JP7112379B2 - Iii族窒化物基板 - Google Patents

Iii族窒化物基板 Download PDF

Info

Publication number
JP7112379B2
JP7112379B2 JP2019172644A JP2019172644A JP7112379B2 JP 7112379 B2 JP7112379 B2 JP 7112379B2 JP 2019172644 A JP2019172644 A JP 2019172644A JP 2019172644 A JP2019172644 A JP 2019172644A JP 7112379 B2 JP7112379 B2 JP 7112379B2
Authority
JP
Japan
Prior art keywords
group iii
gas
region
nitride substrate
iii nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019172644A
Other languages
English (en)
Other versions
JP2021050107A (ja
Inventor
勇介 森
政志 吉村
正幸 今西
啓 北本
淳一 滝野
智亮 隅
芳央 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2019172644A priority Critical patent/JP7112379B2/ja
Priority to US17/023,720 priority patent/US11713517B2/en
Priority to CN202011005460.5A priority patent/CN112635543A/zh
Publication of JP2021050107A publication Critical patent/JP2021050107A/ja
Priority to JP2022117453A priority patent/JP7459180B2/ja
Application granted granted Critical
Publication of JP7112379B2 publication Critical patent/JP7112379B2/ja
Priority to US18/209,840 priority patent/US20230323563A1/en
Priority to JP2024043497A priority patent/JP2024072875A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、III族窒化物基板に関する。
従来、縦型GaNパワーデバイスには、低抵抗、低転位のGaN基板が必要とされている。例えばn型の低抵抗のGaN基板を作成する場合、Si原子やO原子の混入量を増加させてキャリア濃度を向上させることが行われてきた(例えば、特許文献1参照。)。
特開2010-132558号公報
しかし、キャリア濃度が1×1020/cm以上の高濃度となる場合には、結晶性の悪化や転位欠陥の増加といった問題が生じる場合がある。
本発明は、高いキャリア濃度を達成しながら、低転位及び低抵抗のIII族窒化物基板を提供することを目的とする。
本発明に係るIII族窒化物基板は、研磨された面内において、第1不純物濃度を示す第1領域と、
前記第1不純物濃度よりも低い第2不純物濃度を示す第2領域と、
を有し、
前記第1領域の第1転位密度は、前記第2領域の第2転位密度よりも低い。
本発明に係るIII族窒化物基板によれば、低転位であって低抵抗であり、デバイス形成時に、転位密度の高い第2領域でリークが生じるのを抑制でき、絶縁耐圧の向上を図ることができる。
実施の形態1に係るIII族窒化物基板のm面から見た断面図である。 実施の形態1に係るIII族窒化物基板のa面から見た断面図である。 実施の形態1に係るIII族窒化物基板の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。 図3のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。 二次イオン質量分析法による解析範囲を示す、III族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。 図5の解析範囲の顕微鏡像である。 図5の解析範囲について、二次イオン質量分析法によって得られる酸素濃度を濃淡として示す図である。 図5の解析範囲について、二次イオン質量分析法によって得られるSi濃度を濃淡として示す図である。 OVPE-GaN層の厚さが50μmである場合のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。 OVPE-GaN層の厚さが200μmである場合のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。 OVPE-GaN層の厚さが300μmである場合のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。 OVPE-GaN層の厚さと転位密度との関係を示す図である。 