JP7109858B2 - 変速機の制御装置 - Google Patents

変速機の制御装置 Download PDF

Info

Publication number
JP7109858B2
JP7109858B2 JP2017188930A JP2017188930A JP7109858B2 JP 7109858 B2 JP7109858 B2 JP 7109858B2 JP 2017188930 A JP2017188930 A JP 2017188930A JP 2017188930 A JP2017188930 A JP 2017188930A JP 7109858 B2 JP7109858 B2 JP 7109858B2
Authority
JP
Japan
Prior art keywords
shaft
input
gear
clutch
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017188930A
Other languages
English (en)
Other versions
JP2019065889A (ja
Inventor
大輔 岸
慎也 畑内
淳一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017188930A priority Critical patent/JP7109858B2/ja
Publication of JP2019065889A publication Critical patent/JP2019065889A/ja
Application granted granted Critical
Publication of JP7109858B2 publication Critical patent/JP7109858B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Landscapes

  • Control Of Transmission Device (AREA)

Description

本発明は、インプット軸とアウトプット軸との間で動力(トルク)を2つの経路に分岐して伝達可能な変速機の制御装置に関する。
自動車などの車両に搭載される変速機として、エンジンの動力を無段階に変速する無段変速機構と、エンジンの動力を無段変速機構を経由せずに伝達する歯車機構と、無段変速機構からの動力と歯車機構からの動力とを合成するための遊星歯車機構とを備えたものが提案されている。この変速機では、エンジンからの動力を無段変速機構と歯車機構とに分割し、その分割された各動力を遊星歯車機構で合成して車輪に伝達することができる。
特開2004-176890号公報
駆動源の動力を2つの経路に分岐して伝達可能な変速機は、動力分割式無段変速機として、出願人も提案している。
その提案に係る動力分割式無段変速機には、無段変速機構、平行軸式歯車機構および遊星歯車機構が含まれる。無段変速機構は、公知のベルト式の無段変速機(CVT:Continuously Variable Transmission)と同様の構成、つまりプライマリプーリおよびセカンダリプーリにベルトが巻き掛けられた構成を有している。無段変速機構のプライマリ軸には、インプット軸に入力されるエンジンの動力が伝達される。無段変速機構のセカンダリ軸は、遊星歯車機構のサンギヤに接続されている。平行軸式歯車機構は、インプット軸の動力が伝達/遮断されるスプリットドライブギヤと、スプリットドライブギヤとギヤ列を構成し、遊星歯車機構のキャリアと一体回転するスプリットドリブンギヤとを備えている。遊星歯車機構のリングギヤには、アウトプット軸が接続されている。アウトプット軸の回転は、デファレンシャルギヤに伝達され、デファレンシャルギヤから左右の駆動輪に伝達される。
この動力分割式無段変速機では、前進走行時における動力伝達モードとして、ベルトモードおよびスプリットモードが設けられている。
ベルトモードでは、インプット軸とスプリットドライブギヤとの間での動力の伝達/遮断を切り替える第1クラッチが解放されて、スプリットドライブギヤが自由回転状態(フリー)にされ、遊星歯車機構のキャリアが自由回転状態にされる。また、遊星歯車機構のサンギヤとリングギヤとを結合/分離する第2クラッチが係合されて、サンギヤとリングギヤとが結合される。そのため、無段変速機構から出力される動力により、サンギヤおよびリングギヤが一体的に回転し、アウトプット軸がリングギヤと一体的に回転する。したがって、ベルトモードでは、無段変速機構の変速比(ベルト変速比)が大きいほど、そのベルト変速比に比例して、動力分割式無段変速機全体での変速比(インプット軸の回転数/アウトプット軸の回転数)であるユニット変速比が大きくなる。
スプリットモードでは、第2クラッチが解放されて、遊星歯車機構のサンギヤとリングギヤとの結合が解除される。また、第1クラッチが係合されて、インプット軸からスプリットドライブギヤに動力が伝達される。その動力は、スプリットドライブギヤからスプリットドリブンギヤを介することにより一定のスプリット変速比(スプリット点)で変速されて、遊星歯車機構のキャリアに入力される。サンギヤは、ベルト変速比に応じた回転数で回転する。そのため、スプリットモードでは、ベルト変速比が大きいほどユニット変速比が小さくなり、スプリット変速比以下の変速比を実現することができる。
ユニット変速比がスプリット変速比を跨いで変更される場合、そのユニット変速比の変更には、ベルトモードとスプリットモードとの切り替えが伴う。このモードの切り替えは、第1クラッチと第2クラッチとの係合の切り替えにより達成される。ベルト変速比とスプリット変速比とがずれている状態では、サンギヤとキャリアとの間に差回転が生じているので、第1クラッチと第2クラッチとの係合の切り替えをベルト変速比がスプリット変速比とほぼ一致する変速比まで変速された時点(同期点またはその近傍)で行えば、差回転による変速ショックの発生を防止することができる。
