JP7113176B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP7113176B2
JP7113176B2 JP2018197167A JP2018197167A JP7113176B2 JP 7113176 B2 JP7113176 B2 JP 7113176B2 JP 2018197167 A JP2018197167 A JP 2018197167A JP 2018197167 A JP2018197167 A JP 2018197167A JP 7113176 B2 JP7113176 B2 JP 7113176B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
fuel cell
detection means
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018197167A
Other languages
English (en)
Other versions
JP2020064808A (ja
Inventor
裕亮 山本
慎一朗 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018197167A priority Critical patent/JP7113176B2/ja
Publication of JP2020064808A publication Critical patent/JP2020064808A/ja
Application granted granted Critical
Publication of JP7113176B2 publication Critical patent/JP7113176B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本開示は、燃料電池システムに関する。
改質器及び燃料電池を備えた燃料電池システムはよく知られている。改質器において、改質反応によって都市ガスなどの原料から水素含有ガスが生成される。生成された水素含有ガスは、酸化剤ガスとしての酸素(空気)とともに燃料電池に供給される。燃料電池において、水素と酸素との電気化学反応によって電力が生成される。
例えば、図6の燃料電池システム200は、燃料電池50を有する燃料電池ユニット51と、燃料電池50の熱で加熱された温水を貯める貯湯タンク60を有する貯湯ユニット61と、貯湯タンク60から熱交換器53に水を供給する往路62aと、熱交換器53で温めされた水を貯湯タンクに戻す復路62bからなる冷却水経路62を備えている。往路62aと復路62bとにより冷却水経路62が構成され、冷却水経路62に設けられた循環ポンプ54により水が循環される。燃料電池50が発電中に発生させた熱媒体が流れる熱媒体通路55と冷却水経路62の一部を流れる水が熱交換器53で熱交換することで、燃料電池の発電により発生した熱を有効に利用している。このように、燃料電池システム200では、燃料電池50の冷却水経路62、排水路などの各種の水の流路が設けられている。外気温の低下により水が凍結すると、燃料電池システムの運転が不可能になる。水の凍結による部品の破損も懸念される。特に、貯湯タンク60と接続された往路62aは、水の凍結による部品の破損も懸念される。
そのため、特許文献1に記載されているように、冬季または寒冷地等では、外気温が低下すると、燃料電池50が発電していないとき、制御部56は循環ポンプ54を操作して冷却水経路62の水を流動化させ、凍結を防止する凍結予防運転を行っている。
また、特許文献2では、循環経路の水を流動化することに加え、循環経路を加熱する加熱装置が設けられている。ただし、特許文献2の技術によれば、加熱装置の消費電力が多くなりがちである。
特開2013-114851号公報 特開2007-294186号公報
特許文献1に記載された構成は、循環経路の水の凍結抑制に関し、必ずしも十分な凍結防止効果を得られるものではない。また、循環経路の流動化により貯湯タンクの温水が使用されることになるが、かかる温水を利用する過程で、貯湯タンク内の湯水の温度成層が崩れることに対する対策がとられていない。
本開示は、燃料電池システムの省エネルギー性を向上させつつ、水の凍結をより確実に防止するための技術を提供する。
本開示は、
燃料電池と、
温水を溜める貯湯タンクと、
前記貯湯タンクに貯湯された前記温水が循環する循環経路と、
前記循環経路に設けられ、前記燃料電池からの排熱と前記貯湯タンクに貯湯された前記温水との熱交換を行う熱交換器と、
前記循環経路に設けられ、前記貯湯タンク内に貯湯された前記温水を前記循環経路を介して循環させる水ポンプと、
前記貯湯タンクの上部温度検出手段ならびに下部温度検出手段と、
外気温を直接的または間接的に検知する外気温検出手段と、
制御部と、を備え、
前記制御部は、前記燃料電池が発電運転しておらず、前記外気温が第1温度以下である期間において、
前記上部温度検出手段と前記下部温度検出手段の検出温度の差が所定値以下となるまで、前記水ポンプの運転条件を外気温に応じて調整する第一凍結予防運転を実行し、
前記第一凍結予防運転を実施中に、前記上部温度検出手段と前記下部温度検出手段の検出温度の差が前記所定値より小さくなったとき、前記下部温度検出手段の検出温度に応じて前記水ポンプの運転条件を調整する第二凍結予防運転に移行するように構成された、
燃料電池システムを提供する。
本開示の技術によれば、燃料電池システムの省エネルギー性を向上させつつ、水の凍結をより確実に防止することができる。