転位密度6.2×10/cmのOVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。 転位密度6.4×10/cmのOVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。 転位密度5.7×10/cmのOVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。 転位密度4.3×10/cmのHVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。 実施の形態1に係るIII族窒化物基板の製造方法のフローチャートである。 実施の形態1に係るIII族窒化物基板の製造装置の構成を示す概略図である。 図18のIII族窒化物基板の製造装置の変形例を示す概略図である。
第1の態様に係るIII族窒化物基板は、研磨された面内において、第1不純物濃度を示す第1領域と、
前記第1不純物濃度よりも低い第2不純物濃度を示す第2領域と、
を有し、
前記第1領域の第1転位密度は、前記第2領域の第2転位密度よりも低い。
第2の態様に係るIII族窒化物基板は、上記第1の態様において、前記第1領域は、前記第2領域を中心として前記第2領域の周囲を囲うように配置されていてもよい。
第3の態様に係るIII族窒化物基板は、上記第1又は第2の態様において、前記第1領域は、前記第2領域に向かって縮径する形状であってもよい。
第4の態様に係るIII族窒化物基板は、上記第1から第3のいずれかの態様において、前記第2不純物濃度よりも低い第3不純物濃度を示す第3領域を、更に有してもよい。
第5の態様に係るIII族窒化物基板は、上記第4の態様において、前記第3領域は、前記第2領域を中心として前記第2領域の周囲を囲うように配置されていてもよい。
第6の態様に係るIII族窒化物基板は、上記第4の態様において、前記第1領域と前記第3領域とは、前記第2領域を中心として前記第2領域の周囲に交互に配置されていてもよい。
第7の態様に係るIII族窒化物基板は、上記第1から第6のいずれかの態様において、前記第1領域に含まれる不純物は、酸素、シリコンの群から選択される少なくとも1つであってもよい。
第8の態様に係るIII族窒化物基板は、上記第1から第7のいずれかの態様において、前記第1不純物濃度は、酸素濃度が1×1020/cm以上であってもよい。
第9の態様に係るデバイスは、上記第1から第8のいずれかの態様に係るIII族窒化物基板と、
前記III族窒化物基板に形成されたデバイス構造と、
を備える。
以下、実施の形態に係るIII族窒化物基板について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。
(実施の形態1)
<III族窒化物基板>
図1は、実施の形態1に係るIII族窒化物基板のm面から見た断面図である。図2は、実施の形態1に係るIII族窒化物基板のa面から見た断面図である。図3は、実施の形態1に係るIII族窒化物基板の表面を表面研磨及びエッチング後のエッチピット3の分布を示す走査型電子顕微鏡写真である。図4は、図3のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。
実施の形態1に係るIII族窒化物基板は、研磨された面内において、例えば、図1及び図2に示すように、種基板1の上に成長したGaN層2とを有する。また、GaN層2の表面には、図1のm面から見た断面図に示されるように、{11-22}面を有する。さらに、図2のa面から見た断面図に示されるように、{10-11}面を有する。また、図3のSEM写真及び図4の表面研磨後のカソードルミネッセンス像に示されるように、{11-22}面の第1領域11と、{10-11}面の第3領域13と、がエッチピットである第2領域12の周囲を囲んでそれぞれ6つ配置されている。第1領域11及び第3領域13は、第2領域12の周囲を交互に配置されている。さらに、第1領域11及び第3領域13は、第2領域12に向かって縮径している。換言すれば、第1領域11及び第3領域13は、第2領域12を中心として放射状に延びている。また、エッチピットであるそれぞれの第2領域12の周囲に第1領域11及び第3領域13が配置されている。
なお、図3のSEM写真に示されるように、この実施の形態1に係るIII族窒化物基板の面ではエッチピット3の密度が低く、つまり、転位密度が低いことがわかる。
<不純物濃度について>
図5は、二次イオン質量分析法による解析範囲20を示す、III族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。図6は、図5の解析範囲の顕微鏡像である。図7は、図5の解析範囲について、二次イオン質量分析法によって得られる酸素濃度を濃淡として示す図である。図8は、図5の解析範囲について、二次イオン質量分析法によって得られるSi濃度を濃淡として示す図である。
