WO2021149266A1 - Building construction method - Google Patents

Building construction method Download PDF

Info

Publication number
WO2021149266A1
WO2021149266A1 PCT/JP2020/005366 JP2020005366W WO2021149266A1 WO 2021149266 A1 WO2021149266 A1 WO 2021149266A1 JP 2020005366 W JP2020005366 W JP 2020005366W WO 2021149266 A1 WO2021149266 A1 WO 2021149266A1
Authority
WO
WIPO (PCT)
Prior art keywords
core portion
underground
ground
constructing
columnar body
Prior art date
Application number
PCT/JP2020/005366
Other languages
French (fr)
Japanese (ja)
Inventor
貴穂 河野
全 高尾
健太郎 石井
慎行 谷
研二 山口
Original Assignee
株式会社竹中工務店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中工務店 filed Critical 株式会社竹中工務店
Publication of WO2021149266A1 publication Critical patent/WO2021149266A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/35Extraordinary methods of construction, e.g. lift-slab, jack-block
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements

Definitions

  • This disclosure relates to the construction method of the building.
  • Japanese Unexamined Patent Publication No. 2017-172262 describes a method for constructing a building in which an elevator shaft is constructed in advance and then a skeleton is constructed around the elevator shaft.
  • the elevator shaft is first constructed first, and then the skeleton is constructed sequentially from the bottom to the top. Therefore, the construction period may be longer than when the elevator shaft is not constructed in advance. In particular, when constructing a building with a basement floor, it is necessary to excavate the ground prior to the construction of the elevator shaft, so that the construction period becomes even longer.
  • This disclosure provides a method for constructing a building that can shorten the construction period when constructing a building with a core structure having a basement floor.
  • the building construction method of the first aspect includes a step of constructing a foundation on an excavated surface excavated from the ground, a step of erection of a plurality of columnar bodies forming a part of an underground core portion above the foundation, and the columnar column.
  • a step of connecting the stigmas of the body to construct a wall-shaped above-ground core portion above the columnar body, a step of constructing the above-ground skeleton around the above-ground core portion while constructing the above-ground core portion, and the above-mentioned It includes a step of constructing an underground skeleton around the columnar body while constructing the above-ground core portion, and sequentially constructing other portions of the underground core portion from the lower side to construct the wall-shaped underground core portion. ..
  • the building construction method of the first aspect first, a plurality of columnar bodies forming a part of the underground core portion are erected above the foundation. Next, the above-ground core portion is constructed using this columnar body as a support structure. Further, while constructing the above-ground core portion, the above-ground skeleton, other parts of the underground core portion, and the underground skeleton are constructed. That is, in a core structure building with a basement floor, the skeleton can be constructed at the same time. Therefore, the construction period can be shortened as compared with the case where the above-ground skeleton is sequentially constructed after the construction of the underground skeleton.
  • the columnar body that supports the above-ground core is part of the underground core. That is, the columnar body can be used as the main member. Therefore, the man-hours related to the removal can be reduced as compared with the case where the columnar body is formed by the temporary member.
  • the underground core part is constructed by separating the columnar body and other parts. Therefore, a girder for holding the retaining wall of the excavated surface can be passed between the columnar bodies until the other portion is constructed. As a result, it is possible to reduce work such as replacement and replacement of cutting beams.
  • the horizontal spacing of the girders can be narrowed as compared with the case where the girders are constructed while avoiding the entire underground core portion. Therefore, it is possible to reduce the reinforcement of the girder and the abdomen.
  • the columnar body is formed of precast concrete, and the underground core portion is formed by placing concrete between the adjacent columnar bodies. It is formed.
  • the columnar body is formed of precast concrete. Therefore, the columnar body can be started up more quickly than when it is formed of cast-in-place concrete. As a result, the effect of shortening the construction period can be enhanced.
  • the columnar body is added while constructing the above-ground core portion.
  • the building construction method of the third aspect when the weight of the above-ground core part increases with the construction of the above-ground core part, a columnar body is added.
  • the construction of the above-ground core portion can be started at the stage where the number of columnar bodies is smaller than the number of columnar bodies finally required. That is, the construction of the above-ground core portion can be started at an early stage. Therefore, the effect of shortening the construction period can be enhanced.
  • the construction period can be shortened when constructing a core structure building with a basement floor.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. 1A. It is a vertical cross-sectional view which shows the state which excavated the ground and formed the mountain retaining wall in the building construction method which concerns on embodiment of this disclosure.
  • FIG. 2 is a cross-sectional view taken along the line BB in FIG. 2A. It is a vertical cross-sectional view which shows the state which the columnar body was erected above the foundation deck in the building construction method which concerns on embodiment of this disclosure.
  • FIG. 3A is a cross-sectional view taken along the line BB in FIG. 3A.
  • FIG. 5 is a vertical cross-sectional view showing a state in which a above-ground core portion is constructed above a columnar body and an underground skeleton is constructed around the columnar body in the building construction method according to the embodiment of the present disclosure.
  • FIG. 4A is a cross-sectional view taken along the line BB in FIG. 4A.
  • FIG. 5 is a vertical cross-sectional view showing a state in which a driving portion is formed between columnar bodies and an underground core portion is sequentially constructed from the lower side in the building construction method according to the embodiment of the present disclosure. It is a vertical cross-sectional view which shows the state which added the columnar body in the building construction method which concerns on embodiment of this disclosure.
  • FIG. 5 is a vertical cross-sectional view showing a modified example of constructing a floor close to the ground prior to a floor close to the foundation deck of the underground skeleton in the building construction method according to the embodiment of the present disclosure.
  • 8A is a cross-sectional view taken along the line BB in FIG. 8A.
  • the building 10 to which the building construction method according to the embodiment of the present disclosure is applied is, for example, a center core type reinforced concrete structure (hereinafter, “RC structure (Reinforced-Concrete structure)”). It is a building of).
  • RC structure Reinforced-Concrete structure
  • the "center core type” is a structural type in which a tubular skeleton (that is, a core part) extending in the vertical direction is formed in the central part of the building. In addition to seismic elements such as seismic walls and brace, staircases, elevators, equipment piping, etc. are arranged in the core part. Further, around the core portion, an outer peripheral portion supported by the core portion is constructed.
  • an outer peripheral portion 30 is constructed around the core portion 20.
  • the core portion 20 is an RC skeleton, and includes an underground core portion 22 and an above-ground core portion 24.
  • the underground core portion 22 and the above-ground core portion 24 have the same shape in a plan view. Further, the underground core portion 22 and the above-ground core portion 24 are integrally formed.
  • a partition wall for partitioning the above-mentioned staircase, elevator, equipment piping, etc. is constructed inside the core portion 20. Further, inside the core portion 20, a slab is constructed for the user of the building 10 to walk or place a load. Further, an opening is appropriately formed in the concrete wall forming the core portion 20 so that the user of the building 10 can move between the inside and the outside of the core portion 20.
  • the outer peripheral portion 30 includes a beam 32 supported by the core portion 20 and projected from the core portion 20, a slab 34 supported by the beam 32, and an outer wall 36 supported by the slab 34. Has been done.
  • a small beam (not shown) can be hung on the beam 32. Further, the thickness of the slab 34 can be adjusted to omit the beam 32. Further, columns and walls can be appropriately constructed between the vertically adjacent beams 32 or slabs 34.
  • the outer wall 36 is formed by a curtain wall as an example.
  • This curtain wall is formed by alternately arranging a plate-shaped panel portion formed of an ALC plate or a steel plate and a vision portion formed of plate glass in the vertical direction (details are shown in the figure). omit).
  • the arrangement of the panel portion and the vision portion on the outer wall 36 is arbitrary, and for example, all of them may be the vision portion of flat glass.
  • the outer wall 36 is an outer wall arranged on the above-ground part of the building 10.
  • the outer wall of the underground portion of the building 10 is formed by the mountain retaining wall 40.
  • the mountain retaining wall 40 also serves as the outer wall of the underground portion of the building 10.
  • the beam 32, the slab 34, the outer wall 36, and other structures forming the outer peripheral portion 30 in the above-ground portion are collectively referred to as the above-ground skeleton 30A.
  • the beam 32, the slab 34, and other structures forming the outer peripheral portion 30 in the underground portion are collectively referred to as the underground skeleton 30B.
  • a mountain retaining wall 40 is formed on the ground G, and the ground G is excavated.
  • a foundation deck 12 as a pressure plate is constructed on the root cutting bottom (excavation surface GA).
  • the thickness of the foundation deck 12 is appropriately determined according to the groundwater pressure of the ground G and the like.
  • the foundation floor slab 12 may be a mat slab or a floor slab combined with a foundation beam.
  • a plurality of girders 42 are laid between the mountain retaining walls 40 facing each other.
  • An abdomen (not shown) is appropriately arranged between the mountain retaining wall 40 and the girder 42 so that the reaction force from the girder 42 is not locally concentrated.
  • a plurality of cutting beams 42 are arranged in the vertical direction. Further, as shown in FIG. 2B, a plurality of cutting beams 42 are provided along the respective directions (X direction and Y direction) in which the sides of the mountain retaining wall 40 formed in a rectangular frame shape in a plan view face each other. Be placed.
  • the distance between the girders 42 is appropriately determined by the span of the retaining walls 40 facing each other, the excavation depth of the ground G, the water pressure, and the like.
  • the columnar body 22A is a wall column (in other words, a flat column formed in a rectangular wall shape) forming a part of the underground core portion 22.
  • the columnar body 22A is formed of precast concrete and is fixed to the foundation deck 12 using anchor bolts or the like.
  • the columnar body 22A may be integrally formed by the length extending from the upper surface of the foundation deck 12 to the ground surface GL at the factory, or may be formed by dividing the columnar body 22A. When it is formed by dividing it, the divided members are joined to each other at the site for construction. Since the columnar body 22A is constructed prior to the underground skeleton 30B (see FIG. 1A), it cannot be fixed to the underground skeleton 30B. Therefore, it is preferable to appropriately use a wire support WS or the like in order to suppress the columnar body 22A from falling and to prevent it from falling.
