JP2009144494A - Base-isolating work method for existing buildings - Google Patents

Base-isolating work method for existing buildings Download PDF

Info

Publication number
JP2009144494A
JP2009144494A JP2007327601A JP2007327601A JP2009144494A JP 2009144494 A JP2009144494 A JP 2009144494A JP 2007327601 A JP2007327601 A JP 2007327601A JP 2007327601 A JP2007327601 A JP 2007327601A JP 2009144494 A JP2009144494 A JP 2009144494A
Authority
JP
Japan
Prior art keywords
existing
seismic isolation
floor
building
new
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007327601A
Other languages
Japanese (ja)
Inventor
Mitsuo Miyazaki
光生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Design Inc Japan
Original Assignee
Dynamic Design Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamic Design Inc Japan filed Critical Dynamic Design Inc Japan
Priority to JP2007327601A priority Critical patent/JP2009144494A/en
Publication of JP2009144494A publication Critical patent/JP2009144494A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base-isolating work method for an existing building to isolate it from earthquakes from its first through upper floors, with almost no excavation work necessary for underground or underground below the building foundation, and the required building interior work minimized. <P>SOLUTION: Some new piles 21 are provided at a position a little away from an existing building, and a new foundation footing 22 is constructed on the piles 21 to support a base-isolator. An external base-isolating device 31 is placed on the new foundation footing, and a new outer circumferential frame 58 constructed with at least the first floor beams is provided. After vertical loads of existing columns 41 on the first floor are temporarily received, each of these columns is horizontally cut away in part and an internal base-isolating device 32 is placed in the cut-away position. A new horizontally movable floor slab 54 is constructed immediately above the cut-away position for supporting it, and horizontally connected with the new outer circumferential frame 58 and the new floor slab 54. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐震安全性能の不足した既存建物を、地上1階床から上部を免震構造化する既存建物の免震化工法に関するものである。   The present invention relates to a seismic isolation method for an existing building in which an existing building having insufficient seismic safety performance is subjected to a base isolation structure from the first floor above the ground.

免震構造は、大地震時の強い地震動に対して構造物の揺れそのものを低減できるので、建物の構造骨組みの耐震安全性が高まるだけでなく、内部の家具や設備備品など収容物の転倒や落下・衝突の危険性が下がり、建物全体の耐震安全性を飛躍的に高めることができる、優れた構造方式である。   The seismic isolation structure can reduce the vibration of the structure itself against strong earthquake motion during a large earthquake, so it not only increases the seismic safety of the structural framework of the building, but also prevents the fall of contained items such as internal furniture and equipment. It is an excellent structural method that can reduce the risk of falling and colliding and dramatically improve the seismic safety of the entire building.

従って、免震構造は、当初より新築構造物のみならず、既存構造物の耐震性能改善にも有効な方法として注目され、先ず1990年頃より米国において実施され、その後わが国においても実施例が増加しつつある。   Therefore, the seismic isolation structure has attracted attention as an effective method for improving the seismic performance of existing structures as well as new structures from the beginning, first being implemented in the United States from around 1990, and then increasing in examples in Japan. It's getting on.

その基本的方法は、既存建物の建物重量を一旦仮受した上で、既存柱もしくは基礎部において切断し、免震装置を挿入・配置する方法である。   The basic method is to temporarily receive the building weight of an existing building, then cut the existing column or foundation and insert / place the seismic isolation device.

その工事方法には大きくわけて次のA・B2通りの方法がある。即ち、A工法は、既存柱1本毎に柱を切断し免震装置を取り付けていく方法であり、B工法は、建物全体重量を支持する布基礎もしくは壁体を構築し、その中に穴を開けて免震装置を挿入し、全ての免震装置を設置した後に、免震装置周囲の布基礎もしくは壁体を切断する方法である。これらはいずれも実施例があり、既によく知られた工法である。   The construction method is roughly divided into the following two A / B methods. In other words, the A method is a method in which a pillar is cut for each existing column and a seismic isolation device is attached, and the B method is a fabric foundation or wall that supports the weight of the entire building, and a hole is formed in it. This is a method of cutting the cloth foundation or wall around the seismic isolation device after opening the door, inserting the seismic isolation device, and installing all the seismic isolation devices. All of these have examples and are well-known methods.

わが国の建物は独立柱で構成されていることが多いため、現実の建物条件としてはA工法が適用されることが殆どである。その例としては、下記特許文献3および4等があるが、この場合、既存柱の切断や免震装置を挿入配置するために、工事中、既存柱の鉛直荷重を如何に仮受・支持するかが大きな課題となる。   Since buildings in Japan are often made up of independent pillars, the A method is mostly applied as the actual building conditions. Examples thereof include the following Patent Documents 3 and 4, etc. In this case, in order to cut the existing column and insert and place the seismic isolation device, how to temporarily receive and support the vertical load of the existing column during construction. Is a big issue.

この課題に対して、下記の2文献(特許文献1および2)では「既存柱の鉛直荷重を支持しながら免震装置を配置する」という作業を必要としない提案もなされている。   In response to this problem, in the following two documents (Patent Documents 1 and 2), there is also a proposal that does not require the work of “arranging the seismic isolation device while supporting the vertical load of the existing column”.

特許文献1は、図8に示すとおり、先ず既存建物の外周柱41の外側に新設柱61・62を一体化するように設け、この新設柱61に免震装置3を配置した上で、既存外周柱41を切断する。また、中柱に対しては、建物の外側を囲む外部フレーム6の大型屋上梁63から吊り下げケーブル66で吊り下げるとしている。   As shown in FIG. 8, in Patent Document 1, first, new pillars 61 and 62 are first integrated on the outside of the outer peripheral pillar 41 of the existing building, and the seismic isolation device 3 is arranged on the new pillar 61, The outer peripheral column 41 is cut. In addition, the middle pillar is suspended from a large roof beam 63 of the external frame 6 surrounding the outside of the building by a suspension cable 66.

しかし、既存建物の外周柱41に接して新設柱61・62を設ける場合、特に地下躯体13に接してその外側に新設柱62を設けるには、既存建物の外側を地下躯体全深さに渡って掘削する必要があり、山留めや掘削工事に多大な労力を必要とする。   However, when the new columns 61 and 62 are provided in contact with the outer peripheral column 41 of the existing building, in particular, in order to provide the new column 62 on the outer side in contact with the underground building 13, the outside of the existing building is extended over the entire depth of the underground building. It is necessary to excavate, and a great deal of labor is required for anchoring and excavation work.

