15 °, preferably 6 to 10 °, in the tangential direction of the outer periphery of the wafer W with respect to the rotation axis of the chuck table 66. Finishing is performed.

さらに、外周精研削砥石72の面取り用加工溝はツルアーによって形成されるが、詳しい説明を省略する。また、外周粗研削砥石69としては、例えば、Fe、Cr、Cu等の金属粉等を主成分とし、ダイヤモンド砥粒を混ぜて成形したものが用いられる。ツルアーの材質は、外周粗研削砥石69によって加工することができる一方、外周精研削砥石72を研削することができるものを採用する。   Furthermore, the chamfering groove of the outer peripheral grinding wheel 72 is formed by a truer, but detailed description thereof is omitted. Further, as the outer peripheral rough grinding grindstone 69, for example, a material which is mainly composed of metal powder such as Fe, Cr, Cu or the like and mixed with diamond abrasive grains is used. As the material of the truer, a material which can be processed by the outer peripheral rough grinding wheel 69 and can grind the outer peripheral grinding wheel 72 is adopted.

例えば炭化珪素からなる砥粒を、必要に応じて充填剤等も加えてフェノール樹脂で結合し、これを円盤状のツルアーに成形したものが望ましい。外周精研削砥石72の材質は、ツルアーによって研削することで周囲に研削溝74を形成することができる一方、形成された研磨によってシリコンウエーハ等の面取り部を精研削することができるものを用いる。例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリスチレン樹脂又はポリエチレン樹脂等を主成分とし、ダイヤモンド砥粒や立方晶窒化ホウ素砥粒を混ぜて成形したものが望ましい。   For example, it is desirable that abrasive grains made of silicon carbide be bonded with a phenol resin with a filler or the like if necessary, and molded into a disk-shaped truer. As the material of the outer peripheral fine grinding stone 72, a material capable of finely grinding a chamfered portion such as a silicon wafer by the formed polishing while the grinding groove 74 can be formed around by grinding with a truer. For example, it is desirable to use a material mainly composed of phenol resin, epoxy resin, polyimide resin, polystyrene resin or polyethylene resin, and formed by mixing diamond abrasive grains or cubic boron nitride abrasive grains.

また、外周精研削砥石72としては、例えば、直径50mmのダイヤモンド砥粒のレジンボンド砥石で、粒度#3000のものが用いられる。外周精研スピンドル71はエアーベアリングを用いたビルトインモータ駆動のスピンドルで、回転速度35,000rpmで回転される。   Further, as the peripheral fine grinding stone 72, for example, a resin bond grindstone of diamond abrasive grains having a diameter of 50 mm and having a grain size of # 3000 is used. The outer peripheral precision spindle 71 is a built-in motor driven spindle using an air bearing and is rotated at a rotational speed of 35,000 rpm.

図4は被加工材が円形でなく、矩形の場合での加工部の構成を示す斜視図であり、図5は同様に平面図である。被加工材が円形でなく、矩形の場合は、図4、5に示すように、直線部の加工が主となる。   FIG. 4 is a perspective view showing a configuration of a processing portion when the workpiece is not circular but rectangular, and FIG. 5 is a plan view similarly. When the workpiece is not a circle but a rectangle, as shown in FIGS.

スマートフォンやタブレットの薄型化、軽量化が進むにつれてガラス基板、カバーガラス、あるいはサファイア、セラミックスが表面に使用され、端面強度が重要となり、鏡面研削において、砥粒によるチッピングの抑制と良好な面粗さが要求される。面取りの加工品質、加工面粗さ、マイクロクラックの発生などはガラス基板の端面強度に直接影響する。   As smartphones and tablets become thinner and lighter, glass substrates, cover glass, sapphire, and ceramics are used on the surface, and end face strength is important. In mirror grinding, chipping suppression and good surface roughness are achieved. Is required. Chamfering processing quality, processing surface roughness, microcracking, etc. directly affect the end face strength of the glass substrate.

図4、5はスマートフォンやタブレットにおける矩形のガラスパネルの面取り加工を示しており、外周精研削装置61のX軸モータ(不図示)が駆動され、外周精研スピンドル71がX軸方向に沿ってチャックテーブル73に向かって送られる。   4 and 5 show chamfering processing of a rectangular glass panel in a smartphone or tablet. An X-axis motor (not shown) of the outer peripheral grinding device 61 is driven, and the outer peripheral fine spindle 71 moves along the X-axis direction. It is sent toward the chuck table 73.

チャックテーブル73に向かって外周精研スピンドル71が送られると、ガラスパネル(あるいはウエーハ)Wの直線部が外周精研削砥石72に形成された面取り用加工溝である外周精研削用溝に接触し、ガラスパネルWの外周部が外周精研削砥石72によりヘリカル研削されて、ガラスパネルWの外周面取りの加工が開始される。外周精研削砥石72による加工が開始された後、図4、5のガラスパネルWは矩形であるので、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動を開始する。加工点が角部に到達すると、チャックテーブル73は、90°回転しつつY軸方向に移動を行い次の直線部を加工する。以下、同様にガラスパネルWの全外周を加工していく。   When the outer periphery precision spindle 71 is sent toward the chuck table 73, the straight portion of the glass panel (or wafer) W comes into contact with the outer periphery fine grinding groove, which is a chamfering groove formed in the outer periphery fine grinding wheel 72. The outer peripheral part of the glass panel W is helically ground by the outer peripheral grinding wheel 72, and the processing of the outer peripheral chamfering of the glass panel W is started. After the processing by the outer peripheral grinding wheel 72 is started, the glass panel W of FIGS. 4 and 5 is rectangular, and thus the glass panel W held on the chuck table 73 starts moving at a constant speed in the Y-axis direction. When the processing point reaches the corner portion, the chuck table 73 moves in the Y-axis direction while rotating 90 ° to process the next linear portion. Hereinafter, the entire outer periphery of the glass panel W is processed similarly.

また、研削砥石は、ポーラスな表面を有する面取り砥石素材に飽和脂肪酸溶液と共に潤滑剤を含ませ、表面を乾燥させて潤滑剤含浸砥石とし、この潤滑剤を含む砥石を研削時に水冷却して使用することが望ましい。これにより、砥石の切削点へ潤滑剤が確実に供給されて切削点温度を所定温度以下にすることができる。また、冷却液を水としたので、冷却液による環境汚染を防止できる。さらにウエーハ面取り装置では、砥石に潤滑剤を含浸させているので、長期にわたり潤滑剤を切削点に供給可能であり、冷却液を水としたので低温かつ環境に配慮した加工が可能となる。   In addition, the grinding wheel is made of a chamfering wheel material having a porous surface and a lubricant together with a saturated fatty acid solution, and the surface is dried to form a lubricant-impregnated grinding wheel. It is desirable to do. Thereby, the lubricant can be reliably supplied to the cutting point of the grindstone, and the cutting point temperature can be set to a predetermined temperature or lower. Moreover, since the coolant is water, it is possible to prevent environmental pollution due to the coolant. Furthermore, in the wafer chamfering apparatus, since the grindstone is impregnated with the lubricant, the lubricant can be supplied to the cutting point over a long period of time, and the coolant is water, so that processing can be performed at low temperature and in consideration of the environment.