このIII族窒化物基板は、例えば、図7に示すように、第1領域11の酸素濃度は、1020/cm台の後半であるのに対して、第3領域13の酸素濃度は、1020/cm台の前半である。つまり、第1領域11の酸素濃度は、第3領域13の酸素濃度よりも高い。また、第2領域12の酸素濃度は、第1領域11の酸素濃度よりも低く、第3領域13よりも高いことがわかる。また、第1領域11の第1転位密度は、第2領域12の第2転位密度よりも低い。なお、図8に示すように、Si濃度は、第1領域11、第2領域12及び第3領域13にわたって1018/cm前半~1019/cm台後半であって、各領域について大きな差異はなく、不純物濃度の差異は酸素濃度に依存している。
<成長層の厚さと転位密度について>
図9は、OVPE-GaN層の厚さが50μmである場合のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。図10は、OVPE-GaN層の厚さが200μmである場合のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。図11は、OVPE-GaN層の厚さが300μmである場合のIII族窒化物基板のc軸から見た表面転位を示すカソードルミネッセンス(CL)像である。図12は、OVPE-GaN層の厚さと転位密度との関係を示す図である。
図9乃至図11に示すように、図1及び図2の成長層であるGaN層2の厚さが増加するにつれて第2領域12の数が少なくなることがわかる。つまり、図12に示すように、種基板1の上に成長するGaN層2の厚さが増加するにつれて転位密度が低くなることがわかる。具体的には、種基板1のHVPE-GaNの場合に転位密度が約3×10cm-2と高いのに対して、GaN層2の厚さが200μmで転位密度が約1.5×10cm-2、GaN層2の厚さが300μmで転位密度が約8×10cm-2と低くなっている。転位密度を考慮すると、およそGaN層2の厚さが200μm以上であることが好ましい。さらに、GaN層2の厚さが300μm以上であることがより好ましい。
図13は、転位密度6.2×10/cmのOVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。図14は、転位密度6.4×10/cmのOVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。図15は、転位密度5.7×10/cmのOVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。図16は、転位密度4.3×10/cmのHVPE-GaN層の表面を表面研磨及びエッチング後のエッチピットの分布を示す走査型電子顕微鏡写真である。
図16に示すように、種基板1のHVPE法(ハイドライド気相成長法)によるGaN層の表面は、非常に高い転位密度を有する。一方、上記の種基板1の上にOVPE法(酸化物気相成長法)によって成長させたGaN層2を設けることによって、図12乃至図15に示すように、転位密度をおよそ2桁程度低減させることができる。
このIII族窒化物基板によれば、低転位であって低抵抗である。そこで、その上にデバイス形成した場合にも、転位密度の低い第1領域の不純物濃度を高めることで、低抵抗化した第1領域に電気を優先的に流すことができる。これによって、転位密度の高い第2領域でリークが生じるのを抑制でき、絶縁耐圧の向上を図ることができる。
<III族窒化物基板の製造方法の概要>
本開示の実施の形態1に係るIII族窒化物基板の製造方法の概要を図17のフローチャートを参照して説明する。実施の形態1に係るIII族窒化物基板の製造方法は、反応性ガス供給工程(S01)、III族元素酸化物ガス生成工程(S02)、III族元素酸化物ガス供給工程(S03)、窒素元素含有ガス供給工程(S04)、被酸化性ガス供給工程(S05)、III族窒化物結晶生成工程(S06)、被酸化性ガス反応工程(S07)、および残留ガス排出工程(S08)を有する。このIII族窒化物基板の製造方法では、III族元素酸化物ガスを原料とするOVPE法によるGaN層の成長を行うことを特徴とする。
(1)反応性ガス供給工程では、反応性ガスを原料反応室へ供給する(S01)。
(2)III族元素酸化物ガス生成工程では、出発III族元素源と反応性ガス(出発III族元素源が酸化物の場合は還元性ガス、金属の場合は酸化性ガス)を反応させ、III族元素酸化物ガスを生成する(S02)。
(3)III族元素酸化物ガス供給工程では、III族元素酸化物ガス生成工程で製造されたIII族元素酸化物ガスを育成チャンバへ供給する(S03)。
(4)窒素元素含有ガス供給工程では、窒素元素含有ガスを育成チャンバへ供給する(S04)。
(5)被酸化性ガス供給工程では、被酸化性ガスを育成チャンバへ供給する(S05)。
(6)III族窒化物結晶生成工程では、III族元素酸化物ガス供給工程で育成チャンバ内へ供給されたIII族元素酸化物ガスと、窒素元素含有ガス供給工程で育成チャンバ内へ供給された窒素元素含有ガスを反応させ、III族窒化物結晶を生成させる(S06)。
(7)被酸化性ガス反応工程では、育成チャンバ内に供給されるIII族元素酸化物ガス以外の酸化物と被酸化性ガスを反応させIII族窒化物結晶中への酸素の混入を抑制する(S07)。
(8)残留ガス排出工程では、III族窒化物結晶の生成に寄与しない未反応のガスをチャンバ外に排出する(S08)。
以上の各工程によって、種基板へIII族窒化物結晶を成長させたIII族窒化物基板を生成することができる。
<III族窒化物基板の製造装置の概要>