ただし、スプリットモードでアクセルペダルが素早くかつ大きく踏み込まれることによるキックダウンが要求される場合、ベルト変速比をスプリット変速比まで変速してから第1クラッチと第2クラッチとの係合の切り替えを行ったのでは、変速レスポンスが悪い。そのため、キックダウンが要求される場合には、第1クラッチの伝達トルク容量を下げて、第1クラッチを滑らせることにより、無段変速機構から出力される回転(サンギヤの回転)を吹き上がらせて、その回転とアウトプット軸の回転(リングギヤの回転)との差回転がなくなった時点で第2クラッチが係合される。
しかしながら、第2クラッチを係合させる油圧の指示圧と実圧とのばらつき、第2クラッチのクラッチクリアランスやそれを解消するがた詰めに要する時間のばらつきなどにより、サンギヤとリングギヤとに大きな差回転が生じている状態で第2クラッチが係合される場合がある。この場合、ベルトに大きなイナーシャトルクが入力されて、ベルトが滑る懸念がある。
本発明の目的は、イナーシャトルクによるベルト滑りの発生を抑制できる、変速機の制御装置を提供することである。
前記の目的を達成するため、本発明に係る変速機の制御装置は、動力が入力されるインプット軸から動力を出力するアウトプット軸に至る動力伝達経路上に、動力を無段階に変速するベルト式の無段変速機構を備える変速機に用いられる制御装置であって、無段変速機構に入力される入力トルクの値に応じたベルト挟圧を得るための指令値を設定する指令値設定手段と、無段変速機構に入力される回転数の時間変化率から無段変速機構に入力され得るイナーシャトルクを算出するイナーシャトルク算出手段と、イナーシャトルク算出手段によって算出されるイナーシャトルクに応じて、指令値設定手段による指令値の設定に用いられる入力トルクの値を引き上げる補正手段とを含む。
この構成によれば、無段変速機構に入力される入力トルクの値に応じたベルト挟圧を得るための指令値が設定される。その指令値に基づいて無段変速機構のシーブに付与される油圧が制御されることにより、入力トルクの値に応じたベルト挟圧が得られる。これにより、さほど大きなイナーシャトルクが無段変速機構に入力されないときには、適切なベルト挟圧によりベルト滑りの発生を抑制することができる。
一方、無段変速機構に入力される回転数の時間変化率が取得され、その時間変化率から無段変速機構に入力され得るイナーシャトルクが算出される。そして、その算出されたイナーシャトルクに応じて、指令値の設定に用いられる入力トルクの値を引き上げる補正が行われる。これにより、ベルト挟圧が引き上げられるので、無段変速機構に大きなイナーシャトルクが入力されても、ベルト滑りの発生を抑制することができる。
補正手段は、イナーシャトルク算出手段によって算出されるイナーシャトルクが所定値を超える場合に、指令値設定手段による指令値の設定に用いられる入力トルクの値を引き上げてもよい。
これにより、無段変速機構に入力される回転数の時間変化率から算出されるイナーシャトルクが所定値以下である場合には、指令値の設定に用いられる入力トルクの値が引き上げられない。そのため、ベルト挟圧が無駄に大きいことによる無段変速機構のトルク伝達効率の低下を抑制することができる。
変速機は、インプット軸とアウトプット軸との間で動力を伝達する動力伝達モードとして、無段変速機構のセカンダリ軸とアウトプット軸との間に差回転が生じない第1モードと、セカンダリ軸とアウトプット軸との間に差回転が生じる第2モードとを有するものであってもよい。
動力伝達モードが第2モードであり、セカンダリ軸とアウトプット軸との間に大きな差回転が生じている状態で、動力伝達モードが第2モードから第1モードに切り替えられる場合、無段変速機に大きなイナーシャトルクが入力されて、ベルトが滑る懸念がある。かかる場合に、指令値の設定に用いられる入力トルクの値を引き上げる補正が行われることにより、ベルト滑りの発生を抑制することができる。
本発明によれば、イナーシャトルクによるベルト滑りの発生を抑制することができる。
車両の駆動系の構成を示すスケルトン図である。 変速機に備えられる各係合要素の状態を示す図である。 変速機に備えられる遊星歯車機構のサンギヤ、キャリアおよびリングギヤの回転数(回転速度)の関係を示す共線図である。 変速機に備えられる無段変速機構の変速比(ベルト変速比)と動力分割式無段変速機全体の変速比(ユニット変速比)との関係を示す図である。 本発明の一実施形態に係る制御系の構成を示す図である。 スプリットモードからベルトモードへのモード切替時におけるタービン回転数、ならびにプライマリ推力およびセカンダリ推力の設定に使用されるベルト入力トルクの時間変化を示す図である。
以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
<車両の駆動系>
図1は、車両1の駆動系の構成を示すスケルトン図である。
車両1は、エンジン2を駆動源とする自動車である。
エンジン2には、エンジン2の燃焼室への吸気量を調整するための電子スロットルバルブ、燃料を吸入空気に噴射するインジェクタ(燃料噴射装置)および燃焼室内に電気放電を生じさせる点火プラグなどが設けられている。また、エンジン2には、その始動のためのスタータが付随して設けられている。エンジン2の動力は、トルクコンバータ3および変速機4を介して、デファレンシャルギヤ5に伝達され、デファレンシャルギヤ5から左右のドライブシャフト6L,6Rを介してそれぞれ左右の駆動輪7L,7Rに伝達される。
エンジン2は、E/G出力軸11を備えている。E/G出力軸11は、エンジン2が発生する動力により回転される。
トルクコンバータ3は、ポンプインペラ21、タービンランナ22およびロックアップクラッチ(ロックアップ機構)23を備えている。ポンプインペラ21には、E/G出力軸11が連結されており、ポンプインペラ21は、E/G出力軸11と同一の回転軸線を中心に一体的に回転可能に設けられている。タービンランナ22は、ポンプインペラ21と同一の回転軸線を中心に回転可能に設けられている。ロックアップクラッチ23は、ポンプインペラ21とタービンランナ22とを直結/分離するために設けられている。ロックアップクラッチ23が係合されると、ポンプインペラ21とタービンランナ22とが直結され、ロックアップクラッチ23が解放されると、ポンプインペラ21とタービンランナ22とが分離される。