また、中柱を吊り下げる外部フレーム6には、屋上に極めて大きな梁63を構築する必要があり、これらの地下工事や地上の外部フレーム構築に要する建設費は、既存柱の荷重を仮受した上で、免震装置を取り付けていく従来の免震化工法に較べて、必ずしも経済的で合理的な工法になっているとは言い難い面がある。   In addition, it is necessary to construct an extremely large beam 63 on the roof for the external frame 6 that suspends the middle pillar. The construction costs required for these underground works and the construction of the external frame on the ground were temporarily received the load of the existing pillars. Above, compared to the conventional seismic isolation method that attaches seismic isolation devices, it is difficult to say that the method is necessarily economical and rational.

特許文献2は、特許文献1と同様に、既存建物の外側に免震装置を配置する提案であるが、既存建物の重量を支えるために極めて大規模なトラス構造を導入する必要があり、また建物外部の免震装置で建物全重量を支えるために、免震装置やそれを支持する杭も非常に大きな荷重支持能力が必要となり、既存建物が小規模である場合を除いて、現実的な工法とは言い難い面がある。   Patent Document 2 is a proposal to place a seismic isolation device outside an existing building, similar to Patent Document 1, but it is necessary to introduce an extremely large truss structure to support the weight of the existing building. In order to support the total weight of the building with the seismic isolation device outside the building, the seismic isolation device and the piles that support it also require a very large load bearing capacity, which is realistic unless the existing building is small. There is an aspect that is hard to say.

また特許文献4は、図9のように地下階を有する既存建物の免震化工法の提案であるが、地下階床を切り離した免震クリアランス用切断部分36を構築するための複雑な工事が必要になり、またその切断床部分のエクスパンション金物の処理が複雑になる等、めんどうな問題を抱えている。
特開2005−171659号公報 特開2003−336402号公報 特開2003−328587号公報 特開2003−003690号公報
Further, Patent Document 4 proposes a seismic isolation method for an existing building having an underground floor as shown in FIG. 9. However, complicated construction for constructing a seismic isolation clearance cutting portion 36 that separates the underground floor is required. There are some troubles, such as the necessity of processing the expansion hardware of the cut floor portion and the complexity.
JP 2005-171659 A JP 2003-336402 A JP 2003-328587 A JP 2003-003690 A

上記のとおり、特許文献1〜4等の従来の免震化工法は、
(1)地下階がある場合、地下壁外部の掘削を必要とする(特許文献1)。
(2)地下階床の切断が必要で、床部の処理問題が付加される(特許文献4)。
(3)地上躯体の外側に、大規模な外部フレームを構築する必要がある(特許文献1および2)。
(4)地上部で柱を切断する場合、中間階免震となり、免震装置より下に位置する1階床は免震構造の恩恵を受けられない(特許文献1)。
(5)中間階免震では、免震装置の耐火被覆が必要になり、また設計上も建物の全室について耐火検証法による火災に対する計算と安全証明を行う必要が生じる(特許文献1)。
等々の課題を有している。
As described above, conventional seismic isolation methods such as Patent Documents 1 to 4
(1) When there is an underground floor, excavation outside the underground wall is required (Patent Document 1).
(2) It is necessary to cut the underground floor, which adds a problem of floor processing (Patent Document 4).
(3) It is necessary to construct a large external frame outside the ground frame (Patent Documents 1 and 2).
(4) When a column is cut at the ground part, it becomes a middle floor seismic isolation, and the first floor located below the seismic isolation device cannot receive the benefits of the seismic isolation structure (Patent Document 1).
(5) In the middle floor seismic isolation, it is necessary to provide a fireproof coating for the seismic isolation device, and it is also necessary to perform design and safety certification for fires by the fireproof verification method for all rooms of the building in terms of design (Patent Document 1).
And so on.

そこで、本発明は、(1)大規模な地下掘削を必要とせず、(2)地下階床の切断も不要で、(3)外部フレームも大げさにならず、(4)中間階免震とならない基礎免震であり、且つ(5)1階床から上部が免震構造の恩恵を受けることのできる既存建物の免震化工法を実現することを主課題としている。   Therefore, the present invention does not require (1) large-scale underground excavation, (2) no need to cut the underground floor, (3) no external frame, (4) The main challenge is to realize a seismic isolation method for existing buildings, which is a basic seismic isolation that does not become necessary, and (5) the upper part of the first floor can benefit from the seismic isolation structure.

本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
既存建物の1階床から上部を免震建物にする免震化工法であって、既存外周柱の外側で既存建物から少し離れた位置の少なくとも4カ所に新設杭を打設するか直接基礎を設け、その上に免震装置を受ける新設基礎フーチングを設け、前記新設基礎フーチングの上に建物外免震装置を置き、前記建物外免震装置の上に少なくとも1階梁で構成される新設外周フレームを構成し、前記既存建物の各既存柱の1階の鉛直荷重を仮受した上で、その既存柱の1階柱の一部を水平方向に切断しこの切断部内に建物内免震装置を配置し、その切断した1階柱の切断部直上を水平方向に連結し、且つ既存の1階床スラブからは浮き上がっているか、もしくは既存の1階床スラブ上に床スラブ用免震装置で水平方向に移動可能に支持されている新設床スラブを構築し、前記新設外周フレームと前記新設床スラブとを水平方向に連結することを特徴とする既存建物の免震化工法。
The present invention adopts the following configuration in order to solve the above points.
<Configuration 1>
It is a seismic isolation method in which the upper part is separated from the first floor of the existing building, and new piles are placed in at least 4 places outside the existing outer peripheral column and slightly away from the existing building, or a direct foundation is used. A new foundation footing is installed to receive the seismic isolation device, and an external seismic isolation device is placed on the new foundation footing. A frame is constructed, and a vertical load on the first floor of each existing pillar of the existing building is provisionally received, and then a part of the first floor pillar of the existing pillar is cut in a horizontal direction, and the seismic isolation device in the building is located in the cut portion. Is connected to the cut portion of the cut first-floor pillar in the horizontal direction, and is lifted from the existing first-floor slab, or on the existing first-floor slab with a seismic isolation device for floor slab A new floor slab supported so as to be movable in the horizontal direction. Built-shi, seismic sinkers method of existing buildings, which comprises connecting the new floor slab and the new peripheral frame in the horizontal direction.

〈構成2〉
構成1に記載の既存建物の免震化工法において、前記建物外免震装置には、復元力を負担する積層ゴム系免震装置を配置し、前記建物内免震装置には、既存柱の軸力を支持するすべり支承もしくは転がり支承を配置し、前記床スラブ用免震装置には、前記新設床スラブを支持するすべり支承もしくは転がり支承を配置することを特徴とする既存建物の免震化工法。
<Configuration 2>
In the seismic isolation method for an existing building described in Configuration 1, a laminated rubber-based seismic isolation device that bears a restoring force is disposed in the external seismic isolation device, and an existing pillar A seismic isolation system for an existing building, wherein a sliding bearing or a rolling bearing that supports axial force is arranged, and the seismic isolation device for the floor slab is arranged with a sliding bearing or a rolling bearing that supports the new floor slab. Law.