  • the columnar bodies 22A are arranged apart from each other. Further, the columnar body 22A is arranged at a position where the underground core portion 22 shown by the broken line in FIG. 3B is formed. Further, the thickness d1 (thickness of the portion along the X direction) and d2 (thickness of the portion along the Y direction) of the columnar body 22A substantially coincide with the thickness of the underground core portion 22.
  • the columnar body 22A is arranged between the cutting beams 42 adjacent to each other.
  • the girder 42 is arranged so as to avoid the position of the columnar body 22A constructed after the girder 42 is installed.
  • the girders 42 are arranged adjacent to each other and between the columnar bodies 22A forming the underground core portion 22.
  • the stigmas of the columnar body 22A are connected to construct a wall-shaped above-ground core portion 24 above the columnar body 22A.
  • the ground core portion 24 is constructed by the sliding foam method as an example.
  • the concrete skeleton is constructed sequentially from the bottom to the top while joining concrete to the formwork that can slide in the vertical direction. It is assumed that the above-ground core portion 24 is formed at least above the uppermost cutting beam 42.
  • reinforcing reinforcing bars are arranged inside the portion to be constructed first, that is, the connecting portion 24A connecting the stigmas of the columnar body 22A.
  • the reinforcing bars are arranged to support the load of the above-ground core portion 24.
  • the planar shape of the connecting portion 24A shown in FIG. 4B is substantially the same as the planar shape of the underground core portion 22 constructed later (see FIG. 3B).
  • a laminated portion 24B is constructed above the connecting portion 24A.
  • the laminated portion 24B is formed by, for example, simultaneously placing concrete having a height of three layers of the building 10.
  • the above-ground skeleton 30A is constructed around the above-ground core portion 24.
  • the above-ground skeleton 30A includes at least one of the beam 32 and the slab 34 as described above. Further, the above-ground skeleton 30A may include other structures (for example, columns and partition walls).
  • the underground skeleton 30B is constructed around the columnar body 22A while constructing the above-ground core portion 24.
  • the underground skeleton 30B includes at least one of the beam 32 and the slab 34 as described above. Further, the underground skeleton 30B may include other structures (for example, columns and partition walls 38).
  • “while constructing the above-ground core portion 24” includes an embodiment of “while constructing the connecting portion 24A in the above-ground core portion 24". It also includes an embodiment of “after constructing the connecting portion 24A and before constructing the laminated portion 24B". Further, it includes an embodiment of "while constructing the laminated portion 24B after constructing the connecting portion 24A”.
  • the girder 42 is removed in parallel with the construction of the underground skeleton 30B and the formation of the driving portion 22B.
  • the earth pressure acting on the mountain retaining wall 40 from the ground G is transferred from the girder 42 to the underground skeleton 30B and the underground core portion 22. .. Therefore, the deformation of the mountain retaining wall 40 due to the removal of the girder 42 can be suppressed.
  • a portion other than the portion where the columnar body 22A is constructed is formed "at the same time".
  • the heights formed at the same time are, for example, the heights of one to two layers of the building 10.
  • the girder 42 is removed prior to the placement of the concrete forming the driving portion 22B.
  • a portion other than the portion in which the columnar body 22A is constructed is formed "sequentially".
  • the cutting beam 42 is removed in a plurality of times, and the driving portion 22B is formed from the removed portion.
  • the cutting beam 42A shown in FIG. 3B is first removed to form a driving portion 22B in a portion through which the cutting beam 42A passes.
  • the cutting beam 42B is removed to form a driving portion 22B in the portion through which the cutting beam 42B passes.
  • the underground skeleton 30B is constructed while constructing the above-ground core portion 24 (see FIGS. 4A and 5A). Then, in parallel with the construction of the underground skeleton 30B, the wall-shaped underground core portion 22 is sequentially constructed from the lower side (see FIG. 5A).
  • a columnar body can be added while constructing the above-ground core portion 24.
  • the columnar bodies 22C are added between the columnar bodies 22A adjacent to each other from the upper surface of the foundation deck 12 to the lower surface of the connecting portion 24A in the ground core portion 24.
  • the columnar body 24C can be formed so as to fill the space between the columnar bodies 22A adjacent to each other as shown in this figure. In this case, a wall column in which the columnar body 24C and the columnar body 22A are integrated is formed. Alternatively, the columnar body 24C can be formed with a gap from the columnar body 22A adjacent to each other.
  • FIG. 3A first, a plurality of columnar bodies 22A forming a part of the underground core portion 22 are erected above the foundation deck 12.
  • the above-ground core portion 24 is constructed with the columnar body 22A as a support structure.
  • the above-ground skeleton 30A, the other portion of the underground core portion 22 (casting portion 22B), and the underground skeleton 30B are constructed. That is, in the core structure building 10 having the basement floor, the above-ground skeleton 30A and the underground skeleton 30B can be constructed at the same time. Therefore, the construction period of the building 10 can be shortened as compared with the case where the above-ground skeleton 30A is sequentially constructed after the construction of the underground skeleton 30B.
  • the columnar body 22A supporting the above-ground core portion 24 is a part of the underground core portion 22. That is, the columnar body 22A can be used as the main member. Therefore, the man-hours related to the removal can be reduced as compared with the case where the columnar body 22A is formed by the temporary member.
  • the underground core portion 22 is constructed by separating the columnar body 22A and another portion (casting portion 22B). Therefore, the cutting beam 42 for holding the retaining wall 40 can be passed between the columnar bodies 22A until the driving portion 22B is constructed. As a result, it is possible to reduce the work such as replacement and replacement of the cutting beam 42. Further, the horizontal spacing of the cutting beams 42 can be narrowed as compared with the case where the cutting beams 42 are constructed while avoiding the entire underground core portion 22. Therefore, it is possible to reduce the reinforcement of the girder 42 and the abdomen.
  • the columnar body 22A is formed of precast concrete. Therefore, the columnar body 22A can be started up more quickly than when it is formed of cast-in-place concrete. As a result, the construction period can be shortened.
  • the building construction method according to the present embodiment as shown in FIG. 5B, when the weight of the above-ground core portion 24 increases with the construction of the above-ground core portion 24, the columnar body 22C is added. As a result, the construction of the above-ground core portion 24 can be started at the stage where the number of columns is smaller than the number of columns finally required to support the weight of the above-ground core portion 24. That is, the construction of the above-ground core portion 24 can be started at an early stage. Therefore, the construction period can be shortened.
  • the columnar body 22A is a flat column formed in a rectangular wall shape.
  • the embodiments of the present disclosure are not limited to this.
  • the columnar body may have a substantially L-shape (in other words, a shape having a bent portion) to form a corner portion of the underground core portion 22, as in the columnar body 22D shown in FIG. 6A. Since the columnar body 22D formed in this way is easier to stand on its own than the columnar body 22A, the wire support can be simplified.
  • the thickness d1 (thickness of the columnar body 22A along the X direction) and d2 (thickness of the columnar body 22A along the Y direction) of the columnar body 22A substantially coincide with the thickness of the underground core portion 22.
  • the embodiments of the present disclosure are not limited to this.
  • the columnar body may be thinner than the thickness in the underground core portion 22 as in the columnar body 22E shown in FIG. 6B. As a result, the weight per columnar body is reduced, so that transportation and workability are improved.
  • the columnar body may be formed of a steel frame material such as an H-shaped steel or a square steel pipe as in the columnar body 22F shown in FIG. 6C.
  • a steel frame material such as an H-shaped steel or a square steel pipe as in the columnar body 22F shown in FIG. 6C.
  • the columnar body may be formed using cast-in-place concrete.
  • cast-in-place concrete it is possible to reduce the transportation work from the factory and the lifting work with a crane.
  • the building 10 to which the building construction method according to the present embodiment is applied is a center core type building, but the embodiment of the present disclosure is not limited to this.
  • the building 10 may be a building having cores at both ends and an eccentric core.
  • the method described in the present disclosure can also be applied to the method for forming the core in this case.
  • the outer wall of the underground portion of the building 10 is formed by the mountain retaining wall 40, but the embodiment of the present disclosure is not limited to this.
  • the outer wall of the underground portion of the building 10 may be constructed separately, and this outer wall may be arranged apart from the mountain retaining wall 40. In this case, it is preferable to reinforce the mountain retaining wall by using an earth anchor or the like.
  • the underground skeleton 30B is constructed in order from the floor closest to the foundation deck 12 (that is, from the lower floor to the upper floor).
  • the embodiments of the present disclosure are not limited to this.
  • a floor close to the ground for example, the first basement floor
  • a floor close to the foundation deck 12 for example, the second basement floor shown by the alternate long and short dash line in FIG. 7 is constructed. May be good.
  • the slab 34 on the first floor is constructed, and then the underground skeleton 30B (for example, the first basement floor and the second basement floor shown by the two-dot chain line in FIG. 8 (A)) is constructed. You may.
  • the slab 34 on the first floor constructed prior to the underground skeleton 30B can be used as a work floor.
  • a columnar body 50 as a gantry pile supporting the slab 34 is constructed before the slab 34 on the first floor is constructed.
  • the columnar body 50 can be formed of a steel material such as H-shaped steel or a precast concrete column. Further, the columnar body 50 can be used as a main pillar. At this time, the columnar body 50 as the gantry pile may be used as it is as the main pillar, or may be covered with cast-in-place concrete.
  • Such a columnar body 50 is a case where a floor close to the ground (for example, the first basement floor) is constructed prior to the floor close to the foundation deck 12 (for example, the second basement floor) as in the embodiment shown in FIG. It can also be applied in.
  • the building 10 is made of RC, the embodiment of the present disclosure is not limited to this.
  • the building 10 may be a steel-framed reinforced concrete structure or a steel-framed structure.
  • the present disclosure can be implemented in various aspects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

