JP7123950B2 - 心機能障害をモニタリングする方法及び装置 - Google Patents

心機能障害をモニタリングする方法及び装置 Download PDF

Info

Publication number
JP7123950B2
JP7123950B2 JP2019542445A JP2019542445A JP7123950B2 JP 7123950 B2 JP7123950 B2 JP 7123950B2 JP 2019542445 A JP2019542445 A JP 2019542445A JP 2019542445 A JP2019542445 A JP 2019542445A JP 7123950 B2 JP7123950 B2 JP 7123950B2
Authority
JP
Japan
Prior art keywords
data
probe
cardiac
motion
indwelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019542445A
Other languages
English (en)
Other versions
JP2020508095A5 (ja
JP2020508095A (ja
Inventor
コボーア,プラメシュ
ポウリオポウロス,ジム
バリー,トニー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Sydney Local Health District
Original Assignee
Western Sydney Local Health District
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2017900356A external-priority patent/AU2017900356A0/en
Application filed by Western Sydney Local Health District filed Critical Western Sydney Local Health District
Publication of JP2020508095A publication Critical patent/JP2020508095A/ja
Publication of JP2020508095A5 publication Critical patent/JP2020508095A5/ja
Application granted granted Critical
Publication of JP7123950B2 publication Critical patent/JP7123950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6869Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array