ロックアップクラッチ23が解放された状態において、E/G出力軸11が回転されると、ポンプインペラ21が回転する。ポンプインペラ21が回転すると、ポンプインペラ21からタービンランナ22に向かうオイルの流れが生じる。このオイルの流れがタービンランナ22で受けられて、タービンランナ22が回転する。このとき、トルクコンバータ3の増幅作用が生じ、タービンランナ22には、E/G出力軸11の動力(トルク)よりも大きな動力が発生する。
ロックアップクラッチ23が係合された状態では、E/G出力軸11が回転されると、E/G出力軸11、ポンプインペラ21およびタービンランナ22が一体となって回転する。
変速機4は、インプット軸31およびアウトプット軸32を備え、インプット軸31に入力される動力を2つの経路に分岐してアウトプット軸32に伝達可能に構成された、いわゆる動力分割式(トルクスプリット式)変速機である。2つの動力伝達経路を構成するため、変速機4は、無段変速機構33、前減速ギヤ機構34、遊星歯車機構35およびスプリット変速機構36を備えている。
インプット軸31は、トルクコンバータ3のタービンランナ22に連結され、タービンランナ22と同一の回転軸線を中心に一体的に回転可能に設けられている。
アウトプット軸32は、インプット軸31と平行に設けられている。アウトプット軸32には、出力ギヤ37が相対回転不能に支持されている。出力ギヤ37は、デファレンシャルギヤ5(デファレンシャルギヤ5のリングギヤ)と噛合している。
無段変速機構33は、公知のベルト式の無段変速機(CVT:Continuously Variable Transmission)と同様の構成を有している。具体的には、無段変速機構33は、プライマリ軸41と、プライマリ軸41と平行に設けられたセカンダリ軸42と、プライマリ軸41に相対回転不能に支持されたプライマリプーリ43と、セカンダリ軸42に相対回転不能に支持されたセカンダリプーリ44と、プライマリプーリ43とセカンダリプーリ44とに巻き掛けられたベルト45とを備えている。
プライマリプーリ43は、プライマリ軸41に固定された固定シーブ51と、固定シーブ51にベルト45を挟んで対向配置され、プライマリ軸41にその軸線方向に移動可能かつ相対回転不能に支持された可動シーブ(プライマリシーブ)52とを備えている。可動シーブ52に対して固定シーブ51と反対側には、プライマリ軸41に固定されたシリンダ53が設けられ、可動シーブ52とシリンダ53との間に、油圧室54が形成されている。
セカンダリプーリ44は、セカンダリ軸42に固定された固定シーブ55と、固定シーブ55にベルト45を挟んで対向配置され、セカンダリ軸42にその軸線方向に移動可能かつ相対回転不能に支持された可動シーブ(セカンダリシーブ)56とを備えている。可動シーブ56に対して固定シーブ55と反対側には、セカンダリ軸42に固定されたシリンダ57が設けられ、可動シーブ56とシリンダ57との間に、油圧室58が形成されている。回転軸線方向において、固定シーブ55と可動シーブ56との位置関係は、プライマリプーリ43の固定シーブ51と可動シーブ52との位置関係と逆転している。
無段変速機構33では、プライマリプーリ43およびセカンダリプーリ44の各油圧室54,58に供給される油圧が制御されて、プライマリプーリ43およびセカンダリプーリ44の各溝幅が変更されることにより、プライマリプーリ43とセカンダリプーリ44とのプーリ比が連続的に無段階で変更される。
具体的には、プーリ比が小さくされるときには、プライマリプーリ43の油圧室54に供給される油圧が上げられる。これにより、プライマリプーリ43の可動シーブ52が固定シーブ51側に移動し、固定シーブ51と可動シーブ52との間隔(溝幅)が小さくなる。これに伴い、プライマリプーリ43に対するベルト45の巻きかけ径が大きくなり、セカンダリプーリ44の固定シーブ55と可動シーブ56との間隔(溝幅)が大きくなる。その結果、プライマリプーリ43とセカンダリプーリ44とのプーリ比が小さくなる。
プーリ比が大きくされるときには、プライマリプーリ43の油圧室54に供給される油圧が下げられる。これにより、セカンダリプーリ44の推力(セカンダリ推力)に対するプライマリプーリ43の推力(プライマリ推力)の比である推力比が小さくなり、セカンダリプーリ44の固定シーブ55と可動シーブ56との間隔が小さくなるとともに、プライマリプーリ43の固定シーブ51と可動シーブ52との間隔が大きくなる。その結果、プライマリプーリ43とセカンダリプーリ44とのプーリ比が大きくなる。
一方、プライマリプーリ43およびセカンダリプーリ44の推力は、プライマリプーリ43およびセカンダリプーリ44とベルト45との間で滑り(ベルト滑り)が生じない大きさを必要とする。そのため、ベルト滑りを生じない必要十分な挟圧が得られるよう、プライマリプーリ43の油圧室54およびセカンダリプーリ44の油圧室58に供給される油圧が制御される。
前減速ギヤ機構34は、インプット軸31に入力される動力を逆転かつ減速させてプライマリ軸41に伝達する構成である。具体的には、前減速ギヤ機構34は、インプット軸31に相対回転不能に支持されるインプット軸ギヤ61と、インプット軸ギヤ61よりも大径で歯数が多く、プライマリ軸41にスプライン嵌合により相対回転不能に支持されて、インプット軸ギヤ61と噛合するプライマリ軸ギヤ62とを含む。
遊星歯車機構35は、サンギヤ71、キャリア72およびリングギヤ73を備えている。サンギヤ71は、セカンダリ軸42にスプライン嵌合により相対回転不能に支持されている。キャリア72は、アウトプット軸32に相対回転可能に外嵌されている。キャリア72は、複数個のピニオンギヤ74を回転可能に支持している。複数個のピニオンギヤ74は、円周上に配置され、サンギヤ71と噛合している。リングギヤ73は、複数個のピニオンギヤ74を一括して取り囲む円環状を有し、各ピニオンギヤ74にセカンダリ軸42の回転径方向の外側から噛合している。また、リングギヤ73には、アウトプット軸32が接続され、リングギヤ73は、アウトプット軸32と同一の回転軸線を中心に一体的に回転可能に設けられている。