〈構成3〉
構成1又は構成2に記載の既存建物の免震化工法において、前記建物内免震装置の一部に、積層ゴム系免震装置を混用していることを特徴とする既存建物の免震化工法。
<Configuration 3>
The seismic isolation method for an existing building according to Configuration 1 or 2, wherein a laminated rubber-based seismic isolation device is mixed with a part of the in-building seismic isolation device. Law.

〈構成4〉
既存建物の1階床から上部を免震建物にする免震化工法であって、既存外周柱の外側で既存建物から少し離れた位置の少なくとも4カ所に新設杭を打設するか直接基礎を設け、その上に免震装置を受ける新設基礎フーチングを設け、前記新設基礎フーチングの上に建物外免震装置を置き、前記建物外免震装置の上に少なくとも1階梁および1階柱で構成される新設外周フレームを構成し、前記既存外周柱の鉛直荷重を前記新設外周フレームに伝達できる柱、壁もしくは斜材ブレースのいずれかからなる鉛直荷重伝達部材を配置し、前記鉛直荷重伝達部材に隣接する既存柱の1階柱脚部は切断したままとし、それ以外の既存柱は、1階の鉛直荷重を仮受した上で、その既存柱の1階柱の一部を水平方向に切断しこの切断部内に建物内免震装置を配置し、切断された全既存柱の1階柱の切断部直上を水平方向に連結し、且つ既存の1階床スラブからは浮き上がっているか、もしくは既存の1階床スラブ上に免震装置で水平方向に移動可能に支持されている新設床スラブを構築し、前記新設外周フレームと前記新設床スラブとを水平方向に連結することを特徴とする既存建物の免震化工法。
<Configuration 4>
It is a seismic isolation method in which the upper part is separated from the first floor of the existing building, and new piles are placed in at least 4 places outside the existing outer peripheral column and slightly away from the existing building, or a direct foundation is used. A new foundation footing that receives the seismic isolation device is provided on the base footing, and a seismic isolation device outside the building is placed on the new foundation footing, and is composed of at least a first-story beam and a first-floor pillar on the seismic isolation device outside the building. And a vertical load transmission member made of any one of a column, a wall, and a diagonal brace capable of transmitting the vertical load of the existing outer peripheral column to the new outer peripheral frame is arranged, and the vertical load transmission member The first floor pillar leg of the adjacent existing pillar remains cut, and other existing pillars receive a vertical load on the first floor, and then a part of the first floor pillar of the existing pillar is cut horizontally. Seismic isolation device in the building Connect the cut portion of the first floor column of all existing pillars directly above the horizontal section, and lift from the existing first floor slab or use a seismic isolation device on the existing first floor slab. A seismic isolation method for an existing building, wherein a new floor slab supported so as to be movable in a horizontal direction is constructed, and the new outer peripheral frame and the new floor slab are connected in a horizontal direction.

〈構成5〉
構成1乃至構成4のいずれかに記載の既存建物の免震化工法において、前記建物外免震装置を支持する新設基礎フーチングと、前記既存建物の基礎構造体もしくは地下構造体とを水平力が伝達できるように連結し一体化することを特徴とする既存建物の免震化工法。
<Configuration 5>
In the seismic isolation method for an existing building according to any one of Configurations 1 to 4, horizontal force is applied to a newly installed foundation footing that supports the outside seismic isolation device and a foundation structure or an underground structure of the existing building. A seismic isolation method for existing buildings that is connected and integrated for transmission.

〈構成6〉
地下階を有する既存建物の1階床から上部を免震建物にする免震化工法であって、少なくとも既存外周柱の外側4カ所に、既存建物から少し離れた位置に新設杭を打設するか、既存地下躯体に一体化した跳ねだし躯体を構築し、その上に新設基礎フーチングを設けて建物外免震装置を配置し、前記建物外免震装置の上に少なくとも1階梁で構成される新設外周フレームを構成し、前記新設外周フレームを、水平力が伝達できるように前記既存建物の1階床スラブおよび1階梁に連結・一体化し、前記新設基礎フーチングを、水平力が伝達できるように前記既存建物の地下躯体に連結・一体化した上で、地下1階柱頭部を切断して、その切断部の下側(地下1階柱頭部側)にすべり支承のスライダーを取り付け、切断部の上側(1階床・大梁側)にすべり支承のすべり板を取り付けることを特徴とする既存建物の免震化工法。
<Configuration 6>
It is a seismic isolation method in which the upper part from the first floor of an existing building having an underground floor is seismically isolated, and new piles are placed at a distance from the existing building at least four locations outside the existing outer peripheral column. Alternatively, a spring frame that is integrated into the existing underground structure is constructed, a new foundation footing is installed on it, and a seismic isolation device outside the building is arranged. The new outer peripheral frame is connected to and integrated with the first floor slab and the first floor beam of the existing building so that horizontal force can be transmitted, and horizontal force can be transmitted to the new foundation footing. After connecting and unifying to the basement of the existing building, cut the first-floor column head, attach a slide support slider to the lower side of the cut (under-floor first column head side), and cut Upper part (1st floor, large beam side Base sinkers method of existing buildings, characterized by mounting a sliding sliding plate bearing in.

〈構成7〉
構成1乃至構成6のいずれかに記載の既存建物の免震化工法において、前記既存建物の1階既存大梁の下面および側面に補強後大梁の下端主筋となる配筋を行い、前記1階既存大梁の上部に位置する1階既存床スラブ上面の仕上げ材を撤去し、上面を目荒らしした上で前記補強後大梁の上端主筋となる配筋を行い、前記1階既存床スラブの、前記補強後大梁の側面位置からかぶり厚さだけ内側にはいった平面位置に等間隔のスラブ縦穴を設け、前記スラブ縦穴を通してせん断補強筋を配筋した上で、前記1階既存床スラブの上部および前記1階既存大梁の側面および下面にコンクリートを打設することによって既存建物の1階大梁を補強したことを特徴とする既存建物の免震化工法。
<Configuration 7>
In the seismic isolation method for an existing building according to any one of Configurations 1 to 6, a reinforcing bar serving as a bottom main reinforcement of the large beam after reinforcement is provided on the lower surface and side surface of the existing first-floor large beam of the existing building, Remove the finishing material on the upper surface of the first floor existing floor slab located on the upper part of the girder, roughen the upper surface, and arrange the upper main bar of the reinforced large beam to reinforce the first floor existing floor slab. Slab vertical holes at equal intervals are provided in the plane position that is inward from the side position of the rear large beam, and shear reinforcement bars are arranged through the slab vertical holes, and the upper part of the existing floor slab on the first floor and the 1 A seismic isolation method for an existing building, in which concrete is placed on the side and underside of the existing high beam on the first floor to reinforce the first floor high beam on the existing building.