チャックテーブル73は、図5に示すように矩形のガラスパネルWの形状と同様の形状であるが、外周精研削砥石72による加工時にガラスパネルW自体がやや弾性変形するようにガラスパネルWよりも十分に小さくなり、ガラスパネルWはチャックテーブル73よりオーバハングして保持されている。   The chuck table 73 has a shape similar to that of the rectangular glass panel W as shown in FIG. 5, but is more than the glass panel W so that the glass panel W itself is slightly elastically deformed when processed by the peripheral grinding wheel 72. The glass panel W becomes sufficiently small, and is held overhanging from the chuck table 73.

具体的には、チャックテーブル73の大さきは、ガラスパネルWのX軸方向の中央からの距離をQとし、チャックテーブル73のX軸方向の中央からの距離をPとすると、Q=(1.3〜1.7)P、より望ましくはQ=1.5PとすることがガラスパネルWの吸着による固定及び研削加工の点から良い。つまり、ガラスパネルWの変形や撓み、歪みなどの加工精度への影響を避けると共に、加工時に被加工材、ガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。Y軸方向も同様であり、図5のN=(1.3〜1.7)H、より望ましくはN=1.5Hとすることが望ましい。つまり、チャックテーブル73の形状は、被加工材の外周形状よりも小さく、縦横共に、ガラスパネルWの平面形状よりも0.6〜0.8倍が望ましい。なお、矩形のガラスパネルWの形状は、縦×横が120mm×60mm程度、厚みが0.5〜1.5mm程度であり、矩形のチャックテーブル73は80mm×40mm程度が望ましい。   Specifically, the size of the chuck table 73 is Q = (1) where Q is the distance from the center of the glass panel W in the X-axis direction and P is the distance from the center of the chuck table 73 in the X-axis direction. .3 to 1.7) P, more preferably, Q = 1.5P is preferable from the viewpoint of fixing and grinding by adsorption of the glass panel W. That is, while avoiding the influence on processing accuracy such as deformation, bending, and distortion of the glass panel W, the workpiece, the glass panel W itself is slightly elastically deformed during processing, and the outer peripheral grinding wheel 72 is a soft resin bond wheel. Combined with this, it reduces the impact of such vibration. The same applies to the Y-axis direction, and it is desirable to set N = (1.3 to 1.7) H in FIG. 5, more preferably N = 1.5H. That is, the shape of the chuck table 73 is smaller than the outer peripheral shape of the workpiece, and is preferably 0.6 to 0.8 times larger than the planar shape of the glass panel W in both length and width. The rectangular glass panel W is preferably about 120 mm × 60 mm in length and width and about 0.5 to 1.5 mm in thickness, and the rectangular chuck table 73 is preferably about 80 mm × 40 mm.

外周精研スピンドル71の回転軸をチャックテーブル73に対してガラスパネルWの外周の接線方向にθ=3〜15°、望ましくは6〜10°傾斜しているので、ガラスパネルWは外周精研削砥石72の研削溝74に対してこの角度θで当接し、砥粒の運動方向がガラスパネルWの運動方向と交差する。また、傾斜角度があまりに大きいと、研削抵抗の増大、端面における上下角部の欠け、キズなどの点で好ましくない。   Since the rotation axis of the outer peripheral fine spindle 71 is inclined with respect to the chuck table 73 in the tangential direction of the outer periphery of the glass panel W by θ = 3 to 15 °, preferably 6 to 10 °, the glass panel W is subjected to the outer peripheral fine grinding. The grinding groove 74 of the grindstone 72 abuts at this angle θ, and the movement direction of the abrasive grains intersects with the movement direction of the glass panel W. Further, if the inclination angle is too large, it is not preferable in terms of increase in grinding resistance, chipping of upper and lower corners on the end face, scratches, and the like.

図6は外周精研削砥石72の研削溝74と、被加工材Wとの関係を示す側面図であり、図に示すように、外周精研削砥石72の研削溝74の幅yは、外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の上端部が被加工材Wの上面と当接する位置から被加工材Wの下面が研削溝74の下端部に最も近づくが当接しない位置までの距離、つまり、研削溝74を角度θ傾けたときの被加工材の見掛け厚み、図6で右端部からの左端部までの寸法y0よりも広くy>y0となっている。y0は、研削溝74の直径をD、被加工材Wの厚さをtとすると、おおよそDtanθ+t/cosθとなる。研削溝74の幅を広くする方法は予めツールイングするときの転写用の溝を広くしても良いし、ツールイング時のツルアーをZ軸方向に上下に移動して研削溝74を幅広く加工しても良い。   FIG. 6 is a side view showing the relationship between the grinding groove 74 of the peripheral grinding wheel 72 and the workpiece W. As shown in FIG. When the grinding groove 74 of the grinding wheel 72 is inclined at an angle θ, the lower surface of the workpiece W comes closest to the lower end of the grinding groove 74 from the position where the upper end of the grinding groove 74 contacts the upper surface of the workpiece W. The distance to the non-contact position, that is, the apparent thickness of the workpiece when the grinding groove 74 is inclined by the angle θ, is larger than the dimension y0 from the right end to the left end in FIG. 6, and y> y0. y0 is approximately Dtan θ + t / cos θ, where D is the diameter of the grinding groove 74 and t is the thickness of the workpiece W. The method of widening the width of the grinding groove 74 may be to widen the transfer groove when tooling in advance, or the grinding groove 74 may be processed widely by moving the tooling tool up and down in the Z-axis direction. May be.

次に、ヘリカル研削の加工手順を以下に説明する。
図6はガラスパネルWの上面を加工している状態を示す側面図であり、チャックテーブル73に向かって外周精研スピンドル71が送られたとき、研削溝74の右上端部の上面斜面72uがガラスパネルWの上面、図6で右上端部が当接して加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。
Next, the processing procedure of helical grinding will be described below.
FIG. 6 is a side view showing a state in which the upper surface of the glass panel W is being processed. When the outer peripheral precision spindle 71 is fed toward the chuck table 73, the upper surface slope 72u at the upper right end of the grinding groove 74 is shown. The upper surface of the glass panel W, the upper right end portion in FIG. 6 abuts, and processing starts, and then the glass panel W held on the chuck table 73 moves at a constant speed in the Y-axis direction to perform chamfering.