本開示の実施の形態1に係るIII族窒化物基板の製造装置150の概要を図18及び図19のIII族窒化物基板の製造装置150の構成を示す概略図を参照して説明する。
なお、図18及び図19において、各構成部材の大きさ、比率等は実際とは異なっている場合がある。実施の形態1に係るIII族窒化物基板の製造装置150は、原料チャンバ100内に、原料反応室101が配置されており、原料反応室101内に出発III族元素源105を載置した原料ボート104が配置されている。原料反応室101には、出発III族元素源105と反応するガスを供給する反応性ガス供給管103が接続されており、またIII族酸化物ガス排出口107を有する。反応性ガスは、出発III族源が酸化物の場合は還元性ガス、金属の場合は酸化性ガスを用いる。また、原料チャンバ100には、第1搬送ガス供給口102が備わっており、III族酸化物ガスと搬送ガスは、III族酸化物ガス及び搬送ガス排出口108から接続管109を通過し育成チャンバ111へと流れる。育成チャンバ111は、III族酸化物ガス及び搬送ガス供給口118と被酸化性ガス供給口113と窒素元素含有ガス供給口112と第2搬送ガス供給口114と排気口119を有し、種基板116を設置する基板サセプタ117を備える。
<製造方法および製造装置の詳細>
図18及び図19を用いて、実施の形態1に係るIII族窒化物基板の製造方法の詳細を説明する。
ここでは、出発III族元素源105に金属Gaを用いた場合の説明を行う。
(1)反応性ガス供給工程では、反応性ガス供給管103より反応性ガスを原料反応室101へ供給する。
(2)III族元素酸化物ガス生成工程では、反応性ガス供給工程で原料反応室101へ供給された反応性ガスが、出発III族元素源105である金属Gaと反応し、III族酸化物ガスであるGaOガスを生成する。生成されたGaOガスはIII族酸化物ガス排出口107を経由し、原料反応室101から原料チャンバ100に排出される。排出されたGaOガスは、第1搬送ガス供給口102から原料チャンバへと供給される第1搬送ガスと混合され、III族酸化物ガス及び搬送ガス排出口108へと供給される。ここで、第1ヒータ106の温度を、GaOガスの沸点の観点から800℃以上とし、第2ヒータ115よりも低温とすべく1800℃未満とする。出発Ga源は、原料ボート104内に載置されている。原料ボート104は、反応性ガスと出発Ga源の接触面積を大きくできる形状であることが好ましい。
なお、III族酸化物ガスを生成する方法には、大別して、出発Ga源105を還元する方法と、出発Ga源105を酸化する方法とがある。例えば、還元する方法においては、出発Ga源105に酸化物(例えばGa)、反応性ガスとして還元性ガス(例えばHガス、COガス、CHガス、Cガス、HSガス、SOガス)を用いる。一方、酸化する方法においては、出発Ga源105に非酸化物(例えば液体Ga)、反応性ガスとしては酸化性ガス(例えばHOガス、Oガス、COガス)を用いる。例えば、下記式(I)によってIII族酸化物ガスを生成することができる。
2Ga+HO→GaO+H (I)
また、出発Ga源105の他に、In源、Al源を出発III族元素として採用できる。ここで第一搬送ガスとしては、不活性ガス、またはHガスを用いることができる。
(3)III族元素酸化物ガス供給工程では、III族元素酸化物ガス生成工程で生成されたGaOガスを、III族酸化物ガス及び搬送ガス排出口108、接続管109、III族酸化物ガス及び搬送ガス供給口118を経由し育成チャンバ111へと供給する。原料チャンバ100と育成チャンバ111を接続する接続管109の温度が、原料チャンバ100の温度より低下すると、III族酸化物ガスを生成する反応の逆反応が生じ、出発Ga源105が接続管109内で析出する。したがって、接続管109は、第3ヒータ110によって、原料チャンバ100の温度より低下しないよう第1ヒータ106より高温に加熱する。
(4)窒素元素含有ガス供給工程では、窒素元素含有ガスを窒素元素含有ガス供給口112から育成チャンバ111に供給する。窒素元素含有ガスとしては、NHガス、NOガス、NOガス、NOガス、Nガス、Nガス、等を使用できる。
(5)被酸化性ガス供給工程では、被酸化性ガス供給口113から被酸化性ガスを育成チャンバ111へと供給する。被酸化性ガスを供給する理由は、III族酸化物ガス以外の酸化物ガスを還元するためである(被酸化性ガス反応工程)。被酸化性ガスとしては、Ga源以外の酸化物ガスとの反応性の観点から、Bガス、Gaガス、Inガス、Tlガス等を使用できる。さらに、被酸化性ガスとして、CHガス、Cガス、Cガス、C10ガス、Cガス、Cガス、Cガス、Cガス、Cガス、HCNガス、等を使用することも可能である。
(6)III族窒化物結晶生成工程では、各供給工程を経て、育成チャンバ内へと供給された原料ガスを合成し、III族窒化物結晶の製造を行う。育成チャンバ111は、第2ヒータ115により、III族酸化物ガスと窒素元素含有ガスが反応する温度まで高温化する。この際、育成チャンバ111の温度は、III族酸化物ガスを生成する反応の逆反応が生じないようにするため、原料チャンバ100の温度より低下しないよう加熱する。ゆえに、第2ヒータ115の温度は、1000℃以上かつ1800℃以下とする。また、原料チャンバ100で生成されたGaOガス、及び第1搬送ガスによる育成チャンバ111の温度変動を抑制する理由から第2ヒータ115と第3ヒータ110の温度は同じとする。