Description

関連出願の相互参照
本願は、2017年2月6日に提出されたオーストラリア仮出願第2017900356号に対する優先権を主張し、その内容全体は参照により本明細書に組み込まれる。
本発明は、心臓壁の運動の不規則性などの心機能障害をモニタリングする方法及び装置に関する。
心臓壁の運動のモニタリングは、多くの臨床的な心臓の処置において重要である。経皮的な心内処置の数と複雑さが増加し続け、構造的な心疾患や電気生理学的介入のための様々な新技術が導入されるにつれて、心臓に対する周術期損傷のリスクも増加している。これらの処置の多くは、一般に処置内での抗凝固の必要性を伴い、多くは心臓にアクセスするために経中隔の穿刺を必要とする。
経皮ベースのカテーテル法は、心臓の疾患を診断し、治療するための介入的心臓病学の分野で最も急速に成長している技術である。カテーテル法の処置間での心臓壁の穿孔または厚み全体の損傷は、病因及び処置の複雑さに応じて臨床上約1~6%の割合で起こる。これは頻繁に、穿孔された(または損傷した)心臓の部屋の内部から心膜空間への血液または流体の排出を伴う心嚢液貯留、及び心膜空間に血液または体液が蓄積するのに起因して心臓を押し込み、そのため心臓の鼓動を妨げる、より深刻な心臓タンポナーデを引き起こす。両方の状態とも、心臓壁の収縮機能の損失につながる。
心機能のモニタリングは、冠動脈介入処置にも望ましい。冠動脈介入は、動脈を膨張させるか、ステントを展開するように設計されたバルーンの血管内での展開を介して心臓の閉塞した動脈への血流を回復することを目的とする処置である。冠動脈の介入におけるバルーンの作用は、一時的に心虚血(冠動脈の血流の中断による酸素不足)を引き起こす。これは、心臓壁の収縮性の喪失などの心機能の障害を引き起こすことがあり、突然の心臓死に寄与する可能性がある。
心機能のモニタリングは、心臓のアブレーションの処置にも望ましい場合がある。心臓のアブレーションの処置をする間の生理学的な通常の生理食塩水の過充填(灌注)により、心臓の血液量の圧力が上昇する可能性があることはよく認識されている。増加した血液量の圧力は、心臓壁の運動に悪影響を及ぼし、処置の間に合併症を引き起こす可能性がある。
電気生理学の設定では、心嚢液貯留のリスクの増加は、心臓の任意の部屋の心臓内または心外膜不整脈のアブレーション、二心室ペースメーカーの配置、及び植込み式除細動器に関連する可能性がある。
植込み式除細動器(ICD)またはペースメーカーは、頻繁に心臓不整脈のリスクがある患者に移植されるか、心機能障害を有する患者の心臓の速度制御(ペーシング)を可能にする。このような装置による治療のモダリティは、心臓壁内部に埋め込まれた電極を介した心筋の電気刺激によって達成される。特定の状況下では、心臓壁の収縮機能の喪失を生じさせる場合があり、また潜在的に生命を脅かす状況に至る可能性があり、虚血または心不全などの心臓への生理的変化が起こったとき、そのような装置による心臓への電気刺激が効果を発揮できない。したがって、ICDまたはペースメーカーからの治療の効果的な送達は、固有の心活動の正確な測定に依拠している。
心活動、特に心嚢液貯留と心臓タンポナーデをモニタリングするために使用される現在の方法は、血行力学的モニタリング(血圧測定)、心エコー評価、及び蛍光透視評価を伴う。心臓の処置で継続的に行われることが多い血行力学的な評価は、心臓の収縮の早期の変化に対する感度が低い。また、X線と超音波を含む現在のイメージングモダリティは、多くの場合、血行力学上の問題に反応的に利用され、順向性に使用されないため、制限されている。
本明細書に含まれる文書、行為、材料、デバイス、物品などに関するいかなる議論も、これらの事項の全部が先行技術の基盤の一部を形成すること、または本願の各特許請求の範囲の優先日より前に存在していた本開示に関連する分野の共通した一般の知識であったことを認めるものとみなされるべきではない。
本開示の態様は、患者の冠静脈洞内に挿入された留置プローブを用いて心機能障害をモニタリングする方法であって、プローブが冠静脈洞の壁の運動に基づいたプローブの動きを感知するように構成されたモーション感知手段を有し、
モーション感知手段からデータを取得し、心機能障害をモニタリングする前記データを処理すること
を含む方法を提供する。
本開示の別の態様は、
留置プローブであって、
患者の冠静脈洞の内部の挿入に適合させた細長い本体、及び
細長い本体に連結し、冠静脈洞の壁の運動に基づいてプローブの動きを感知するように構成されたモーション感知手段
を含む留置プローブ、及び
モーション感知手段から得られたデータを受信し、心機能障害をモニタリングするために前記データを処理するためのプローブに連結されたプロセッサ
を含む装置を提供する。
留置プローブは、5~8Fr(1.7~2.7mm)またはそれ以外の範囲の直径を有することができる。留置プローブは、65cm~115cmまたはそれ以外の範囲の長さを有することができる。
モーション感知手段から得たデータは、加速度データを含むことができ、壁の加速及び/または減速を示す。
方法及び装置は、
モーション感知手段から加速度データを記録すること、
加速度データから変化量データを導出すること、及び
変化量データとベースラインデータを比較すること
を含むことができる。
本開示のまたさらなる態様において、心血管内に挿入された留置プローブを用いて心機能障害をモニタリングする方法であって、プローブはプローブの動きを感知するように構成されたモーション感知手段を有し、
心血管の壁の運動に基づいて、モーション感知手段から加速度データを記録すること、
加速度データから変化量データを導出すること、及び
心機能障害をモニタリングするために変化量データとベースラインデータを比較すること
を含む方法が提供される。
本発明の別の態様は、
留置プローブであって、
心血管内の挿入に適合した細長い本体、及び
前記細長い本体に連結し、心血管の壁の運動に基づいて、プローブの動きを感知するように構成されたモーション感知手段
を含む前記留置プローブ、及び
モーション感知手段から得られたデータを受信し、心機能障害をモニタリングするために前記データを処理するための前記プローブに連結されたプロセッサ
を含む装置を提供する。
本発明のさらなる態様は、
留置プローブであって、
心臓の部屋の内部の挿入に適合させた細長い本体、及び
細長い本体に連結し、心臓の部屋の壁の運動に基づいてプローブの動きを感知するように構成されたモーション感知手段、及び
モーション感知手段から得られたデータを受信し、心機能障害をモニタリングするために前記データを処理するためのプローブに連結されたプロセッサ
を含む装置を提供する。
上記のいずれの方法においても、プロセッサはコンピュータシステムの一部を形成でき、及び/または処理ステップは、少なくとも部分的にコンピュータシステムを使用して行われてもよい。コンピュータシステムは、プロセッサとメモリを備えたコンピュータデバイスを備えてもよい。
モーション感知手段は、細長い本体の遠位端に位置するまたはそれに隣接する3軸加速度計を備えてもよい。3軸加速度計から記録された加速度データは、例えば呼吸運動、心臓の異所性興奮または患者の移動から生じる信号の乱れを除去するためにフィルタされてもよい。プローブは、少なくとも部分的に、細長い本体を含むカテーテルによって提供されてもよい。
変化量データの導出は、加速度データから第1の変化量データを判定する第1の計算を行うこと、及び第1の変化量データからプローブの体積測定的変化量のデータを判定する第2の計算を行うことを含んでもよい。変化量データとベースラインデータを比較することは、第2の計算から判定された体積測定的変化量のデータとベースラインデータとを比較することを含んでもよい。
少なくとも1つの電極は、細長い本体の外面に配置されてもよい。いくつかの実施形態では、2つ以上の電極は、細長い本体に沿って縦方向に離間してもよい。電極(複数可)は、心活動から電位図を検出するように構成されてもよい。いくつかの実施形態では、同じまたは追加の電極は、心臓の刺激のために電流を供給するように構成されてもよい。電極(複数可)から検出された電位図は記録されてもよく、加えて、拍動から拍動までの心周期タイミングデータを計算するために使用されてもよい。拍動から拍動までの心周期タイミングデータは、次いでプローブの変化量ドリフトを考慮して第1の変化量データを補正するために使用されてもよい。プローブの体積測定的変化量のデータを判定する第2の計算は、例えば、補正された第1の変化量データに基づいていてもよい。
1つ以上のセンサがプロセッサに連結されてもよい。センサ(複数可)は、外部参照データなどの追加の参照データを提供するように構成されてもよい。センサ(複数可)は、皮膚表面電極(複数可)、温度センサ(複数可)(例えば、熱電対またはサーミスタ)、超音波プローブ、無線周波パッチ、磁力計または誘導コイル、X線透視装置、及び/または三次元電気解剖学マッピングシステムを含み得る。追加の参照データは、使用されているセンサ(複数可)に応じて、心電図、心エコー図、生体インピーダンスデータ、磁場情報または誘導コイルデータ、X線透視データ、カテーテル位置決め情報、温度の情報、及び/または解剖学的構造を含み得る。
いくつかの実施形態では、皮膚表面電極(複数可)からの心電図を記録してもよく、加えて、拍動から拍動までの心周期タイミングデータを計算するために使用されてもよい。繰り返すが、拍動から拍動までの心周期タイミングデータは、次いでプローブの変化量ドリフトを考慮して第1の変化量データを補正するために使用されてもよい。プローブの体積測定的変化量のデータを判定する第2の計算は、例えば、補正された第1の変化量データに基づいていてもよい。あるいは、またはさらに、追加の参照データを使用して、プローブの位置上誤っている方向を考慮して加速度データを修正したり、加速度データをフィルタリングして信号の乱れを除去したり、及び/または心機能に関する追加の診断情報を提供したりすることもできる。やはり、プローブの体積測定的変化量のデータを判定する第2の計算は、補正された第1の変化量データに基づいていてもよい。
いくつかの実施形態では、単一の3軸加速度計が提供されてもよい。あるいは、2つ以上の3軸加速度計を設けてもよく、細長い本体に沿って縦方向に離間してもよい。体積測定的変化量のデータを導出することは、第1の計算を行って加速度データから第1の変化量データを判定すること、第1の変化量データをクロス検証して、乱れモーションデータを検証済み変化量データと区別すること、及び検証された変化量データからプローブの体積測定的変化量のデータを判定する第2の計算を行うことを含む場合がある。さらに、またはあるいは、心臓壁の変形データは、対の加速度計間で生じ得る変化量の偏差として評価され、検証された変化量データに基づいて計算されてもよい。
上記の態様及び実施形態のいずれかにおいて、体積測定的変化量のデータ及び/または心臓壁の変形データがベースラインデータから大幅に変化すると、1つ以上のアラートが生成されるのでもよい。