〈構成8〉
構成7に記載の既存建物の免震化工法において、前記1階既存大梁の上部および下部に配置された補強後大梁用の前記上端主筋および前記下端主筋の内、それぞれ既存柱に対向する両主筋の位置に、同主筋の直径よりも僅かに大きな直径の貫通孔を水平に設け、前記両主筋を前記貫通孔の中に挿入し、貫通させた後に、前記両主筋と前記貫通孔の間の隙間に、高強度モルタルあるいは高強度樹脂等の充填材料を充填し硬化させることによって、前記既存柱と補強梁の新設補強主筋とが交差する補強された柱・梁接合部を構築することを特徴とする既存建物の免震化工法。
<Configuration 8>
In the seismic isolation method for an existing building according to Configuration 7, both main bars of the upper main bar and the lower main bar for the post-reinforcing main beam arranged on the upper and lower sides of the first floor existing beam are respectively opposed to the existing columns. A through hole having a diameter slightly larger than the diameter of the same main muscle is horizontally provided at the position of the same, and after both the main muscles are inserted into the through hole and penetrated, between the two main muscles and the through hole. By filling the gap with a filling material such as high-strength mortar or high-strength resin and curing it, a reinforced column / beam joint is constructed in which the existing column and the new reinforcing bar of the reinforcing beam intersect. Seismic isolation method for existing buildings.

〈構成9〉
構成8に記載の既存建物の免震化工法において、前記既存柱の貫通孔に、前記上端主筋および前記下端主筋の内、前記既存柱に対向する両主筋をそれぞれ挿入し貫通させた後に、前記主筋と前記貫通孔の間の隙間には、高強度モルタル等のグラウト材を充填し、前記既存柱の貫通孔端部の外側位置に、貫通させた主筋の定着板を取り付け、鉄筋用ナットもしくは溶接等により定着板と主筋を固定した上で、補強梁のコンクリートを打設することによって、既存柱と補強梁の新設補強主筋とが交差する補強された柱・梁接合部を構築することを特徴とする既存建物の免震化工法。
<Configuration 9>
In the seismic isolation method for an existing building according to Configuration 8, after inserting and penetrating both main bars opposed to the existing columns in the through holes of the existing columns, the upper main bars and the lower main bars, respectively, The gap between the main bar and the through hole is filled with a grout material such as high-strength mortar, and a fixing plate of the main bar that is passed through is attached to the outer side of the end of the through hole of the existing column. By fixing the fixing plate and the main bar by welding, etc., and placing concrete for the reinforcing beam, it is possible to construct a reinforced column / beam joint where the existing column and the new main bar of the reinforcing beam intersect. A seismic isolation method for existing buildings.

〈構成10〉
構成1乃至構成8のいずれかに記載の既存建物の免震化工法において、前記既存建物の既存柱の柱脚部もしくは柱頭部にすべり支承を取り付ける工法であり、あらかじめ前記すべり支承のすべり板をスライダーの平面寸法よりも少し大きい「中央部分」とその外側の「外周部分」に分割し、且つ前記外周部分は少なくとも2分割以上に分割しておき、前記外周部分の表面すべり板を前記中央部分のすべり板裏板上に乗り込ませて皿ボルトで締め付けることにより、すべり板の表面を凹凸・段差・突起物のない1枚の大型すべり板に再構築できる状態にしておき、
前記既存柱の鉛直荷重を仮支持した状態において、前記既存柱の前記すべり支承の設置予定位置を前記すべり支承の高さよりも少し大きく切断し、先ず前記既存柱の中心位置に合わせて前記スライダーおよび前記すべり板の中央部分を水平に取り付け、その後で、前記すべり板の外周部分を前記中央部分の外側に配置し、皿ボルト等により水平、且つ平滑な表面となるようにすべり板を構成し、合わせて前記スライダーおよび前記すべり板の上側および下側のコンクリート躯体を打設・構築して前記スライダーおよび前記すべり板を固定することによって既存柱の柱脚もしくは柱頭位置にすべり支承を取り付けることを特徴とする既存建物の免震化工法。
<Configuration 10>
The seismic isolation method for an existing building according to any one of Configurations 1 to 8, wherein the sliding support is attached to a column base or a column head of an existing column of the existing building. It is divided into a “central part” slightly larger than the planar dimension of the slider and an “outer peripheral part” outside thereof, and the outer peripheral part is divided into at least two parts, and the surface slip plate of the outer peripheral part is divided into the central part. By putting it on the back plate of the sliding plate and tightening it with a countersunk bolt, the surface of the sliding plate can be reconstructed into a single large sliding plate with no irregularities, steps or protrusions,
In a state in which the vertical load of the existing column is temporarily supported, the installation position of the sliding support of the existing column is cut slightly larger than the height of the sliding support, and first, the slider and the slider and the center position of the existing column are matched The central part of the sliding plate is attached horizontally, and then the outer peripheral part of the sliding plate is disposed outside the central part, and the sliding plate is configured to have a horizontal and smooth surface by a flat bolt or the like, In addition, the upper and lower concrete frames of the slider and the slide plate are placed and constructed, and the slider and the slide plate are fixed to attach the slide support to the column base or the head position of the existing column. Seismic isolation method for existing buildings.

以下、本発明を、実施例を示す図面に基づいて説明する。   Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments.

図1は、本発明の構成1の実施例である。既存建物の外周柱41の外側で既存建物から少し離れた位置の少なくとも4カ所に新設杭21を打設し、その上に免震装置を受ける新設基礎フーチング22を設け、その上に建物外免震装置31を配置している。新設杭21は状況に応じて4カ所以上に配設されてもよい。建物外免震装置31は、既存建物の外側に設けられる既知の免震装置であり、この実施例では積層ゴム31を配置している。   FIG. 1 shows an embodiment of Configuration 1 of the present invention. New piles 21 are placed in at least four places outside the outer peripheral column 41 of the existing building and slightly away from the existing building, and new foundation footings 22 for receiving seismic isolation devices are provided on the piles. A seismic device 31 is arranged. The new piles 21 may be disposed at four or more locations depending on the situation. The seismic isolation device 31 outside the building is a known seismic isolation device provided outside the existing building. In this embodiment, the laminated rubber 31 is disposed.