図1は、本開示の一実施形態にかかる燃料電池システムの構成図である。 図2は、本開示の第一凍結予防運転ならびに第二凍結予防運転の一例として示したフローチャートである。 図3は、燃料電池が停止期間中に、所定速度で水ポンプを運転した場合の貯湯タンク内の上部温度と下部温度の経時変化を示した図である。 図4は、本開示の一実施形態における第一凍結予防運転の一例を示した図である。 図5は、本開示の一実施形態における第二凍結予防運転の一例を示した図である。 図6は、特許文献1に記載された燃料電池システムの構成図である。
(本開示の基礎となった知見)
特許文献1の図6に示す燃料電池システム200では、燃料電池50の発生した熱によって加熱された高温温水は、貯湯タンク60内の上側から下側に向けて順次貯留され、貯湯タンク60の上層から下層に向けて温度成層が形成される。実際には、貯湯タンクの下部領域には、中低温温水が存在する。燃料電池システムでは、中低温温水を冷却水経路62を介して循環ポンプ54により熱交換器53に送り、燃料電池の発生した熱により加熱された高温温水を貯湯タンクの上部からその内部に貯留する構成となっている。
ところで、特許文献1では、外気温が低下すると、燃料電池50が発電していないとき、制御部56は循環ポンプ54を操作して冷却水経路62の水を流動化させ、凍結を防止する凍結予防運転を行っている。このような凍結予防運転を実行すると、貯湯タンク内の下部に存在する中低温温水を、低外気温の環境下で燃料電池50からの熱供給のない状態で冷却水回路62を介して貯湯タンク60内の上部の高温温水の領域に送り込むことになる。そのため、中低温温水は、上部の高温温水と混合し、貯湯タンク60内に中低温温水が存在しなくなる。このように、特許文献1に開示された構成では、必ずしも貯湯タンク内の温水を有効に利用した凍結予防運転となっているわけではない。また、外気温が下がり、冷却水経路62の凍結リスクが高くなると、加熱装置により冷却水経路62を加熱する必要がある。
本願発明者は鋭利検討の結果、貯湯タンク内の上部に形成されている高温温水の温度成層が、中低温温水の混入によって崩されていないと判定できる期間と、貯湯タンク内の高温温水の温度成層が崩されて貯湯タンク内の温水分布が略均一化したと判定できる期間とで冷却水経路の温水の循環量の制御方法を変えることで、燃料電池システムの省エネルギー性を向上させつつ、水の凍結をより確実に防止することができることに気づいた。
(本開示に係る一態様の概要)
本開示の第1態様にかかる燃料電池システムは、
燃料電池と、
温水を溜める貯湯タンクと、
前記貯湯タンクに貯湯された前記温水が循環する循環経路と、
前記循環経路に設けられ、前記燃料電池からの排熱と前記貯湯タンクに貯湯された前記温水との熱交換を行う熱交換器と、
前記循環経路に設けられ、前記貯湯タンク内に貯湯された前記温水を前記循環経路を介して循環させる水ポンプと、
前記貯湯タンクの上部温度検出手段ならびに下部温度検出手段と、
外気温を直接的または間接的に検知する外気温検出手段と、
制御部と、を備え、
前記制御部は、前記燃料電池が発電運転しておらず、前記外気温が第1温度以下である期間において、
前記上部温度検出手段と前記下部温度検出手段の検出温度の差が所定値以下となるまで、前記水ポンプの運転条件を外気温に応じて調整する第一凍結予防運転を実行し、
前記第一凍結予防運転を実施中に、前記上部温度検出手段と前記下部温度検出手段の検出温度の差が前記所定値より小さくなったとき、前記下部温度検出手段の検出温度に応じて前記水ポンプの運転条件を調整する第二凍結予防運転に移行するように構成されたものである。
第1態様の燃料電池システムでは、外気温検出手段で検知した外気温からみて凍結の緊急性が高いとき、第一凍結予防運転を開始する。第一凍結予防運転の開始前には、貯湯タンク内の温水は温度成層が形成されているが、循環経路が流動化されることで貯湯タンク内の温水が撹拌され、温度成層が崩れて温度が均一化する。
第1形態の燃料電池システムによれば、水ポンプの運転条件を外気温に応じて調整する第一凍結予防運転を実行中に、貯湯タンクの上部温度検出手段と前記下部温度検出手段の検出温度差を検出することで、貯湯タンクの温水が温度成層を保っているのか、あるいは、均一化されたのかを判定する。外気温から凍結の緊急性を判断して水ポンプの運転状態を調整するので、貯湯タンクの温度成層を維持するのに有利である。また、貯湯タンクの上部温度検出手段と前記下部温度検出手段の検出温度差から貯湯タンク内の温水が均一化したと判断した場合、第二凍結予防運転に移行し、下部温度検出手段の検出温度に応じて水ポンプを運転するので、水ポンプに供給する消費電力を削減でき、省エネルギー性の向上に有効である。
本開示の第2態様において、例えば、第1態様にかかる燃料電池システムでは、前記循環経路に直接的または間接的に設けられ、前記循環経路を循環する水を加熱する加熱装置を備えており、前記制御部は、前記第一凍結予防運転を実施時に、前記外気温検出手段の検出温度が前記第1温度よりも低い第2温度以下の場合、前記加熱装置を発熱させる。
第2態様によれば、第一凍結予防運転を実行しているときに、外気温検出手段で検知した外気温からみて凍結の緊急性が高いとき、加熱装置を発熱させることで、循環経路の凍結を確実に防止することができる。なお、外気温検出手段で検知した外気温に応じ、加熱装置を間欠的に作動させ、あるいは、設定温度を変更することで、加熱装置に供給する消費電力を削減でき、省エネルギー性の向上に有効である。
本開示の第3態様において、例えば、第2態様にかかる燃料電池システムでは、前記制御部は、前記第二凍結予防運転している期間、前記加熱装置を停止する。
第3の形態によれば、第二凍結予防運転において、貯湯タンク内の温水の成層が崩され、略均一な温度になっている。第二凍結予防運転では、循環経路に貯湯タンクの温水を供給するので加熱装置を停止する。加熱装置に供給する消費電力を削減でき、省エネルギー性の向上に有効である。