This building construction method comprises: a step for constructing a foundation on an excavation surface obtained by excavating a ground; a step for erecting, above the foundation, a plurality of columnar bodies constituting a part of an underground core part; a step for connecting the capitals of the columnar bodies to construct a wall-shaped aboveground core part above the columnar bodies; a step for constructing an aboveground framework around the aboveground core part while constructing the aboveground core part; and a step for, while constructing the aboveground core part, constructing an underground framework around the columnar bodies, and constructing other parts of the underground core part in order from the lower side to construct a wall-shaped underground core part.

Description

建物の構築方法How to build a building
 本開示は、建物の構築方法に関する。 This disclosure relates to the construction method of the building.
 特開2017-172262号公報には、エレベーターシャフトを先行して構築してから、周囲に躯体を構築する建物の構築方法が記載されている。 Japanese Unexamined Patent Publication No. 2017-172262 describes a method for constructing a building in which an elevator shaft is constructed in advance and then a skeleton is constructed around the elevator shaft.
 特開2017-172262号公報に示された建物の構築方法では、まずエレベーターシャフトを先行して構築し、次いで、下方から上方に躯体を順次構築する。このため、エレベーターシャフトを先行して構築しない場合と比較して、工期が長くなる可能性がある。特に、地下階を備えた建物を構築する場合は、エレベーターシャフトの構築に先行して地盤を掘削する必要があるため、さらに工期が長くなる。 In the building construction method shown in JP-A-2017-172262, the elevator shaft is first constructed first, and then the skeleton is constructed sequentially from the bottom to the top. Therefore, the construction period may be longer than when the elevator shaft is not constructed in advance. In particular, when constructing a building with a basement floor, it is necessary to excavate the ground prior to the construction of the elevator shaft, so that the construction period becomes even longer.
 本開示は、地下階を備えたコア構造の建物を構築する際に、工期を短縮できる建物の構築方法を提供する。 This disclosure provides a method for constructing a building that can shorten the construction period when constructing a building with a core structure having a basement floor.
 第1態様の建物の構築方法は、地盤を掘削した掘削面に基礎を構築する工程と、前記基礎の上方に地下コア部の一部を構成する柱状体を複数立設する工程と、前記柱状体の柱頭を連結して前記柱状体の上方に壁状の地上コア部を構築する工程と、前記地上コア部を構築しながら、前記地上コア部の周囲に地上躯体を構築する工程と、前記地上コア部を構築しながら、前記柱状体の周囲に地下躯体を構築し、前記地下コア部の他部を下側から順次構築して壁状の前記地下コア部を構築する工程と、を備える。 The building construction method of the first aspect includes a step of constructing a foundation on an excavated surface excavated from the ground, a step of erection of a plurality of columnar bodies forming a part of an underground core portion above the foundation, and the columnar column. A step of connecting the stigmas of the body to construct a wall-shaped above-ground core portion above the columnar body, a step of constructing the above-ground skeleton around the above-ground core portion while constructing the above-ground core portion, and the above-mentioned It includes a step of constructing an underground skeleton around the columnar body while constructing the above-ground core portion, and sequentially constructing other portions of the underground core portion from the lower side to construct the wall-shaped underground core portion. ..
 第1態様の建物の構築方法では、まず基礎の上方に地下コア部の一部を構成する柱状体が複数立設される。次いで、この柱状体を支持構造として地上コア部が構築される。さらに、地上コア部を構築しながら地上躯体、地下コア部の他部及び地下躯体が構築される。すなわち、地下階を備えたコア構造の建物において、躯体を同時に構築できる。このため地下躯体の構築後に地上躯体を順次構築する場合と比較して、工期を短縮できる。 In the building construction method of the first aspect, first, a plurality of columnar bodies forming a part of the underground core portion are erected above the foundation. Next, the above-ground core portion is constructed using this columnar body as a support structure. Further, while constructing the above-ground core portion, the above-ground skeleton, other parts of the underground core portion, and the underground skeleton are constructed. That is, in a core structure building with a basement floor, the skeleton can be constructed at the same time. Therefore, the construction period can be shortened as compared with the case where the above-ground skeleton is sequentially constructed after the construction of the underground skeleton.
 また、地上コア部を支持する柱状体は地下コア部の一部である。すなわち柱状体を本設部材として利用できる。このため仮設部材で柱状体を形成する場合と比較して、撤去に係る工数を削減できる。 Also, the columnar body that supports the above-ground core is part of the underground core. That is, the columnar body can be used as the main member. Therefore, the man-hours related to the removal can be reduced as compared with the case where the columnar body is formed by the temporary member.
 さらに、地下コア部は、柱状体と他の部分とが分けて構築される。このため、他の部分が構築されるまでの間、柱状体の間に掘削面の山留壁を保持する切梁を通すことができる。これにより切梁の請け替え、盛替えなどの作業を削減できる。また、地下コア部全体を避けて切梁を施工する場合と比較して、切梁の水平間隔を狭くできる。このため、切梁や腹起しの補強を削減できる。 Furthermore, the underground core part is constructed by separating the columnar body and other parts. Therefore, a girder for holding the retaining wall of the excavated surface can be passed between the columnar bodies until the other portion is constructed. As a result, it is possible to reduce work such as replacement and replacement of cutting beams. In addition, the horizontal spacing of the girders can be narrowed as compared with the case where the girders are constructed while avoiding the entire underground core portion. Therefore, it is possible to reduce the reinforcement of the girder and the abdomen.
 第2態様の建物の構築方法は、第1態様の建物の構築方法において、前記柱状体はプレキャストコンクリートで形成され、前記地下コア部は、隣接する前記柱状体の間にコンクリートを打設して形成される。 In the method of constructing the building of the second aspect, in the method of constructing the building of the first aspect, the columnar body is formed of precast concrete, and the underground core portion is formed by placing concrete between the adjacent columnar bodies. It is formed.
 第2態様の建物の構築方法によると、柱状体がプレキャストコンクリートで形成されている。このため、柱状体は、現場打ちコンクリートで形成されている場合と比較して、速やかに立ち上げることができる。これにより工期を短縮する効果を高くできる。 According to the building construction method of the second aspect, the columnar body is formed of precast concrete. Therefore, the columnar body can be started up more quickly than when it is formed of cast-in-place concrete. As a result, the effect of shortening the construction period can be enhanced.
 第3態様の建物の構築方法は、第1態様又は第2態様の建物の構築方法において、前記地上コア部を構築しながら前記柱状体を増設する。 In the method of constructing the building of the third aspect, in the method of constructing the building of the first aspect or the second aspect, the columnar body is added while constructing the above-ground core portion.
 第3態様の建物の構築方法によると、地上コア部の構築に伴って地上コア部の重量が大きくなった場合に、柱状体を増設する。これにより、最終的に必要な柱状体の数より少ない数の柱状体を構築した段階で、地上コア部の施工を開始できる。すなわち、地上コア部の施工を早期に開始できる。したがって、工期を短縮する効果を高くできる。 According to the building construction method of the third aspect, when the weight of the above-ground core part increases with the construction of the above-ground core part, a columnar body is added. As a result, the construction of the above-ground core portion can be started at the stage where the number of columnar bodies is smaller than the number of columnar bodies finally required. That is, the construction of the above-ground core portion can be started at an early stage. Therefore, the effect of shortening the construction period can be enhanced.
 本開示によると、地下階を備えたコア構造の建物を構築する際に工期を短縮できる。 According to this disclosure, the construction period can be shortened when constructing a core structure building with a basement floor.
本開示の実施形態に係る建物の構築方法によって建設された建物を示す立断面図である。It is a vertical cross-sectional view which shows the building constructed by the construction method of the building which concerns on embodiment of this disclosure. 図1AにおけるB-B線断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 1A. 本開示の実施形態に係る建物の構築方法において地盤を掘削して山留壁を形成した状態を示す立断面図である。It is a vertical cross-sectional view which shows the state which excavated the ground and formed the mountain retaining wall in the building construction method which concerns on embodiment of this disclosure. 図2AにおけるB-B線断面図である。FIG. 2 is a cross-sectional view taken along the line BB in FIG. 2A. 本開示の実施形態に係る建物の構築方法において基礎床版の上方に柱状体を立設した状態を示す立断面図である。It is a vertical cross-sectional view which shows the state which the columnar body was erected above the foundation deck in the building construction method which concerns on embodiment of this disclosure. 図3AにおけるB-B線断面図である。FIG. 3A is a cross-sectional view taken along the line BB in FIG. 3A. 本開示の実施形態に係る建物の構築方法において柱状体の上方に地上コア部を構築し、柱状体の周囲に地下躯体を構築した状態を示す立断面図である。FIG. 5 is a vertical cross-sectional view showing a state in which a above-ground core portion is constructed above a columnar body and an underground skeleton is constructed around the columnar body in the building construction method according to the embodiment of the present disclosure. 図4AにおけるB-B線断面図である。FIG. 4A is a cross-sectional view taken along the line BB in FIG. 4A. 本開示の実施形態に係る建物の構築方法において柱状体の間に打設部を形成して、下側から順次地下コア部を構築している状態を示す立断面図である。FIG. 5 is a vertical cross-sectional view showing a state in which a driving portion is formed between columnar bodies and an underground core portion is sequentially constructed from the lower side in the building construction method according to the embodiment of the present disclosure. 本開示の実施形態に係る建物の構築方法において柱状体を増設した状態を示す立断面図である。It is a vertical cross-sectional view which shows the state which added the columnar body in the building construction method which concerns on embodiment of this disclosure. 本開示の実施形態に係る建物の構築方法において柱状体を略L字状に形成した変形例を示す平面図である。It is a top view which shows the modification which formed the columnar body in a substantially L shape in the building construction method which concerns on embodiment of this disclosure. 本開示の実施形態に係る建物の構築方法において柱状体を地下コア部の厚みより薄く形成した変形例を示す平面図である。It is a top view which shows the modification which formed the columnar body thinner than the thickness of the underground core part in the building construction method which concerns on embodiment of this disclosure. 本開示の実施形態に係る建物の構築方法において柱状体をH形鋼で形成した変形例を示す平面図である。It is a top view which shows the modification which formed the columnar body with H-shaped steel in the building construction method which concerns on embodiment of this disclosure. 本開示の実施形態に係る建物の構築方法において地下躯体の基礎床版に近い階に先行して地上に近い階を構築する変形例を示す立断面図である。FIG. 5 is a vertical cross-sectional view showing a modified example of constructing a floor close to the ground prior to a floor close to the foundation deck of the underground skeleton in the building construction method according to the embodiment of the present disclosure. 本開示の実施形態に係る建物の構築方法において地下躯体に先行して1階スラブを構築する変形例を示す立断面図である。It is a vertical cross-sectional view which shows the modification which constructs the 1st floor slab prior to the underground skeleton in the building construction method which concerns on embodiment of this disclosure. 図8AにおけるB-B線断面図である。8A is a cross-sectional view taken along the line BB in FIG. 8A.