本発明のさらなる態様は、
患者の冠静脈洞の内部に留置プローブを挿入することであって、プローブが冠静脈洞の壁の運動に基づいてプローブの動きを感知するように構成されたモーション感知手段を有する、挿入すること
プローブをプロセッサに連結することであって、心機能障害をモニタリングするためにプロセッサがモーション感知手段から得られた加速度データを受信及び処理するように構成されている、連結すること
を含む方法を提供する。
一実施形態では、プローブの遠位端は、例えば冠静脈洞のVieussens弁に隣接して配置されてもよい。
モーション感知手段は、プローブの遠位端に隣接して位置する3軸加速度計を備えてもよく、したがって留置プローブが使用するために配置されるとき、加速度計は心臓の房室溝の後部側方から側方の側面に近接して冠静脈洞の遠位側面内部に配置される。
本明細書を通じて、「comprise(含む)」という語、または「comprises」または「comprising」などの変形版は、記載された要素、整数またはステップ、または要素のグループ、整数またはステップを含めることを意味すると理解されるが、他のいずれかの要素、整数またはステップ、または要素のグループ、整数またはステップの除外は意味しない。
本発明の好ましい実施形態は、以下に例としてのみ、付随する図面を参照しながら記載される。
本開示の実施形態に係る装置の構成要素の上面図である。 使用するために配置された図1の装置の留置プローブを伴う心臓の後外側の図である。 本開示の別の実施形態に係る装置の構成要素の上面図である。 本開示のさらなる実施形態に係る装置の構成要素の上面図である。 心機能障害をモニタリングする例示的方法を示す流れ図である。 図1の装置を用いた心活動の継続的なリアルタイムでのモニタリングのプロセスを示す流れ図である。 図3の装置を用いた心活動の継続的なリアルタイムでのモニタリングのプロセスを示す流れ図である。 図4の装置を用いた心活動の継続的なリアルタイムでのモニタリングのプロセスを示す流れ図である。 本開示の別の実施形態に係る装置を用いた心活動の継続的なリアルタイムでのモニタリングのプロセスを示す流れ図である。 図10Aは、ベースライン体積測定的変化量のデータを示すプロットである。図10B~図10Fは、0.9%の生理食塩水溶液(通常生理食塩水)の20~100mLの心膜内注射による心臓タンポナーデの生体内でのシミュレーションにおける増分に応答する体積測定的変化量のデータを示すプロットである。図10Gは、0.9%の生理食塩水溶液(通常生理食塩水)の20~100mLの心膜内注射による心臓タンポナーデの生体内でのシミュレーションにおける増分に応答する総体積測定的変化量のデータを示すグラフである。図10H~10Jは、それぞれ単一の次元X、Y、Zにおける体積測定的変化量のデータを示すグラフであり、0.9%の生理食塩水溶液(通常生理食塩水)の20~100mLの心膜内注射による心臓タンポナーデの生体内でのシミュレーションにおける増分に応答する。 本開示のさらなる実施形態に従って装置を用いたプローブ変化量の継続的なリアルタイムでのモニタリングのプロセスを示す流れ図であり、この場合プローブはアブレーション先端を含む。
図1は、本開示の第1の実施形態に係る装置10を示す。装置10は、ハンドル12及びリード13を介してプロセッサ(図1に示してはいない)に接続された留置プローブ11を備える。
留置プローブ11は、患者の心血管内に挿入されるように適合される細長い本体14を有する。この特定の実施形態では、心血管は冠静脈洞(図示せず)である。細長い本体14は、近位端15、遠位端16及び遠位先端17を有する。また、留置プローブ11には、細長い本体14の近位端15をハンドル12に接続するシャンク19も含まれる。本実施形態では、留置プローブ11は、5~8Fr(1.7~2.7mm)の範囲の直径と65cm~115cmの範囲の長さを有し、本明細書に記載の方法に従った冠静脈洞への挿入に特に適している。それにもかかわらず、留置プローブの直径及び長さは、外科的挿入(すなわち放射状アプローチまたは大腿骨アプローチ)及び/または患者の解剖学的構造に応じて変化し得ることを理解されたい。
留置プローブ11には、細長い本体14に連結されたモーション感知手段も含まれる。モーション感知手段は、冠静脈洞の壁の運動に基づいて留置プローブ11の動きを感知するように構成されている。いくつかの実施形態では、モーション感知手段は、少なくとも1つの3軸加速度計を含む。図1に描かれた実施形態では、モーション感知手段は、単一の3軸加速度計18を含み、これは以下において「遠位加速度計」18とも称する。いくつかの実施形態では、遠位加速度計18は、遠位先端17に位置していても、隣接していてもよい。図1に示す実施形態では、遠位加速度計18は遠位先端17から約2cmの所に位置しているが、代替実施形態では、遠位先端17などから、0cmと10cm、0.5cmと8cm、1cmと6cm、または1cmと4cmの間の任意の場所に位置することができる。
本開示に係る心臓1の冠静脈洞2における留置プローブ11の位置決めの例示的な方法を、図2を言及しながらこれより説明する。冠静脈洞2は、心臓1の房室溝に沿って延びていることが知られている。留置プローブ11は、冠静脈洞2内に挿入され、遠位先端17はまず、心臓1の下大静脈3を介して挿入される。代替実施形態では、留置プローブ11は、心臓1の上大静脈4を介して冠静脈洞2の中に挿入してもよい。使用するために配置されると、留置プローブ11の遠位端16は、冠静脈洞2のVieussens弁5に隣接して位置し、遠位加速度計18は、房室溝の後部側方から側方の側面に近接して位置する。本開示は、心周期での心臓壁の運動が、冠静脈洞の近位側面(冠動脈口)よりも、房室溝の側面において大きいことを認識する。遠位加速度計18を遠位先端17にあるようにするか、それに隣接させて、遠位加速度計が房室溝の後部側方から側方の側面に近接して位置決めされて、測定の容易さや、心臓壁の運動の変化に対するより多大な感受性を実現できる。
次いで、留置プローブ11の近位端15がプロセッサに連結される。しかし、代替実施形態では、留置プローブ11は、冠静脈洞2内に留置プローブ11を挿入する前にプロセッサに連結してもよいことが理解される。
図3は、図1に示すものと同様の装置20の別の実施形態を示し、また類似した特徴は、類似した参照数字を付して示されている。装置20において、留置プローブ21は、さらに、細長い本体の外面に配置された少なくとも1つの電極を含む。少なくとも1つの電極は、心活動から電位図を検出するように構成されている。いくつかの実施形態では、留置プローブ21は、細長い本体14に沿って縦方向に離間した2つ以上の電極を含む。いくつかの実施形態では、留置プローブは、電極4~10本を含む。図3に描かれた実施形態では、電極22のうち8個は、遠位先端17と近位端15との間の細長い本体14に沿って縦方向に離間している。いくつかの実施形態では、電極22は、約5mmの距離で均等に離間している。他の実施形態では、電極22は、約2mm~5mmの間の距離で不均一に離間している。図3の留置プローブ21は、図1の留置プローブ11に関して上述したのと同様の方法で使用するために配置される。
図4は、図1に示すものと同様の装置30の別の実施形態を示し、また類似した特徴は、類似した参照数字を付して示されている。装置30において、留置プローブ31はさらに第2の3軸加速度計32を含み、これは以下で「近位加速度計」32とも呼ばれ、遠位加速度計18の近位に位置する。近位加速度計32は、遠位加速度計18から離間し、細長い本体14の近位端15に向かうように位置する。近位加速度計32は、動きの基準として設けてもよい。いくつかの実施形態では、加速度計18、32は3.5~6.5cmの距離で離間しているが、他の間隔が、例えば、個人間の解剖学的な差異に応じて使用できる。一実施形態では、例えば、加速度計18、32は、約5.5cmの距離に離間している。図4の留置プローブ31は、図1の留置プローブ11に関して上述したのと同様の方法で使用するために配置される。使用するために配置されるとき、近位加速度計32は冠静脈洞口の近傍に位置する。
上記の実施形態のいずれかの変形版において、装置は、プロセッサに連結された1つ以上の追加の参照センサをさらに含むことができる。1つ以上のセンサは、皮膚表面電極、経胸超音波プローブ、経食道超音波プローブ、無線周波パッチ、誘導コイルなどの1つ以上の外部センサを含んでもよい。1つ以上のセンサは、代用として、または留置プローブに配置された任意の内部電極に加えて、使用することができる。
上記のプロセッサとして、加速度計(複数可)と通信し、必要に応じて、そこからデータを受信する電極と外部センサと通信し、受信したデータを処理し、処理されたデータを必要に応じてメモリに記憶するプロセッサが提供される。一般に、本開示で使用される任意のプロセッサは、本開示の1つ以上の特徴を制御するための多数の制御または処理モジュールを含んでよく、また、所望のデータ、例えば生の加速度データまたは処理済みの加速度データを記憶するための、1つ以上のストレージ要素を含むことも認識される。モジュールとストレージ要素は、1つ以上の処理装置と1つ以上のデータストレージユニットを使用して実装することができ、モジュールおよび/またはストレージ要素が1つの場所に配置され得るか、複数の場所に分散され、1つ以上の通信リンクで相互接続させることができる。処理装置には、デスクトップコンピュータ、ラップトップコンピュータ、タブレット、スマートフォン、パーソナルデジタルアシスタント、及びその他の種類のデバイス、例えば本開示による方法を実行するために特別に製造されたデバイスなどのコンピュータシステムが含まれ得る。
さらに、処理モジュールは、プログラム命令を含むコンピュータプログラムまたはプログラムコードによって実装することができる。コンピュータプログラムの命令には、ソースコード、オブジェクトコード、マシンコード、またはプロセッサが説明した手順を実行するために動作可能な他のいずれかの記憶されたデータを含めることができる。コンピュータプログラムは、コンパイル言語や解釈される言語を含む任意の形式のプログラミング言語で書くことができ、例えばスタンドアロンプログラムとして、またはモジュール、コンポーネント、サブルーチン、またはコンピューティング環境での使用に適した他のユニットとしての任意の形式で展開することができる。データ記憶装置(複数可)は、揮発性(例えば、RAM)及び/または不揮発性(例えば、ROM、ディスク)メモリ、その他などの適切なコンピュータ読み取り可能媒体を含めてもよい。
本開示は、心臓壁の運動が冠静脈洞の壁の対応する動きを生み出すことを認識する。これはひいては、プローブが冠静脈洞内に位置しているため、留置プローブの動きを引き起こす。留置プローブの動きは、留置プローブの加速度計(複数可)によって検出され、心臓壁の運動を判定することができる。さらに、経時的な心臓壁の運動の変化を検出することができる。