スプリット変速機構36は、スプリットドライブギヤ81と、スプリットドライブギヤ81と噛合するスプリットドリブンギヤ82とを含む平行軸式歯車機構である。
スプリットドライブギヤ81は、インプット軸31に相対回転可能に外嵌されている。
スプリットドリブンギヤ82は、遊星歯車機構35のキャリア72と同一の回転軸線を中心に一体的に回転可能に設けられている。スプリットドリブンギヤ82は、スプリットドライブギヤ81よりも小径に形成され、スプリットドライブギヤ81よりも少ない歯数を有している。
また、変速機4は、クラッチC1,C2およびブレーキB1を備えている。
クラッチC1は、インプット軸31とスプリットドライブギヤ81とを直結(一体回転可能に結合)する係合状態と、その直結を解除する解放状態とに切り替えられる。
クラッチC2は、遊星歯車機構35のサンギヤ71とリングギヤ73とを直結(一体回転可能に結合)する係合状態と、その直結を解除する解放状態とに切り替えられる。
ブレーキB1は、遊星歯車機構35のキャリア72を制動する係合状態と、キャリア72の回転を許容する解放状態とに切り替えられる。
<動力伝達モード>
図2は、車両1の前進時および後進時におけるクラッチC1,C2およびブレーキB1の状態を示す図である。図3は、遊星歯車機構35のサンギヤ71、キャリア72およびリングギヤ73の回転数(回転速度)の関係を示す共線図である。図4は、無段変速機構33による変速比であるベルト変速比と変速機4の全体での変速比であるユニット変速比、つまりインプット軸31とアウトプット軸32との回転数比であるユニット変速比との関係を示す図である。
図2において、「○」は、クラッチC1,C2およびブレーキB1が係合状態であることを示している。「×」は、クラッチC1,C2およびブレーキB1が解放状態であることを示している。
変速機4は、車両1の前進時の動力伝達モードとして、ベルトモードおよびスプリットモードを有している。ベルトモードとスプリットモードとは、クラッチC1が係合している状態とクラッチC2が係合している状態との切り替え(クラッチC1,C2の掛け替え)により切り替えられる。
ベルトモードでは、図2に示されるように、クラッチC1およびブレーキB1が解放され、クラッチC2が係合される。これにより、スプリットドライブギヤ81がインプット軸31から切り離され、遊星歯車機構35のキャリア72がフリー(自由回転状態)になり、遊星歯車機構35のサンギヤ71とリングギヤ73とが直結される。
インプット軸31に入力される動力は、前減速ギヤ機構34により逆転かつ減速されて、無段変速機構33のプライマリ軸41に伝達され、プライマリ軸41およびプライマリプーリ43を回転させる。プライマリプーリ43の回転は、ベルト45を介して、セカンダリプーリ44に伝達され、セカンダリプーリ44およびセカンダリ軸42を回転させる。遊星歯車機構35のサンギヤ71とリングギヤ73とが直結されているので、セカンダリ軸42と一体となって、サンギヤ71、リングギヤ73およびアウトプット軸32が回転する。したがって、ベルトモードでは、図3および図4に示されるように、ユニット変速比がベルト変速比(無段変速機構33のプライマリプーリ43とセカンダリプーリ44とのプーリ比)に前減速比(インプット軸31の回転数/プライマリ軸41の回転数)を乗じた値と一致する。
スプリットモードでは、図2に示されるように、クラッチC1が係合され、クラッチC2およびブレーキB1が解放される。これにより、インプット軸31とスプリットドライブギヤ81とが結合されて、インプット軸31の回転がスプリットドライブギヤ81およびスプリットドリブンギヤ82を介して遊星歯車機構35のキャリア72に伝達可能になり、遊星歯車機構35のサンギヤ71とリングギヤ73とが切り離される。
インプット軸31に入力される動力は、スプリットドライブギヤ81からスプリットドリブンギヤ82を介して遊星歯車機構35のキャリア72に増速されて伝達される。キャリア72に伝達される動力は、キャリア72からサンギヤ71およびリングギヤ73に分割して伝達される。サンギヤ71の動力は、セカンダリ軸42、セカンダリプーリ44、ベルト45、プライマリプーリ43およびプライマリ軸41を介してプライマリ軸ギヤ62に伝達され、プライマリ軸ギヤ62からインプット軸ギヤ61に伝達される。そのため、ベルトモードでは、インプット軸ギヤ61が駆動ギヤとなり、プライマリ軸ギヤ62が被動ギヤとなるのに対し、スプリットモードでは、プライマリ軸ギヤ62が駆動ギヤとなり、インプット軸ギヤ61が被動ギヤとなる。
スプリットドライブギヤ81とスプリットドリブンギヤ82とのギヤ比(スプリット変速比)は一定で不変(固定)であるので、スプリットモードでは、インプット軸31に入力される動力が一定であれば、遊星歯車機構35のキャリア72の回転が一定速度に保持される。そのため、ベルト変速比が上げられると、遊星歯車機構35のサンギヤ71の回転数が下がるので、図3に破線で示されるように、遊星歯車機構35のリングギヤ73(アウトプット軸32)の回転数が上がる。その結果、スプリットモードでは、図4に示されるように、無段変速機構33のベルト変速比が大きいほど、変速機4のユニット変速比が小さくなる。
ベルトモードおよびスプリットモードにおけるアウトプット軸32の回転は、出力ギヤ37を介して、デファレンシャルギヤ5に伝達される。これにより、車両1のドライブシャフト6L,6Rおよび駆動輪7L,7Rが前進方向に回転する。
車両1の後進時のリバースモードでは、図2に示されるように、クラッチC1,C2が解放され、ブレーキB1が係合される。これにより、スプリットドライブギヤ81がインプット軸31から切り離され、遊星歯車機構35のサンギヤ71とリングギヤ73とが切り離され、遊星歯車機構35のキャリア72が制動される。