本開示の第4態様において、例えば、第2または第3態様にかかる燃料電池システムでは、前記制御部は、前記第一凍結予防運転を実施中に、前記上部温度検出手段と前記下部温度検出手段の検出温度の差が前記所定値より小さくなったとき、前記下部温度検出手段の検出温度が所定の第3温度以下の場合には前記第二凍結予防運転に移行せず、前記第一凍結予防運転に移行する。
第4態様によれば、第一凍結予防運転を実施中に貯湯タンクの上部温度検出手段と前記下部温度検出手段の検出温度の差に基づいて第一凍結予防運転から第二凍結予防運転に移行するとき、下部温度検出手段の温度を確認する。貯湯タンクの上部温度と下部温度の温度差が小さくなったことで貯湯タンク内の温水温度の成層が崩れたことが確認されたとしても、貯湯タンク内の温水の温度では循環経路の凍結を防止できないと判断した場合には、第一凍結予防運転に移行することで、循環経路の凍結を確実に防止することができる。
本開示の第5態様において、例えば、第1~第4態様のいずれか1つにかかる燃料電池システムでは、前記制御部は、前記第二凍結予防運転を実施中に、前記下部温度検出手段の検出温度が所定の前記第3温度以下になった場合、前記第一凍結予防運転に移行する。
第5態様によれば、第二凍結予防運転を実施中に貯湯タンクの下部温度検出手段の検出温度により、貯湯タンク内の温水温度の低下により循環経路の凍結を防止できないと判断した場合に、第一凍結予防運転に移行する。そして、第一凍結予防運転において、外気温検出手段で検知した外気温からみて凍結の緊急性が高いとき、加熱装置を発熱させる。これにより、循環経路の凍結を確実に防止することができる。
本開示の第6態様において、例えば、第1~第5態様のいずれか1つにかかる燃料電池システムでは、前記水ポンプの運転方法は、連続的に作動させることで前記循環経路の水を連続的に移動させる第1運転と、間欠的に作動させることで前記循環経路の水を間欠的に移動させる第2運転とに切換え可能に構成されており、前記制御部は、前記第一凍結予防運転において、前記外気温検出手段の検出温度に応じて前記水ポンプの循環量と、前記運転方法の少なくとも一方を変更し、前記第二凍結予防運転において、前記下部温度検出手段の検出温度に応じて前記水ポンプの循環量と、前記運転方法の少なくとも一方を変更する。
第6態様によれば、第一凍結予防運転を実行しているとき、外気温検出手段で検知した外気温からみて凍結の緊急性が低いときには、水ポンプの循環量を減らしたり、連続運転から間欠運転に切り換える。かかる操作は、循環ポンプの消費電力を抑えるのに有利である。同様に、第二凍結予防運転を実行しているとき、貯湯タンクの下部温度検出手段の検出温度が比較的高く、循環経路の水温を上昇させる効果が高いときには、水ポンプの循環量を減少、あるいは、連続運転から間欠運転に切り換える。このような操作は、循環ポンプの消費電力を抑えるのに有利である。
本開示の第7態様において、例えば、第4態様の燃料電池システムは、前記第2運転において、前記水ポンプが一回作動する時間は、前記循環経路の全容積に相当する水量が前記循環経路を少なくとも一巡する時間である。
第7態様によれば、水ポンプによる水循環により、循環経路の各部位における水温を平均化でき、循環経路の局所的な凍結発生を防止するのに有利である。
本開示の第8態様において、例えば、第1~第7態様のいずれか1つにかかる燃料電池システムは、前記制御部は、前記第一凍結予防運転または前記第二凍結予防運転を実行中に前記燃料電池が起動指示を受けた場合、実行中の前記第一凍結予防運転または前記第二凍結予防運転を中止し、前記燃料電池を起動させる。
第8態様によれば、燃料電池が起動することで、燃料電池が発電に伴って発生した熱により循環経路が加熱されることになるので凍結予防運転を停止する。凍結予防運転を実行するための要素(例えば、水ポンプ、加熱装置)の損傷や劣化を防止するのに有利である。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
(実施形態)
(燃料電池システム構成)
図1に示すように、本実施形態にかかる燃料電池システム100は、筐体2、燃料電池3及び改質器4を備えた燃料電池ユニット1と、貯湯タンク32、貯湯タンク筐体31を備えた貯湯ユニット30を有している。燃料電池3及び改質器4は、筐体2に収められている。貯湯タンク32は、貯湯タンク筐体31に収められている。外気温センサ10はサーミスタを用いた温度センサ、あるいは、熱電対を用いた温度センサで、外気温を検出する。
改質器4は、水蒸気改質反応(CH+HO→CO+3H)などの改質反応によって水素含有ガスを生成するためのデバイスである。改質器4には、改質反応を進行させるための改質触媒が収められている。改質器4は、水及び原料を用いて、水素含有ガスを生成する。原料は、例えば、都市ガス、LPガス(液化石油ガス)などの炭化水素ガスである。改質器4で生成された水素ガスが燃料電池3に供給される。燃料電池3は、酸化剤ガス(空気)と水素ガスとを用いて電力を生成する。燃料電池3は、例えば、固体高分子形燃料電池又は固体酸化物形燃料電池である。燃料電池3の排熱によって湯が生成される。生成された湯は貯湯タンク32に貯められる。
燃料電池システム100は、さらに、第1水回路13、第2水回路12、熱交換器5及び熱回収水路(循環経路に相当)14を備えている。第1水回路13は、燃料電池3に接続されている。第2水回路12は、改質器4に接続されている。第1水回路13は、燃料電池3を冷却するための冷却水が循環する冷却水回路である。第1水回路13には、第1タンク6及びT字継ぎ手16が設けられている。第2水回路12は、改質器4に水を供給するための給水回路である。第2水回路12には、第2タンク7及びT字継ぎ手19が設けられている。第2タンク7の水が改質器4に供給される。熱交換器5は、第1水回路13に配置されている。
