JP7106305B2 - Structural columns and seismically isolated buildings - Google Patents

Structural columns and seismically isolated buildings Download PDF

Info

Publication number
JP7106305B2
JP7106305B2 JP2018045970A JP2018045970A JP7106305B2 JP 7106305 B2 JP7106305 B2 JP 7106305B2 JP 2018045970 A JP2018045970 A JP 2018045970A JP 2018045970 A JP2018045970 A JP 2018045970A JP 7106305 B2 JP7106305 B2 JP 7106305B2
Authority
JP
Japan
Prior art keywords
column
seismic isolation
isolation device
upper half
lower half
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045970A
Other languages
Japanese (ja)
Other versions
JP2019157508A (en
Inventor
淳司 藤山
賀奈 青木
伸行 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2018045970A priority Critical patent/JP7106305B2/en
Publication of JP2019157508A publication Critical patent/JP2019157508A/en
Application granted granted Critical
Publication of JP7106305B2 publication Critical patent/JP7106305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、逆打ち工法に係り、特に逆打ち工法に用いられる構真柱、およびこの構真柱を用いた免震建物に関する。 TECHNICAL FIELD The present invention relates to an inverse construction method, and more particularly to a structure pillar used in the inverse construction method, and a base-isolated building using this structure pillar.

逆打ち工法は、地下階と地上階の工事を同時並行して行う施工法で、地下階を有する高層建物の工期短縮を図るのに有効な工法として知られている。逆打ち工法を実施する場合、一般的には、まず、地中にケーシングを打ち込んで掘削した杭穴に、建物本体の鉄骨柱、あるいはRC柱の芯材となる構真柱を仮設の柱として建て込んだ後、コンクリートを打設して杭を構築する。 The reverse construction method is a construction method in which the construction of the basement floor and the ground floor is performed in parallel, and is known as an effective construction method for shortening the construction period of a high-rise building having a basement floor. In general, when the reverse casting method is used, a pile hole is drilled by driving a casing into the ground. After erecting, pour concrete and construct piles.

次に、構真柱の上部において1階の梁・床を先行して構築し、これを構台(施工床)として地下階部分を掘削しつつ、地下1階から順次下方に向かって掘削と躯体の構築を繰り返し行う。基礎の床付レベルまで掘削した後、基礎の配筋とコンクリート打設を行い、地下躯体が完成する。これらの作業を地下で行いながら、同時に地上階の建て方工事を行うことで、地下階の工事を終えてから地上階の建て方工事を行なう従来の工法(順打ち)に比べ、工期を大幅に短縮することができる。 Next, the beams and floors of the first floor are first constructed on the upper part of the structure column, and while excavating the basement floor part using this as the gantry (construction floor), excavation and frame work are carried out sequentially downward from the first basement floor. Repeat the construction of After excavating to the level with the floor of the foundation, the reinforcement for the foundation is arranged and concrete is placed to complete the underground frame. By carrying out these works underground while constructing the ground floor at the same time, the construction period can be significantly shortened compared to the conventional construction method (sequential construction) in which the construction of the ground floor is completed after the construction of the basement floor is completed. can be shortened to

一方で、逆打ち工法を実施する場合、先行して構築される地上階の躯体の荷重を構真柱に支持させながら地下躯体を下方に向かって構築する。このため、建物の免震化には不向きであるとされてきた。そうした中、特許文献1や特許文献2に開示されているように、逆打ち工法を実施する場合であっても、地下階の躯体を構成する構真柱に免震装置を設置し、免震建物を構築する工法が提案されている。特許文献1には、地下躯体の基礎と基礎梁の間に仮設ジャッキを配置し、仮設ジャッキにより構真柱にかかる軸力(構築されている建物の重量)を仮受けし、構真柱を切断して免震装置を配置するという工法が開示されている。 On the other hand, when the reverse construction method is used, the basement frame is constructed downward while supporting the load of the structure of the ground floor, which is constructed in advance, by the structural columns. For this reason, it has been considered unsuitable for seismic isolation of buildings. Under such circumstances, as disclosed in Patent Document 1 and Patent Document 2, even if the reverse construction method is implemented, a seismic isolation device is installed on the structure column that constitutes the frame of the basement floor. Construction methods for constructing buildings have been proposed. In Patent Document 1, a temporary jack is placed between the foundation of the underground frame and the foundation beam, and the temporary jack temporarily receives the axial force (the weight of the building being constructed) applied to the structure column, and the structure column A construction method of cutting and arranging the seismic isolation device is disclosed.