ガラスパネルWの下面は、研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点がガラスパネルWの角R部に到達すると、チャックテーブル73が回転して、角部のRを加工する。このときは円形部を研削するのと同様になり、接触領域が小さくなるので、研削溝74の上面斜面の当接は弱くなり、厚み方向の中央部の研削が主となる。以下、同様にガラスパネルWの外周を1周するまで加工していく。   Since the grinding groove 74 is wider than the apparent thickness of the glass panel W, the lower surface of the glass panel W does not contact. The central portion and the main portion of the glass panel W in the thickness direction are contacted with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72 and are subjected to helical grinding. When the processing point reaches the corner R portion of the glass panel W, the chuck table 73 rotates to process the corner R. At this time, it becomes the same as grinding of the circular portion, and the contact area becomes small. Therefore, the contact of the upper surface slope of the grinding groove 74 becomes weak, and the central portion in the thickness direction is mainly ground. Hereinafter, the glass panel W is similarly processed until it makes one round.

図7はガラスパネル下面を加工している状態を示す側面図であり、上記の加工が1周した点で、図6の状態から外周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に降下させ、研削溝74の下面斜面がガラスパネルWの下面、図7左下端部の下面斜面72dが当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがX軸方向に一定速度で移動して2周目の面取りを行う。   FIG. 7 is a side view showing a state in which the lower surface of the glass panel is being processed. At the point where the above processing is performed once, the outer peripheral grinding wheel 72 is raised in the Z-axis direction from the state of FIG. Is lowered in the Z-axis direction so that the lower surface slope of the grinding groove 74 is in contact with the lower surface of the glass panel W and the lower surface slope 72d at the lower left end of FIG. That is, the grinding wheel is raised relative to the workpiece in the thickness direction. Thereafter, the glass panel W held on the chuck table 73 moves at a constant speed in the X-axis direction to perform chamfering on the second round.

ガラスパネルWの上面は研削溝74がガラスパネルWの見掛け厚みより幅広となっているので、当接しない。ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。   Since the grinding groove 74 is wider than the apparent thickness of the glass panel W, the upper surface of the glass panel W does not contact. The central portion and the main portion of the glass panel W in the thickness direction are contacted with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72 and are subjected to helical grinding.

以上のように、ガラスパネルWに対して外周精研削砥石72の研削溝74を角度θで傾斜させて当接し、砥粒の運動方向がガラスパネルWの運動方向と交差するようにし、かつ、外周精研削砥石72の研削溝74の幅を被加工材に対して外周精研削砥石72を角度θ傾けたときの被加工材の見掛け厚みよりも幅広とすること、外周精研削砥石72をZ軸方向に上下することにより、OF等の直線部、又は矩形、多角形等の材料の面取り加工にヘリカル研削を適用することが可能となる。これにより、端面の面粗さ、加工歪を小さくし、高番手の砥石でも長時間の使用が可能である。   As described above, the grinding groove 74 of the outer peripheral fine grinding wheel 72 is brought into contact with the glass panel W at an angle θ, the movement direction of the abrasive grains intersects with the movement direction of the glass panel W, and The width of the grinding groove 74 of the outer peripheral grinding wheel 72 is made wider than the apparent thickness of the workpiece when the outer circumferential grinding wheel 72 is tilted at an angle θ with respect to the workpiece. By moving up and down in the axial direction, helical grinding can be applied to chamfering of a linear portion such as OF or a material such as a rectangle or a polygon. Thereby, the surface roughness of the end face and the processing distortion are reduced, and even a high count grindstone can be used for a long time.

ここで、本発明者は、図6においてθの角度をより大きくして、ガラスパネルWの上面の右上端部が上面斜面72u当接し、かつ、ガラスパネルWの下面の左下端部に下面斜面72dが当接するようにして研削を行う評価を実施した。すると、ガラスパネルWの角部のRを研削する際、必ず、ガラスパネルWは、上面斜面72uと下面斜面72dとのうち片方しか当接できない状況が発生することを見いだした。このため、ガラスパネルWの角部においては、必ず上面か下面のうちのどちらかに研削が十分で無い部分が発生することが判明した。   Here, the inventor increases the angle θ in FIG. 6 so that the upper right end portion of the upper surface of the glass panel W comes into contact with the upper surface inclined surface 72u, and the lower surface inclined surface is in contact with the lower left end portion of the lower surface of the glass panel W. An evaluation was performed in which grinding was performed so that 72d abuts. Then, when grinding R of the corner | angular part of the glass panel W, it discovered that the situation where the glass panel W can always contact | abut only one of the upper surface inclined surface 72u and the lower surface inclined surface 72d generate | occur | produced. For this reason, in the corner | angular part of the glass panel W, it turned out that the part which grinding | polishing is not enough in any one of an upper surface or a lower surface occurs.

よって、本発明者は、ヘリカル研磨を行う際、図6における、θ、y、ガラスパネルWの厚みtの関係は、「ガラスパネルWの上面又は下面のうちどちらか一方のみが研削溝74の端部(上面斜面72uまたは下面斜面72d)に接触し、もう一方は端部に接触しない」(条件1)ようにθ、y、tが選択されなければならないことを見いだした。よって、それらのパラメータのうち、どれかが決まっているならば、変更可能なパラメータを調整することによって上記条件1を満たさなければならない。その際、条件1を満たす範囲で、なるべく図6におけるy0がyに近い値である方が好ましいことが判明した。それにより、研削溝74の大部分を使用できるので、砥石の寿命も長くなるからである。   Therefore, when the present inventor performs the helical polishing, the relationship between θ, y and the thickness t of the glass panel W in FIG. 6 is “only one of the upper surface or the lower surface of the glass panel W is the grinding groove 74. It has been found that θ, y, and t must be selected so as to contact one end (upper surface inclined surface 72u or lower surface inclined surface 72d) and the other does not contact the end portion (condition 1). Therefore, if any of these parameters is determined, the above condition 1 must be satisfied by adjusting the changeable parameters. At this time, it was found that it is preferable that y0 in FIG. This is because most of the grinding groove 74 can be used, so that the life of the grindstone is extended.