インプット軸31に入力される動力は、前減速ギヤ機構34により逆転かつ減速されて、無段変速機構33のプライマリ軸41に伝達され、プライマリ軸41からプライマリプーリ43、ベルト45およびセカンダリプーリ44を介してセカンダリ軸42に伝達され、セカンダリ軸42と一体に、遊星歯車機構35のサンギヤ71を回転させる。遊星歯車機構35のキャリア72が制動されているので、サンギヤ71が回転すると、遊星歯車機構35のリングギヤ73がサンギヤ71と逆方向に回転する。このリングギヤ73の回転方向は、前進時(ベルトモードおよびスプリットモード)におけるリングギヤ73の回転方向と逆方向となる。そして、リングギヤ73と一体に、アウトプット軸32が回転する。アウトプット軸32の回転は、出力ギヤ37を介して、デファレンシャルギヤ5に伝達される。これにより、車両1のドライブシャフト6L,6Rおよび駆動輪7L,7Rが後進方向に回転する。
<車両の制御系>
図5は、車両1の制御系の構成を示すブロック図である。
車両1には、マイコン(マイクロコントローラユニット)を含む構成のECU(Electronic Control Unit:電子制御ユニット)が備えられている。マイコンには、たとえば、CPU、ROMおよびRAM、データフラッシュ(フラッシュメモリ)などが内蔵されている。図5には、変速機4を制御するための1つのECU101のみが示されているが、車両1には、各部を制御するため、ECU101と同様の構成を有する複数のECUが搭載されている。ECU101を含む複数のECUは、CAN(Controller Area Network)通信プロトコルによる双方向通信が可能に接続されている。
ECU101には、制御に必要な各種センサが接続されている。その一例として、ECU101には、トルクコンバータ3のタービンランナ22(図1参照)の回転に同期したパルス信号を検出信号として出力するタービン回転センサ111と、プライマリ軸41の回転に同期したパルス信号を検出信号として出力するプライマリ回転センサ112と、セカンダリ軸42の回転に同期したパルス信号を検出信号として出力するセカンダリ回転センサ113と、変速機4のプライマリシーブ圧(プライマリシーブ52に作用する油圧)、アウトプット軸32の回転に同期したパルス信号を検出信号として出力するアウトプット回転センサ114およびセカンダリシーブ圧(セカンダリシーブ56に作用する油圧)に応じた検出信号をそれぞれ出力する2個の油圧センサ115が接続されている。
ECU101では、タービン回転センサ111、プライマリ回転センサ112、セカンダリ回転センサ113、アウトプット回転センサ114および2個の油圧センサ115の各検出信号から、タービン回転数(タービンランナ22の回転数)、プライマリ回転数(プライマリ軸41の回転数)、セカンダリ回転数(セカンダリ軸42の回転数)、アウトプット回転数(アウトプット軸32の回転数)、プライマリシーブ圧およびセカンダリシーブ圧が取得される。また、ECU101では、他のECUから情報が取得される。そして、ECU101により、各種のセンサから取得される情報、他のECUから入力される情報などに基づいて、変速機4の変速制御などのため、トルクコンバータ3および変速機4を含むユニットの各部に油圧を供給するための油圧回路に含まれる各種のバルブなどが制御される。
<変速制御>
変速機4のユニット変速比は、ECU101によるベルト変速比の制御により変更される。ユニット変速比の制御では、まず、変速線図に基づいて、アクセル開度および車速に応じた目標回転数が設定される。変速線図は、アクセル開度および車速と目標回転数との関係を定めたマップであり、たとえば、ECU101のROMに格納されている。アクセル開度および車速の情報は、たとえば、エンジン2を制御するエンジンECUからECU101に送信される。目標回転数が設定されると、インプット軸31に入力される回転数、つまりタービン回転数を目標回転数に一致させる目標変速比が求められ、目標変速比に応じた目標ベルト変速比が設定される。
次に、目標ベルト変速比および無段変速機構33に入力されるベルト入力トルクに基づいて、無段変速機構33におけるベルト滑りを防止するのに必要なベルト挟圧を得ることができるプライマリ推力およびセカンダリ推力が設定される。ベルト入力トルクは、インプット軸31に入力される入力トルクに前減速ギヤ機構34による前減速比と、その入力トルクに対する無段変速機構33が分担するトルクの割合であるトルク分担率とを乗じることにより算出される。入力トルクは、エンジントルクにトルクコンバータ3のトルク比を乗じることにより算出される。エンジントルクは、たとえば、エンジンECUによりアクセル開度およびエンジン回転数から推定され、エンジンECUからECU101に送信される。トルク比は、トルクコンバータ3の速度比に応じたトルク増幅率であり、その速度比は、タービン回転数をエンジン回転数で除した除算値である。トルク分担率は、スプリット変速機構36のギヤ比およびベルト変速比などから求めることができる。
その後、プライマリ推力およびセカンダリ推力から、プライマリプーリ43の可動シーブ52にプライマリ推力を与える油圧であるプライマリ圧およびセカンダリプーリ44の可動シーブ56にセカンダリ推力を与える油圧であるセカンダリ圧の指令値が設定され、各指令値に基づいて、目標ベルト変速比と実ベルト変速比との偏差が零に近づくように、プライマリプーリ43の油圧室54およびセカンダリプーリ44の油圧室58にそれぞれ供給される油圧が制御される。実ベルト変速比は、プライマリ回転数をセカンダリ回転数で除することにより求められる。
<モード切替制御>
ユニット変速比がスプリット変速比を跨いで変更される場合、そのユニット変速比の変更には、ベルトモードとスプリットモードとの切り替え(以下、単に「モード切替」という。)が伴う。モード切替は、クラッチC1,C2の係合の切り替えにより達成される。すなわち、クラッチC1,C2に供給される油圧の制御により、解放状態のクラッチC1(係合側)が係合され、係合状態のクラッチC2(解放側)が解放されることにより、ベルトモードからスプリットモードに切り替えられる。逆に、係合状態のクラッチC1(解放側)が解放され、解放状態のクラッチC2(係合側)が係合されることにより、スプリットモードからベルトモードに切り替えられる。