また、特許文献2には、基礎に埋設される下半部と、地下階の本設柱を構成することとなる上半部との間に円形断面を有する鋼管を配置する構成の構真柱を採用することが開示されている。特許文献2に開示されている構真柱の鋼管には側面に、免震装置を挿入可能な開口部が設けられている。そして、地下躯体を構築した後に、開口部から鋼管内に免震装置を挿入し、免震装置と上半部、あるいは下半部の間の隙間をグラウト材で埋める。グラウト材が硬化した後、鋼管の側壁(開口部以外の箇所)を切断し、構真柱にかかる軸力を免震装置へ受け替えさせるということが開示されている。 Further, in Patent Document 2, a structure column having a configuration in which a steel pipe having a circular cross section is arranged between the lower half buried in the foundation and the upper half constituting the permanent column of the basement floor It is disclosed to employ The steel pipe of the structure column disclosed in Patent Document 2 is provided with an opening into which the seismic isolation device can be inserted on the side surface. After constructing the underground frame, the seismic isolation device is inserted into the steel pipe through the opening, and the gap between the seismic isolation device and the upper half or the lower half is filled with grout material. It is disclosed that after the grout material has hardened, the side wall of the steel pipe (parts other than the opening) is cut, and the axial force applied to the structural column is transferred to the seismic isolation device.

確かに、特許文献1、2に開示されている工法によれば、逆打ち工法を実施する上でも、構真柱に免震装置を設置し、免震建物を構築することが可能となる。しかし、いずれの文献に開示されている工法も、構真柱の一部や鋼管部分を切断し、構真柱が負担している荷重を免震装置に受け替える必要がある。このため、狭隘な空間でのジャッキ設置や構真柱の切断作業に手間や時間がかかると共に、荷重の受け替えに伴う沈下のリスクを負うこととなる。 Certainly, according to the construction methods disclosed in Patent Literatures 1 and 2, it is possible to construct a base-isolated building by installing a seismic isolation device on the main column even when implementing the reverse construction method. However, in the construction methods disclosed in any of the documents, it is necessary to cut a part of the structural column or the steel pipe portion and transfer the load borne by the structural column to the seismic isolation device. For this reason, it takes time and effort to install a jack in a narrow space and to cut the structural column, and there is a risk of subsidence due to the change of load.

これに対し、特許文献3には、下半部と上半部との間に予め免震装置を配置した構真柱を用いて逆打ち工法を実施することが提案されている。先に免震装置を仕込んだ構真柱を埋設することで、上記のような問題が解消され、逆打ち工法で免震建物を安全に構築することが可能となる。 On the other hand, Patent Literature 3 proposes implementing the reverse hammering method using a structure column having a seismic isolation device pre-arranged between the lower half and the upper half. By burying the structure column with the seismic isolation device installed in advance, the above problems can be solved, and it becomes possible to construct the seismic isolation building safely by the reverse construction method.

特許第3648651号公報Japanese Patent No. 3648651 特許第3637945号公報Japanese Patent No. 3637945 特開平11-30053号公報JP-A-11-30053

特許文献3に開示されているような構成の構真柱を用いることで、免震装置の後付けに伴う作業が必要なくなるため、設置工事の簡略化を図ることができると考えられる。しかし、特許文献3の構真柱は、段落[0016]に記載されているように断面形状については問われておらず、免震装置により隔てられる下半部と上半部を構成する柱材に同じ部材を用いた例しかない。構真柱には、一般的に開断面のクロスH形鋼(H形断面の鋼材を2方向に組合わせた部材)が用いられるが、柱材を開断面の鉄骨材にすると大きな軸力を負担できないため、階の途中に座屈止めを設けたり、1工程(サイクル)で掘れる深さが浅くなり、工程数が増加して現場での作業も増える。大きな軸耐力を有するプレキャストコンクリート構真柱も開発されているが、高軸力が作用する高層建物では、その重量が大きくなるため、クレーンによる構真柱の揚重や、地中への埋設作業が困難となる。 By using the structure column having the configuration disclosed in Patent Literature 3, it is possible to simplify the installation work because the work associated with retrofitting the seismic isolation device becomes unnecessary. However, as described in paragraph [0016], the structural column of Patent Document 3 does not ask about the cross-sectional shape, and the column material constituting the lower half and upper half separated by the seismic isolation device There is only an example of using the same material for Cross H-shaped steel with an open cross-section (a member in which H-shaped cross-section steel materials are combined in two directions) is generally used for structural columns. Since it is not possible to bear the burden, buckling stoppers are installed in the middle of the story, and the depth that can be excavated in one process (cycle) becomes shallow, increasing the number of processes and the work on site. Precast concrete structural columns with large axial strength have also been developed, but in high-rise buildings where high axial force acts, the weight increases, so lifting of structural columns with cranes and burying them in the ground are required. becomes difficult.