III族酸化物供給工程を経て、育成チャンバ111へと供給されたIII族酸化物ガスと、窒素元素含有ガス供給工程を経て、育成チャンバ111へと供給される窒素元素含有ガスを種基板116より上流で混合することによって、下記式(II)によって種基板116上でIII族窒化物結晶の成長を行うことができる。
GaO+2NH→2GaN+HO+2H (II)
この際、窒素元素含有ガスが育成チャンバ111からの熱で分解することを抑制するために、窒素元素含有ガス供給口112、及び育成チャンバ111の外壁を断熱材で被覆することが好ましい。
また、育成チャンバ111の炉壁や基板サセプタ117上へのIII族窒化物結晶の寄生成長が問題として挙げられる。そこで第2搬送ガス供給口114より育成チャンバ111へと供給された搬送ガスにより、III族酸化物ガス、及び窒素元素含有ガスの濃度を制御することにより、育成チャンバ111の炉壁や基板サセプタ117へのIII族窒化物結晶の寄生成長を抑制することができる。
また、種基板116としては、例として、窒化ガリウム、ガリウム砒素、シリコン、サファイア、炭化珪素、酸化亜鉛、酸化ガリウム、ScAlMgOを用いることができる。
第二搬送ガスとしては、不活性ガス、またはHガスを用いることができる。
さらに、III族窒化物結晶の酸素濃度の低減のために、被酸化性ガス供給工程を経て、育成チャンバ111内に被酸化性ガスを供給する。III族酸化物ガス生成工程、III族酸化物ガス供給工程を経て育成チャンバ111に供給されるGa源以外の酸化物ガスが、III族窒化物結晶の酸素濃度の増加に起因する。したがってGa源以外の酸化物ガスが種基板116に到達する前に、被酸化性ガスと反応させることで、結晶中への酸素の混入を抑制することができる。例えば、被酸化性ガスとして、Inガスを用いて、Ga源以外の酸化物ガスであるHOを反応させる場合、InガスとHOガスが反応し、InOガスとHガスが生成される。InOガスは、本実施の形態1に係るIII族窒化物結晶の製造方法のように1000℃を超える成長温度では固体中に極めて取り込まれにくい。
なお、未反応のIII族酸化物ガス、窒素元素含有ガス、被酸化性ガス、および搬送ガスは排気口119から排出される(残留ガス排出工程)。
このIII族窒化物基板の製造方法では、III族元素酸化物ガスを原料とするOVPE法によるGaN層の成長を行っている。これによって、GaN層のc面に対して斜めのファセット面である{11-22}面(第1領域)及び{10-11}面(第3領域)から構成されるピットを基板全面に形成する成長モードとすることができる。その結果、成長したGaN層が厚くなるにつれて転位が掃き集められて転位密度を低減することができる。上述のように、成長させるGaN層の厚さとしては、200μm以上が好ましい。その一方、OVPE法(酸化物気相成長法)でGaN層を成長させているので、GaN層の面内において1020/cm台後半の高い酸素濃度とすることができる。
(実施例1)
図19において、原料チャンバ100にライン1から供給する反応性ガス及び第1搬送ガスとして、Hガスを4L/min、Nガスを1L/min、Oガスを0.02L/minとした。育成チャンバ111にライン2から供給する第2搬送ガスとして、Hガスを2.5L/min、Nガスを2.5L/minとした。また、育成チャンバ111にライン3から供給する窒素元素含有ガスとして、Hガスを0L/min、Nガスを2.5L/min、N2ガスを13~14L/min、NHガスを1~2L/minとした。育成チャンバ111にライン4から供給する第2搬送ガスとして、Hガスを12.5L/min、Nガスを12.5L/minとした。
また、原料チャンバ100の温度を1130℃、育成チャンバ111の温度を1200℃とした。加熱方式は抵抗加熱とした。育成チャンバ111での雰囲気は大気圧とし、成長時間を460分とした。
この実施例1に係るIII族窒化物基板によれば、種基板1の上にOVPE法(酸化物気相成長法)によって成長させたGaN層2を設けることによって、種基板1に比べて転位密度をおよそ2桁程度低減させることができる。
なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。
本発明に係るIII族窒化物基板によれば、低転位であって低抵抗であり、デバイス形成時に、転位密度の高い第2領域でリークが生じるのを抑制でき、絶縁耐圧の向上を図ることができる。
1 種基板
2 成長層
3 エッチピット
10 III族窒化物基板
11 第1領域
12 第2領域
13 第3領域
20 解析範囲
100 原料チャンバ
101 原料反応室
102 第1搬送ガス供給口
103 反応性ガス供給管
104 原料ボート
105 出発Ga源(出発III族元素源)
106 第1ヒータ
107 III族酸化物ガス排出口
108 III族酸化物ガス及び搬送ガス排出口
109 接続管
110 第3ヒータ
111 育成チャンバ
112 窒素元素含有ガス供給口
113 被酸化性ガス供給口
114 第2搬送ガス供給口
115 第2ヒータ
116 種基板
117 基板サセプタ
118 III族酸化物ガス及び搬送ガス供給口
119 排気口
150 III族窒化物基板の製造装置