図5は、上述の実施形態のいずれかに従って装置を用いて心機能障害をモニタリングする例示的な方法100を示し、これはメモリと組み合わせてプロセッサによって伝えることができる。この方法100は、事前定義の閾値102の設定、ベースラインの評価104の実行、継続的なリアルタイムでのモニタリング106の実行、及びベースラインデータとリアルタイムデータ108の比較を含む。
(1)事前定義の閾値を設定する
示されているように、方法100の102では、事前定義の閾値が設定される。具体的には、本実施形態では、留置プローブ及び心臓壁の変形の体積測定的変化量に関する事前定義の閾値レベルが設定され、メモリに記憶される。
いくつかの実施形態では、体積測定的変化量に対する事前定義の閾値レベルは、体積のパーセンテージの変化として表されてもよく、例えば、5~20%のパーセンテージの変化であってもよい。事前定義の閾値レベルは、体積測定的変化量及び/または心臓壁の変形が基準レベルを下回った場合にアラートをトリガする目的で、参照レベルを設ける場合がある。さらに、または代わりに、留置プローブ及び心臓壁の変形の線形変化量に関する事前定義の閾値レベルを設定し、メモリに記憶することができる。閾値レベルは、加速度計の1つ以上の個々のX軸、Y軸、Z軸における動きに適用することもできる。いくつかの実施形態では、閾値レベルは、誤報の発生を低減または排除するために臨床医が変化させてもよい。
いくつかの実施形態では、使用者/操作者は、体積測定的または線形変化量などの留置プローブ及び心臓壁の変形の変化量のための上限及び下限の閾値を入力するソフトウェアインタフェースなどのインタフェースによって促される。これらの限界は、メモリに記憶されてもよく、後続の処置のために取り出せてもよい。いくつかの実施形態では、閾値は臨床試験から事前に決定されてもよく、健常な対象の群に由来する心臓の運動/壁の変化量の平均の上限及び平均の下限を表し得る。さらに、または代わりに、いくつかの実施形態では、閾値は、心臓4D磁気共鳴イメージング、心臓CTイメージング、または心エコーイメージングなどの技術から事前に決定されてもよい。
(2)ベースラインの評価の実行
示されているように、方法100の104において、ベースラインの評価は、上述の実施形態のいずれかに従って装置を用いて行われる。例えば、留置プローブ10、20、30が上述の方法で所望の位置に配置されると、体積測定的変化量及び/または心臓壁の変形のためのベースラインデータを生成するように、ベースラインの評価が行われる。ベースラインデータは、リアルタイム体積測定的変化量及び/または心臓壁の変形データを比較する基準として使用される。ベースラインデータとは異なるリアルタイム体積測定的変化量及び/または心臓壁の変形データは、後で説明するように、1つ以上のアラートをトリガできる。
ベースラインの評価を実行する例示的プロセスについてこれから説明する。いくつかの実施形態では、臨床パラメータが安定していると考えられる場合にのみ、例えば、臨床医によって評価されるときのみ、プロセスが開始されてもよい。臨床パラメータは、患者の位置または身体の移動、患者の呼吸、手術台の向き、血液量、電解質のバランス、動脈または静脈の灌注、麻酔、その他を含むことができる。
留置プローブ10、20、30の変化量から加速度計によって検出された加速度データは、正常な心臓の運動に起因し、また他の組み込まれたセンサからのデータは、所定の時間のエポックの間に記録されるか、連続した一連の心周期(例えば、10の心臓拍動)及びメモリに貯えられる。エポックは、5秒~8秒など、数秒の場合もあるが、他の期間が可能である。
加速度データは、加速度計の3つの異なる軸のそれぞれに対する加速度データとして記録されてもよい。
必要に応じて、加速度データをフィルタリングして信号の乱れを除去してもよい。信号の乱れは、呼吸運動、心臓の異所性興奮、患者の移動、またはその組み合わせから生じ得る。呼吸運動によって引き起こされる信号の乱れは、加速度データのハイパスまたはバンドパスフィルタリングを使用して除去してもよい。本開示は、0.12~0.15Hzのカットオフ周波数を備えるハイパスフィルタリングが、毎分8~30回の範囲の呼吸で呼吸運動に起因する乱れを排除するのに有効となり得ることを認識している。本開示はまた、外れ値データの統計的除去が、心臓の異所性興奮または患者の移動などの外科的処置中に生じる動脈の乱れの情報の除去に有効である可能性があることを認識する。
次に、プロセッサは第1の計算を実行して、記録された加速度データに基づいて変化量データを判定する。好ましい実施形態では、第1の計算は二重積分である。
その後、変化量データがさらに処理され、留置プローブの体積測定的変化量のデータが導出される。体積測定的変化量のデータは、加速度計(複数可)のX軸、Y軸、Z軸ごとに計算される。X軸、Y軸、Z軸ごとの体積測定的変化量のデータの平均値と標準偏差の両方が計算され、比較される。計算された標準偏差がX軸、Y軸、Z軸いずれかの平均値の10%を超える場合は、ベースラインの評価が繰り返される。計算された標準偏差が平均値の10%未満の場合、X軸、Y軸、及びZ軸ごとの体積測定的変化量の平均のデータがメモリに記憶される。
この実施形態または代替実施形態では、計算された標準偏差が平均値の10%未満である場合、時間的な体積測定的変化量のデータの3次元(3D)の点の群れがメモリに記憶される。必要に応じて、変化量の点の群れの体積を計算してもよい。これを実現するために、不規則な点の群れのモザイク式の表面が最初に計算される。モザイク式の表面と点の群れの体積は、Qhullソフトウェアを使用して凸多面体によって計算できる。モザイク式の表面と点の群れの体積の計算には、他の手法が利用され得ることが想定される。体積測定的変化量のデータの標準偏差と平均値の上記の比較は、10%の標準偏差の閾値を参照して行われているが、標準偏差の閾値は、必要な感度のレベルに依拠して差異があってもよいことが認識される。例えば、5%の標準偏差の閾値が、上昇した感度に対して利用されてもよいし、標準偏差の閾値15%が、より低い感度のために利用されてもよい。
この実施形態または代替実施形態では、エポックの平均変化量±誤差が102で判定された所定の閾値限界内に統計的にない場合、異常な心臓の運動を示す勧告メッセージまたはアラーム警告が発令され、不安定な臨床パラメータ、及び/または異なるエポックのデータを得るためにベースラインの評価104を繰り返す指示が発令される。平均変化量±誤差が事前定義の閾値の範囲(参照値)内にある場合、または操作者がアラーム警告または勧告メッセージをオーバーライドしたい場合、エポック中に記録された変化量データはベースラインデータとしてメモリに保存され、継続的リアルタイムでのモニタリング106が行われた。平均変化量及び関連する誤差(例えば、標準偏差、分散、または標準誤差)は、エポック中に観察された変化量データの範囲から計算することができる。
心臓壁の変形のベースラインの評価は、留置プローブ30を用いて行うこともできる。例えば、遠位及び近位加速度計の近くにある心臓の2つの部位間の局所的な心臓壁の変形は、対の加速度計間の変化量の差として、心周期の任意の時点で計算されてもよい。所与の心周期内の最大の局所的な変形の範囲は、そのサイクルで観察された最小の変形から所与の心周期で観察される最大の変形を差し引くことによって計算することができる。この例では、心臓壁の変形は、冠動脈口と心臓の房室溝の後部側方から側方の側面(Vieussens弁の近傍)との間で測定されてもよい。
(3)継続的なリアルタイムでのモニタリングの実行
示されているように、方法100の106では、継続的なリアルタイムでのモニタリングが行われる。継続的なリアルタイムでのモニタリングへのアプローチは、上記の異なる実施形態に従って装置に対して差異があってよい。
上述した図1の実施形態を参照し、図6をさらに言及すると、心活動の継続的なリアルタイムでのモニタリングは、単一の遠位加速度計18を有する留置プローブ11を含む装置10を用いて行うことができる。装置10のプロセッサは、以下のように方法110を行うことができる。
ステップ112では、遠位加速度計18によって検出された加速度データが、留置プローブ11の変化量から第1の期間にわたり記録され、メモリに記憶される。例えば、第1の期間は5~8秒の範囲であってよい。
必要に応じて、ステップ114では、加速度データをフィルタリングして信号の乱れを除去してもよい。信号の乱れは、呼吸運動、心臓の異所性興奮、患者の移動、またはその組み合わせから生じ得る。呼吸運動によって引き起こされる信号の乱れは、加速度データのハイパスまたはバンドパスフィルタリングを使用して除去してもよい。本開示は、0.12~0.15Hzのカットオフ周波数を備えるハイパスフィルタリングが、毎分8~30回の呼吸の範囲で呼吸運動に起因する乱れを排除するのに有効であることを認識している。本開示はまた、外れ値データの統計的除去が、心臓の異所性興奮または患者の移動などの外科的処置中に生じる動脈の乱れの情報の除去に有効である可能性があることを認識する。
ステップ116では、プロセッサは、記録された加速度データに基づいて変化量データを判定する第1の計算を実行する。好ましい実施形態では、第1の計算は二重積分である。
その後、変化量データはさらに処理され、留置プローブ11の体積測定的変化量のデータを導出する。
ステップ118aでは、体積測定的変化量のデータは加速度計18の別個のX軸、Y軸及びZ軸で計算される。有利には、このような計算は、単純かつ低次の技術のハードウェアを使用して行うことができる。
あるいは、ステップ118bでは、体積測定的変化量のデータを3Dモーションの点の群れから計算することができる。本開示は、3Dモーションの点の群れから体積測定的変化量を計算することは、結果として得られた計算が留置プローブ11の軸方向とは無関係であるときに心臓の3D変化量を計算する堅牢な方法であることを認識している。したがって、留置プローブ11は、留置プローブ11がベースラインの評価中に実行された位置とほぼ同じ位置に配置されている限り、ベースラインの評価と同じ軸方向面に再配置される必要はない。さらに、そのような計算は、患者がベースラインの状態とは異なるように再配置されても影響を受けない。
次いで、118aまたは118bに由来する得られた体積測定的変化量のデータが、ステップ120でメモリに記憶される。上記のステップは、後続の期間にわたって繰り返すことができる。
上述した図3の実施形態を参照して、また図7をさらに参照して、心活動の継続的なリアルタイムでのモニタリングは、装置20を用いて行うことができ、それは単一の遠位加速度計18及び電極22を備える留置プローブ21を含む。本実施形態では、装置20は、以下に説明するように追加の内部参照データを提供するために利用されてもよい。装置20のプロセッサは、以下のように方法122を行うことができる。(図6に示すステップと同一の図7のステップは、同様の参照数字を付して示されている。)