そこで本発明では、上記問題を解決する免震装置を備えた構真柱であって、高軸力の負担が可能で、かつ重量の増加を抑える事のできる構真柱、および、この構真柱を用いた免震建物を提供することを目的とする。 Therefore, in the present invention, a structural column equipped with a seismic isolation device that solves the above problems, capable of bearing a high axial force and capable of suppressing an increase in weight, and the structural column. The purpose is to provide a seismically isolated building using pillars.

上記目的を達成するための本発明に係る構真柱は、逆打ち工法で用いられる構真柱であって、地下階の本設柱を構成する閉断面を有する上半部と、基礎以深に埋設される開断面を有する下半部とを備え、前記上半部と前記下半部の間に免震装置を介装したことを特徴とする。このように、本設の躯体柱部分を中実断面部材とし、基礎や杭に埋設される部分を開断面部材で構成することで、揚重時のクレーンの負荷の増加を抑えつつ、高軸力を負担できる柱を合理的に構築することができる。 A structural column according to the present invention for achieving the above object is a structural column used in the reverse construction method, and includes an upper half portion having a closed cross section constituting a permanent column of the basement floor, and a lower half portion having an open cross section to be embedded, and a seismic isolation device interposed between the upper half portion and the lower half portion. In this way, by using solid cross-section members for the main frame pillars and open cross-section members for the parts buried in the foundations and piles, it is possible to reduce the load on the crane during lifting while increasing the height of the crane. A pillar that can bear the force can be rationally constructed.

また、上記のような特徴を有する構真柱において、前記上半部は、下端にベースプレートを備えた鋼管柱で構成され、前記下半部は、上端にベースプレートを備えたクロスH形鋼柱で構成され、前記上半部には、設置後にコンクリートが充填される。このような特徴を有することによれば、上半部が負担する軸力を、免震装置を介して下半部へ、効率的に伝達することが可能となる。また、上半部は、揚重時には、その重量を抑制しつつ、設置後にコンクリートが充填されることで、軸力に対する耐性を高めることができる。 In addition, in the structure column having the above characteristics, the upper half is composed of a steel pipe column with a base plate at the lower end, and the lower half is a cross H-beam steel column with a base plate at the upper end. The top half is filled with concrete after installation. With this feature, the axial force borne by the upper half can be efficiently transmitted to the lower half through the seismic isolation device. Moreover, the weight of the upper half is suppressed during lifting, and the resistance to axial force can be increased by filling concrete after installation.

また、上記のような特徴を有する構真柱において、前記下半部に接合されたベースプレートは、前記上半部に接合されたベースプレートより厚くなるように構成されている。これによって、ベースプレート内での軸力分散効果が大きくなり、下半部の支承面積(断面積)を上半部に比べて小さくしても、下半部への軸力(応力)の伝達を円滑に行うことができる。その結果、下半部の鋼材量を減らすことができ、コストダウンにつながることとなる。 In addition, in the structural column having the characteristics described above, the base plate joined to the lower half portion is configured to be thicker than the base plate joined to the upper half portion. This increases the effect of dispersing the axial force within the base plate, and even if the bearing area (cross-sectional area) of the lower half is smaller than that of the upper half, the transmission of axial force (stress) to the lower half is minimized. It can be done smoothly. As a result, the amount of steel material for the lower half can be reduced, leading to cost reduction.

また、本発明に係る免震建物は、上記いずれかの構真柱を、エレベータが集中して配置されるコア部分に適用したことを特徴とする。これにより、エレベータが免震層を通過することがないため、レールや支持部材を地震時変形に追従させるような特殊な仕組みが必要ない。 A base-isolated building according to the present invention is characterized in that any one of the structural columns described above is applied to a core portion where elevators are concentrated. As a result, the elevator does not pass through the seismic isolation layer, so there is no need for a special mechanism that allows the rails and supporting members to follow the deformation during an earthquake.

上記のような特徴を有する構真柱によれば、超高層建物を地下で免震構造にする場合でも、逆打ち工法で合理的に構築することができる。 According to the structural column having the characteristics described above, even when a super high-rise building is to have a seismic isolation structure underground, it can be constructed rationally by the reverse construction method.