Claims (7)

  1. GaN基板及び当該GaN基板上に形成されたGaNエピタキシャル層からなるIII族窒化物基板であって
    不純物元素として酸素を含み、
    c面について研磨された面内において、第1不純物濃度の酸素を含む第1領域と、
    前記第1不純物濃度よりも低い第2不純物濃度の酸素を含む第2領域と、
    を有し、
    前記第1領域の第1転位密度は、前記第2領域の第2転位密度よりも低く、
    前記第2不純物濃度よりも低い第3不純物濃度の酸素を含む第3領域を、更に有すると共に、
    前記第1領域と前記第3領域とは、前記第2領域を中心としてその周囲に周方向に交互にそれぞれ6つずつ配置されており、
    前記第2領域の数密度は、1.5×10/cm以下である、III族窒化物基板。
  2. 前記第1領域は、前記第2領域を中心として前記第2領域の周囲を囲うように配置されている、請求項1に記載のIII族窒化物基板。
  3. 前記第1領域は、前記第2領域に向かって縮径する形状である、請求項1又は2に記載のIII族窒化物基板。
  4. 前記第3領域は、前記第2領域を中心として前記第2領域の周囲を囲うように配置されている、請求項1に記載のIII族窒化物基板。
  5. 前記第1領域に含まれる不純物元素として、さらにシリコンを含む、請求項1から4のいずれか一項に記載のIII族窒化物基板。
  6. 前記第1不純物濃度は、酸素濃度が1×1020/cm3以上である、請求項1から5のいずれか一項に記載のIII族窒化物基板。
  7. 請求項1から6のいずれか一項に記載のIII族窒化物基板と、
    前記III族窒化物基板に形成されたデバイス構造と、
    を備える、デバイス。
JP2019172644A 2019-09-24 2019-09-24 Iii族窒化物基板 Active JP7112379B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019172644A JP7112379B2 (ja) 2019-09-24 2019-09-24 Iii族窒化物基板
US17/023,720 US11713517B2 (en) 2019-09-24 2020-09-17 Group-III nitride substrate
CN202011005460.5A CN112635543A (zh) 2019-09-24 2020-09-22 Iii族氮化物基板
JP2022117453A JP7459180B2 (ja) 2019-09-24 2022-07-22 Iii族窒化物基板
US18/209,840 US20230323563A1 (en) 2019-09-24 2023-06-14 Group-iii nitride substrate
JP2024043497A JP2024072875A (ja) 2019-09-24 2024-03-19 Iii族窒化物基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019172644A JP7112379B2 (ja) 2019-09-24 2019-09-24 Iii族窒化物基板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022117453A Division JP7459180B2 (ja) 2019-09-24 2022-07-22 Iii族窒化物基板