図6は、スプリットモードからベルトモードへのモード切替時におけるタービン回転数、ならびにプライマリ推力およびセカンダリ推力の設定に使用されるベルト入力トルクの時間変化を示す図である。
ユニット変速比がスプリット変速比からずれている状態では、セカンダリ回転数とアウトプット回転数とに回転数差、つまりセカンダリ軸42(サンギヤ71)とアウトプット軸32(リングギヤ73)とに差回転が生じている。
そのため、通常のモード切替では、ユニット変速比がスプリット変速比まで変速されてからクラッチC1,C2の係合が切り替えられる。
しかしながら、スプリットモードでの車両1の走行中に、運転者の加速要求によりアクセルペダルが素早くかつ大きく踏み込まれて、ユニット変速比の目標変速比がスプリット変速比よりも大きい値に設定される場合、ECU101により、キックダウンが要求されたと判定されて(時刻T1)、ユニット変速比がスプリット変速比と一致しないまま、クラッチC1,C2の係合が切り替えられる。
このとき、ECU101により、解放側のクラッチC1の伝達トルク容量が入力トルクを下回るように、クラッチC1に供給される油圧が下げられる。クラッチC1の伝達トルク容量が入力トルクを下回ることにより、クラッチC1が半クラッチ状態となって、クラッチC1に滑りが発生し、タービン回転数が吹き上がる。タービン回転数の吹き上がりに伴い、無段変速機構33のプライマリ回転数およびセカンダリ回転数が吹き上がる。その結果、セカンダリ回転数とアウトプット回転数との回転数差が小さくなる。セカンダリ回転数とアウトプット回転数との回転数差が所定値まで小さくなると、ECU101により、クラッチC2に供給される油圧(指示圧)が全開圧(クラッチC2が完全係合可能な油圧)まで一気に上げられる(時刻T3)。
この制御の開始時に、タービン回転数の吹き上がりによる時間変化率の目標値である目標回転変化率が設定され、その目標回転変化率に応じたイナーシャトルク分、プライマリ推力およびセカンダリ推力の設定に使用されるベルト入力トルクの値が引き上げられる。すなわち、前述の手法で算出されるベルト入力トルクの値に、目標回転変化率に応じたイナーシャトルク分の加算値が加算される。これにより、プライマリ推力およびセカンダリ推力の指令値が大きくなり、ベルト滑りの発生を抑制可能なベルト挟圧が得られる。
また、クラッチC1の半クラッチによりタービン回転数の吹き上がりが発生すると、ECU101により、タービン回転数の時間変化率からクラッチC2の完全係合によりアウトプット軸32に発生し得るイナーシャトルク、言い換えれば、無段変速機構33に入力され得るイナーシャトルクが算出される。そして、そのイナーシャトルクが所定値を超えると(時刻T2)、前述の手法で算出されるベルト入力トルクの値に目標回転変化率に応じたイナーシャトルク分の加算値を加算した値に、そのイナーシャトルクに応じた加算値がさらに加算される。これにより、プライマリ推力およびセカンダリ推力の指令値がさらに引き上げられ、ベルト滑りの発生を抑制可能な挟圧が得られる。
<作用効果>
以上のように、変速制御では、無段変速機構33に入力されるベルト入力トルクの値に応じたプライマリ圧およびセカンダリ圧の各指令値が設定される。その指令値に基づいて無段変速機構33の可動シーブ52,56に付与される油圧が制御されることにより、ベルト入力トルクの値に応じたベルト挟圧が得られる。これにより、さほど大きなイナーシャトルクが無段変速機構33に入力されないときには、適切なベルト挟圧によりベルト滑りの発生を抑制することができる。
一方、タービン回転数の時間変化率が取得され、その時間変化率から無段変速機構33に入力され得るイナーシャトルクが算出される。そして、その算出されたイナーシャトルクが所定値を超える場合には、指令値の設定に用いられるベルト入力トルクの値を引き上げる補正が行われる。これにより、ベルト挟圧が引き上げられるので、無段変速機構33に大きなイナーシャトルクが入力されても、ベルト滑りの発生を抑制することができる。
<変形例>
以上、本発明の一実施形態について説明したが、本発明は、他の形態で実施することもできる。
無段変速機構33に入力され得るイナーシャトルクが所定値を超えた場合に、そのイナーシャトルクに応じた加算値をベルト入力トルクの値に加算する制御は、クラッチC1,C2の係合の切替時に限らず、イナーシャトルクによるベルト滑りの発生の懸念がある状況であれば、たとえば、車両1がスピードバンプなどの突起物を乗り越えたときに実行されてもよい。車両1が突起物を乗り越えるときに、車輪が路面から浮き上がることにより、アウトプット軸の回転数が上昇した後、車輪が着地することにより、アウトプット軸の回転数が急減することがある。アウトプット軸の回転数が急減すると、イナーシャトルクがアウトプット軸に発生し、そのイナーシャトルクによるベルト滑りを発生する懸念がある。
前述の実施形態では、無段変速機構33を経由する第1経路とスプリット変速機構36を経由する第2経路とに分岐して動力を伝達する構成を取り上げたが、スプリット変速機構36は、スプリットドライブギヤ81およびスプリットドリブンギヤ82を含む平行軸式歯車機構に限らず、ベルト機構などのギヤ機構以外の機構であってもよい。ベルト機構が採用される場合、そのベルト機構は、変速比が固定のものであってもよいし、変速比が可変のものであってもよい。
また、変速機4として、動力分割式変速機を取り上げたが、本発明は、ベルト式の無段変速機に広く適用することができる。
その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
4:変速機
31:インプット軸
32:アウトプット軸
33:無段変速機構
101:ECU(制御装置、指令値設定手段、イナーシャトルク算出手段、補正手段)