また、第1タンク6には加熱装置11(例えば、ヒータ)が設けられている。燃料電池3が停止期間中であっても、制御部9が加熱装置11を発熱させると、第1タンク6内の水が加熱され、熱交換器5を介して熱回収水路14を流通する温水を加熱することができる。
熱回収水路14は、燃料電池3の排熱を回収するための流路である。熱回収水路14は、熱回収配管14a及び14bを含む。熱回収配管14a及び14bは、それぞれ、熱交換器5に接続されている。熱回収配管14aは、熱回収水路14の下流側部分を構成している。熱回収配管14bは、熱回収水路14の上流側部分を構成している。熱回収配管14aは、熱交換器5において加熱された水を貯湯タンク32に導くための配管である。熱回収配管14bは、熱交換器5において加熱されるべき水を熱交換器5に導くための配管である。熱回収配管14a及び14bは、ステンレス管などの金属製配管である。熱交換器5は、熱回収水路14を流れる水と第1水回路13を流れる水とを熱交換させるように構成されている。つまり、熱交換器5は、第1水回路13の冷却水の熱によって貯湯タンク32に貯められるべき水を加熱する役割を担っている。第1水回路13、第2水回路12、熱交換器5及び熱回収配管14a、14bも筐体2の内部に配置されている。
熱回収配管14aは、筐体2に形成された貫通孔23を通って筐体2の外部に形成された熱回収配管14cに延びている。熱回収配管14cは貯湯タンク筐体31に形成された貫通孔24を通って熱回収配管14dに接続され、貯湯タンク32の上部の高温水入口と接続されている。詳細には、貫通孔23、24には高温側コネクタが取り付けられている。同様に、熱回収配管14bは、筐体2に形成された貫通孔21を通って筐体2の外部に形成された熱回収配管14fに延びている。熱回収配管14fは貯湯タンク筐体31に形成された貫通孔22を通って熱回収配管14eに接続され、貯湯タンク32の下部の低温水入口と接続されている。詳細には、貫通孔21、22には低温側コネクタが取り付けられている。熱回収配管14d、14eは貯湯タンク筐体31の内部に配置されている。なお、高温側および低温側コネクタは樹脂製又は金属製である。
一方、熱回収配管14c、14fは筐体2と貯湯タンク筐体31の外に配置されている。中低温水が流れる熱回収配管14fは、低外気温時に凍結するリスクが高い。
筐体2の内部には熱回収水路14の水を流動化させるため、熱回収水路14の上流側部分の熱回収配管14bに水ポンプ8が設けられている。
貯湯タンク32には複数の温度センサ36a~36fが設けられている。複数の温度センサ36a~36fは、貯湯タンク32の各領域35a~35fでの代表温度を検出する。かかる構成により、貯湯タンク32内の温水の温度分布が検出可能となっている。ここで、温度センサ36a~36fはサーミスタを用いた温度センサ、あるいは、熱電対を用いた温度センサである。複数の温度センサ36a~36fが検出した温水の温度は、温度管理部38に時系列データとして格納されるとともに、制御部9に送られる。
熱回収配管14dから高温温水が貯湯タンク32の上部に戻される構成となっているので、貯湯タンク32内には温水の温度成層が形成される。例えば、貯湯タンクの上部温度を温度センサ36aまたは36bで、下部温度を36eまたは36fで検出するようにする。例えば、貯湯タンクの上部温度を貯湯タンク32の垂直高さの上から1/3の領域の温度、下部温度を貯湯タンク32の垂直高さの下から1/3の領域の温度である。制御部9が、燃料電池3の発電に伴い、貯湯タンク32の沸き上げ運転を行う場合、例えば温度センサ35aと35eが所定温度以上になったとき、貯湯タンク32内が蓄熱満杯状態になったものと判断し、沸き上げ動作を終了させる。このため、沸き上げ終了後であっても、貯湯タンク32内のうち、最下部の温度センサ36fよりも下方の領域には、沸き上げ温度に満たない中低温温水が存在する場合があり得る。
第1水回路13のT字継ぎ手16には第1排水路17が接続されている。第1排水路17は、第1水回路13の水を抜くための流路である。第1排水路17は、典型的には、樹脂製の配管で構成されている。第2水回路12のT字継ぎ手19には第2排水路20が接続されている。第2排水路20は、第2水回路12の水を抜くための流路である。第2排水路20は、典型的には、樹脂製の配管で構成されている。本実施形態では、第1水回路13及び第2水回路12のそれぞれに専用の排水路が接続されている。ただし、第1排水路17と第2排水路20とを1つにまとめることも可能である。第1水回路13及び第2水回路12から選ばれる少なくとも1つに排水路が接続されうる。
第1排水路17の端部には、第1水抜き栓18が取り付けられている。詳細には、筐体2の底壁に形成された貫通孔に第1水抜き栓18を含むコネクタが取り付けられている。第2排水路20の端部には、第2水抜き栓15が取り付けられている。詳細には、筐体2の底壁に形成された貫通孔に第2水抜き栓15を含むコネクタが取り付けられている。これにより、第1排水路17及び第2排水路20は、それぞれ、筐体2の外部まで延びる形になっている。第1水抜き栓18及び第2水抜き栓15は、例えば、ねじ式の栓である。第1水抜き栓18及び第2水抜き栓15は、筐体2の外部にある。そのため、筐体2の外側から第1水抜き栓18及び第2水抜き栓15を取り外すことが可能である。このような構造によれば、極めて簡単に水抜き作業を行うことができる。
燃料電池システム100には、さらに、制御部9が搭載されている。制御部9は、燃料電池3、改質器4、水ポンプ8などの制御対象を制御するためのデバイスである。制御部9は、例えば、A/D変換回路、入出力回路、演算回路、記憶装置などを含むDSP(Digital Signal Processor)で構成されている。