免震装置31の周囲には免震クリアランス35を設け、基礎フーチング22は新設基礎躯体23で補強し、既存建物の基礎躯体12と連結し一体化している。既存杭11は耐震設計されていない場合が多いが、耐震設計された新設杭21と一体化し、水平力に対して既存杭と新設杭の両者が共同して抵抗することによって、建物の基礎構造全体の耐震性能が向上することになる。   A seismic isolation clearance 35 is provided around the seismic isolation device 31, and the foundation footing 22 is reinforced by a new foundation casing 23, and is integrated with the foundation casing 12 of an existing building. The existing pile 11 is often not seismically designed, but it is integrated with the new earthquake-designed pile 21 and the existing pile and the new pile jointly resist the horizontal force. Overall seismic performance will be improved.

次ぎに、建物外免震装置31の上に上部フーチング50および1階梁52で構成される新設外周フレーム58を構成する。新設外周フレーム58は、既存建物の既存柱41と一体化している。   Next, a new outer peripheral frame 58 composed of the upper footing 50 and the first floor beam 52 is formed on the seismic isolation device 31 outside the building. The new outer peripheral frame 58 is integrated with the existing pillar 41 of the existing building.

既存柱41は、その1階の鉛直荷重を仮受した上で、その既存柱41の1階柱の一部を水平方向に切断しこの切断部内に建物内免震装置32を取り付け、その切断した1階柱41の切断部直上を水平方向に連結する新設床スラブ54を構築する。建物内免震装置32は、既存柱41を支承する既知の免震装置である。本実施例では、新設床スラブ54は、既存の1階床スラブからは浮き上がっており、免震構造として上部建物の水平移動を妨げない構造になっている。この新設床スラブ54は、前記の新設外周フレーム58の1階梁52および上部フーチング50と一体化されており、建物外免震装置31および建物内免震装置32の働きにより、既存建物4は免震構造として機能する。   The existing pillar 41 temporarily receives the vertical load of the first floor, cuts a part of the first floor pillar of the existing pillar 41 in the horizontal direction, attaches the seismic isolation device 32 in the building in the cut portion, and cuts the The newly installed floor slab 54 that connects the portion directly above the cut portion of the first floor pillar 41 in the horizontal direction is constructed. The in-building seismic isolation device 32 is a known seismic isolation device that supports the existing column 41. In the present embodiment, the new floor slab 54 is lifted from the existing first floor slab and has a structure that does not hinder the horizontal movement of the upper building as a seismic isolation structure. The new floor slab 54 is integrated with the first floor beam 52 and the upper footing 50 of the new outer peripheral frame 58, and the existing building 4 is formed by the functions of the seismic isolation device 31 outside the building and the seismic isolation device 32 inside the building. It functions as a seismic isolation structure.

本発明では、新設杭の打設は既存建物に邪魔されずに工事ができ、免震装置設置のための土掘削工事も僅かであり、建物外免震装置31は、通常の新築工事と全く同様に容易に設置できる。また、既存柱の切断や建物内免震装置32の作業は、地上1階の床スラブ直上という最も工事を行い易い位置で行うことができ、地下を掘削した狭い空間で作業を行う従来の免震化工法より遙かに作業効率がよく、且つ安全に施工できる。しかも、工事完成後の建物は、1階床スラブから免震構造の恩恵を受けることができるという多くのメリットを有している。   In the present invention, the installation of the new pile can be performed without being disturbed by the existing building, the earth excavation work for installing the seismic isolation device is also slight, and the seismic isolation device 31 outside the building is completely different from the normal new construction work. It can be easily installed as well. In addition, cutting of existing pillars and work of the seismic isolation device 32 in the building can be performed at the position where the construction is most easily performed, directly above the floor slab on the first floor above ground, and the conventional exemption is performed in a narrow space excavated underground. Work efficiency is far better than seismic construction method and can be constructed safely. Moreover, the building after completion of construction has many merits that it can benefit from the seismic isolation structure from the first floor slab.

図2は、構成1および構成2を平面図によって分かりやすく説明したものである。図2(1)は、免震化工事の対象とする既存建物の1階平面図を示しており、既存柱41、耐震壁43、1階既存大梁42、床スラブ44等で構成されている。   FIG. 2 explains the configuration 1 and the configuration 2 in an easy-to-understand manner using a plan view. FIG. 2 (1) shows a first floor plan view of an existing building that is subject to seismic isolation work, and is composed of an existing column 41, a seismic wall 43, a first floor existing beam 42, a floor slab 44, and the like. .

図2(2)は、本発明による免震化工事後の1階平面図を示しており、建物外免震装置31は建物隅角部の外側に、また各既存柱41の1階柱脚部には建物内免震装置32が配置されている。   FIG. 2 (2) shows a first-floor plan view after the seismic isolation work according to the present invention. The seismic isolation device 31 outside the building is located outside the corner of the building and on the first-floor column base of each existing column 41. Has a seismic isolation device 32 in the building.

図2(2)において、各既存柱41の1階柱脚部に配置された建物内免震装置32の一部に積層ゴム系免震装置を混用した場合が構成3である。建物内免震装置32はすべり支承もしくはころがり支承を基本としているが、その一部に積層ゴムを混用することにより、免震周期を調節したり、偏心率を小さくする等の性能調整を行うことができる。   In FIG. 2 (2), the configuration 3 is a case where a laminated rubber-based seismic isolation device is mixed with a part of the in-building seismic isolation device 32 arranged at the first floor column base of each existing column 41. The seismic isolation device 32 in the building is basically a sliding bearing or a rolling bearing, but by adjusting the seismic isolation cycle or reducing the eccentricity by mixing laminated rubber with a part of it. Can do.

図3は、本発明の構成4の実施例である。既存建物から少し離れた外側位置に新設杭21を打設し、その上に免震装置を受ける新設基礎フーチング22を設け、その上に建物外免震装置31を配置している。また、建物外免震装置31の周囲には免震クリアランス35を設け、新設基礎フーチング22を新設基礎躯体23で補強し、既存建物の基礎躯体12と連結し一体化している。以上の建物外免震装置31の構成までは、構成1と同じである。   FIG. 3 shows an embodiment of Configuration 4 of the present invention. A new pile 21 is placed at a position slightly away from the existing building, a new foundation footing 22 for receiving a seismic isolation device is provided thereon, and an external seismic isolation device 31 is disposed thereon. In addition, a seismic isolation clearance 35 is provided around the seismic isolation device 31 outside the building, and the new foundation footing 22 is reinforced by the new foundation casing 23 and connected to the foundation casing 12 of the existing building. The configuration up to the above-described seismic isolation device 31 outside the building is the same as configuration 1.