Claims (1)

  1. 動力が入力されるインプット軸から動力を出力するアウトプット軸に至る動力伝達経路上に、動力を無段階に変速するベルト式の無段変速機構を備え、前記インプット軸と前記アウトプット軸との間で動力を伝達する動力伝達モードとして、前記インプット軸と前記アウトプット軸との間に設けられた第1クラッチの解放および前記無段変速機構のセカンダリ軸と前記アウトプット軸との間に設けられた第2クラッチの完全係合により、前記セカンダリ軸と前記アウトプット軸との間に差回転が生じない第1モードと、前記第1クラッチの完全係合および前記第2クラッチの解放により、前記インプット軸の動力が前記無断変速機構を経由する第1経路と前記無断変速機構を経由しない第2経路とに分岐して前記アウトプット軸に伝達され、前記セカンダリ軸と前記アウトプット軸との間に差回転が生じる第2モードとを有する変速機に用いられる制御装置であって、
    前記無段変速機構に入力される入力トルクの値に応じたベルト挟圧を得るための指令値を設定する指令値設定手段と、
    前記動力伝達モードが前記第2モードから前記第1モードに切り替えられる際、前記第1クラッチが半クラッチ状態となって、前記プライマリ軸に入力される回転数の吹き上がりが発生したときに、前記プライマリ軸に入力される回転数の時間変化率から前記第2クラッチの完全係合により前記アウトプット軸に発生し得るイナーシャトルクを算出するイナーシャトルク算出手段と、
    前記動力伝達モードが前記第2モードから前記第1モードに切り替えられる際、前記第1クラッチが半クラッチ状態となって、前記プライマリ軸に入力される回転数の吹き上がりが発生したときに、前記指令値設定手段による指令値の設定に用いられる入力トルクの値に、前記プライマリ軸に入力される回転数の時間変化率の目標値に応じたイナーシャトルク分の加算値を加算し、前記イナーシャトルク算出手段によって算出されるイナーシャトルクに応じた加算値をさらに加算する補正手段とを含む、制御装置。
JP2017188930A 2017-09-28 2017-09-28 変速機の制御装置 Active JP7109858B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017188930A JP7109858B2 (ja) 2017-09-28 2017-09-28 変速機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188930A JP7109858B2 (ja) 2017-09-28 2017-09-28 変速機の制御装置