(凍結予防運転)
図1の燃料電池システム100において、待機期間を含む停止期間において外気温が
水の凍結が懸念される温度以下になると、熱回収水路14の第一凍結予防運転が実行される。
以下、図2を参照しつつ、第一凍結予防運転の一例を説明する。図2に示す通り、制御部9は、ステップS1において、外気温センサ10の検出する外気温Tを示す情報を取得し、Tが第一温度T以下であるか否か判断する。ステップS1における判断結果が否定的である場合、ステップS14に進み、制御部9は所定の第一凍結防止運転の停止処理を実行する。例えば、ステップS14において、制御部9は水ポンプ8を停止させ、加熱装置11がオンである場合には、加熱装置11をオフにする。ステップS14の処理が完了すると、第一凍結予防運転が終了する。なお、制御部9は、ステップS14の処理が完了した後に、ステップS1に戻ってもよい。
一方で、ステップS1における判断結果が肯定的である場合、ステップS2へ進み、制御部9は起動指示がなされているか否か判断する。ステップS2において、制御部9は、例えば、交流電力出力指令に関する情報を取得する。制御部9は、交流電力指令値が0でない一定の値を示す場合には起動指示がなされたと判断する。
ステップS2における判断結果が否定的である場合、ステップS3に進み、制御部9は第一凍結予防運転を実行する。ここで、第一凍結予防運転では、凍結予防運転を実行しつつも、貯湯タンク32内に貯留した温水の温度成層をなるべく壊さないことを意図する。
第一凍結予防運転を実行しているとき、制御部9は図4に示す制御マップに基づいて、水ポンプ8の運転形態を決定する。
図4において、外気温TがTより高い場合は、凍結の可能性がかなり少ないと判断し、水ポンプ8の運転を停止し、第一凍結予防運転は行わない。
また、図4において、外気温TがTより高くT以下の場合は、凍結の可能性が比較的低いと判断し、水ポンプ8を間欠的に稼働させて熱回収水路14を流動化する。なお、水ポンプ8のオン時間は熱回収水路14の全容積に相当する水量が熱回収水路14を少なくとも一巡する時間以上とする。これにより、熱回収水路14の水温を平均化し、局所的な凍結を防止できる。さらに、外気温Tと水ポンプ8の回転数を線形に対応させることで、熱回収水路14の循環量を最低限に留めことができる。熱回収水路14を循環した後に貯湯タンク32内に戻される温水の温度が高ければ、温水の循環量を少なくすることで、貯湯タンク32内の温度成層が崩れて貯湯タンク内の温水が略均一化するまでの時間を遅らせることができる。
また、図4において、外気温TがT以下の場合は、凍結の可能性が比較的高いと判断し、水ポンプ8を連続的に稼働させる。例えば、Tは5℃、Tは0℃である。この場合にも、外気温Tと水ポンプ8の回転数を線形に対応させることで、熱回収水路14の循環量を最低限に留めことができる。このように、外気温Tに応じて水ポンプ8の運転状態を変更することで、水ポンプ8の消費電力を抑えることができる。第一凍結予防運転の水ポンプ8の運転形態の決定後、ステップS4に進む。
一方で、ステップS2における判断結果が肯定的である場合、ステップS12に進み、制御部9は第一凍結運転を停止し、ステップS13に進んで燃料電池システムの起動シーケンスへ移行する。燃料電池システムが起動することで、燃料電池3が発電に伴って発生した熱により熱回収水路14が加熱されることになるので第一凍結予防運転を停止することができる。これにより、第一凍結予防運転を実行するための要素(例えば、水ポンプ、加熱装置)の損傷や劣化を防止することができる。
次に、ステップS4において外気温Tと所定温度であるTを比較する。ここでTは熱回収水路14の流動化だけでは凍結が困難であると判断する温度である。ステップS4における判断結果が肯定的である場合、ステップS6へ進み、加熱装置11をオンとする。例えば、Tは-3℃である。ステップS6へ進んだ場合、制御部9は、熱回収水路14の流動化だけでは凍結予防が困難であると判断している。そのため、加熱装置11を間欠的または連続的に発熱させる。燃料電池3が停止期間中であっても、制御部9が加熱装置11を発熱させると、第1タンク6内の水が加熱され、熱交換器5を介して熱回収水路14を流通する温水を加熱することができる。このように、外気温検出手段で検知した外気温からみて凍結の緊急性が高いとき、加熱装置11を間欠的または連続的に作動させることで、熱回収水路14の凍結を確実に防止することができる。なお、外気温検出手段で検知した外気温に応じ、加熱装置11を間欠的に作動させ、あるいは、設定温度を変更してもよい。また、水ポンプ8の回転数を外気温TがT以上T未満の場合に比べ、低減させてもよい。このような設定を行うことで、加熱装置11に供給する消費電力を削減でき、省エネルギー性を向上させることができる。
一方、ステップS4における判断結果が否定的である場合、ステップS5を経由し、ステップS1へ進む。このとき、ステップS5において加熱装置11の発熱は不要であると判断され、制御部9は加熱装置11が発熱中の場合には、加熱装置11をオフとする。
また、ステップS4における判断結果が肯定的の場合には、ステップS7に進む。ここで、ステップS7の判断内容について、図3を用いて説明する。図3において、貯湯タンク32の上部温度Tは、例えば温度センサ36aまたは36bの検出温度である。また、貯湯タンク32の下部温度Tは、例えば温度センサ36eまたは36fの検出温度である。燃料電池3が停止している期間に、水ポンプ8を所定の回転数で連続的に運転すると、貯湯タンク32の上部の高温温水に熱回収水路14から中低温温水が戻されるのに伴い、上部の高温温水の温度Tが低下する。また、水ポンプが熱回収水路14を流動化することで貯湯タンク32内の温水が撹拌され、貯湯タンク32の下部温度Tが上昇し、内部温度の均一化が図られ、温度のばらつきが少ない温水となる。例えば、図3に示したように、水ポンプ8の運転開始から時間t経過後に貯湯タンク32の上部温度Tと下部温度Tの温度差が所定の温度差T以下になったとき、貯湯タンク32内の温水の温度分布が均一化されたとみなすことができる。例えば、Tは60℃、Tは20℃、Tは5℃である。