Publications (2)

Publication Number Publication Date
JP2021050107A JP2021050107A (ja) 2021-04-01
JP7112379B2 true JP7112379B2 (ja) 2022-08-03

Family

ID=74881783

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019172644A Active JP7112379B2 (ja) 2019-09-24 2019-09-24 Iii族窒化物基板
JP2022117453A Active JP7459180B2 (ja) 2019-09-24 2022-07-22 Iii族窒化物基板
JP2024043497A Pending JP2024072875A (ja) 2019-09-24 2024-03-19 Iii族窒化物基板

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022117453A Active JP7459180B2 (ja) 2019-09-24 2022-07-22 Iii族窒化物基板
JP2024043497A Pending JP2024072875A (ja) 2019-09-24 2024-03-19 Iii族窒化物基板

Country Status (3)

Country Link
US (2) US11713517B2 (ja)
JP (3) JP7112379B2 (ja)
CN (1) CN112635543A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004576A1 (ja) * 2022-06-28 2024-01-04 パナソニックホールディングス株式会社 Iii族窒化物基板およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265101A (ja) 2001-09-19 2006-10-05 Sumitomo Electric Ind Ltd 窒化ガリウム結晶、窒化ガリウム基板及び半導体レーザデバイス
JP2007001861A (ja) 2006-08-08 2007-01-11 Sumitomo Electric Ind Ltd 窒化ガリウム結晶の成長方法
JP2019004047A (ja) 2017-06-15 2019-01-10 株式会社サイオクス 窒化物半導体積層物、半導体装置、窒化物半導体積層物の製造方法、窒化物半導体自立基板の製造方法および半導体装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303630B2 (en) * 2003-11-05 2007-12-04 Sumitomo Electric Industries, Ltd. Method of growing GaN crystal, method of producing single crystal GaN substrate, and single crystal GaN substrate
JP4182935B2 (ja) 2004-08-25 2008-11-19 住友電気工業株式会社 窒化ガリウムの結晶成長方法および窒化ガリウム基板の製造方法
JP2010132558A (ja) 2007-03-16 2010-06-17 Nisshinbo Holdings Inc 多糖類の処理剤
JP2010037185A (ja) * 2008-07-07 2010-02-18 Sumitomo Electric Ind Ltd GaN結晶基板およびその製造方法、半導体エピタキシャル層付GaN結晶基板、ならびに半導体デバイスおよびその製造方法
JP2012012259A (ja) * 2010-07-01 2012-01-19 Ricoh Co Ltd 窒化物結晶およびその製造方法
JP6761322B2 (ja) 2016-10-21 2020-09-23 株式会社サイオクス Iii族窒化物基板の製造方法およびiii族窒化物基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265101A (ja) 2001-09-19 2006-10-05 Sumitomo Electric Ind Ltd 窒化ガリウム結晶、窒化ガリウム基板及び半導体レーザデバイス
JP2007001861A (ja) 2006-08-08 2007-01-11 Sumitomo Electric Ind Ltd 窒化ガリウム結晶の成長方法
JP2019004047A (ja) 2017-06-15 2019-01-10 株式会社サイオクス 窒化物半導体積層物、半導体装置、窒化物半導体積層物の製造方法、窒化物半導体自立基板の製造方法および半導体装置の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M. Imade、他,Journal of Crystal Growth,2009年12月21日,vol.312,p.676 - p.679,doi:10.1016/j.jcrysgro.2009.12.028
Pawet Piotr Michatowski, 他,Chemical Communications,Vol. 55,英国,p.11539 - p.11542,DOI:10.1039/c9cc04707g
S.K.Hong, 他,APPLIED PHYSICS LETTERS,米国,2000年07月03日,Vol. 77, No. 1,p.82 - p.84
隅 智亮,OVPE法を用いたGaN結晶の長時間・高速成長化技術,日本,2015年01月,1.1 研究の背景, 3.4 c面GaN結晶の高速成長,doi:10.18910/52185