図8は、円形部の加工と直線部の加工とでガラスパネルWの厚み方向の上下端部で外周精研削砥石72と研削溝74との当接の違いを説明する平面図であり、外周精研削砥石72の研削溝74の円筒部と直線ワークW1の接触領域は、円筒部と円形ワークW2の接触領域より大きいだけでなく、研削溝74の上下端部の上面斜面72uあるいは下面斜面72dとの直線ワークW1の接触域Lは円形ワークW2の接触域Mより大きい。   FIG. 8 is a plan view for explaining the difference in contact between the peripheral grinding wheel 72 and the grinding groove 74 at the upper and lower ends in the thickness direction of the glass panel W between the processing of the circular portion and the processing of the straight portion. The contact area between the cylindrical portion of the grinding groove 74 of the fine grinding wheel 72 and the linear workpiece W1 is not only larger than the contact area between the cylindrical portion and the circular workpiece W2, but also the upper surface slope 72u or the lower surface slope 72d at the upper and lower ends of the grinding groove 74. The contact area L of the straight workpiece W1 is larger than the contact area M of the circular workpiece W2.

したがって、直線ワークW1での研削抵抗は円形ワークW2の研削抵抗より大きいだけでなく、研削溝74の厚み方向の幅を円形ワークW2に合わせて面取り加工すると、直線ワークW1を面取り加工することができなくなる。また、円形ワークW2に対して上下対称に面取り加工ができるように研削溝74を作成したとしても、それを直線ワークW1に対して面取り加工すると上下面の形状が異なったものとなる。   Therefore, not only the grinding resistance of the linear workpiece W1 is larger than the grinding resistance of the circular workpiece W2, but also the chamfering of the linear workpiece W1 can be performed by chamfering the width in the thickness direction of the grinding groove 74 to the circular workpiece W2. become unable. Even if the grinding groove 74 is formed so that the chamfering can be performed symmetrically with respect to the circular workpiece W2, if the chamfering is performed on the straight workpiece W1, the shapes of the upper and lower surfaces are different.

図9は、従来の板材の端面加工に対して平面研削盤80に1軸を追加した軸傾斜方式によるヘリカル研削の例を示す。図9に示すように、精密ステージ81を傾斜角度αで配置し、砥石82の最下点を被加工材83が通過するようにしたものである。砥石82は被加工材83よりも幅広であり、バイス84によって両面を加工面の近くまで固定されている。   FIG. 9 shows an example of helical grinding by an axis inclination method in which one axis is added to the surface grinder 80 in contrast to the conventional end face processing of a plate material. As shown in FIG. 9, the precision stage 81 is arranged at an inclination angle α so that the workpiece 83 passes through the lowest point of the grindstone 82. The grindstone 82 is wider than the workpiece 83, and both surfaces are fixed to the vicinity of the machining surface by the vise 84.

この方法では、図10(a)に示すように、被加工材83がバイス84によって、しっかりと固定されている点、砥石82の回転軸が加工面と水平となる点等より、砥石82が矢印Vのように押し付けられ、砥石82の振れ等が被加工材83へ衝撃となり、加工面にダメージを与える。また、研削によるキリコが加工面に落下することより、加工面にキリコによる傷、引っ掻きによる条痕が生じる。   In this method, as shown in FIG. 10 (a), the grindstone 82 is fixed because the workpiece 83 is firmly fixed by the vise 84, the rotation axis of the grindstone 82 is horizontal with the machining surface, and the like. When pressed as indicated by the arrow V, the wobbling of the grindstone 82 impacts the workpiece 83 and damages the processed surface. Further, since the ground metal falls to the processed surface, scratches and scratches due to the scratch are generated on the processed surface.

これに対して、図6、7に示したように、本発明では、被加工材Wに対して外周精研削砥石72の研削溝74を角度θ傾けている。また、チャックテーブル73はガラスパネルWの平面を載置し、この表面をエアーコンプレッサーやブロワー等で減圧し、ガラスパネルWを吸着し固定する。ガラスパネルWをチャックテーブル73よりオーバハングして垂直方向に吸着して保持した図10(b)の場合は、外周精研削砥石72の研削溝74が加工面に対して垂直に当接し、外周精研削砥石72による押し付け力が矢印Hのように働く。   On the other hand, as shown in FIGS. 6 and 7, in the present invention, the grinding groove 74 of the outer peripheral grinding wheel 72 is inclined at an angle θ with respect to the workpiece W. The chuck table 73 mounts a flat surface of the glass panel W, and the surface is decompressed by an air compressor, a blower or the like, and the glass panel W is sucked and fixed. In the case of FIG. 10B in which the glass panel W is overhanged from the chuck table 73 and sucked and held in the vertical direction, the grinding groove 74 of the outer peripheral grinding wheel 72 comes into contact with the processing surface perpendicularly, The pressing force by the grinding wheel 72 works as shown by an arrow H.

したがって、加工時に被加工材、例えばガラスパネルW自体がやや弾性変形し、外周精研削砥石72が柔らかいレジンボンド砥石であることと相まって、その振れ等の衝撃を緩和する。したがって、加工面にキズ等のダメージを与えことがなく、研削によるキリコは矢視のように排出され、加工面に落下することがなく、加工面にキリコによる傷、引っ掻きによる条痕を生じることがない。   Therefore, a workpiece, for example, the glass panel W itself is slightly elastically deformed during processing, and coupled with the fact that the outer peripheral precision grinding stone 72 is a soft resin bond grinding stone, the impact such as runout is reduced. Therefore, there is no damage such as scratches on the machined surface, and the ground metal is discharged as shown by the arrow, and it does not fall on the machined surface, causing scratches and scratches on the machined surface. There is no.

図11は、以上の面取り基板の製造方法により加工された被加工材の端面を示す側面図であり、レジン砥石である外周精研削砥石72で研削後の条痕の状態を斜線で示している。研削溝74は被加工材(基板、ワーク)の厚みに対して幅を十分大きくし、被加工材に対して6〜10°の斜め角度で当接させ、研削溝74の上面と下面のうち片面のみワークに当接するようにし、他方には当てないように面取りを行った。実際には、上面を当接させた研削を被加工材の端面の全周に対して1周行い、次に下面を当接させ、さらに1周させて合計2周の研磨、面取りを行った。   FIG. 11 is a side view showing an end face of a workpiece processed by the above-described method for manufacturing a chamfered substrate, and shows the state of the streak after grinding with a peripheral grinding wheel 72 which is a resin grindstone. . The grinding groove 74 has a sufficiently large width with respect to the thickness of the workpiece (substrate, workpiece) and is brought into contact with the workpiece at an oblique angle of 6 to 10 °. Chamfering was performed so that only one side was in contact with the work and not the other side. Actually, grinding with the upper surface abutting was performed once for the entire circumference of the end surface of the workpiece, then the lower surface was abutted, and further one round was performed for a total of two rounds of polishing and chamfering. .