 以下、本開示の実施形態に係る建物の構築方法について、図面を参照しながら説明する。各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。明細書中に特段の断りが無い限り、各構成要素は一つに限定されず、複数存在してもよい。また、各図面において重複する構成及び符号については、説明を省略する場合がある。なお、本開示は以下の実施形態に限定されるものではなく、本開示の目的の範囲内において構成を省略する又は異なる構成と入れ替える等、適宜変更を加えて実施することができる。 Hereinafter, the method of constructing the building according to the embodiment of the present disclosure will be described with reference to the drawings. The components shown by using the same reference numerals in each drawing mean that they are the same components. Unless otherwise specified in the specification, each component is not limited to one, and a plurality of components may exist. In addition, description of overlapping configurations and symbols in the drawings may be omitted. The present disclosure is not limited to the following embodiments, and may be carried out with appropriate changes such as omitting the configuration or replacing it with a different configuration within the scope of the purpose of the present disclosure.
<建物>
 図1A、図1Bに示すように、本開示の実施形態における建物の構築方法が適用される建物10は、一例として、センターコア形式の鉄筋コンクリート造(以下、「RC造(Reinforced-Concrete造)」と称す)の建築物である。
<Building>
As shown in FIGS. 1A and 1B, the building 10 to which the building construction method according to the embodiment of the present disclosure is applied is, for example, a center core type reinforced concrete structure (hereinafter, “RC structure (Reinforced-Concrete structure)”). It is a building of).
 「センターコア形式」とは、建物の中央部分に、上下方向に延設された筒状の躯体(すなわちコア部)を形成した構造形式である。コア部には、耐震壁や耐震ブレースなどの耐震要素の他、階段室、エレベータ、設備配管などが配置される。また、コア部の周囲には、コア部に支持された外周部が構築される。 The "center core type" is a structural type in which a tubular skeleton (that is, a core part) extending in the vertical direction is formed in the central part of the building. In addition to seismic elements such as seismic walls and brace, staircases, elevators, equipment piping, etc. are arranged in the core part. Further, around the core portion, an outer peripheral portion supported by the core portion is constructed.
 建物10においては、コア部20の周囲に外周部30が構築されている。コア部20はRC造の躯体であり、地下コア部22と地上コア部24とを含んで構成されている。地下コア部22と地上コア部24とは、平面視で同形状とされている。また、地下コア部22と地上コア部24とは、一体的に形成されている。 In the building 10, an outer peripheral portion 30 is constructed around the core portion 20. The core portion 20 is an RC skeleton, and includes an underground core portion 22 and an above-ground core portion 24. The underground core portion 22 and the above-ground core portion 24 have the same shape in a plan view. Further, the underground core portion 22 and the above-ground core portion 24 are integrally formed.
 なお、図1A、図1Bには図示が省略されているが、コア部20の内部には、上述した階段室、エレベータ、設備配管などを区画するための間仕切り壁が構築されている。また、コア部20の内部には、建物10の利用者が歩行したり積載物を載置したりするためのスラブが構築されている。また、コア部20を形成するコンクリート壁には、建物10の利用者がコア部20の内部と外部とを往来できるように、開口部が適宜形成されている。 Although not shown in FIGS. 1A and 1B, a partition wall for partitioning the above-mentioned staircase, elevator, equipment piping, etc. is constructed inside the core portion 20. Further, inside the core portion 20, a slab is constructed for the user of the building 10 to walk or place a load. Further, an opening is appropriately formed in the concrete wall forming the core portion 20 so that the user of the building 10 can move between the inside and the outside of the core portion 20.
 外周部30は、一例として、コア部20に支持されてコア部20から跳ね出した梁32と、梁32に支持されたスラブ34と、スラブ34に支持された外壁36と、を含んで構成されている。 As an example, the outer peripheral portion 30 includes a beam 32 supported by the core portion 20 and projected from the core portion 20, a slab 34 supported by the beam 32, and an outer wall 36 supported by the slab 34. Has been done.
 なお、梁32には、図示しない小梁を架け渡すことができる。また、スラブ34の厚みを調整して梁32を省略することもできる。さらに、上下に隣接する梁32又はスラブ34の間には、柱及び壁体を適宜構築することができる。 A small beam (not shown) can be hung on the beam 32. Further, the thickness of the slab 34 can be adjusted to omit the beam 32. Further, columns and walls can be appropriately constructed between the vertically adjacent beams 32 or slabs 34.
 外壁36は、一例として、カーテンウォールによって形成されている。このカーテンウォールは、ALC板や鋼板などを用いて形成された板状のパネル部と、板ガラスで形成されたビジョン部と、が上下方向に交互に配置されて形成されている(詳細の図示は省略)。なお、外壁36におけるパネル部及びビジョン部の配置は任意であり、例えば全て板ガラスのビジョン部としてもよい。 The outer wall 36 is formed by a curtain wall as an example. This curtain wall is formed by alternately arranging a plate-shaped panel portion formed of an ALC plate or a steel plate and a vision portion formed of plate glass in the vertical direction (details are shown in the figure). omit). The arrangement of the panel portion and the vision portion on the outer wall 36 is arbitrary, and for example, all of them may be the vision portion of flat glass.
 外壁36は建物10の地上部分に配置された外壁である。一方、建物10の地下部分の外壁は、山留壁40によって形成されている。換言すると、山留壁40は建物10における地下部分の外壁を兼ねている。 The outer wall 36 is an outer wall arranged on the above-ground part of the building 10. On the other hand, the outer wall of the underground portion of the building 10 is formed by the mountain retaining wall 40. In other words, the mountain retaining wall 40 also serves as the outer wall of the underground portion of the building 10.
 以下の説明においては、地上部分における外周部30を形成する梁32、スラブ34、外壁36及びその他の構造物を総称して地上躯体30Aと称す。また、地下部分における外周部30を形成する梁32、スラブ34その他の構造物を総称して地下躯体30Bと称す。 In the following description, the beam 32, the slab 34, the outer wall 36, and other structures forming the outer peripheral portion 30 in the above-ground portion are collectively referred to as the above-ground skeleton 30A. Further, the beam 32, the slab 34, and other structures forming the outer peripheral portion 30 in the underground portion are collectively referred to as the underground skeleton 30B.
<建物の構築方法>
 建物10の構築方法を、図2A~図5Bを用いて説明する。
<How to build a building>
The construction method of the building 10 will be described with reference to FIGS. 2A to 5B.
(地盤の掘削)
 建物10を構築するには、まず、図2Aに示すように、地盤Gに山留壁40を形成し、地盤Gを掘削する。また、根切り底(掘削面GA)に耐圧板としての基礎床版12を構築する。基礎床版12の厚みは、地盤Gの地下水圧等に応じて適宜決定する。なお、基礎床版12はマットスラブとしてもよく、あるいは基礎梁と組み合わせた床版としてもよい。
(Excavation of the ground)
To construct the building 10, first, as shown in FIG. 2A, a mountain retaining wall 40 is formed on the ground G, and the ground G is excavated. In addition, a foundation deck 12 as a pressure plate is constructed on the root cutting bottom (excavation surface GA). The thickness of the foundation deck 12 is appropriately determined according to the groundwater pressure of the ground G and the like. The foundation floor slab 12 may be a mat slab or a floor slab combined with a foundation beam.
 なお、地盤Gの掘削に際し、互いに対向する山留壁40の間には複数の切梁42を架け渡す。山留壁40と切梁42との間には、切梁42からの反力が局部的に集中しないように、腹起し(図示略)を適宜配置する。 When excavating the ground G, a plurality of girders 42 are laid between the mountain retaining walls 40 facing each other. An abdomen (not shown) is appropriately arranged between the mountain retaining wall 40 and the girder 42 so that the reaction force from the girder 42 is not locally concentrated.
 図2Aに示すように、切梁42は、上下方向に複数本配置される。また、図2Bに示すように、切梁42は、平面視で矩形の枠状に形成された山留壁40の各辺が対向するそれぞれの方向(X方向及びY方向)に沿って複数本配置される。 As shown in FIG. 2A, a plurality of cutting beams 42 are arranged in the vertical direction. Further, as shown in FIG. 2B, a plurality of cutting beams 42 are provided along the respective directions (X direction and Y direction) in which the sides of the mountain retaining wall 40 formed in a rectangular frame shape in a plan view face each other. Be placed.
 なお、切梁42の間隔は、互いに対向する山留壁40のスパン、地盤Gの掘削深さ、水圧等によって適宜決定される。 The distance between the girders 42 is appropriately determined by the span of the retaining walls 40 facing each other, the excavation depth of the ground G, the water pressure, and the like.
(柱状体の立設)
 次に、図3A、図3Bに示すように、基礎床版12の上方に、地下コア部22の一部を構成する柱状体22Aを複数立設する。柱状体22Aは地下コア部22の一部を形成する壁柱(換言すると長方形の壁状に形成された扁平柱)である。柱状体22Aはプレキャストコンクリートによって形成され、基礎床版12にアンカーボルト等を用いて固定される。
(Standing of columnar body)
Next, as shown in FIGS. 3A and 3B, a plurality of columnar bodies 22A forming a part of the underground core portion 22 are erected above the foundation deck 12. The columnar body 22A is a wall column (in other words, a flat column formed in a rectangular wall shape) forming a part of the underground core portion 22. The columnar body 22A is formed of precast concrete and is fixed to the foundation deck 12 using anchor bolts or the like.
 柱状体22Aは、工場において、基礎床版12の上面から地盤面GLに亘る長さ分を一体的に形成してもよいし、分割して形成してもよい。分割して形成する場合は、分割された部材同士を現場で接合しながら施工する。柱状体22Aは、地下躯体30B(図1A参照)に先行して施工されるため、地下躯体30Bに固定することができない。このため、柱状体22Aの倒れ抑制及び振れ止めのため、適宜ワイヤーサポートWS等を用いることが好適である。 The columnar body 22A may be integrally formed by the length extending from the upper surface of the foundation deck 12 to the ground surface GL at the factory, or may be formed by dividing the columnar body 22A. When it is formed by dividing it, the divided members are joined to each other at the site for construction. Since the columnar body 22A is constructed prior to the underground skeleton 30B (see FIG. 1A), it cannot be fixed to the underground skeleton 30B. Therefore, it is preferable to appropriately use a wire support WS or the like in order to suppress the columnar body 22A from falling and to prevent it from falling.
 図3Bに示すように、柱状体22Aは、互いに離間して配置される。また、柱状体22Aは、図3Bに破線で示す地下コア部22が形成される位置上に配置される。さらに、柱状体22Aの厚みd1(X方向に沿う部分の厚み)、d2(Y方向に沿う部分の厚み)は、地下コア部22の厚みと略一致している。 As shown in FIG. 3B, the columnar bodies 22A are arranged apart from each other. Further, the columnar body 22A is arranged at a position where the underground core portion 22 shown by the broken line in FIG. 3B is formed. Further, the thickness d1 (thickness of the portion along the X direction) and d2 (thickness of the portion along the Y direction) of the columnar body 22A substantially coincide with the thickness of the underground core portion 22.