ステップ112では、留置プローブ21の変化量から遠位加速度計18によって検出された加速度データが、第1の期間にわたって記録され、メモリに記憶される。例えば、第1の期間は5~8秒の範囲であってよい。
必要に応じて、ステップ114において、記録された加速度データをフィルタリングして、方法110に関して上述したのと同様の方法で信号の乱れを除去してもよい。
ステップ116では、プロセッサは、記録された加速度データに基づいて変化量データを判定する第1の計算を実行する。好ましい実施形態では、第1の計算は二重積分である。
ステップ124では、留置プローブ21の電極22によって検出された電位図が、第1の期間にわたって同時に記録される。記録された電位図は、電位図の振幅に基づいて心臓壁との接触を確認するために利用されてもよい。心臓壁との接触はまた、固有の心拍数よりも高い周波数で単一(単極性)電極または対(双極性)電極から短時間の電流(例えば、2msのパルス幅で0.1~25mA)を供給することによって確認され得る。固有の心拍数を所望の速度に加速するために必要な電流の量は、接触の判定要因として利用することができる。
次いでステップ126では、記録された電位図は、拍動から拍動までの心周期タイミングデータを計算するために利用される。
本開示は、留置プローブ21が冠静脈洞2で使用するために配置された場合にある程度の固有の変化量ドリフト(変化量シフト)を受けてもよいことを認識する。次いで、したがって、ステップ128で、必要に応じて、拍動から拍動までの心周期タイミングデータを、ステップ116で得られた変化量データに適用して、すべての心周期に対する心周期で、特定の固定の点または平均的な点(すなわち、平均的な重心部)での留置プローブ21の位置を再調整することができる。このような適用をすることは、留置プローブ21の変化量ドリフトを補正することを可能にする。
所与の心周期のセットの変化量ドリフトを補正する1つの例示的手法は、(1)各心周期の平均変化量を評価し、(2)所与の心周期のセットの中でのすべての心周期の平均的な位置(すなわち平均重心)を計算すること、及び(3)その心周期の平均変化量と心周期のセットとの差を計算することによって、特定の時点での変化量を正規化することを含み得る。
ステップ118aまたは118bでは、変化量データがさらに処理され、プローブ21の体積測定的変化量のデータを導出し、その結果得られる体積測定的変化量のデータは、次いで方法110について上記したのと同様に、メモリ(ステップ120)に記憶される。上記のステップは、後続の期間にわたって繰り返すことができる。
上述した図4の実施形態を参照し、図8をさらに参照して、心活動の継続的なリアルタイムでのモニタリングは、装置30を用いて行うことができ、それは遠位加速度計18及び近位加速度計32を備える留置プローブ31を含む。装置30のプロセッサは、以下のように方法130を行うことができる。(図6及び図7に示すステップと同一の図8のステップは、同様の参照数字を付して示されている。)
ステップ132では、留置プローブ31の変化量に由来する遠位及び近位加速度計18、32加速度計によって検出された加速度データが、第1の期間にわたって記録される。例えば、第1の期間は5~8秒の範囲であってよい。
ステップ134では、プロセッサは、各加速度計18、32の記録された加速度データに基づいて変化量データを判定する第1の計算を行う。好ましい実施形態では、第1の計算は二重積分である。
次いでステップ136では、各加速度計の変化量データがクロス検証され、留置プローブの有効な変化量データと乱れモーションデータを区別する。乱れモーションデータは、例えば、呼吸、心臓の異所性興奮または全身の動きから生じてもよい。留置プローブ31の加速度計18、32の間隔に起因して、心臓の房室溝の平面における両加速度計18、32との間に、類似または異なる動きをもたらす動きを同定することができる。本開示は、呼吸運動が、房室溝の平面における全心臓運動に起因して、両加速度計18、32における同様の動きを引き起こすことを認識する。このような動きは、例えば呼吸運動(乱れモーション)と心周期運動を区別するために利用でき、その結果、加速度計18、32の両方の間で異なる運動をもたらす。そのとき、クロス検証からのいずれかの検出された乱れモーションは、ステップ138でメモリに記憶される。
検証された変化量データは、プローブ31(ステップ118aまたは118b)の体積測定的変化量のデータを導出するためにさらに処理され、結果として得られる体積測定的変化量のデータは、方法110、122について上述したのと同様にメモリに保存される(ステップ120)。
あるいは、ステップ140では、検証された変化量データに基づいて、より具体的な心臓壁の変形データを算出することができる。これには、対の加速度計の間のデカルト(すなわち直線)の変化量データの距離を計算する必要がある。この特定の実施形態では、遠位加速度計18と近位加速度計32との間のデカルト距離を計算することができる。ただし、追加の加速度計は、留置プローブ31に提供でき、加速度計の任意の組み合わせを使用してデカルト距離を計算できることが理解される。デカルト距離は、別個の時点での、留置プローブ31に沿った2つ以上の部位間の心臓壁の変形の尺度を提供する。次いで、140からの心臓壁の変形データは、ステップ142でメモリに記憶される。上記の方法は、後続の期間にわたって繰り返すことができる。
図9を参照して、単一の遠位加速度計と追加のセンサ、例えば外部センサを備える留置プローブを有する装置を用いた心活動の継続的なリアルタイムでのモニタリングについてこれから説明する。本装置のプロセッサは、以下のように方法144を行うことができる。(図6、図7、図8に示す手順と同一の図9のステップは、同様の参照数字を付して示されている。)
ステップ112では、留置プローブの変化量に由来する遠位加速度計によって検出された加速度データが、第1の期間にわたって記録され、メモリに記憶される。例えば、第1の期間は5~8秒の範囲であってよい。
ステップ116では、プロセッサは、記録された加速度データに基づいて変化量データを判定する第1の計算を実行する。好ましい実施形態では、第1の計算は二重積分である。
ステップ146では、1つ以上の追加センサからの参照データが記録される。参照データは、留置プローブの変化量ドリフトの補正、留置プローブの位置上誤っている方向の修正、信号の乱れの除去、及び/または心機能に関する追加の診断情報の提供に使用できる追加情報を提供する。いくつかの実施形態では、追加の参照データは、外部参照データであり得、非限定的に、1つ以上の皮膚表面電極からの心電図、経胸部及び/または経食道超音波プローブからの心エコー図、無線周波/バイオインピーダンス皮膚パッチからのバイオインピーダンスデータ、X線透視データ、1つ以上の熱電対またはサーミスタからの温度の情報、1つ以上の磁力計からの磁場情報、及び誘導コイルデータを含むことができる。
図9に描かれた実施形態では、装置の皮膚表面電極からの心電図は、例えば、第1の期間にわたって同時に記録されてもよい。
次いでステップ148では、記録された心電図は、拍動から拍動までの心周期タイミングデータを計算するために利用されてもよい。
必要に応じて、ステップ150では、方法122について上述した方法で、拍動から拍動までの心周期タイミングデータを、ステップ116で得られた変化量データに適用して、心周期の特定の固定の点における留置プローブの位置を再較正し、留置プローブの変化量ドリフトを考慮し得る。
必要に応じて、ステップ152において、記録された加速度データは、方法110で上述した方法で、信号の乱れを除去するようにフィルタリングされてもよい。あるいは、いくつかの実施形態では、信号の乱れのフィルタリングは、記録された加速度データではなく、計算された変化量データに対して行われてもよい。さらに、または必要に応じて、追加の参照データを記録された加速度データに適用して、留置プローブの位置方向を評価及び修正し、呼吸運動に起因する信号の乱れをさらに除去することができる。本開示は、呼吸運動に伴って、心臓が典型的には数秒の期間にわたって呼吸運動に伴って頭側または尾側に移動する一方、心臓の運動は本質的に数百ミリ秒の期間にわたって周期的であることを認識している。このような参照データは、呼吸運動のために調整するために利用されてもよい。この点に関して、本開示はまた、心拍数が変化する可能性があるので、適切な比較を可能にするために、加速度データと同時に参照データを取得する必要があることも認識している。
変化量データはさらに、プローブの体積測定的変化量のデータ(ステップ118aまたは118b)を導出するために処理され、得られる体積測定的変化量のデータは、方法110、122、130について上述したのと同様に、そのときメモリ(ステップ120)に記憶される。上記のステップは、その後の期間にわたって繰り返すことができる。
(4)ベースラインデータとリアルタイムデータの比較
示されているように、方法100の108では、ベースラインデータとリアルタイムデータの比較が行われる。
具体的には、各期間の後に、図5に示すように、ベースラインデータとリアルタイムデータを比較して、心機能障害をモニタリングする。以下、「ベースラインデータ」の言及は、ベースライン体積測定的変化量のデータとベースライン心臓壁変形データの両方を包含することを意図し、「リアルタイムデータ」の言及は、リアルタイム体積測定的変化量データとリアルタイムの心臓壁の変形データ双方を包含することを意図する。
ステップ108aで、リアルタイムデータがベースラインデータと同じである場合、心臓壁の運動は正常とみなされ、その後の期間にわたって継続的なリアルタイムでのモニタリングが繰り返される。
ステップ108aで、リアルタイムデータがベースラインデータと異なる場合、心臓壁運動は異常とみなされ、心機能障害の重症度及び性質に関する判定がなされる。
ステップ108bでは、リアルタイムデータがベースラインデータより小さいか大きいか比較する。リアルタイムデータがベースラインデータより小さい場合、プロセッサは心臓壁の運動の障害/抑制を示す警告的なアラートを生成し、ステップ108cでアラートを出力する。心臓壁運動障害は、心嚢液貯留、心臓タンポナーデ、電気機械的解離、アブレーション処置による心臓の血液量の圧力の上昇、またはその組み合わせから生じ得る。
ステップ108bで、リアルタイムデータがベースラインデータよりも大きい場合、プロセッサは過度の心臓壁運動を示す勧告アラートを生成し、ステップ108dでアラートを出力する。過度の心臓壁運動は、頻脈、心臓収縮の増加、不安定なプローブの位置、スチームポップ、心臓の異所性興奮、潜在的な除細動イベント、またはその組み合わせから生じ得る。
上記のリアルタイムのモニタリングを実行し、リアルタイムデータとベースラインデータを比較するステップは、その後の期間にわたって継続的に実行されることを想定している。