実施形態に係る構真柱の構成を示す図である。It is a figure which shows the structure of the structure pillar which concerns on embodiment. 実施形態に係る構真柱を用いて免震建物を構築する際の様子を示す図であり、構真柱を埋設した状態を示す図である。It is a figure which shows the mode at the time of construct|constructing a base-isolated building using the structure pillar which concerns on embodiment, and is a figure which shows the state which buried|buried the structure pillar. 構真柱を埋設する工程を説明するための図である。It is a figure for demonstrating the process of burying a structural pillar. 実施形態に係る構真柱を用いて免震建物を構築する際の様子を示す図であり、構真柱の上部に構台を設置した状態を示す図である。It is a figure which shows the mode at the time of constructing|constructing a base-isolated building using the structure pillar which concerns on embodiment, and is a figure which shows the state which installed the gantry on the upper part of the structure pillar. 実施形態に係る構真柱を用いて免震建物を構築する際の様子を示す図であり、地下部の掘削を終え、地下階の躯体と地上階の躯体の構築を進めた状態を示す図である。FIG. 10 is a diagram showing a state in which a base-isolated building is constructed using structural columns according to the embodiment, and is a diagram showing a state in which excavation of the basement has been completed, and construction of the skeleton of the basement floor and the skeleton of the ground floor has proceeded. is. 構真柱に仮固定部材を配置した状態を示す図である。It is a figure which shows the state which has arrange|positioned the temporary fixing member to the structure pillar.

以下、本発明の構真柱、および免震建物に係る実施の形態について、図面を参照して詳細に説明する。なお、以下の実施形態に示す形態は、本発明を実施する上で好適な形態の一部であり、各要素の形態や構成部材については、その特性を逸脱しない限りにおいて、適宜変更することができる。 EMBODIMENT OF THE INVENTION Hereafter, embodiment which concerns on the structure column of this invention, and a base-isolated building is described in detail with reference to drawings. It should be noted that the forms shown in the following embodiments are part of preferred forms for carrying out the present invention, and the form of each element and constituent members can be changed as appropriate without departing from the characteristics thereof. can.

まず、図1を参照して、本発明に係る構真柱の構成について説明する。なお、図1(A)は、構真柱の側面形態を示す図であり、同図(B)は、上半部の平面形態を示す図である。また、同図(C)は、免震装置の平面形態を示す図であり、同図(D)は、下半部の平面形態を示す図である。 First, with reference to FIG. 1, the structure of the structural column according to the present invention will be described. In addition, FIG. 1(A) is a view showing a side view of the structural column, and FIG. 1(B) is a view showing a plan view of the upper half. In addition, FIG. 1(C) is a diagram showing a planar form of the seismic isolation device, and FIG. 1(D) is a diagram showing a planar form of the lower half.

[構真柱の構造]
本実施形態に係る構真柱10は、上半部12と下半部16、および免震装置14を有する。上半部12は、地下階の本設柱を構成する要素であり、閉断面を有する部材により構成されている。具体的には、鋼管柱とすることができる。構真柱10の上半部12を構成する柱材をこのような部材とし、設置後にコンクリートを充填する構成とすることで、構真柱10を埋設し、地下階を掘削した後に柱の打ち替えを行う事なく本設柱を構成することが可能となる。また、揚重時の重量を抑制しつつ、設置後には、軸力に対する耐性を高めることができる。
[Structure of structural columns]
The structural column 10 according to this embodiment has an upper half portion 12 , a lower half portion 16 , and a seismic isolation device 14 . The upper half 12 is an element that constitutes the permanent pillar of the basement floor, and is made of a member having a closed cross section. Specifically, it can be a steel pipe column. By using such a member for the column material constituting the upper half part 12 of the structure column 10 and filling it with concrete after installation, the structure column 10 is buried and the column is cast after the basement floor is excavated. It becomes possible to configure the permanent pillar without replacing it. Moreover, the resistance to the axial force can be increased after installation while suppressing the weight during lifting.

このような構成の上半部12には、その下端部に、ベースプレート12aが備えられている。ベースプレート12aは、平面形状が免震装置14を構成する上部プレート14aと一致、あるいは近似する形態となるように構成されている。このような構成とすることで、本設柱が負担する軸力を効率的に免震装置14に支承させることが可能となる。 The upper half 12 of such a configuration is provided with a base plate 12a at its lower end. The base plate 12a is configured to have a planar shape that matches or approximates the upper plate 14a that constitutes the seismic isolation device 14 . By adopting such a configuration, it is possible to efficiently support the axial force borne by the permanent column on the seismic isolation device 14 .