すなわち、ステップS7の判断結果が否定的である場合には、貯湯タンク32内の温水が温度成層を維持していると判断し、ステップS1に戻り第一凍結予防運転を継続する。
一方、ステップS7の判断結果が肯定的である場合には、貯湯タンク32内の温水の温度成層が崩れ、貯湯タンク32内の温水温度が略均一化されたと判断し、ステップS8へ進む。ステップS8において、制御部9は貯湯タンク32の下部温度Tが所定温度T以下であるかを判断する。例えば、Tは15℃である。ステップS7における判断結果が否定的である場合、すなわち、貯湯タンク32の温度分布がまだ均一化されていない場合は、ステップS1へ進み、制御部9は水ポンプ8を引き続き連続的に稼働させる。こうすることで、貯湯タンク32上部に存在する湯を撹拌させ、貯湯タンク32下部へ熱を届けることができる。貯湯タンク上部に高温温水が存在しない場合でも、水ポンプ8を連続的に稼動させているため、凍結予防に関して有利である。
なお、第一凍結予防運転では、図4に示したように、熱回収水路14の凍結の可能性が比較的高いと判断した場合には、水ポンプ8を連続的に稼働させている。例えば、外気温TがT以下の場合、外気温Tの低下に応じて水ポンプ8の回転数を高くなるように設定しても良い。このようにすることで、熱回収水路14の凍結予防に有利である。
次に、ステップS8では、貯湯タンク32内で温度が略均一化された温水を用いて凍結予防を行う第二凍結予防運転に移行するか否かを判断する。すなわち、ステップS8の判断結果が肯定的(貯湯タンク32の下部温度Tが所定温度T以下)であれば、貯湯タンク32内の温水を熱回収水路に供給するだけでは凍結防止が困難であると判断し、ステップS1に戻って第一凍結予防運転を実行する。これにより、熱回収水路14の凍結を確実に防止できる。
一方、ステップS8の判断結果が否定的であれば、貯湯タンク32内の温水を熱回収水路に供給するだけで凍結防止が可能と判断し、ステップS9を経由し、ステップS10へ進む。このとき、ステップS9において加熱装置11の発熱は不要であると判断され、制御部9は加熱装置11が発熱中の場合には、加熱装置11をオフとする。
ステップS8における判断結果が否定的である場合、ステップS10へ進み、第二凍結予防運転を実行する。第二凍結予防運転では、加熱装置11を発熱させない代わりに、貯湯タンク32内の温水を熱回収水路14に供給することで凍結予防を行う。これにより、加熱装置11に供給する消費電力の削減を意図している。
第二凍結予防運転では、制御部9は図5に示すように貯湯タンク32の下部温度Tに基づいて、水ポンプ8の回転数を決定する。外気温Tではなく、貯湯タンク32の下部温度Tに基づいて水ポンプの回転数を制御するため、凍結予防の精度が上昇し、第一凍結予防運転よりも水ポンプ8の回転数を低減し、消費電力をより抑えることができる。水ポンプ8の回転数を決定した後、ステップS11に進む。
ここで、図5の例では貯湯タンク32の下部温度Tに対し、水ポンプ8の回転数を1次関数で与えているが、これに限定されない。例えば、貯湯タンク32の下部温度Tに対し、水ポンプ8の回転数をステップ状に変更してもよい。また、水ポンプ8を低速で回転させる運転方法に代えて、水ポンプ8を間欠的に運転させてもよい。このように、第二凍結予防運転を実行しているとき、貯湯タンク32の下部温度検出手段の検出温度が比較的高く、熱回収水路14の水温を上昇させる効果が高いときには、水ポンプ8の循環量を減少、あるいは、連続運転から間欠運転に切り換えることで、水ポンプ8の消費電力を抑えることができる。
次に、ステップS11では、貯湯タンク32内で温度が略均一化された温水を用いて凍結予防を行う第二凍結予防運転を継続するか否かを判断する。すなわち、ステップS11の判断結果が肯定的(貯湯タンク32の下部温度Tが所定温度T以下)であれば、貯湯タンク32内の温水を熱回収水路に供給するだけでは凍結防止が困難であると判断し、ステップS1に戻って第一凍結予防運転を実行する。そして、第一凍結予防運転において、外気温検出手段で検知した外気温からみて凍結の緊急性が高いとき、加熱装置11を間欠的または連続的に作動させる。これにより、熱回収水路14の凍結を確実に防止することができる。
一方、ステップS11で判断結果が否定的である場合、貯湯タンク32の下部温度Tが所定温度Tbよりも高く貯湯タンク32内の温水を熱回収水路に供給するだけで凍結防止が可能であると判断し、ステップS10に進んで第二凍結予防運転を継続する。
上記したように、本実施形態の燃料電池システムによれば、水ポンプ8の運転条件を外気温Tに応じて調整する第一凍結予防運転を実行中に、貯湯タンク32の上部温度検出手段と下部温度検出手段の検出温度差を検出することで、貯湯タンク32内の温水が温度成層を保っているのか、あるいは、均一化されたのかを判定できる。また、外気温から凍結の緊急性を判断して水ポンプ8の運転状態を調整するので、貯湯タンク32の温度成層を維持するのに有利である。また、貯湯タンク32の上部温度検出手段と下部温度検出手段の検出温度差から貯湯タンク内の温水が均一化したと判断した場合、第二凍結予防運転に移行し、下部温度検出手段の検出温度に応じて水ポンプを運転するので、水ポンプに供給する消費電力を削減でき、省エネルギー性を向上させることができる。