従来のヘリカル研削による面取り加工では角部、直線部を有する被加工材で砥石の研削溝の上面と下面のうち片方のみ強く当たる片当たりが発生し良好な面取りが出来なかったが、図に示すように厚み方向の中央部Cが砥石を傾斜させた角度に応じたヘリカル研削の特有な条痕となり、良好な面粗さで形状崩れを生じていない。   In conventional chamfering by helical grinding, a workpiece having a corner and a straight part was hit by only one of the upper and lower surfaces of the grinding groove of the grindstone, and good chamfering was not possible. In this way, the central portion C in the thickness direction becomes a characteristic streak of helical grinding according to the angle at which the grindstone is inclined, and the shape is not deformed with good surface roughness.

また、上下両端も角度、大きさ共に対称、図でTu、Tdの幅も均等であり、研削溝の端部で被加工材の端面の角部がヘリカル研削されたことによる条痕、角度、方向は研削溝の端部が当たっている分だけ異なり、それが明確に現れている。   In addition, both the upper and lower ends are symmetrical in angle and size, and the widths of Tu and Td are uniform in the drawing, and the corners of the end face of the work material at the end of the grinding groove are helically ground, the angle, The direction differs as much as the end of the grinding groove hits, which clearly appears.

さらに、スマートフォンやタブレットの薄型化、軽量化に伴って、従来、ガラス基板を所定の大きさに切断してから、化学強化を行い、その後に、マスキング印刷を行い、センサー電極を形成していた。それに対して、上記の面取り基板の製造方法によれば、大きなガラス基板のまま化学強化処理を施した後、マスキング印刷、センサー電極形成を形成し、その後に、切断、面取り加工を行っても、つまり、端面に化学強化されていない状態でも良好な加工面粗さが得られ、マイクロクラックの発生を抑えることができる。そして、その結果、生産効率が極めて向上し、実用上で十分な端面強度を得ることができる。   Furthermore, along with the thinning and weight reduction of smartphones and tablets, conventionally, the glass substrate was cut into a predetermined size and then chemically strengthened, followed by masking printing to form sensor electrodes. . On the other hand, according to the method for manufacturing a chamfered substrate, after performing chemical strengthening treatment with a large glass substrate, masking printing, forming a sensor electrode, and then performing cutting and chamfering, That is, even when the end face is not chemically strengthened, a good machined surface roughness can be obtained, and the occurrence of microcracks can be suppressed. As a result, the production efficiency is greatly improved, and a practically sufficient end face strength can be obtained.

さらに、面粗さ、形状の対称性のみならず、研削溝を1回修正(ツールイング)した後、研削能力の低下、所定の外周面幅、外周角度、外周形状を満たさなくなるまでに連続して加工できる枚数も増加できる。さらに、レジン砥石である外周精研削砥石72のツールイングを繰り返し、面取り加工を連続した場合、摩耗によりレジン砥石が所定の直径以下となって、使用不可能となるまでに加工できる枚数も多くすることができる。   Furthermore, not only the surface roughness and shape symmetry, but also after the grinding groove is corrected (tooling) once, it continues until the grinding ability declines, the predetermined outer peripheral surface width, outer peripheral angle, and outer peripheral shape are not satisfied. The number of sheets that can be processed can be increased. Further, when the chamfering process is repeated by repeating the tooling of the outer peripheral grinding wheel 72 which is a resin grindstone, the number of sheets that can be machined before the resin grindstone becomes smaller than a predetermined diameter due to wear and becomes unusable is increased. be able to.

以上、図6、7では、外周精研削砥石72を用いたヘリカル研削として説明したが、粗研削時、つまり、外周粗研削砥石69を用いるときも同様に2周するヘリカル研削を行っても良い。これによれば、精研削時、外周精研削砥石72の研削溝74の摩耗、目詰まり、溝形状の変形を防いで、より良好な面取り加工を行うことができる。   As described above, in FIGS. 6 and 7, the helical grinding using the outer peripheral fine grinding wheel 72 has been described. However, during the rough grinding, that is, when the outer peripheral coarse grinding wheel 69 is used, the helical grinding that makes two rounds may be performed similarly. . According to this, at the time of fine grinding, it is possible to prevent wear, clogging, and deformation of the groove shape of the grinding groove 74 of the outer peripheral fine grinding wheel 72 and perform better chamfering.

また、被加工材の端面の上部を全周に渡って研削溝74で1周するように研削(上部の研削)し、その後、研削砥石69あるいは72を被加工材の厚さ方向に相対的に上昇させて、さらに下部を1周研削(下部の研削)することとしたが、この順序は逆でも良いし、被加工材の端面の上部、下部に研削溝74の端部である上面斜面72u、下面斜面72dのいずれも当てない中央部の研削を別途に行っても良い。   Further, the upper part of the end surface of the workpiece is ground so as to make one round with the grinding groove 74 over the entire circumference (upper grinding), and then the grinding wheel 69 or 72 is relatively relative to the thickness direction of the workpiece. In this case, the lower part is ground once (lower part grinding), but this order may be reversed, and the upper surface slope which is the end part of the grinding groove 74 at the upper part and the lower part of the end face of the workpiece. You may grind separately the center part which neither 72u nor the lower surface inclined surface 72d touches.

図12は、中央部の研削(a)、上部の研削(b)、下部の研削(c)を示している。中央部の研削(a)は、外周精研スピンドル71に向かってチャックテーブル73が送られたとき、研削溝74の右上端部の上面斜面72u及び左下端部の下面斜面72dがいずれもガラスパネルWの上面及び下面に当接しないで加工が開始され、その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して面取りが行われる。研削溝74が、ガラスパネルWの見掛け厚みy0(図6参照)、すなわち外周精研削砥石72の研削溝74を角度θ傾けたとき、研削溝74の直径をD、被加工材であるガラスパネルWの厚さtとの双方を考慮した厚みよりも十分、少なくとも20〜30%幅広となっている。   FIG. 12 shows center grinding (a), upper grinding (b), and lower grinding (c). In the central grinding (a), when the chuck table 73 is fed toward the outer peripheral precision spindle 71, the upper surface slope 72u at the upper right end portion and the lower surface slope 72d at the lower left end portion of the grinding groove 74 are both glass panels. Machining is started without coming into contact with the upper and lower surfaces of W, and thereafter, the glass panel W held on the chuck table 73 is moved at a constant speed in the Y-axis direction to perform chamfering. When the grinding groove 74 has an apparent thickness y0 of the glass panel W (see FIG. 6), that is, when the grinding groove 74 of the outer peripheral grinding wheel 72 is tilted at an angle θ, the diameter of the grinding groove 74 is D, and the glass panel that is the workpiece It is at least 20-30% wider than the thickness considering both the thickness t of W.