下半部16は、基礎と、この基礎に埋設される杭(ケーシング20内にコンクリート22を充填して構成されるもの(図2参照))の中(基礎以深)に埋設される要素であり、開断面を有する部材により構成されている。具体的には、クロスH形鋼柱などを挙げることができる。構真柱10の下半部16を構成する柱材をこのような構成とすることで、構真柱10全体としての重量を低減(抑制)することができる。このため、逆打ち工法を実施する際、構真柱10を吊下した状態で揚重し、ケーシング20内に装填、埋設することが可能となる。 The lower half 16 is an element that is buried (deeper than the foundation) in a foundation and a pile (constructed by filling concrete 22 in a casing 20 (see FIG. 2)) buried in this foundation. , and a member having an open cross section. Specifically, a cross H-shaped steel column and the like can be mentioned. By configuring the column material that constitutes the lower half portion 16 of the structural column 10 in this way, the weight of the structural column 10 as a whole can be reduced (suppressed). Therefore, when the reverse hammering method is carried out, the structure column 10 can be lifted in a suspended state, loaded into the casing 20, and buried.

このような構成の下半部16には、その上端部に、ベースプレート16aが備えられている。ベースプレート16aは、平面形状が免震装置14を構成する下部プレート14cと一致、あるいは近似する形態となるように構成されている。このような構成とすることで、免震装置14を介して伝達される本設柱(上半部12)が負担する軸力を効率的に下半部16に伝達し、これを支承させることが可能となる。 The lower half 16 of such a configuration is provided at its upper end with a base plate 16a. The base plate 16a is configured to have a planar shape that matches or approximates the lower plate 14c that constitutes the seismic isolation device 14. As shown in FIG. With such a configuration, the axial force borne by the permanent column (upper half 12) transmitted via the seismic isolation device 14 is efficiently transmitted to the lower half 16 and supported. becomes possible.

免震装置14は、上半部12と下半部16との間における振動の縁切りを担う要素であり、少なくとも水平方向に対する振動を縁切りすることができる要素であると良い。具体的には、積層ゴム型構造体や、すべり支承構造体、および転がり支承構造体などを挙げることができる。例えば、図1に示す例の免震装置14は、積層ゴム型構造体であり、上部プレート14aと下部プレート14cの間に積層ゴム14bが備えられている。 The seismic isolation device 14 is an element that isolates vibration between the upper half 12 and the lower half 16, and is preferably an element capable of isolating at least horizontal vibration. Specific examples include a laminated rubber type structure, a slide bearing structure, a rolling bearing structure, and the like. For example, the seismic isolation device 14 of the example shown in FIG. 1 is a laminated rubber type structure, and a laminated rubber 14b is provided between an upper plate 14a and a lower plate 14c.

上半部12と下半部16の間に免震装置14が備えられる事により、上半部12と下半部16の断面形状やサイズが異なる場合であっても、大きな軸力の伝達を成すための緩衝領域の役割を、免震装置14に担わせることができる。 By providing the seismic isolation device 14 between the upper half portion 12 and the lower half portion 16, even if the cross-sectional shapes and sizes of the upper half portion 12 and the lower half portion 16 are different, a large axial force can be transmitted. The seismic isolation device 14 can play the role of a buffer area for achieving this.

また、本実施形態の構真柱10では、上半部12のベースプレート12aよりも下半部16のベースプレート16aの方が、その厚みが厚くなるように構成している。このような構成とすることで、ベースプレート16a内での軸力分散効果が大きくなり、下半部16を構成する開断面部材の支承面の面積(断面積)が、上半部12を構成する部材、あるいは免震装置14の下部プレート14cに比べて大幅に小さい場合であっても、下半部16への軸力(応力)の伝達を円滑に行うことができる。また、応力集中に伴い、免震装置14の下部プレート14cにダメージを与える虞も無い。 Further, in the structural column 10 of the present embodiment, the base plate 16a of the lower half portion 16 is thicker than the base plate 12a of the upper half portion 12. As shown in FIG. With such a configuration, the axial force dispersion effect in the base plate 16a is increased, and the area (cross-sectional area) of the support surface of the open cross-section member that constitutes the lower half portion 16 constitutes the upper half portion 12. Even if it is much smaller than the member or the lower plate 14 c of the seismic isolation device 14 , the axial force (stress) can be smoothly transmitted to the lower half portion 16 . In addition, there is no risk of damaging the lower plate 14c of the seismic isolation device 14 due to stress concentration.

[作用、効果]
このような構成の構真柱10によれば、柱に免震装置14が介装されているため、構真柱10設置後に免震装置14を設置する必要が無い。また、上半部は、地下躯体の本設柱として構成可能な柱材により構成しているため、地下階を掘削した後に、柱材の打ち替えを行う必要もない。さらに、下半部16は、開断面の鉄骨により構成しているため、構真柱10全体としての軽量化を図ることができる。これにより、構真柱10の埋設作業が容易となる。
[action, effect]
According to the structure column 10 having such a configuration, since the seismic isolation device 14 is interposed in the column, there is no need to install the seismic isolation device 14 after the structure column 10 is installed. In addition, since the upper half is made of pillars that can be used as permanent pillars of the underground frame, there is no need to replace the pillars after excavating the basement floor. Furthermore, since the lower half portion 16 is made of a steel frame with an open cross section, the overall weight of the structural column 10 can be reduced. This facilitates the work of burying the structural column 10 .