なお、本実施の形態の燃料電池システムによれば、第1凍結予防運転を実施する際、水ポンプ8の運転状態の切り換え温度に幅をもたせてもよい。
例えば、水ポンプ8を停止状態から間欠運転に移行する温度境界値であるTの前後に所定幅δTを設定する。そして、外気温TがTより高い状態からT-δTになるまでは運転を停止する。一方、外気温がT以下の状態で水ポンプ8を間欠運転している場合には、外気温TがT+δTになるまでは水ポンプ8を停止せず間欠運転を継続する。
同様に、水ポンプ8の運転状態を間欠運転から連続運転に切り換える温度境界値であるTの前後に所定値δTを設定する。そして、外気温TがTよりも高い状態からT-δTになるまで間欠運転を継続する。一方、外気温TがT以下の状態で連続運転している場合には、外気温TがT+δTになるまでは連続運転を継続する。
このように、水ポンプ8の運転状態を変更する温度境界値に幅をもたせる(ヒステリスとする)ことで、水ポンプ8の運転制御を安定化させることができる。例えば、δTは1℃である。また、それぞれの温度境界値に対し所定幅δTを設定してもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の形態を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
本明細書に開示された技術は、燃料電池システムにおける水の凍結防止に役立つ。本明細書に開示された技術は、燃料電池システムのエネルギー効率の向上にも寄与する。
100 燃料電池システム
1 燃料電池ユニット
2 筐体
3 燃料電池
4 改質器
5 熱交換器
6 第1タンク
7 第2タンク
8 水ポンプ
9 制御部
10 外気温センサ
11 加熱装置
14 熱回収水路
14a、14b、14c、14d、14e、14f 熱回収配管
30 貯湯ユニット
31 貯湯タンク筐体
32 貯湯タンク
36a、36b、36c、36d、36e、36f 温度センサ

Claims (8)

  1. 燃料電池と、
    温水を溜める貯湯タンクと、
    前記貯湯タンクに貯湯された前記温水が循環する循環経路と、
    前記循環経路に設けられ、前記燃料電池からの排熱と前記貯湯タンクに貯湯された前記温水との熱交換を行う熱交換器と、
    前記循環経路に設けられ、前記貯湯タンク内に貯湯された前記温水を前記循環経路を介して循環させる水ポンプと、
    前記貯湯タンクの上部温度検出手段ならびに下部温度検出手段と、
    外気温を直接的または間接的に検知する外気温検出手段と、
    制御部と、を備え、
    前記制御部は、前記燃料電池が発電運転しておらず、前記外気温が第1温度以下である期間において、
    前記上部温度検出手段と前記下部温度検出手段の検出温度の差が所定値以下となるまで、前記水ポンプの運転条件を外気温に応じて調整する第一凍結予防運転を実行し、
    前記第一凍結予防運転を実施中に、前記上部温度検出手段と前記下部温度検出手段の検出温度の差が前記所定値より小さくなったとき、前記下部温度検出手段の検出温度に応じて前記水ポンプの運転条件を調整する第二凍結予防運転に移行するように構成された、燃料電池システム。
  2. 前記循環経路に直接的または間接的に設けられ、前記循環経路を循環する水を加熱する加熱装置を備えており、
    前記制御部は、
    前記第一凍結予防運転を実施時に、前記外気温検出手段の検出温度が前記第1温度よりも低い第2温度以下の場合、前記加熱装置を発熱させる、請求項1記載の燃料電池システム。
  3. 前記制御部は、前記第二凍結予防運転を実行している期間、前記加熱装置を停止する、請求項2記載の燃料電池システム。
  4. 前記制御部は、
    前記加熱装置を発熱しながら前記第一凍結予防運転を実施中に、前記上部温度検出手段と前記下部温度検出手段の検出温度の差が前記所定値より小さくなったとき、前記下部温度検出手段の検出温度が所定の第3温度以下の場合には前記第二凍結予防運転に移行せず、前記加熱装置を発熱させたまま前記第一凍結予防運転に移行する、
    請求項に記載の燃料電池システム。
  5. 前記制御部は、
    前記第二凍結予防運転を実施中に、前記下部温度検出手段の検出温度が所定の前記第3温度以下になった場合、前記第一凍結予防運転に移行する、請求項に記載の燃料電池システム。
  6. 前記水ポンプの運転方法は、連続的に作動させることで前記循環経路の水を連続的に移動させる第1運転と、間欠的に作動させることで前記循環経路の水を間欠的に移動させる第2運転とに切換え可能に構成されており、
    前記制御部は、
    前記第一凍結予防運転において、前記外気温検出手段の検出温度に応じて前記水ポンプの循環量と、前記運転方法の少なくとも一方を変更し、
    前記第二凍結予防運転において、前記下部温度検出手段の検出温度に応じて前記水ポンプの循環量と、前記運転方法の少なくとも一方を変更する、請求項1乃至請求項5のいずれか一項に記載の燃料電池システム。
  7. 前記第2運転において、前記水ポンプが一回作動する時間は、前記循環経路の全容積に相当する水量が前記循環経路を少なくとも一巡する時間である、請求項6に記載の燃料電池システム。
  8. 前記制御部は、前記第一凍結予防運転または前記第二凍結予防運転を実行中に前記燃料電池が起動指示を受けた場合、実行中の前記第一凍結予防運転または前記第二凍結予防運転を中止し、前記燃料電池を起動させる、請求項1乃至請求項7のいずれか一項に記載の燃料電池システム。