 また、柱状体22Aは、互いに隣り合う切梁42の間に配置される。換言すると、切梁42は、切梁42の設置後に構築される柱状体22Aの位置を避けて配置される。さらに換言すると、切梁42は、互いに隣り合い、かつ、地下コア部22を形成する柱状体22Aの間に配置される。 Further, the columnar body 22A is arranged between the cutting beams 42 adjacent to each other. In other words, the girder 42 is arranged so as to avoid the position of the columnar body 22A constructed after the girder 42 is installed. In other words, the girders 42 are arranged adjacent to each other and between the columnar bodies 22A forming the underground core portion 22.
(地上コア部の構築)
 次に、図4A、図4Bに示すように、柱状体22Aの柱頭を連結して、柱状体22Aの上方に壁状の地上コア部24を構築する。地上コア部24は、一例として、スライディングフォーム工法によって構築される。スライディングフォーム工法では、上下方向に滑動可能な型枠にコンクリートを打ち継ぎながら下方から上方へ順次コンクリート躯体を構築する。なお、地上コア部24は、少なくとも最上部の切梁42より上方に形成されるものとする。
(Construction of ground core part)
Next, as shown in FIGS. 4A and 4B, the stigmas of the columnar body 22A are connected to construct a wall-shaped above-ground core portion 24 above the columnar body 22A. The ground core portion 24 is constructed by the sliding foam method as an example. In the sliding foam method, the concrete skeleton is constructed sequentially from the bottom to the top while joining concrete to the formwork that can slide in the vertical direction. It is assumed that the above-ground core portion 24 is formed at least above the uppermost cutting beam 42.
 地上コア部24において、最初に施工される部分、すなわち柱状体22Aの柱頭を連結する連結部24Aの内部には、図示しない補強鉄筋が配筋される。この補強鉄筋は、地上コア部24の荷重を支持するために配筋される。また、図4Bに示す連結部24Aの平面形状は、後に構築される地下コア部22の平面形状(図3B参照)と略同形状とされる。 In the ground core portion 24, reinforcing reinforcing bars (not shown) are arranged inside the portion to be constructed first, that is, the connecting portion 24A connecting the stigmas of the columnar body 22A. The reinforcing bars are arranged to support the load of the above-ground core portion 24. Further, the planar shape of the connecting portion 24A shown in FIG. 4B is substantially the same as the planar shape of the underground core portion 22 constructed later (see FIG. 3B).
 連結部24Aの上方には、図5Aに示すように、積層部24Bが構築される。積層部24Bは、例えば建物10の3層分の高さのコンクリートを同時に打設することで形成される。 As shown in FIG. 5A, a laminated portion 24B is constructed above the connecting portion 24A. The laminated portion 24B is formed by, for example, simultaneously placing concrete having a height of three layers of the building 10.
 また、積層部24Bを構築しながら、すなわち地上コア部24を構築しながら、地上コア部24の周囲に地上躯体30Aを構築する。地上躯体30Aは、上述したように梁32及びスラブ34の少なくとも一つを含んで構成されている。また、地上躯体30Aは、その他の構造物(例えば柱や間仕切壁)を備えていてもよい。 Further, while constructing the laminated portion 24B, that is, while constructing the above-ground core portion 24, the above-ground skeleton 30A is constructed around the above-ground core portion 24. The above-ground skeleton 30A includes at least one of the beam 32 and the slab 34 as described above. Further, the above-ground skeleton 30A may include other structures (for example, columns and partition walls).
 なお、地上コア部24と梁32又はスラブ34との接合には、あと施工アンカーを用いることが好適である。 It is preferable to use post-installed anchors for joining the above-ground core portion 24 to the beam 32 or the slab 34.
(地下躯体の構築)
 図4Aに示すように、地上コア部24を構築しながら、柱状体22Aの周囲に地下躯体30Bを構築する。地下躯体30Bは、上述したように梁32及びスラブ34の少なくとも一つを含んで構成されている。また、地下躯体30Bは、その他の構造物(例えば柱や間仕切壁38)を備えていてもよい。
(Construction of underground skeleton)
As shown in FIG. 4A, the underground skeleton 30B is constructed around the columnar body 22A while constructing the above-ground core portion 24. The underground skeleton 30B includes at least one of the beam 32 and the slab 34 as described above. Further, the underground skeleton 30B may include other structures (for example, columns and partition walls 38).
 ここで、「地上コア部24を構築しながら」とは、「地上コア部24における連結部24Aを構築しながら」という実施形態を含む。また、「連結部24Aを構築した後、積層部24Bを構築する前」という実施形態を含む。さらに、「連結部24Aを構築した後、積層部24Bを構築しながら」という実施形態を含む。 Here, "while constructing the above-ground core portion 24" includes an embodiment of "while constructing the connecting portion 24A in the above-ground core portion 24". It also includes an embodiment of "after constructing the connecting portion 24A and before constructing the laminated portion 24B". Further, it includes an embodiment of "while constructing the laminated portion 24B after constructing the connecting portion 24A".
(地下コア部の構築)
 また、地下躯体30Bの構築に並行して、互いに隣接する柱状体22Aの間にコンクリートを打設する(打設部22B)。コンクリートは、下方から順次打設する。すなわち、地下コア部22の「一部」を構成する柱状体22Aの間に、下側から順次コンクリートを打設して、地下コア部22の「他部」である打設部22Bを形成する。これにより、壁状の地下コア部22が、下側から順次構築される。
(Construction of underground core part)
Further, in parallel with the construction of the underground skeleton 30B, concrete is placed between the columnar bodies 22A adjacent to each other (casting portion 22B). Concrete will be poured sequentially from the bottom. That is, concrete is sequentially cast from the lower side between the columnar bodies 22A constituting the "part" of the underground core portion 22 to form the casting portion 22B which is the "other portion" of the underground core portion 22. .. As a result, the wall-shaped underground core portion 22 is sequentially constructed from the lower side.
(切梁の撤去)
 さらに、地下躯体30Bの構築及び打設部22Bの形成に並行して、切梁42を撤去する。地下躯体30Bが構築され、かつ、打設部22Bが形成されることにより、地盤Gから山留壁40へ作用する土圧は、切梁42から地下躯体30B及び地下コア部22へ盛り換えられる。このため、切梁42を撤去することによる山留壁40の変形を抑制できる。
(Removal of girder)
Further, the girder 42 is removed in parallel with the construction of the underground skeleton 30B and the formation of the driving portion 22B. By constructing the underground skeleton 30B and forming the driving portion 22B, the earth pressure acting on the mountain retaining wall 40 from the ground G is transferred from the girder 42 to the underground skeleton 30B and the underground core portion 22. .. Therefore, the deformation of the mountain retaining wall 40 due to the removal of the girder 42 can be suppressed.
 なお、打設部22Bの形成方法の一例を挙げると、地下コア部22において、柱状体22Aが構築されている部分以外の部分を「同時に」形成する。但し同時に形成する高さは、図5Aに示すように例えば建物10の1層分~2層分の高さとする。この場合、打設部22Bを形成するコンクリートの打設に先行して、切梁42を撤去する。 To give an example of the method of forming the casting portion 22B, in the underground core portion 22, a portion other than the portion where the columnar body 22A is constructed is formed "at the same time". However, as shown in FIG. 5A, the heights formed at the same time are, for example, the heights of one to two layers of the building 10. In this case, the girder 42 is removed prior to the placement of the concrete forming the driving portion 22B.
 また、打設部22Bの形成方法の別の一例を挙げると、地下コア部22において、柱状体22Aが構築されている部分以外の部分を「順次」形成する。この場合、切梁42を複数回に分けて撤去し、撤去した部分から打設部22Bを形成する。例えば図3Bに示す切梁42Aをまず撤去して、この切梁42Aが通っていた部分に打設部22Bを形成する。次に切梁42Bを撤去して、この切梁42Bが通っていた部分に打設部22Bを形成する。 Further, to give another example of the method of forming the casting portion 22B, in the underground core portion 22, a portion other than the portion in which the columnar body 22A is constructed is formed "sequentially". In this case, the cutting beam 42 is removed in a plurality of times, and the driving portion 22B is formed from the removed portion. For example, the cutting beam 42A shown in FIG. 3B is first removed to form a driving portion 22B in a portion through which the cutting beam 42A passes. Next, the cutting beam 42B is removed to form a driving portion 22B in the portion through which the cutting beam 42B passes.
 このように、「地下躯体30Bの構築」、「打設部22Bの形成」及び「切梁42の撤去」の順序は、山留壁40から切梁42に作用する土圧を考慮して、適宜設定することができる。 In this way, the order of "construction of the underground skeleton 30B", "formation of the driving portion 22B" and "removal of the cutting beam 42" takes into consideration the earth pressure acting on the cutting beam 42 from the mountain retaining wall 40. It can be set as appropriate.
(柱状体の増設)
 上述したように、本実施形態に係る建物10の構築方法においては、地上コア部24を構築しながら、地下躯体30Bを構築する(図4A、図5A参照)。そして、地下躯体30Bの構築に並行して、壁状の地下コア部22が、下側から順次構築される(図5A参照)。
(Addition of columnar body)
As described above, in the method of constructing the building 10 according to the present embodiment, the underground skeleton 30B is constructed while constructing the above-ground core portion 24 (see FIGS. 4A and 5A). Then, in parallel with the construction of the underground skeleton 30B, the wall-shaped underground core portion 22 is sequentially constructed from the lower side (see FIG. 5A).
 ここで、図5Bに示すように、地上コア部24の構築が進行すると、地上コア部24及び地上躯体30Aの重量が増えて、柱状体22Aへ作用する荷重が大きくなる。しかし、図5Aに示すように、地下コア部22が下側から順次構築されている期間において、打設部22Bと連結部24Aとの間には隙間が存在する。この隙間が存在すると、打設部22Bは地上コア部24の荷重を支持することが難しい。このため、地下コア部22における、地上コア部24及び地上躯体30Aの重量を支える「柱」としての支持力は大きくなり難い。 Here, as shown in FIG. 5B, as the construction of the above-ground core portion 24 progresses, the weights of the above-ground core portion 24 and the above-ground skeleton 30A increase, and the load acting on the columnar body 22A increases. However, as shown in FIG. 5A, there is a gap between the driving portion 22B and the connecting portion 24A during the period in which the underground core portion 22 is sequentially constructed from the lower side. When this gap is present, it is difficult for the driving portion 22B to support the load of the ground core portion 24. Therefore, the bearing capacity of the underground core portion 22 as a "pillar" that supports the weight of the above-ground core portion 24 and the above-ground skeleton 30A is unlikely to increase.
 そこで、この重量を支えるために、地上コア部24を構築しながら柱状体を増設することができる。具体的には、図5Bに示すように、互いに隣接する柱状体22Aの間に、基礎床版12の上面から地上コア部24における連結部24Aの下面に亘って柱状体22Cを増設する。 Therefore, in order to support this weight, a columnar body can be added while constructing the above-ground core portion 24. Specifically, as shown in FIG. 5B, the columnar bodies 22C are added between the columnar bodies 22A adjacent to each other from the upper surface of the foundation deck 12 to the lower surface of the connecting portion 24A in the ground core portion 24.
 柱状体24Cは、この図に示すように互いに隣接する柱状体22Aの間を充填するように形成することができる。この場合、柱状体24Cと柱状体22Aとが一体化された壁柱が形成される。または、柱状体24Cは、互いに隣接する柱状体22Aと隙間を空けて形成することもできる。 The columnar body 24C can be formed so as to fill the space between the columnar bodies 22A adjacent to each other as shown in this figure. In this case, a wall column in which the columnar body 24C and the columnar body 22A are integrated is formed. Alternatively, the columnar body 24C can be formed with a gap from the columnar body 22A adjacent to each other.
<作用>