構成4は、建物外免震装置31の上に上部の基礎フーチング50を設け、その上に柱51、梁52、床スラブ54等で構成される新設上部構造体5を構築する。そして既存建物の外周柱41の鉛直荷重(軸力)を建物外免震装置31にまで伝達するために、柱・壁・斜材ブレース等の鉛直荷重伝達部材55を配置する。図3では、鉛直荷重伝達部材として壁を使用しているが、ブレース等の斜材も有効である。   In the configuration 4, the upper foundation footing 50 is provided on the seismic isolation device 31 outside the building, and the new upper structure 5 including the pillar 51, the beam 52, the floor slab 54, and the like is constructed thereon. In order to transmit the vertical load (axial force) of the outer peripheral column 41 of the existing building to the seismic isolation device 31 outside the building, a vertical load transmission member 55 such as a column, a wall, and a diagonal brace is disposed. In FIG. 3, a wall is used as the vertical load transmission member, but diagonal materials such as braces are also effective.

次ぎに、鉛直荷重伝達部材に隣接する外周部の既存柱41の1階柱の一部を切断する。既存柱41の鉛直荷重は、新設上部構造体5および建物外免震装置31によって支持できるので既存柱41の切断部はそのまま(支持部材なし)としてよい。   Next, a part of the first floor column of the existing column 41 on the outer peripheral portion adjacent to the vertical load transmission member is cut. Since the vertical load of the existing column 41 can be supported by the newly installed upper structure 5 and the seismic isolation device 31 outside the building, the cut portion of the existing column 41 may be left as it is (no support member).

外周柱以外の既存柱(内部柱)は、1階の鉛直荷重を仮受した上で、その既存柱の1階柱の一部を水平方向に切断し、建物内免震装置を配置する。切断された全ての既存柱の1階柱の切断部直上を水平方向に連結する1階床スラブ54を新設する。この新設床スラブ54は、既存柱との連結部のみで既存の1階床スラブからは浮き上がっていられればそれでよいが、スパンや積載荷重が大きい場合などは、既存の1階床スラブ上に免震装置37を配置してもよい。図3の場合の床スラブ用免震装置37にはすべり支承を採用している。   Existing pillars (inner pillars) other than the outer pillar temporarily receive the vertical load on the first floor, and then a part of the first floor pillar of the existing pillar is cut in the horizontal direction, and the seismic isolation device in the building is arranged. A first-floor slab 54 that connects horizontally the cut portions of the first-floor pillars of all the existing pillars that have been cut is provided. This new floor slab 54 may be lifted from the existing first-floor slab only at the connection with the existing pillars. However, when the span or load capacity is large, the new floor slab 54 is exempted from the existing first-floor slab. A seismic device 37 may be arranged. The floor slab seismic isolation device 37 in the case of FIG. 3 employs a sliding bearing.

既存建物の外側に新設される新設上部構造体5は、通常は1層ないし3層程度の低層部のみでよい場合が多いが、これは既存建物の耐震補強を兼ねているので、既存建物の有する耐震性能に応じて構築すればよい。免震構造の効果により、耐震構造としての耐震補強に比較すると遙かに軽微な補強工事で済ますことができる。   In many cases, the new upper structure 5 to be newly installed outside the existing building is usually only a low layer of about 1 to 3 layers, but this also serves as an anti-seismic reinforcement for the existing building. What is necessary is just to build according to the seismic performance which has. Due to the effect of the seismic isolation structure, it can be done with much lighter reinforcement work compared to seismic reinforcement as an earthquake resistant structure.

図4は、同じく本発明の構成4の実施例であり、既存建物の外周柱41の鉛直荷重(軸力)を建物外免震装置31にまで伝達するために、鉛直荷重伝達部材として斜め柱55利用した場合である。また既存柱41と斜め柱55の接合位置には、両者の一体化を高めるために、プレストレスケーブル56を配置して、両者を締め付けている。   FIG. 4 is also an embodiment of the configuration 4 of the present invention, and in order to transmit the vertical load (axial force) of the outer peripheral column 41 of the existing building to the seismic isolation device 31 outside the building, an oblique column is used as a vertical load transmission member. 55 is used. In addition, a prestress cable 56 is disposed at the joining position of the existing column 41 and the oblique column 55 to tighten the both in order to enhance the integration between the two.

図1、図3、図4に示したとおり、以上の実施例のいずれにおいても、新設杭21の杭頭部の基礎フーチング22およびそれと一体に構築されている新設基礎躯体23を既存建物の基礎躯体12と連結し一体化している。この一体化により、地震時水平力に対して既存杭と新設杭の両者が共同して抵抗することになり、建物の基礎構造全体の耐震性能が向上する。また、既存建物は建物平面全体に渡って基礎躯体が地中に埋め込まれているので、既存建物による地盤との相互作用が期待でき、既存建物を耐震性能上有効に利用することにもなる。これが、本発明の構成5である。   As shown in FIGS. 1, 3, and 4, in any of the above embodiments, the foundation footing 22 of the pile head of the new pile 21 and the new foundation frame 23 constructed integrally therewith are used as the foundation of the existing building. It is connected and integrated with the housing 12. By this integration, both the existing pile and the new pile will jointly resist the horizontal force during an earthquake, and the seismic performance of the entire building foundation will be improved. In addition, since the foundation building is embedded in the ground over the entire building plane, the existing building can be expected to interact with the ground, and the existing building can be used effectively in terms of seismic performance. This is configuration 5 of the present invention.

図5は、既存建物が地下階を有する場合の構成4の実施例である。既存建物の外側に、新設杭21、建物外免震装置31、新設上部構造体5を構成するもので、基本的構成は実施例4と同じである。また地下部分は、新設基礎躯体23を既存建物の地下基礎躯体13に一体化しており、工事の難易度も得られる免震効果も実施例4と同じと考えてよい。   FIG. 5 is an example of Configuration 4 in the case where an existing building has an underground floor. The new pile 21, the seismic isolation device 31 outside the building, and the new upper structure 5 are configured outside the existing building, and the basic configuration is the same as that of the fourth embodiment. Moreover, the underground part has integrated the new foundation frame 23 with the underground foundation frame 13 of the existing building, and it may be considered that the seismic isolation effect which can obtain the difficulty of construction is the same as that of Example 4.

本実施例では、新設外周フレーム58を全階に渡って構築しており、更に既存建物の上にも増築している。本耐震改修工事により、全階・全戸の床面積を増築すると同時に、新たな階を増築することにより、耐震性能の向上と同時に、既存建物に新たな住空間を提供し、経済的メリットを追加して、改修工事のインセンティブを高めている。   In the present embodiment, the new outer peripheral frame 58 is constructed over the entire floor, and is further extended over the existing building. Through this earthquake-resistant repair work, the floor area of all floors and all houses will be expanded, and new floors will be expanded to improve seismic performance and provide new living space in existing buildings, adding economic benefits. As a result, incentives for renovation work have been increased.