また、上半部12と下半部16の間に免震装置14を介在させている事により、両者間における軸力の伝達を効率的に行うことが可能となる。 Further, by interposing the seismic isolation device 14 between the upper half portion 12 and the lower half portion 16, it is possible to efficiently transmit the axial force between them.

[免震建物への適用例]
次に、上記のような構成の構真柱を採用した免震建物について、図2から図5を参照して説明する。本実施形態に係る免震建物は、高層建物を構築するにあたり、エレベータが集中して配置されるコア部分に、上述した構真柱10を配置するというものである。地下階を有する高層建物において、エレベータシャフトは、地下階の躯体32から、地上階の躯体30の上部まで延設される空間である。このため、地下階と地上階との境界部に免震装置を配置した場合には、地震発生時に、地下階の躯体32と地上階の躯体30との間に位相のズレが生じ、エレベータシャフトに歪みが生ずる虞がある。このため、エレベータを構成するレールや支持部材には、地震発生時のエレベータシャフトの変形に追従させるような特殊な仕組みが必要となる。
[Example of application to base-isolated buildings]
Next, a base-isolated building that employs the structure columns configured as described above will be described with reference to FIGS. 2 to 5. FIG. In constructing a high-rise building, the base-isolated building according to the present embodiment is constructed by arranging the structural column 10 described above in a core portion where elevators are concentrated. In a high-rise building having a basement floor, an elevator shaft is a space that extends from the skeleton 32 of the basement floor to the upper part of the skeleton 30 of the ground floor. Therefore, if a seismic isolation device is arranged at the boundary between the basement floor and the ground floor, when an earthquake occurs, a phase shift occurs between the basement frame 32 and the ground floor frame 30, and the elevator shaft There is a risk that distortion will occur in the Therefore, the rails and support members that make up the elevator require a special mechanism that follows the deformation of the elevator shaft when an earthquake occurs.

本実施形態のように、エレベータシャフトの下端となる部分に免震装置14を配置することで、エレベータシャフトは、地上階の躯体と同様に免震効果を得ることができ、地震発生時のダメージを軽減することができる。よって、上記のような特殊な仕組みも必要なくなる。 By arranging the seismic isolation device 14 at the lower end of the elevator shaft as in this embodiment, the elevator shaft can obtain the same seismic isolation effect as the frame on the ground floor, preventing damage in the event of an earthquake. can be reduced. Therefore, the special mechanism as described above is no longer necessary.

このような構成の免震建物は、逆打ち工法を採用して構築する場合、例えば次のように上記実施形態に係る構真柱を適用すれば良い。まず、図2に示すように、地中に構真柱10を埋設する。構真柱10の埋設は、通常の逆打ち工法と同様に行うことができる。具体的には、図3(A)に示すように、ケーシング20を地中に打ち込み、内部を掘削する。次に、図3(B)に示すように、図示しない鉄筋を配してケーシング20内にコンクリート22を充填した杭穴に構真中10を挿入し、コンクリート22の硬化を待つ(図3(C))。コンクリート22が硬化した後、構真柱10の座屈を防止するため、図3(D)に示すように、ケーシング20内を埋め戻す。 When constructing a base-isolated building having such a configuration by adopting the reverse construction method, for example, the structural columns according to the above-described embodiment may be applied as follows. First, as shown in FIG. 2, the structural column 10 is buried in the ground. The burial of the structure column 10 can be performed in the same manner as the normal reverse construction method. Specifically, as shown in FIG. 3A, the casing 20 is driven into the ground and the inside is excavated. Next, as shown in FIG. 3(B), a reinforcing bar (not shown) is arranged and the truss center 10 is inserted into a pile hole filled with concrete 22 in the casing 20, and the concrete 22 is waited for hardening (FIG. 3(C) )). After the concrete 22 hardens, the inside of the casing 20 is backfilled as shown in FIG. 3(D) in order to prevent the structural column 10 from buckling.

ここで、図2中破線Aで示すコア部以外の部位に埋設する構真柱10aは、免震装置14を備えない通常の構真柱とすれば良い。 Here, the structure column 10a embedded in the portion other than the core portion indicated by the dashed line A in FIG.