図10A~図10Jは、冠静脈洞に植込まれた遠位に位置する加速度計を伴う留置プローブを用いて、心臓タンポナーデの生体内シミュレーション中に記録された例示的な変化量データを示す。図10Aは、プローブの体積測定的変化量のデータを比較する安全の限界を示すベースライン体積測定的変化量のデータのプロットを示す。この例では、心臓タンポナーデが、20分の期間にわたって20mLの増分(合計100mL)で、心膜空間にボーラスの生理食塩水溶液の注入を通じてシミュレートされている。加速度計で検出された加速度データの変動に基づいてX軸、Y軸、Z軸全体で計算された体積測定的変化量のデータを図10B~図10Jに示す。設定された事前定義の閾値レベルを超える心臓壁の運動の阻害に起因して、アラート信号が示されている。図10G~図10Jの水平な点線は、アラートをトリガするために設定された事前定義の閾値レベルを表す。
この例は、タンポネード条件のシミュレートによって変化量データが大幅に減衰することを示している。これらの効果は、少量の生理食塩水(20mL)を心膜空間に注入した場合でも観察された(図10B)。この例はまた、心膜空間への生理食塩水の追加のボーラス注射(図10C~図10F)が、最初のシミュレーションの用量で観察された(図10B)上記の変化量データを大幅には減衰させなかったことを示している。これはタンポナーデの間における心臓壁の運動の絶え間ないモニタリング(アラートの信号を発することを含む)の重要性を強調している。このようなモニタリングは、本開示の実施形態を実施することを通じて達成することができる。
上述した実施形態では、留置プローブは冠静脈洞の内部に配置され、他の実施形態では、留置プローブは、心臓または他の冠動脈血管の空間に展開されてもよい。また、いくつかの実施形態では、加速度計は、遠位先端にあるものまたはそれに隣接するものは別として、留置プローブの細長い本体の他の場所に位置してもよい。
また、本開示の実施形態をさらに適用する際に、留置プローブは、患者にアブレーション療法を施すようにアブレーション先端を備えてもよい。留置プローブは図1、図3、または図4のいずれかに示すものと類似していて、留置プローブの遠位端にアブレーション先端を加えたものであってもよい。
留置プローブの動きは、遠位加速度計を介して継続的にモニタリングされ、アブレーション療法を目的の治療部位に効果的に適用できるかどうかを判定する。留置プローブの動きの継続的なリアルタイムでのモニタリングの例示的なプロセスを、図11を参照してこれから説明する。本装置のプロセッサは、以下のように方法154を行うことができる。
ステップ156では、留置プローブの変化量から遠位加速度計によって検出された加速度データが、第1の期間にわたって記録され、メモリに記憶される。
ステップ158では、プロセッサは、第1の期間の記録された加速度データに基づいて変化量データを判定する第1の計算を実行する。好ましい実施形態では、第1の計算は二重積分である。
次いで、第1の期間の変化量データがさらに処理され、留置プローブの体積測定的変化量のデータが導出される。ステップ160aでは、体積測定的変化量のデータは、方法110、122、130及び144に関して上述したのと同様の方法で、3Dモーションの点の群れから計算することができる。
あるいは、ステップ160bにおいて、体積測定的変化量のデータは、上記の方法110、122、130及び144に関して上述したのと同様の方法で加速度計の別個のX軸、Y軸及びZ軸で計算することができる。
160aまたは160bからの第1の期間の結果として得られた体積測定的変化量のデータは、次いでステップ162でメモリに記憶される。
上記のステップは、第2の期間にわたって繰り返され、第2の期間の結果として生じる体積測定的変化量のデータもステップ162でメモリに記憶される。
ステップ164では、第1の期間の体積測定的変化量のデータと第2の期間の体積測定的変化量のデータとの比較が行われる。第1及び第2の期間の体積測定的変化量のデータが異なる場合、留置プローブは不安定とみなされる。例えば、これは、プローブの不安定な位置決めまたは目的の治療部位からのプローブの変化量ドリフトに起因し得る。この場合、ステップ166において、アブレーション療法は、不安定な位置決めに起因して適用できないか、治療部位からの留置プローブの変化量ドリフトを考慮してアブレーションエネルギーを増加させることができる。
ステップ164において、第1及び第2の期間の体積測定的変化量のデータが同じである場合、留置プローブは安定しているとみなされる。そのとき、アブレーション療法を、ステップ168で正常に適用することができる。
上述した実施形態は、多数の利点を有することができる。例えば、心臓壁の運動のリアルタイムでのモニタリングを提供することにより、心臓の収縮の早期の変化に対する高い感度が可能になる。さらに、それらは、例えば、心嚢液貯留、心臓タンポナーデ、電気機械的解離または心臓の血液量の圧力の上昇の間に、急性心機能障害に対して順向性にではなく反応的に利用されてもよい。これはまた臨床的な処置にいかなる付加的な複雑さをも加えない可能性がある。また、実施形態は、心除細動の場合に発揮され得る心収縮力の定量的モニタリングを提供し得る。これは、除細動器ジェネレータの最適な電力(ジュール)及び電極の位置ベクトルの判定に有用である可能性がある。実施形態はまた、プローブ先端から行われる無線周波アブレーションに関連するスチームポップのモニタリングを可能にし得る。
本開示の広範な一般的範囲から逸脱することなく、上記の実施形態に多数の変形及び/または改変がなされ得ることを当業者は認識する。一例として、本開示の実施形態によれば、記録された加速度データから第1の変化量データを判定する第1の計算(例えば二重積分)を行うのではなく、その方法は、代わりに記録された加速度データから第1の速度データを判定する第1の計算(例えば、単一の積分)を行うことを含んでもよい。また、これらの実施形態では、心機能障害は、加速度データの単一的統合から導出される第1の速度データに基づいてもモニタリングされ得る。本実施形態は、したがって、すべての点において、例示的であり限定的ではないと考えられるべきものである。