図6は、既存建物が地下階を有する場合に本発明の構成6を適用した実施例である。先ず構成4と同様に、既存建物から少し離れた外側位置に新設杭21を打設し、その上に免震装置を受ける新設基礎フーチング22を設け、その上に建物外免震装置31を配置している。また、建物外免震装置31の周囲には免震クリアランス35を設け、基礎フーチング22を新設基礎躯体23で補強し、既存建物の地下躯体13に連結し一体化する。   FIG. 6 is an embodiment in which the configuration 6 of the present invention is applied when an existing building has an underground floor. First, as in Configuration 4, a new pile 21 is placed at a position slightly away from the existing building, a new foundation footing 22 for receiving a seismic isolation device is provided thereon, and an external seismic isolation device 31 is disposed thereon. is doing. In addition, a seismic isolation clearance 35 is provided around the seismic isolation device 31 outside the building, and the foundation footing 22 is reinforced by the newly installed foundation frame 23 and connected to and integrated with the underground frame 13 of the existing building.

次に、建物外免震装置31の上に上部の基礎フーチング50を設け、その上に柱51、梁52、床スラブ54等で構成される新設上部構造体5を構築する。既存建物の1階梁および床スラブ以上のレベルにおいては、この新設上部構造体5の床レベルは既存建物と同一の床レベルで連結・一体化する。   Next, the upper foundation footing 50 is provided on the seismic isolation device 31 outside the building, and the new upper structure 5 including the pillar 51, the beam 52, the floor slab 54, and the like is constructed thereon. At the level above the first floor beam and floor slab of the existing building, the floor level of the newly constructed upper structure 5 is connected and integrated at the same floor level as the existing building.

次に、既存柱41の1階もしくは1階大梁15を利用して既存柱の鉛直荷重を借り受けした上で、地下1階柱頭部を切断して、建物内免震装置として、切断部の下側(地下1階柱頭部側)にすべり支承34のスライダーを、切断部の上側(1階床・大梁側)にすべり支承34のすべり板を取り付ける。以上の工程により、地下躯体を有する既存建物に対しても、建物外部を地表面から若干掘削するだけで、1階床から上部を免震構造化することができる。   Next, after borrowing the vertical load of the existing column using the first floor of the existing column 41 or the first-floor large beam 15, the column head of the first floor of the basement is cut, and as a seismic isolation device in the building, The slider of the sliding support 34 is attached to the side (basement 1st column head side), and the sliding plate of the sliding support 34 is attached to the upper side (1st floor / large beam side) of the cutting part. Through the above steps, even with an existing building having an underground structure, the upper part from the first floor can be seismically isolated by merely excavating the outside of the building from the ground surface.

既存建物であっても、地下階は建物全周に地下外壁を有しているので、耐震性能は十分に確保されており、図9(特許文献4)のように既存建物の地下躯体を大幅に切断するようなことをしなければ新たな補強をする必要もない。   Even if it is an existing building, the basement floor has an underground outer wall all around the building, so seismic performance is sufficiently secured, and the underground structure of the existing building is greatly increased as shown in Fig. 9 (Patent Document 4). There is no need to reinforce if it is not cut into pieces.

既存建物を免震構造に改修した場合、在来耐震構造に較べて上部建物に作用する地震力が格段に小さくなるので、上部構造体の骨組み各部の安全性が改善され向上する。上部構造体の構造部材の中で、負担応力が唯一厳しくなるのは、新たに設置した免震装置の直上に位置する大梁である。これは、本発明においては1階の既存大梁に該当するが、地震時に免震装置が水平方向にδだけ変形すると、鉛直荷重の作用点と支持点が水平にδだけずれることになり、そのために、上部の重量(柱軸力P)によってPxδモーメントが発生するためである。これをPδ(ピー・デルタ)効果という。   When an existing building is renovated to a seismic isolation structure, the seismic force acting on the upper building is significantly reduced compared to the conventional seismic structure, so that the safety of each part of the framework of the upper structure is improved and improved. Of the structural members of the superstructure, the only stress that becomes severe is the large beam located directly above the newly installed seismic isolation device. In the present invention, this corresponds to an existing large beam on the first floor, but if the seismic isolation device is deformed by δ in the horizontal direction during an earthquake, the point of action of the vertical load and the support point will be displaced by δ horizontally, This is because the Pxδ moment is generated by the weight of the upper portion (column axial force P). This is called the Pδ (Pe Delta) effect.

Pδ効果によって新たに付加されるPδモーメントおよびそれに伴うせん断力は、かなり大きな値になるので、既存建物の免震化においては、この既存梁を如何に効果的に補強するかが重要な課題となり、構成7はその方法を示したものである。   The Pδ moment newly added by the Pδ effect and the accompanying shear force are considerably large, so how to effectively reinforce this existing beam is an important issue in seismic isolation of existing buildings. Configuration 7 shows the method.

従来、既存の鉄筋コンクリート(RC)梁に対する補強方法として、既存RC梁の下面および側面に鉄板を貼り付ける等の補強が行われていたが、補強鉄板等の部材は大きな重量となるため運搬や施工が大変で、既存の鉄筋コンクリートとの一体化にも大変難しいという課題があった。   Conventionally, as a reinforcement method for existing reinforced concrete (RC) beams, reinforcement such as sticking steel plates to the bottom and side surfaces of existing RC beams has been performed. However, it was difficult to integrate with existing reinforced concrete.

図7は、既存大梁の効果的な補強方法を示した構成7の実施例を示す断面図である。
先ず、補強対象となる既存建物の1階既存大梁42の下面および側面に補強後大梁の下端主筋71を配筋する。その位置は、既存大梁の下面よりも同レベル以下に下がった位置を基本とする。
これによって、既存梁に邪魔されずに配筋が可能で、且つ梁成が高くなるので大梁の曲げ耐力が大幅に上昇する。
FIG. 7 is a cross-sectional view showing an example of configuration 7 showing an effective method of reinforcing an existing beam.
First, the bottom main reinforcement 71 of the post-reinforcing large beam is placed on the lower surface and side surface of the first-floor existing large beam 42 of the existing building to be reinforced. The position is basically based on a position lower than the same level as the lower surface of the existing beam.
As a result, it is possible to arrange the bars without being disturbed by the existing beams, and the beam formation becomes high, so that the bending strength of the large beams is significantly increased.

1階既存大梁42の上端主筋72の補強は、既存大梁42の上部に位置する1階既存床スラブ44上面の仕上げ材を撤去し、上面を目荒らした上で、新たに補強後大梁の上端主筋72の配筋を行う。上端主筋72は、既存スラブ44の上に並べることになるが、柱と交差する位置では、柱筋の位置を避けて、コアボーリングにより既存柱に穴をあけ、補強用主筋72を通した後、グラウトすることにより、柱位置に対しても補強を行うことができる。   To reinforce the upper main reinforcement 72 of the first-floor existing large beam 42, the finishing material on the upper surface of the first-floor existing floor slab 44 located above the existing large beam 42 is removed, the upper surface is roughened, and the upper end of the newly-reinforced large beam The main bar 72 is placed. The upper main bars 72 are arranged on the existing slab 44, but at positions where the upper main bars 72 intersect with the columns, the positions of the column bars are avoided, holes are made in the existing columns by core boring, and the reinforcing main bars 72 are passed through. By grouting, the column position can be reinforced.