 本実施形態に係る建物の構築方法では、図3Aに示すように、まず基礎床版12の上方に地下コア部22の一部を構成する柱状体22Aが複数立設される。次いで、図4A、図5Aに示すように、この柱状体22Aを支持構造として地上コア部24が構築される。さらに、地上コア部24を構築しながら地上躯体30A、地下コア部22の他部(打設部22B)及び地下躯体30Bが構築される。すなわち、地下階を備えたコア構造の建物10において、地上躯体30Aと地下躯体30Bとを同時に構築できる。このため地下躯体30Bの構築後に地上躯体30Aを順次構築する場合と比較して、建物10の工期を短縮できる。
<Action>
In the building construction method according to the present embodiment, as shown in FIG. 3A, first, a plurality of columnar bodies 22A forming a part of the underground core portion 22 are erected above the foundation deck 12. Next, as shown in FIGS. 4A and 5A, the above-ground core portion 24 is constructed with the columnar body 22A as a support structure. Further, while constructing the above-ground core portion 24, the above-ground skeleton 30A, the other portion of the underground core portion 22 (casting portion 22B), and the underground skeleton 30B are constructed. That is, in the core structure building 10 having the basement floor, the above-ground skeleton 30A and the underground skeleton 30B can be constructed at the same time. Therefore, the construction period of the building 10 can be shortened as compared with the case where the above-ground skeleton 30A is sequentially constructed after the construction of the underground skeleton 30B.
 また、地上コア部24を支持する柱状体22Aは地下コア部22の一部である。すなわち柱状体22Aを本設部材として利用できる。このため仮設部材で柱状体22Aを形成する場合と比較して、撤去に係る工数を削減できる。 Further, the columnar body 22A supporting the above-ground core portion 24 is a part of the underground core portion 22. That is, the columnar body 22A can be used as the main member. Therefore, the man-hours related to the removal can be reduced as compared with the case where the columnar body 22A is formed by the temporary member.
 さらに、地下コア部22は、柱状体22Aと他の部分(打設部22B)とが分けて構築される。このため、打設部22Bが構築されるまでの間、柱状体22Aの間に山留壁40を保持する切梁42を通すことができる。これにより切梁42の請け替え、盛替えなどの作業を削減できる。また、地下コア部22全体を避けて切梁42を施工する場合と比較して、切梁42の水平間隔を狭くできる。このため、切梁42や腹起しの補強を削減できる。 Further, the underground core portion 22 is constructed by separating the columnar body 22A and another portion (casting portion 22B). Therefore, the cutting beam 42 for holding the retaining wall 40 can be passed between the columnar bodies 22A until the driving portion 22B is constructed. As a result, it is possible to reduce the work such as replacement and replacement of the cutting beam 42. Further, the horizontal spacing of the cutting beams 42 can be narrowed as compared with the case where the cutting beams 42 are constructed while avoiding the entire underground core portion 22. Therefore, it is possible to reduce the reinforcement of the girder 42 and the abdomen.
 また、本実施形態に係る建物の構築方法によると、柱状体22Aがプレキャストコンクリートで形成されている。このため、柱状体22Aは、現場打ちコンクリートで形成されている場合と比較して、速やかに立ち上げることができる。これにより工期を短縮できる。 Further, according to the building construction method according to the present embodiment, the columnar body 22A is formed of precast concrete. Therefore, the columnar body 22A can be started up more quickly than when it is formed of cast-in-place concrete. As a result, the construction period can be shortened.
 さらに、本実施形態に係る建物の構築方法によると、図5Bに示すように、地上コア部24の構築に伴って地上コア部24の重量が大きくなった場合に、柱状体22Cを増設する。これにより、地上コア部24の重量を支えるために最終的に必要な柱状体の数より少ない数の柱状体を構築した段階で、地上コア部24の施工を開始できる。すなわち、地上コア部24の施工を早期に開始できる。したがって、工期を短縮できる。 Further, according to the building construction method according to the present embodiment, as shown in FIG. 5B, when the weight of the above-ground core portion 24 increases with the construction of the above-ground core portion 24, the columnar body 22C is added. As a result, the construction of the above-ground core portion 24 can be started at the stage where the number of columns is smaller than the number of columns finally required to support the weight of the above-ground core portion 24. That is, the construction of the above-ground core portion 24 can be started at an early stage. Therefore, the construction period can be shortened.
<その他の実施形態>
 本実施形態において、図3Bに示すように、柱状体22Aは、長方形の壁状に形成された扁平柱とされている。しかし本開示の実施形態はこれに限らない。
<Other Embodiments>
In the present embodiment, as shown in FIG. 3B, the columnar body 22A is a flat column formed in a rectangular wall shape. However, the embodiments of the present disclosure are not limited to this.
 例えば柱状体は、図6Aに示す柱状体22Dのように、略L字形状(換言すると屈曲部を備えた形状)として、地下コア部22の隅角部を形成するものとしてもよい。このように形成された柱状体22Dは柱状体22Aと比較して自立し易いのでワイヤーサポートを簡略化できる。 For example, the columnar body may have a substantially L-shape (in other words, a shape having a bent portion) to form a corner portion of the underground core portion 22, as in the columnar body 22D shown in FIG. 6A. Since the columnar body 22D formed in this way is easier to stand on its own than the columnar body 22A, the wire support can be simplified.
 また、本実施形態において、柱状体22Aの厚みd1(X方向に沿う柱状体22Aの厚み)、d2(Y方向に沿う柱状体22Aの厚み)は、地下コア部22における厚みと略一致している。しかし本開示の実施形態はこれに限らない。 Further, in the present embodiment, the thickness d1 (thickness of the columnar body 22A along the X direction) and d2 (thickness of the columnar body 22A along the Y direction) of the columnar body 22A substantially coincide with the thickness of the underground core portion 22. There is. However, the embodiments of the present disclosure are not limited to this.
 例えば柱状体は、図6Bに示す柱状体22Eのように、厚みを地下コア部22における厚みより薄くしてもよい。これにより、柱状体1本当たりの重量が小さくなるので、運搬及び施工性が向上する。 For example, the columnar body may be thinner than the thickness in the underground core portion 22 as in the columnar body 22E shown in FIG. 6B. As a result, the weight per columnar body is reduced, so that transportation and workability are improved.
 さらに、柱状体は、図6Cに示す柱状体22Fのように、H形鋼や角型鋼管等の鉄骨材によって形成してもよい。鉄骨材を用いることで、アンカーボルトやスタッドなどを用いて基礎床版12や地上コア部24における連結部24Aと接合し易くできる。 Further, the columnar body may be formed of a steel frame material such as an H-shaped steel or a square steel pipe as in the columnar body 22F shown in FIG. 6C. By using the steel frame material, it is possible to easily join the connecting portion 24A in the foundation deck 12 and the ground core portion 24 by using anchor bolts, studs, and the like.
 またさらに、柱状体は、現場打ちコンクリートを用いて形成してもよい。現場打ちコンクリートを用いることで工場からの運搬作業やクレーンでの揚重作業を軽減できる。 Furthermore, the columnar body may be formed using cast-in-place concrete. By using cast-in-place concrete, it is possible to reduce the transportation work from the factory and the lifting work with a crane.
 また、本実施形態に係る建物の構築方法が適用される建物10は、センターコア形式の建物とされているが、本開示の実施形態はこれに限らない。例えば建物10は、両端コア、偏心コアの建物としてもよい。この場合のコアの形成方法にも、本開示に記載された方法を適用できる。 Further, the building 10 to which the building construction method according to the present embodiment is applied is a center core type building, but the embodiment of the present disclosure is not limited to this. For example, the building 10 may be a building having cores at both ends and an eccentric core. The method described in the present disclosure can also be applied to the method for forming the core in this case.
 また、建物10の地下部分の外壁は、山留壁40によって形成されているが、本開示の実施形態はこれに限らない。例えば建物10の地下部分の外壁を別途構築し、この外壁を山留壁40と離間して配置してもよい。この場合、アースアンカー等を用いて山留壁を補強することが好適である。 Further, the outer wall of the underground portion of the building 10 is formed by the mountain retaining wall 40, but the embodiment of the present disclosure is not limited to this. For example, the outer wall of the underground portion of the building 10 may be constructed separately, and this outer wall may be arranged apart from the mountain retaining wall 40. In this case, it is preferable to reinforce the mountain retaining wall by using an earth anchor or the like.
 また、本実施形態においては、図4(A)及び図5(B)に示すように、地下躯体30Bは、基礎床版12に近い階から順に(すなわち、下階から上階へ)構築しているが、本開示の実施形態はこれに限らない。例えば、図7に示すように、地上に近い階(例えば地下1階)を構築し、その後、基礎床版12に近い階(例えば図7に2点鎖線で示す地下2階)を構築してもよい。 Further, in the present embodiment, as shown in FIGS. 4A and 5B, the underground skeleton 30B is constructed in order from the floor closest to the foundation deck 12 (that is, from the lower floor to the upper floor). However, the embodiments of the present disclosure are not limited to this. For example, as shown in FIG. 7, a floor close to the ground (for example, the first basement floor) is constructed, and then a floor close to the foundation deck 12 (for example, the second basement floor shown by the alternate long and short dash line in FIG. 7) is constructed. May be good.
 また、図8(A)に示すように、1階のスラブ34を構築し、その後、地下躯体30B(例えば図8(A)に2点鎖線で示す地下1階及び地下2階)を構築してもよい。地下躯体30Bに先行して構築された1階のスラブ34は、作業床として使用することができる。 Further, as shown in FIG. 8 (A), the slab 34 on the first floor is constructed, and then the underground skeleton 30B (for example, the first basement floor and the second basement floor shown by the two-dot chain line in FIG. 8 (A)) is constructed. You may. The slab 34 on the first floor constructed prior to the underground skeleton 30B can be used as a work floor.
 なお、図8(A)に示した実施形態においては、1階のスラブ34を構築する前に、このスラブ34を支持する構台杭としての柱状体50を構築している。柱状体50は、H形鋼等の鋼材や、プレキャストコンクリート柱によって形成できる。また、柱状体50は、本設柱として使用することができる。この際、構台杭としての柱状体50をそのまま本設柱として使用してもよいし、現場打ちコンクリートで被覆して用いてもよい。 In the embodiment shown in FIG. 8A, a columnar body 50 as a gantry pile supporting the slab 34 is constructed before the slab 34 on the first floor is constructed. The columnar body 50 can be formed of a steel material such as H-shaped steel or a precast concrete column. Further, the columnar body 50 can be used as a main pillar. At this time, the columnar body 50 as the gantry pile may be used as it is as the main pillar, or may be covered with cast-in-place concrete.
 このような柱状体50は、図7に示した実施例のように、基礎床版12に近い階(例えば地下2階)に先行して地上に近い階(例えば地下1階)を構築する場合においても適用できる。 Such a columnar body 50 is a case where a floor close to the ground (for example, the first basement floor) is constructed prior to the floor close to the foundation deck 12 (for example, the second basement floor) as in the embodiment shown in FIG. It can also be applied in.
 またさらに、建物10はRC造とされているが、本開示の実施形態はこれに限らない。例えば建物10は鉄骨鉄筋コンクリート造や鉄骨造としてもよい。以上説明したように、本開示は様々な態様で実施できる。 Furthermore, although the building 10 is made of RC, the embodiment of the present disclosure is not limited to this. For example, the building 10 may be a steel-framed reinforced concrete structure or a steel-framed structure. As described above, the present disclosure can be implemented in various aspects.
 2020年1月22日に出願された日本国特許出願2020-008308号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2020-008308 filed on January 22, 2020 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (3)