Publications (2)

Publication Number Publication Date
JP2019065889A JP2019065889A (ja) 2019-04-25
JP7109858B2 true JP7109858B2 (ja) 2022-08-01

Family

ID=66337645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188930A Active JP7109858B2 (ja) 2017-09-28 2017-09-28 変速機の制御装置

Country Status (1)

Country Link
JP (1) JP7109858B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459428B2 (ja) 2020-06-15 2024-04-02 三井金属アクト株式会社 アクチュエータ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136837A (ja) * 1987-11-19 1989-05-30 Daihatsu Motor Co Ltd Vベルト式無段変速機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459428B2 (ja) 2020-06-15 2024-04-02 三井金属アクト株式会社 アクチュエータ装置

Also Published As

Publication number Publication date
JP2019065889A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
US9765886B2 (en) Control system and control method for vehicle
JP6505447B2 (ja) 動力分割式無段変速機の制御装置
JP7139035B2 (ja) 無段変速機の制御装置
JP7109858B2 (ja) 変速機の制御装置
JP6949432B2 (ja) 無段変速機の制御装置
JP6794015B2 (ja) 車両用制御装置
JP6699937B2 (ja) 車両用制御装置
JP7278024B2 (ja) 変速機の制御装置
JP2013113338A (ja) 動力伝達装置
JP6809969B2 (ja) 変速機の制御装置
JP7090979B2 (ja) 無段変速機の制御装置
JP2019120265A (ja) 係合要素制御装置および熱量算出装置
JP7191461B2 (ja) 無段変速機の制御装置
JP7123473B2 (ja) 動力分割式無段変速機の制御装置
JP6809967B2 (ja) 変速機の制御装置
JP7191470B2 (ja) 無段変速機の制御装置
JP7013088B2 (ja) 無段変速機の制御装置
JP6556597B2 (ja) 動力分割式無段変速機の制御装置
JP6968502B2 (ja) 無段変速機の制御装置
JP2020041674A (ja) 車両用制御装置
JP7102076B2 (ja) 無段変速機の制御装置
JP7139058B2 (ja) 無段変速機の制御装置
JP6809968B2 (ja) 変速機の制御装置
JP7330631B2 (ja) 車両用制御装置
JP7258447B2 (ja) 制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R150 Certificate of patent or registration of utility model

Ref document number: 7109858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150