Claims (14)

  1. 心嚢液貯留または心臓タンポナーデモニタリング装置であって、
    患者の冠静脈洞の内部の挿入に適合させられて前記冠静脈洞の壁の運動を感知するように構成された細長い本体を含む留置プローブと、
    前記冠静脈洞の壁の運動を示す感知データを受信し、心機能障害をモニタリングするために前記感知データを処理するための前記プローブに連結されたプロセッサと、を含み、
    前記処理は、
    前記感知データに基づいて体積測定的変化量のデータを判定することと、
    前記体積測定的変化量のデータとベースライン体積測定的変化量データとを比較することと、
    前記比較に基づいて心嚢液貯留または心臓タンポナーデを示す心臓壁運動障害の表示を生成することと、
    を含む装置。
  2. 前記感知データは、加速度データを含む、請求項1に記載の装置。
  3. 前記留置プローブが、前記細長い本体の遠位端にまたはそれに隣接して位置する3軸加速度計を含む、請求項に記載の装置。
  4. 前記細長い本体に沿って縦方向に離間した2つ以上の3軸加速度計を含む、請求項に記載の装置。
  5. 体積測定的変化量のデータを判定することは、前記加速度データから第1の変化量データを判定する第1の計算を行うこと含むとともに前記第1の変化量データから前記体積測定的変化量のデータを判定する第2の計算を行うことをさらに含む、請求項またはに記載の装置。
  6. 前記プローブが、前記細長い本体の外面に配置された少なくとも1つの電極をさらに含み、前記少なくとも1つの電極が心活動から電位図を検出するように構成されている、請求項1~のいずれか一項に記載の装置。
  7. 前記少なくとも1つの電極が、前記細長い本体に沿って縦方向に離間した2つ以上の前記電極を含む、請求項に記載の装置。
  8. 前記処理装置は、前記少なくとも1つの電極によって記録された電位図に由来する拍動から拍動までの心周期タイミングデータを算出するように構成されている、請求項またはに記載の装置。
  9. 前記プロセッサは、前記プローブの変化量ドリフトを考慮して前記拍動から拍動までの心周期タイミングデータを使用して前記第1の変化量データを補正するように構成されている、請求項に記載の装置。
  10. 前記プロセッサは、前記記録された加速度データをフィルタリングして信号の乱れを除去するように構成されており、前記信号の乱れが呼吸運動、心臓の異所性興奮、及び患者の移動の1つ以上を含む、請求項のいずれか一項に記載の装置。
  11. 前記プロセッサに連結された1つ以上のセンサをさらに含み、前記1つ以上のセンサが追加の参照データを提供するように構成されている、請求項1~10のいずれか一項に記載の装置。
  12. 前記1つ以上のセンサが、皮膚表面電極、超音波プローブ、無線周波パッチ、誘導コイル、X線透視検査、及び三次元電気解剖学マッピングシステムの1つ以上を含み、
    前記追加の参照データは、心電図、心エコー図、生体インピーダンスデータ、誘導コイルデータ、X線透視データ、カテーテル位置決め情報、解剖学的構造の1つ以上を含む、請求項11に記載の装置。
  13. 前記留置プローブが、5~8Fr(1.7~2.7mm)の範囲の直径を有する、請求項1~12のいずれか一項に記載の装置。
  14. 前記留置プローブは65cm~115cmの範囲の長さを有する、請求項1~13のいずれか一項に記載の装置。
JP2019542445A 2017-02-06 2018-02-06 心機能障害をモニタリングする方法及び装置 Active JP7123950B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2017900356 2017-02-06
AU2017900356A AU2017900356A0 (en) 2017-02-06 Methods and apparatuses for monitoring cardiac dysfunction
PCT/AU2018/050079 WO2018141028A1 (en) 2017-02-06 2018-02-06 Methods and apparatuses for monitoring cardiac dysfunction