  1.  地盤を掘削した掘削面に基礎を構築する工程と、
     前記基礎の上方に地下コア部の一部を構成する柱状体を複数立設する工程と、
     前記柱状体の柱頭を連結して前記柱状体の上方に壁状の地上コア部を構築する工程と、
     前記地上コア部を構築しながら、前記地上コア部の周囲に地上躯体を構築する工程と、
     前記地上コア部を構築しながら、前記柱状体の周囲に地下躯体を構築し、前記地下コア部の他部を下側から順次構築して壁状の前記地下コア部を構築する工程と、
     を備えた建物の構築方法。
    The process of building a foundation on the excavated surface of the excavated ground and
    A step of erection of a plurality of columnar bodies forming a part of the underground core portion above the foundation, and
    A step of connecting the stigmas of the columnar bodies to construct a wall-shaped above-ground core portion above the columnar bodies, and
    While constructing the above-ground core portion, the process of constructing the above-ground skeleton around the above-ground core portion and
    While constructing the above-ground core portion, an underground skeleton is constructed around the columnar body, and other portions of the underground core portion are sequentially constructed from the lower side to construct the wall-shaped underground core portion.
    How to build a building with.
  2.  前記柱状体はプレキャストコンクリートで形成され、
     前記地下コア部は、隣接する前記柱状体の間にコンクリートを打設して形成される、
     請求項1に記載の建物の構築方法。
    The columnar body is made of precast concrete and
    The underground core portion is formed by placing concrete between the adjacent columnar bodies.
    The method for constructing a building according to claim 1.
  3.  前記地上コア部を構築しながら前記柱状体を増設する、
     請求項1又は請求項2に記載の建物の構築方法。
    The columnar body is added while constructing the above-ground core portion.
    The method for constructing a building according to claim 1 or 2.
PCT/JP2020/005366 2020-01-22 2020-02-12 Building construction method WO2021149266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020008308A JP6682173B1 (en) 2020-01-22 2020-01-22 How to build a building
JP2020-008308 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021149266A1 true WO2021149266A1 (en) 2021-07-29