次に、図4に示すように、構真柱10,10aの上部に、1階部分の床を構成する梁、床面を構築し、構台24を構成する。ここで、コア部以外の部位に埋設した構真柱10aの上端(地上階の躯体との境界部分)には、免震装置14を配置し、構台24は、免震装置14の上部に位置するように構成する。構台24を構成した後、地上階の躯体30の構築を進めると共に、地下階の躯体32を構築するための掘削作業を行う。 Next, as shown in FIG. 4, the gantry 24 is constructed by constructing the beams and floor surfaces that constitute the floor of the first floor above the structuring columns 10 and 10a. Here, a seismic isolation device 14 is arranged at the upper end of the structure column 10a embedded in a portion other than the core portion (the boundary portion with the frame of the ground floor), and the gantry 24 is positioned above the seismic isolation device 14. configured to After constructing the gantry 24, construction of the frame 30 of the ground floor is advanced, and excavation work for constructing the frame 32 of the basement floor is carried out.

地下階の掘削作業は、図5に示すように、構真柱10に設けられた免震装置14が露出し、下半部16が基礎に埋設された状態となるように行われ、免震装置14の上部にコアとなる躯体32aを構築する。このような方法で免震建物40を構築する場合、構真柱10を構成する下半部16と上半部12の間に配置した免震装置14に対し、図6に示すような仮固定部材18を設置した状態で、構真柱10の埋設を行うと良い。 As shown in FIG. 5, the excavation work of the underground floor is carried out so that the seismic isolation device 14 provided on the structure column 10 is exposed and the lower half portion 16 is buried in the foundation. A skeleton 32a that serves as a core is constructed on the upper part of the device 14. As shown in FIG. When constructing the seismic isolation building 40 by such a method, temporary fixing as shown in FIG. It is preferable to embed the structural column 10 while the member 18 is installed.

仮固定部材18は、下半部16と上半部12が水平方向に相対的にズレる事を防止すると共に、構真柱10を吊下した際、自重、および下半部12の重量により、免震装置14が垂直方向に延びる事を防止する役割を担う。このため、仮固定部材18を備えることで、実施形態に係る構真柱10を吊下した状態で揚重し、ケーシング20内に挿入したとしても、上半部12と下半部16にズレが生じたり、免震装置14に引っ張り荷重が加わる事による悪影響が生じる虞が無い。 The temporary fixing member 18 prevents the lower half 16 and the upper half 12 from being displaced relative to each other in the horizontal direction. It plays the role of preventing the seismic isolation device 14 from extending in the vertical direction. Therefore, by providing the temporary fixing member 18, even if the structural column 10 according to the embodiment is lifted in a suspended state and inserted into the casing 20, the upper half portion 12 and the lower half portion 16 are displaced. There is no possibility that the seismic isolation device 14 will be adversely affected by a tensile load.

上記実施形態に係る構真柱10を用いて逆打ち工法を実施し、免震建物40を構築することによれば、構真柱10の荷重の受け替え等が不要となり、免震装置14の設置を容易化することができる。また、免震装置14に軸力が負荷された状態で工事が進むため、荷重を受け替える方法に比べてゴム部の圧縮に伴う急激な沈下のリスクが少ない。 By implementing the reverse construction method using the structural column 10 according to the above-described embodiment and constructing the seismic isolated building 40, there is no need to change the load of the structural column 10, etc., and the seismic isolation device 14 Installation can be facilitated. In addition, since the construction proceeds with the axial force applied to the seismic isolation device 14, there is less risk of sudden settlement due to compression of the rubber portion compared to the method of changing the load.

10,10a………構真柱、12………上半部、12a………ベースプレート、14………免震装置、14a………上部プレート、14b………積層ゴム、14c………下部プレート、16………下半部、16a………ベースプレート、18………仮固定部材、20………ケーシング、22………コンクリート、24………構台、30………躯体、32………躯体、32a………躯体、40………免震建物。 10, 10a... Structural column, 12... Upper half part, 12a... Base plate, 14... Seismic isolation device, 14a... Upper plate, 14b... Laminated rubber, 14c... Lower plate 16 Lower half 16a Base plate 18 Temporary fixing member 20 Casing 22 Concrete 24 Gantry 30 Frame 32 ……Frame, 32a……Frame, 40……Seismic isolation building.