ガラスパネルWの厚み方向の中央部、主要部は外周精研削砥石72の研削溝74の円周部が当接してヘリカル研削される。加工点が角のR部に到達すると、チャックテーブル73を回転させて、角部のRを加工する。ガラスパネルWの厚み方向の端部を研削溝74の上下斜面(あるいは上下端部)で研削しないので、上下非対称性に影響なく、ガラスパネルWの外周形状に係わらず加工することに適し、図2に示したような円形部が主体でOF部のような直線部がある場合に、形状を削り出すのには都合が良い。   The central portion and the main portion of the glass panel W in the thickness direction are contacted with the circumferential portion of the grinding groove 74 of the outer peripheral grinding wheel 72 and are subjected to helical grinding. When the processing point reaches the corner R, the chuck table 73 is rotated to process the corner R. Since the end in the thickness direction of the glass panel W is not ground by the upper and lower slopes (or upper and lower ends) of the grinding groove 74, it is suitable for processing regardless of the outer peripheral shape of the glass panel W without affecting the vertical asymmetry. It is convenient to cut out the shape when the circular part as shown in 2 is the main part and there is a straight part such as the OF part.

図12(b)は上部の研削を示し、図12(a)の状態から外周精研削砥石72をZ軸方向に下降、あるいはチャックテーブル73をZ軸方向に上昇させ、研削溝74の右上端部の上面斜面72uにガラスパネルWの上面、図で右上端部を当接させる。つまり、研削砥石を被加工材に対して相対的に厚さ方向に下降させる。その後、チャックテーブル73に保持されたガラスパネルWをY軸方向に一定速度で移動してヘリカル研削による面取り加工が行われる。     FIG. 12B shows the upper grinding. From the state of FIG. 12A, the outer peripheral grinding wheel 72 is lowered in the Z-axis direction or the chuck table 73 is raised in the Z-axis direction, and the upper right end of the grinding groove 74 is shown. The upper surface of the glass panel W, the upper right end in the figure, is brought into contact with the upper surface slope 72u of the unit. That is, the grinding wheel is lowered relative to the workpiece in the thickness direction. Thereafter, the glass panel W held on the chuck table 73 is moved at a constant speed in the Y-axis direction to perform chamfering by helical grinding.

図12(c)は下部の研削を示し、図12(b)の状態から外周精研削砥石72をZ軸方向に上昇、あるいはチャックテーブル73をZ軸方向に下降させ、研削溝74の下面斜面が、ガラスパネルWの下面、図で左下端部の下面斜面72dに当接するようにする。つまり、研削砥石を被加工材に対して相対的に厚さ方向に上昇させる。その後、チャックテーブル73に保持されたガラスパネルWがY軸方向に一定速度で移動して図12(a)、図12(b)に続いて3周目の面取りを行う。   FIG. 12C shows the grinding of the lower part. From the state of FIG. 12B, the outer peripheral grinding wheel 72 is raised in the Z-axis direction or the chuck table 73 is lowered in the Z-axis direction, and the lower surface slope of the grinding groove 74 Is in contact with the lower surface of the glass panel W, the lower surface slope 72d at the lower left end in the figure. That is, the grinding wheel is raised relative to the workpiece in the thickness direction. Thereafter, the glass panel W held on the chuck table 73 moves at a constant speed in the Y-axis direction, and chamfering on the third round is performed following FIGS. 12A and 12B.

図12は、中央部の研削(a)、上部の研削(b)、下部の研削(c)の順で説明したが、これに限ることなく、上部の研削(b)、中央部の研削(a)、下部の研削(c)の順など任意でも良い。ただし、中央部の研削(a)を先に行うことが、先に形状を削り出すことができる点、その後、より慎重、正確に上部の研削(b)、下部の研削(c)を行える点で優れている。   Although FIG. 12 demonstrated center part grinding (a), upper part grinding (b), and lower part grinding (c) in this order, it is not restricted to this, Upper part grinding (b), Central part grinding ( The order of a) and lower grinding (c) may be arbitrary. However, the point that grinding (a) at the center portion can be performed first, the shape can be cut out first, and then the upper portion grinding (b) and the lower portion grinding (c) can be performed more carefully and accurately. Is excellent.

また、被加工材として、特に、図2に示したような円形部が主体でOF部のような直線部がある場合に、中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ、被加工材の外周を1周する必要はない。例えば、円形部は上部の研削(b)、下部の研削(c)だけを行い、直線部は中央部の研削(a)、上部の研削(b)、下部の研削(c)をそれぞれ行えば良く、面粗さを良好にし、形状崩れを生じないで加工時間を短縮、研削溝74の摩耗、目詰まり、溝形状の変形を防ぐことができる。   Further, as the work material, particularly when the circular portion as shown in FIG. 2 is mainly used and there is a straight portion such as the OF portion, the grinding of the central portion (a), the grinding of the upper portion (b), Each grinding (c) does not require one round of the outer periphery of the workpiece. For example, if the circular portion is subjected only to the upper grinding (b) and the lower grinding (c), the straight portion is subjected to the central grinding (a), the upper grinding (b), and the lower grinding (c). The surface roughness is good, the processing time is shortened without causing the shape collapse, and the grinding groove 74 can be prevented from being worn, clogged and deformed.

図6、7及び図12では、被加工材の厚さ方向に上昇、又は下降を説明したが、図13は、外周精研削砥石72の研削溝74の上面斜面72u及び下面斜面72dとの関係の詳細であり、研削溝74の斜面と面取り角度の関係を説明する。図13(a)は外周精研削砥石72を傾けないで、被加工材Wへ当接させた状態であり、面取り角度が研削溝74の上面斜面72u及び下面斜面72dの角度と一致している。   6, 7, and 12 describe the rising or lowering in the thickness direction of the workpiece, but FIG. 13 illustrates the relationship between the upper surface inclined surface 72 u and the lower surface inclined surface 72 d of the grinding groove 74 of the outer peripheral grinding wheel 72. The relationship between the slope of the grinding groove 74 and the chamfer angle will be described. FIG. 13A shows a state in which the peripheral grinding wheel 72 is not tilted but is in contact with the workpiece W, and the chamfering angles coincide with the angles of the upper and lower slopes 72u and 72d of the grinding groove 74. FIG. .

ヘリカル研削を行うため、外周精研削砥石72を傾けた状態が図13(b)であり、3〜15°、望ましくは6〜10°であるので、加工がわずかに開始されれば、上面斜面72uと被加工材Wの上面との接触領域は図13(a)と大きな違いはない。したがって、図11で既に示したように、被加工材Wの上下両端(Tu、Tdの領域)も中央部Cと比べて条痕が斜面の分、異なる向きの条痕となり、ヘリカル研削の効果が十分に得られ、中央部と遜色なく加工歪み、表面粗さが改善される。この三つの条痕が現れるのが、以上の実施の形態の特徴でもある。   In order to perform helical grinding, the state in which the outer peripheral grinding wheel 72 is tilted is shown in FIG. 13B, which is 3 to 15 °, preferably 6 to 10 °. The contact area between 72u and the upper surface of the workpiece W is not significantly different from FIG. Accordingly, as already shown in FIG. 11, the upper and lower ends (Tu and Td regions) of the workpiece W are also inclined in a different direction as compared with the central portion C, so that the effect of helical grinding is achieved. Is sufficiently obtained, and the processing distortion and surface roughness are improved in the same manner as the central portion. The appearance of these three streaks is also a feature of the above embodiment.