Also Published As

Publication number Publication date
US11713517B2 (en) 2023-08-01
CN112635543A (zh) 2021-04-09
JP7459180B2 (ja) 2024-04-01
JP2022140562A (ja) 2022-09-26
US20210087707A1 (en) 2021-03-25
US20230323563A1 (en) 2023-10-12
JP2021050107A (ja) 2021-04-01
JP2024072875A (ja) 2024-05-28

Similar Documents

Publication Publication Date Title
KR100718188B1 (ko) 비극성 a면 질화물 반도체 단결정 기판 및 이의 제조방법
US6733591B2 (en) Method and apparatus for producing group-III nitrides
WO2019033975A1 (zh) 一种制备GaN衬底材料的方法
US20080318359A1 (en) Method of manufacturing silicon carbide semiconductor substrate
JP2024072875A (ja) Iii族窒化物基板
JP4714192B2 (ja) 窒化ガリウム結晶の成長方法、窒化ガリウム結晶基板、エピウエハの製造方法およびエピウエハ
JP2007246331A (ja) Iii−v族窒化物系半導体基板及びその製造方法
JP2005223243A (ja) Iii族窒化物系半導体結晶の製造方法及びハイドライド気相成長装置
US11396716B2 (en) Group-III nitride substrate containing carbon at a surface region thereof
US20070117356A1 (en) Method of manufacturing single crystalline gallium nitride thick film
JP2006351641A (ja) Iii族窒化物半導体基板の製造方法
JP2018058718A (ja) Iii族窒化物結晶の製造方法、半導体装置およびiii族窒化物結晶製造装置
JP4900966B2 (ja) 水素化ガリウムガスの製造方法および窒化ガリウム結晶の製造方法
EP4202090A1 (en) Gan crystal and gan substrate
CN111519247A (zh) Iii族氮化物结晶的制造方法
JP2704223B2 (ja) 半導体素子
US11795573B2 (en) Method of manufacturing group III nitride crystal by reacting an oxidizing gas containing nitrogen with a group III element droplet and growing a group III nitride crystal on a seed substrate
WO2024004576A1 (ja) Iii族窒化物基板およびその製造方法
JP2019151523A (ja) 窒化アルミニウム単結晶膜、該膜付き基板及び半導体素子並びに製造方法及び製造装置
WO2023074200A1 (ja) Iii族窒化物結晶の製造装置及び製造方法
KR100949212B1 (ko) 질화물 기판 제조 방법
US20220325437A1 (en) Method of manufacturing and group iii nitride crystal
JP2023005168A (ja) Iii族窒化物結晶の製造装置及びiii族窒化物結晶の製造方法
JP2023003829A (ja) Iii族窒化物結晶の製造方法
CN114420534A (zh) 基于铝酸锶薄膜制备GaN自分离衬底的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R151 Written notification of patent or utility model registration

Ref document number: 7112379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151