Claims (3)

逆打ち工法で用いられる構真柱であって、
下端にベースプレートを備え、地下階の本設柱を構成する閉断面部材の上半部と、
上端にベースプレートを備え、基礎以深に埋設される開断面部材の下半部とを備え、
前記上半部と前記下半部の間に免震装置を介装し
前記下半部に接合されたベースプレートは、前記上半部に接合されたベースプレートより厚いことを特徴とする構真柱。
A structural column used in the reverse construction method,
an upper half of a closed section member having a base plate at the lower end and constituting a permanent pillar of the basement floor;
A base plate is provided at the upper end, and a lower half of the open cross-section member buried deeper than the foundation,
A seismic isolation device is interposed between the upper half and the lower half ,
The structural column , wherein the base plate joined to the lower half is thicker than the base plate joined to the upper half .
前記上半部は、鋼管柱で構成され、
前記下半部は、クロスH形鋼柱で構成され、
前記上半部には、設置後にコンクリートが充填されることを特徴とする請求項1に記載の構真柱。
The upper half is composed of a steel pipe column ,
The lower half is composed of a cross H-shaped steel column ,
The structural column according to claim 1, wherein the upper half portion is filled with concrete after installation.
請求項1または2に記載の構真柱を用いて逆打ち工法で構築されたことを特徴とする免震建物。 A base-isolated building constructed by a reverse construction method using the structural column according to claim 1 or 2 .
JP2018045970A 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings Active JP7106305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045970A JP7106305B2 (en) 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045970A JP7106305B2 (en) 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings

Publications (2)

Publication Number Publication Date
JP2019157508A JP2019157508A (en) 2019-09-19
JP7106305B2 true JP7106305B2 (en) 2022-07-26

Family

ID=67995892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045970A Active JP7106305B2 (en) 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings

Country Status (1)

Country Link
JP (1) JP7106305B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270700B (en) * 2020-02-21 2021-09-03 青岛理工大学 Steel-wood combined shock insulation pad foundation and mounting method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291031A (en) 1999-04-07 2000-10-17 Toda Constr Co Ltd Construction method for base isolation structure
JP2007063853A (en) 2005-08-31 2007-03-15 Takenaka Komuten Co Ltd Technique for transmitting supporting reaction of additional wall
JP2013159986A (en) 2012-02-06 2013-08-19 Taisei Corp Basement column
JP2014020116A (en) 2012-07-18 2014-02-03 Taisei Corp Pile concrete placing method
JP2014218862A (en) 2013-05-10 2014-11-20 株式会社大林組 Method and system for adjusting plumbing of inverted support

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130053A (en) * 1997-07-10 1999-02-02 Shimizu Corp Construction method of base isolation building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291031A (en) 1999-04-07 2000-10-17 Toda Constr Co Ltd Construction method for base isolation structure
JP2007063853A (en) 2005-08-31 2007-03-15 Takenaka Komuten Co Ltd Technique for transmitting supporting reaction of additional wall
JP2013159986A (en) 2012-02-06 2013-08-19 Taisei Corp Basement column
JP2014020116A (en) 2012-07-18 2014-02-03 Taisei Corp Pile concrete placing method
JP2014218862A (en) 2013-05-10 2014-11-20 株式会社大林組 Method and system for adjusting plumbing of inverted support

Also Published As

Publication number Publication date
JP2019157508A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP3799036B2 (en) Building basic structure and construction method
JP3780816B2 (en) Seismic isolation method for existing buildings
JP7106305B2 (en) Structural columns and seismically isolated buildings
JP2009144494A (en) Base-isolating work method for existing buildings
JP2006002428A (en) Reinforcing method of existing floor and base isolation method of existing building
JP4612422B2 (en) Construction method of structure and foundation structure used for it
JP4833949B2 (en) Concrete integrated structure pillar
JP2002256571A (en) Reconstructing method for building, using method for existing pile and building
JP3641227B2 (en) Construction method of underground structure
JP4634829B2 (en) Base structure of base-isolated building
KR101383817B1 (en) Top down method
JP6534026B2 (en) Seismic isolation building and its construction method
JP5378079B2 (en) Underground structure
JP2019127746A (en) Flotation inhibition structure and inverted construction method
JPH1130053A (en) Construction method of base isolation building
WO2021149266A1 (en) Building construction method
JP5852475B2 (en) Pile foundation reconstruction method
KR101255610B1 (en) Structure construction method and structure of use it
KR20110043976A (en) Top-down method using precast column and building structure thereof
KR102396786B1 (en) Underground expansion and top-down method of new building using reinforcement of existing underground outer wall
JPH09170338A (en) Base isolation method for existing building
JP6000414B2 (en) Pile foundation reconstruction method and pile foundation structure
JP6441029B2 (en) How to add underground facilities
KR20210090100A (en) In a building where the underground structure is a wall structure, the shortened construction type top down construction method and structure that enables early ground frame start using temporary transfer structures
JP4546357B2 (en) A method to renovate the underfloor part of the projecting frame of an existing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220713

R150 Certificate of patent or registration of utility model

Ref document number: 7106305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150