なお、説明を分かりやすくするため、図13(a)の外周精研削砥石72を傾けないことで、研削溝74の斜面を面取り角度と一致させたことを基準として、外周精研削砥石72を傾けたことを図13(b)とした。それに対して、逆に、外周精研削砥石72を傾けた図13(b)で斜面を被加工材Wの面取り角度と一致させても良い。これにより、加工の開始時点、研削量が少ない場合でも、上面斜面72uと被加工材Wの上面との接触領域が増えて、被加工材Wの上下両端の表面粗さが改善される。   In order to make the explanation easy to understand, by not tilting the peripheral grinding wheel 72 of FIG. 13A, the peripheral grinding wheel 72 is tilted with reference to the fact that the slope of the grinding groove 74 coincides with the chamfering angle. This is shown in FIG. On the contrary, the inclined surface may be matched with the chamfering angle of the workpiece W in FIG. Thereby, even when the amount of grinding is small at the start of processing, the contact area between the upper surface slope 72u and the upper surface of the workpiece W is increased, and the surface roughness of the upper and lower ends of the workpiece W is improved.

10…加工部、20…供給回収部、30…ウエーハカセット、31…カセットテーブル、40…供給回収ロボット、50…搬送アーム、60…ウエーハ送り装置、61…外周精研削装置、62…外周粗研削装置、65…チャックテーブル駆動モータ、66…チャックテーブル、67…外周粗研モータ、68…外周粗研スピンドル(回転軸)、69…外周粗研削砥石、70…外周精研モータ、71…外周精研スピンドル(回転軸)、72…外周精研削砥石、72d…下面斜面、72u…上面斜面、73…チャックテーブル、74…研削溝、80…平面研削盤、81…精密ステージ、82…砥石、83…被加工材、84…バイス、W…ウエーハ、ガラスパネル、被加工材、y0…被加工材の見掛け厚み DESCRIPTION OF SYMBOLS 10 ... Processing part, 20 ... Supply / recovery part, 30 ... Wafer cassette, 31 ... Cassette table, 40 ... Supply / recovery robot, 50 ... Transfer arm, 60 ... Wafer feeder, 61 ... Fine outer peripheral grinding device, 62 ... Coarse peripheral grinding 65, chuck table drive motor, 66 ... chuck table, 67 ... outer periphery roughing motor, 68 ... outer periphery roughing spindle (rotating shaft), 69 ... outer periphery rough grinding wheel, 70 ... outer periphery fine grinding motor, 71 ... outer periphery precision Sharpening spindle (rotating shaft), 72 ... fine grinding wheel for outer periphery, 72d ... lower slope, 72u ... upper slope, 73 ... chuck table, 74 ... grinding groove, 80 ... surface grinding machine, 81 ... precision stage, 82 ... grinding wheel, 83 ... Work material, 84 ... Vise, W ... Wafer, glass panel, work material, y0 ... Apparent thickness of work material

Claims (13)