JP2018197167A 2018-10-19 2018-10-19 燃料電池システム Active JP7113176B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018197167A JP7113176B2 (ja) 2018-10-19 2018-10-19 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018197167A JP7113176B2 (ja) 2018-10-19 2018-10-19 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2020064808A JP2020064808A (ja) 2020-04-23
JP7113176B2 true JP7113176B2 (ja) 2022-08-05

Family

ID=70388336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018197167A Active JP7113176B2 (ja) 2018-10-19 2018-10-19 燃料電池システム

Country Status (1)

Country Link
JP (1) JP7113176B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256486A (zh) * 2020-09-25 2022-03-29 北京亿华通科技股份有限公司 燃料电池系统冷启动的控制方法及燃料电池系统、车辆
CN115172816B (zh) * 2022-06-06 2023-12-26 中汽创智科技有限公司 一种燃料电池的冷启动方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278579A (ja) 2006-04-05 2007-10-25 Rinnai Corp 貯湯式給湯システム
JP2007294186A (ja) 2006-04-24 2007-11-08 Aisin Seiki Co Ltd 燃料電池システムの凍結防止装置
JP2013114851A (ja) 2011-11-28 2013-06-10 Aisin Seiki Co Ltd 燃料電池システム
JP2016207581A (ja) 2015-04-27 2016-12-08 株式会社ノーリツ 燃料電池コージェネレーションシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278579A (ja) 2006-04-05 2007-10-25 Rinnai Corp 貯湯式給湯システム
JP2007294186A (ja) 2006-04-24 2007-11-08 Aisin Seiki Co Ltd 燃料電池システムの凍結防止装置
JP2013114851A (ja) 2011-11-28 2013-06-10 Aisin Seiki Co Ltd 燃料電池システム
JP2016207581A (ja) 2015-04-27 2016-12-08 株式会社ノーリツ 燃料電池コージェネレーションシステム

Also Published As

Publication number Publication date
JP2020064808A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
JP5179652B2 (ja) 燃料電池システム
JP4605008B2 (ja) 給湯装置および給湯装置用制御装置
JP7113176B2 (ja) 燃料電池システム
JP5704398B2 (ja) 熱回収装置、コージェネレーションシステム、並びに、配管の誤接続検知方法
JP6868830B2 (ja) コージェネレーションシステム及びその運転方法
JP6013129B2 (ja) 燃料電池コジェネレーションシステム、その制御プログラムおよび制御方法
JP3836761B2 (ja) コージェネレーションシステム
JP5025929B2 (ja) 燃料電池発電システム
JP2004150646A (ja) コジェネレーションシステム
JP4833707B2 (ja) 排熱回収装置
KR101949602B1 (ko) 열, 수소 생성 장치
JP5846413B2 (ja) コージェネレーションシステム
JP5224755B2 (ja) 給湯システム、給湯方法及び給湯制御プログラム
US8499551B2 (en) Exhaust heat recovering method, exhaust heat recovering apparatus and cogeneration system
JP2010127585A (ja) 熱回収装置、コージェネレーション装置およびコージェネレーションシステム
JP2011257130A (ja) 排熱回収装置
JP6124598B2 (ja) コージェネレーションシステム及びコージェネレーションシステムの運転方法
JP2013072588A (ja) 熱回収装置、コージェネレーションシステム、並びに、配管の誤接続検知方法
JP2005302627A (ja) 燃料電池コージェネレーションシステム
JP2005207618A (ja) 貯留式給湯装置およびコージェネレーションシステム
JP2004063118A (ja) 燃料電池システム
JP6191352B2 (ja) 貯湯給湯装置
JP2008128527A (ja) 給湯システム及び方法
JP6876944B2 (ja) 燃料電池システム
JP4134923B2 (ja) 温水供給装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7113176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151