Publications (3)

Publication Number Publication Date
JP2020508095A JP2020508095A (ja) 2020-03-19
JP2020508095A5 JP2020508095A5 (ja) 2021-03-18
JP7123950B2 true JP7123950B2 (ja) 2022-08-23

Family

ID=63039289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542445A Active JP7123950B2 (ja) 2017-02-06 2018-02-06 心機能障害をモニタリングする方法及び装置

Country Status (5)

Country Link
US (1) US11517264B2 (ja)
EP (1) EP3576615A4 (ja)
JP (1) JP7123950B2 (ja)
AU (1) AU2018214450B2 (ja)
WO (1) WO2018141028A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3735172B1 (en) * 2018-01-03 2022-02-16 Cardiac Pacemakers, Inc. Imaging of a body part using sounds
WO2022018599A1 (en) * 2020-07-24 2022-01-27 Baylis Medical Company Inc. System and method for pericardial puncture
AU2021376381A1 (en) * 2020-11-04 2023-06-08 The Alfred E. Mann Foundation For Scientific Research Sensors and methods for determining respiration
CN114469122A (zh) * 2022-01-28 2022-05-13 深圳市先健心康医疗电子有限公司 心脏穿孔监测方法、装置、计算机设备及起搏器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502556A (ja) 1996-01-08 2001-02-27 バイオセンス・インコーポレイテッド 心臓の電気機械技術
JP2004523269A (ja) 2000-12-28 2004-08-05 メドトロニック・インコーポレーテッド 電気刺激により機械的心機能障害を処置する埋め込み可能な医療デバイス
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
JP2006518631A (ja) 2003-01-31 2006-08-17 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 心不全をモニタリングするための尖部運動の検出
JP2007503280A (ja) 2003-05-09 2007-02-22 メドトロニック・インコーポレーテッド 心室不整脈検出を高めるための加速度計信号の使用
JP2007222644A (ja) 2000-12-05 2007-09-06 Impella Cardiosystems Ag 圧力センサを有する回転ポンプの制御装置
JP2011104352A (ja) 2009-09-01 2011-06-02 Adidas Ag 生理学的情報、パフォーマンス情報および状況情報を解釈および分析するための方法およびシステム
JP2016508767A (ja) 2013-01-22 2016-03-24 デューク ユニバーシティ 心臓再同期療法(crt)を最適化するためのシステム及び方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628777A (en) 1993-07-14 1997-05-13 Pacesetter, Inc. Implantable leads incorporating cardiac wall acceleration sensors and method of fabrication
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
GB9411397D0 (en) 1994-06-07 1994-07-27 Cunningham David Apparatus for monitoring cardiac contractility
US6002955A (en) 1996-11-08 1999-12-14 Medtronic, Inc. Stabilized electrophysiology catheter and method for use
US6980866B2 (en) 2001-12-05 2005-12-27 Cardiac Pacemakers, Inc. Apparatus for sensing cardiac contractile function
US6978184B1 (en) 2002-07-29 2005-12-20 Marcus Frank I Optimization method for cardiac resynchronization therapy
US7139608B2 (en) 2002-07-31 2006-11-21 Uab Research Foundation Pacing methods and devices using feedback controlled timing
US6923772B2 (en) 2002-09-06 2005-08-02 Cardiac Pacemakers, Inc. Apparatus and method for determining responders to cardiac resynchronization therapy using implantable accelerometers
US7445605B2 (en) 2003-01-31 2008-11-04 The Board Of Trustees Of The Leland Stanford Junior University Detection of apex motion for monitoring cardiac dysfunction
US20060161211A1 (en) 2004-12-31 2006-07-20 Todd Thompson Implantable accelerometer-based cardiac wall position detector
US8032206B1 (en) 2005-10-20 2011-10-04 Pacesetter, Inc. Use of motion sensor for dynamic updating of heart detection threshold
US7653437B2 (en) 2006-01-31 2010-01-26 Medtronic, Inc. Method and apparatus for determining optimal pacing therapy timing intervals
US7729783B2 (en) 2006-04-26 2010-06-01 Medtronic, Inc. Apparatus and methods for vacuum- and mechanically-assisted fixation of medical electrical leads
WO2008076464A2 (en) 2006-06-21 2008-06-26 Surgisense Corporation Wireless medical telemetry system and methods using radio-frequency energized biosensors
US9301698B2 (en) 2008-10-31 2016-04-05 Medtronic, Inc. Method and apparatus to detect ischemia with a pressure sensor
US8971936B2 (en) 2009-09-01 2015-03-03 Adidas Ag Multimodal method and system for transmitting information about a subject
US8900140B2 (en) 2009-10-27 2014-12-02 Cardiac Pacemakers, Inc. Multiple vector fluid localization
AU2012220836A1 (en) 2011-02-22 2013-09-05 PneumoSonics, Inc. Planar antenna device and structure
WO2013121431A1 (en) 2012-02-16 2013-08-22 D.H.S Medical Ltd. Systems and methods for monitoring heart performance
US10383542B2 (en) 2013-03-14 2019-08-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Device, system, and method for intracardiac diagnosis or therapy with localization

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502556A (ja) 1996-01-08 2001-02-27 バイオセンス・インコーポレイテッド 心臓の電気機械技術
JP2007222644A (ja) 2000-12-05 2007-09-06 Impella Cardiosystems Ag 圧力センサを有する回転ポンプの制御装置
JP2004523269A (ja) 2000-12-28 2004-08-05 メドトロニック・インコーポレーテッド 電気刺激により機械的心機能障害を処置する埋め込み可能な医療デバイス
JP2006518631A (ja) 2003-01-31 2006-08-17 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 心不全をモニタリングするための尖部運動の検出
JP2007503280A (ja) 2003-05-09 2007-02-22 メドトロニック・インコーポレーテッド 心室不整脈検出を高めるための加速度計信号の使用
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
JP2011104352A (ja) 2009-09-01 2011-06-02 Adidas Ag 生理学的情報、パフォーマンス情報および状況情報を解釈および分析するための方法およびシステム
JP2016508767A (ja) 2013-01-22 2016-03-24 デューク ユニバーシティ 心臓再同期療法(crt)を最適化するためのシステム及び方法

Also Published As

Publication number Publication date
JP2020508095A (ja) 2020-03-19
AU2018214450B2 (en) 2023-08-24
WO2018141028A1 (en) 2018-08-09
US11517264B2 (en) 2022-12-06
US20200129126A1 (en) 2020-04-30
EP3576615A4 (en) 2020-11-25
EP3576615A1 (en) 2019-12-11
AU2018214450A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7123950B2 (ja) 心機能障害をモニタリングする方法及び装置
JP5103482B2 (ja) 心臓発作検出器
US9436801B2 (en) Hemodynamic status assessment
US9247883B2 (en) Detecting worsening heart failure based on fluid accumulation with respiratory confirmatoin
JP5702375B2 (ja) 埋め込み型心臓治療デバイスにおける処置可能不整脈の適応的確認
US8000780B2 (en) Detection of myocardial ischemia from the time sequence of implanted sensor measurements
US9020594B2 (en) Posture-induced changes to physiological parameters
CN106456023B (zh) 用于使用心音来检测房性快速性心律失常的方法和装置
US20220273181A1 (en) Method and an Apparatus for Determining Hemodynamic Status
JP5178815B2 (ja) 同期不全の閉ループ再同期治療
US8874198B2 (en) Methods and systems for analyzing T-wave alternans
US10201289B2 (en) Measuring atrial fibrillation burden using implantable device based sensors
US20120108991A1 (en) Ischemia detection and classification
EP3265172B1 (en) Systems for treating cardiac arrhythmias
JP2012528607A (ja) 患者の血行動態に基づく代償不全の検出および処置のためのシステムおよび方法
US20100280401A1 (en) Atrial arrhythmia detection and discrimination based on intracardiac impedance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191030

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7123950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150