Family

ID=70166551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005366 WO2021149266A1 (en) 2020-01-22 2020-02-12 Building construction method

Country Status (2)

Country Link
JP (1) JP6682173B1 (en)
WO (1) WO2021149266A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232338A (en) * 1995-02-28 1996-09-10 Taisei Corp Method for constructing structure
JP2005248438A (en) * 2004-03-01 2005-09-15 Shimizu Corp Building structure
JP2015161059A (en) * 2014-02-25 2015-09-07 大成建設株式会社 building construction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232338A (en) * 1995-02-28 1996-09-10 Taisei Corp Method for constructing structure
JP2005248438A (en) * 2004-03-01 2005-09-15 Shimizu Corp Building structure
JP2015161059A (en) * 2014-02-25 2015-09-07 大成建設株式会社 building construction method

Also Published As

Publication number Publication date
JP2021116528A (en) 2021-08-10
JP6682173B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
KR100694493B1 (en) Downward construction method capable of using bracket support type temporary structure as working table
JP7529852B2 (en) How to build a foundation for an underground structure
JP2016216900A (en) Structure
RU2220258C1 (en) Process of erection of multilevel underground structure ( variants )
WO2021149266A1 (en) Building construction method
KR101426511B1 (en) A temporary skeleton system used in constructuring a underground structure of a building and a top down underground construction method using a temporary skeleton system
JP6855296B2 (en) Building foundation structure and its construction method
JP2016028184A (en) Underground skeleton of new building utilizing existing building
JP6655936B2 (en) Construction method of structure
KR20210090100A (en) In a building where the underground structure is a wall structure, the shortened construction type top down construction method and structure that enables early ground frame start using temporary transfer structures
JP2003003690A (en) Base isolation building and method for base isolation of exisiting building
CN210857277U (en) Assembled underground structure
JP7106305B2 (en) Structural columns and seismically isolated buildings
JP2008255636A (en) Construction method for rc girder
JP6938197B2 (en) Construction method
KR100593203B1 (en) a deck supportframe and a construction methed
JP2023108327A (en) Reconstruction method of building having underground structure
JP7510328B2 (en) Construction Method
CN115324103B (en) Large-span assembled underground station based on simply supported diaphragm wall and floor slab and construction method
JPS63312437A (en) Construction of underground structure
JPH08270255A (en) Seismic isolation structuring method of existing building
JP2023024917A (en) Building reconstruction method
KR20230119823A (en) Precast vertical core structureand construction method therewith
JP2023022563A (en) Concrete wall construction method
JP2024052336A (en) Balcony structure, and fixing method of balcony

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914991

Country of ref document: EP

Kind code of ref document: A1