板状の被加工材の端面を研削砥石の研削溝で研削する面取り基板の製造方法であって、
前記被加工材の平面を厚さ方向に、前記被加工材の外周形状よりも小さいチャックテーブルで吸着し、
前記被加工材の平面に垂直となる前記厚さ方向の軸に対して前記研削砥石の回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接し、
前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、
その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削することを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate in which an end face of a plate-like workpiece is ground with a grinding groove of a grinding wheel,
Adsorb the plane of the workpiece in the thickness direction with a chuck table smaller than the outer peripheral shape of the workpiece,
Inclining the rotation axis of the grinding wheel with respect to the axis in the thickness direction that is perpendicular to the plane of the workpiece, and pressing the grinding groove against the end surface of the workpiece from the vertical direction to contact the grinding wheel,
Grinding the upper or lower part of the end face of the workpiece with the grinding groove,
Then, the grinding wheel is raised or lowered in the thickness direction relative to the workpiece and then ground again.
請求項1に記載の面取り基板の製造方法であって、
前記研削溝の幅を前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate according to claim 1,
A method for manufacturing a chamfered substrate, characterized in that the width of the grinding groove is larger than the apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.
請求項1又は2に記載の面取り基板の製造方法であって、
前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、
あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate according to claim 1 or 2,
Grinding the upper part of the end face of the workpiece with the grinding groove, then raising the grinding wheel relative to the workpiece in the thickness direction and grinding again;
Alternatively, the lower part of the end face of the workpiece is ground with the grinding groove, and then the grinding wheel is lowered relative to the workpiece in the thickness direction and is ground again. Chamfer substrate manufacturing method.
請求項1から3のいずれか1項に記載の面取り基板の製造方法であって、
前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することを特徴とする面取り基板の製造方法。
A method for producing a chamfered substrate according to any one of claims 1 to 3,
The upper or lower part of the end face of the workpiece is ground so as to make one round with the grinding groove over the entire circumference, and then the grinding wheel is raised relative to the workpiece in the thickness direction. Alternatively, the chamfered substrate is manufactured by lowering and grinding one round.
請求項1から4のいずれか1項に記載の面取り基板の製造方法であって、
前記研削砥石の回転軸を3〜15°傾けることを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate according to any one of claims 1 to 4,
A method for manufacturing a chamfered substrate, wherein a rotating shaft of the grinding wheel is inclined by 3 to 15 degrees.
請求項2に記載の面取り基板の製造方法であって、
前記被加工材の端面の加工は、それぞれ記被加工材の端面の上部の研削、中央部の研削、下部の研削とで行われることを特徴とする面取り基板の製造方法。
A method for producing a chamfered substrate according to claim 2,
The method of manufacturing a chamfered substrate, wherein the processing of the end surface of the workpiece is performed by grinding the upper portion of the end surface of the workpiece, grinding the central portion, and grinding the lower portion.
請求項6に記載の面取り基板の製造方法であって、
前記上部の研削、中央部の研削、下部の研削は、それぞれ前記被加工材の端面を全周に渡って前記研削溝で1周するように行われることを特徴とする面取り基板の製造方法。
A method for manufacturing a chamfered substrate according to claim 6,
The method of manufacturing a chamfered substrate, wherein the upper grinding, the central grinding, and the lower grinding are performed so that the end face of the workpiece is made to make one round with the grinding groove over the entire circumference.
板状の被加工材の端面を研削砥石の研削溝で面取り加工する面取り装置において、
前記被加工材の平面を厚さ方向に吸着し、前記被加工材の外周形状よりも小さいチャックテーブルと、
前記被加工材の平面に垂直となる前記厚さ方向の軸に対して回転軸を傾け、前記研削溝を前記被加工材の端面に垂直方向より押し付けて当接する前記研削砥石と、
を備え、前記被加工材の端面の上部あるいは下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて再び研削することを特徴とする面取り装置。
In a chamfering device that chamfers the end face of a plate-shaped workpiece with a grinding groove of a grinding wheel,
A chuck table that adsorbs the plane of the workpiece in the thickness direction and is smaller than the outer peripheral shape of the workpiece;
The grinding wheel that inclines the rotation axis with respect to the axis in the thickness direction that is perpendicular to the plane of the workpiece, and presses the grinding groove against the end surface of the workpiece from the vertical direction to contact the grinding wheel,
And grinding the upper or lower portion of the end face of the workpiece with the grinding groove, and then grinding the grinding wheel again by raising or lowering the grinding wheel relative to the workpiece in the thickness direction. A chamfering device characterized by that.
請求項8に記載の面取り装置において、
前記研削溝の幅は、前記研削砥石の回転軸を傾けたときの前記被加工材の見掛け厚みよりも大きくしたことを特徴とする面取り装置。
The chamfering device according to claim 8,
The chamfering device according to claim 1, wherein a width of the grinding groove is larger than an apparent thickness of the workpiece when the rotation axis of the grinding wheel is tilted.
請求項8又は9に記載の面取り装置において、
前記被加工材の端面の上部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇させて再び研削、あるいは、前記被加工材の端面の下部を前記研削溝で研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に下降させて再び研削することを特徴とする面取り装置。
The chamfering device according to claim 8 or 9,
The upper part of the end face of the workpiece is ground with the grinding groove, and then the grinding wheel is raised in the thickness direction relative to the workpiece and ground again, or the workpiece A chamfering apparatus, wherein a lower part of an end face is ground with the grinding groove, and then the grinding wheel is lowered relative to the workpiece in the thickness direction and ground again.
請求項8から10のいずれか1項に記載の面取り装置において、
前記被加工材の端面の上部あるいは下部を全周に渡って前記研削溝で1周するように研削し、その後、前記研削砥石を前記被加工材に対して相対的に前記厚さ方向に上昇あるいは下降させて、さらに1周研削することを特徴とする面取り装置。
The chamfering device according to any one of claims 8 to 10,
The upper or lower part of the end face of the workpiece is ground so as to make one round with the grinding groove over the entire circumference, and then the grinding wheel is raised relative to the workpiece in the thickness direction. Alternatively, the chamfering apparatus is characterized in that the chamfering apparatus is lowered and further ground once.
請求項8から11のいずれか1項に記載の面取り装置において、
前記研削砥石の回転軸は3〜15°傾けられたことを特徴とする面取り装置。
The chamfering device according to any one of claims 8 to 11,
A chamfering apparatus characterized in that a rotating shaft of the grinding wheel is inclined by 3 to 15 degrees.
請求項8に記載の面取り装置において、
前記被加工材の端面の加工は、端面の上部の研削と、中央部の研削と、下部の研削とをそれぞれ行うことを特徴とする面取り装置。
The chamfering device according to claim 8,
The chamfering apparatus is characterized in that the end surface of the workpiece is ground by grinding an upper portion of the end surface, a central portion, and a lower portion.
JP2015070909A 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it Active JP7005120B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015070909A JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it
JP2021034996A JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070909A JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021034996A Division JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2016190284A true JP2016190284A (en) 2016-11-10
JP7005120B2 JP7005120B2 (en) 2022-01-21

Family

ID=57245175

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015070909A Active JP7005120B2 (en) 2015-03-31 2015-03-31 Manufacturing method of chamfered substrate and chamfering device used for it
JP2021034996A Active JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021034996A Active JP7128309B2 (en) 2015-03-31 2021-03-05 Chamfered substrate manufacturing method and chamfering apparatus used therefor

Country Status (1)

Country Link
JP (2) JP7005120B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111037370A (en) * 2019-11-29 2020-04-21 上海磐盟电子材料有限公司 Round crystal chamfering process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240837B1 (en) * 2017-11-28 2021-04-14 현대중공업 주식회사 Propulsion system for twin-screw ship

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042887A (en) * 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2007030119A (en) * 2005-07-28 2007-02-08 Tokyo Seimitsu Co Ltd Wafer chamfering device and wafer chamfering method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969505B2 (en) * 1997-12-04 2007-09-05 株式会社クリスタル光学 Chamfering method and apparatus
JP3830291B2 (en) 1998-12-02 2006-10-04 シーグ株式会社 Method for making a grinding wheel
JP4588863B2 (en) 2000-11-21 2010-12-01 旭硝子株式会社 Edge glass edge polishing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042887A (en) * 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2007030119A (en) * 2005-07-28 2007-02-08 Tokyo Seimitsu Co Ltd Wafer chamfering device and wafer chamfering method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111037370A (en) * 2019-11-29 2020-04-21 上海磐盟电子材料有限公司 Round crystal chamfering process
CN111037370B (en) * 2019-11-29 2021-04-27 上海磐盟电子材料有限公司 Round crystal chamfering process

Also Published As

Publication number Publication date
JP7005120B2 (en) 2022-01-21
JP2021094693A (en) 2021-06-24
JP7128309B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP4441823B2 (en) Truing method and chamfering device for chamfering grindstone
JP7481518B2 (en) Truing method and chamfering device
JP7128309B2 (en) Chamfered substrate manufacturing method and chamfering apparatus used therefor
JP6789645B2 (en) Chamfering equipment
JP6608604B2 (en) Chamfered substrate and method for manufacturing liquid crystal display device
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
TW201700709A (en) Abrasive grindstone
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP6725831B2 (en) Work processing device
JP2007335521A (en) Method for grinding outer periphery of wafer
JP2007061978A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP2007044853A (en) Method and apparatus for chamfering wafer
JP7158702B2 (en) chamfering grinder
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
JP6590049B2 (en) End face processing equipment for plate
JP7024039B2 (en) Chamfering equipment
JP2005153129A (en) Chamfering method of notch part of notched wafer
JP7324889B2 (en) chamfering system
JP2009142927A (en) Wafer chamfering device and wafer chamfering method
JP2007021586A (en) Truing method for chamfering grinding wheel
KR20230175103A (en) Forming method for truer
KR20170087300A (en) Edge grinding apparatus
JP2016036867A (en) End surface processing device of plate-like object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210305

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210818

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211102

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211214

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150