次ぎにせん断補強筋(スターラップ)の補強配筋方法であるが、先ず1階既存床スラブ44の、補強後大梁の側面位置からかぶり厚さだけ内側にはいった平面位置に等間隔のスラブ縦穴77を開け、そのスラブ縦穴77を通してせん断補強筋73を配筋する。せん断補強筋73はロの字型の閉鎖形状にする必要があるが、上端主筋72の上から∩字型補強筋を下へ通し、下端主筋71の下から上向きに∪字型補強筋を配置し、両者を梁断面中央高さ付近で溶接接続部74のように重ね部を溶接で接合するか、フラッシュバット溶接部75のように突き合わせ状態で溶接接合する等により一体化する。尚、梁成に応じて、梁断面中央高さ付近に腹筋79を配筋する。尚、かぶり厚さとは、鉄筋の表面からコンクリート表面までの最小距離を言い、梁および柱ではせん断補強筋73の表面からコンクリート表面までの距離がかぶり厚さとなる。   Next, there is a method for reinforcing the reinforcement of the shear reinforcement bars (stirrup). First, the slab vertical holes are equidistantly spaced from the existing floor slab 44 on the first floor to the plane position that is inside from the side position of the post-reinforcing large beam by the cover thickness. 77 is opened, and the shear reinforcement bar 73 is arranged through the slab vertical hole 77. The shear reinforcing bar 73 needs to have a square-shaped closed shape, but the cross-shaped reinforcing bar is passed down from above the upper main bar 72 and the cross-shaped reinforcing bar is arranged from below the lower main bar 71 upward. Then, they are integrated by welding the overlapped portion like the welded connection portion 74 in the vicinity of the center height of the beam cross-section, or by welding and joining in a butted state like the flash butt welded portion 75. Note that the abdominal muscle 79 is arranged near the central height of the cross section of the beam according to the beam formation. The cover thickness refers to the minimum distance from the surface of the reinforcing bar to the concrete surface, and the distance from the surface of the shear reinforcing bar 73 to the concrete surface is the cover thickness for beams and columns.

以上により、既存大梁補強に必要な配筋が完了したので、スラブ下側の補強後梁の側面および底面を型枠で囲み、スラブ上からコンクリート76を打設する。スラブ上からスラブ下へコンクリート76が充填できるようにスラブには適切な間隔でコンクリート充填用孔78をあけておき、ここからコンクリートの充填を行う。   As described above, since the reinforcement necessary for reinforcing the existing large beam is completed, the side surface and the bottom surface of the post-reinforcement beam on the lower side of the slab are surrounded by the formwork, and the concrete 76 is placed on the slab. Concrete filling holes 78 are formed in the slab at appropriate intervals so that the concrete 76 can be filled from the top of the slab to the bottom of the slab, and the concrete is filled from here.

以上の方法で既存RC大梁を新しい鉄筋コンクリート造大梁として補強することができるが、本発明の方法では、上端主筋72・下端主筋71ともに既存大梁42の断面寸法に制約されずに必要な配筋を行うことができる上、梁成も大きくできるので、大梁の曲げ耐力・せん断耐力を所要の耐力まで容易に引き上げることが可能である。   The existing RC girder can be reinforced as a new reinforced concrete girder by the above method. However, in the method of the present invention, the upper bar 72 and the lower bar main bar 71 are not limited by the cross-sectional dimensions of the existing girder 42, and necessary reinforcements are arranged. In addition to being able to do this, the beam formation can be increased, so that it is possible to easily raise the bending strength and shear strength of the large beam to the required strength.

図10は、段落50にも簡述したが、実施例7における梁補強主筋が既存柱と交差する位置における解決方法を示した構成8の実施例である。
先ず、既存大梁42の上部および下部に配置された補強後大梁用の上端主筋72および下端主筋71の内、それぞれ既存柱41に対向する両主筋の位置に、主筋の直径よりも僅かに大きな直径の貫通孔80を水平に設け、主筋72もしくは71を貫通孔80の中に挿入し、貫通させた後に、主筋72もしくは71と貫通孔80の間の隙間に、高強度モルタルあるいは高強度樹脂等の充填材料81を充填し硬化させることによって、既存柱41の内部に梁主筋を定着することができる。
FIG. 10 is an example of the configuration 8 showing a solution method at the position where the beam reinforcing main bar intersects the existing column in the example 7, as briefly described in the paragraph 50.
First, a diameter slightly larger than the diameter of the main bar at the position of both main bars facing the existing column 41 among the upper main bar 72 and the lower main bar 71 for the post-reinforcing large beam arranged at the upper part and the lower part of the existing main beam 42. The through holes 80 are horizontally provided, and the main bars 72 or 71 are inserted into the through holes 80 and penetrated, and then a high-strength mortar or high-strength resin or the like is provided in the gap between the main bars 72 or 71 and the through-holes 80. The main beam can be fixed inside the existing pillar 41 by filling and hardening the filling material 81.

この梁補強により梁の曲げ耐力が上昇する。その結果、この柱・梁接合部には、大きなせん断応力度が作用する可能性が高まるが、補強梁はせん断補強を充分に行うことができるし、既存柱41はその外側をせん断補強筋で拘束し柱を増し打ちすること等により、既存柱41を外側から補強し、柱・梁接合部もせん断補強することができる。   This beam reinforcement increases the bending strength of the beam. As a result, the possibility of a large shear stress acting on this column / beam joint increases, but the reinforcing beam can sufficiently perform the shear reinforcement, and the existing column 41 has a shear reinforcement bar on the outside. By restraining and increasing the number of columns, the existing column 41 can be reinforced from the outside, and the column / beam joint can also be shear reinforced.

これまで、既存の柱・梁を効果的に補強する方法がなかったために、耐震壁やブレースを追加して取り付けるか、柱の周りを鉄板や補強帯材で拘束する等の方法しかなかったが、この補強梁主筋を既存柱内に貫通させる方法により、既存の柱・梁の耐力を極めて効果的に補強することが可能となった。   Until now, there was no way to effectively reinforce existing columns and beams, so there were only methods such as adding a seismic wall or braces, or constraining the periphery of the columns with iron plates or reinforcing strips. By using this method, the strength of the existing columns and beams can be reinforced very effectively.

またこの補強方法は、既存建物の免震化工事において、柱を切断する前の状態で工事を行うことができるので、建物重量を仮支持する必要がなく、極めて容易に工事を行うことができる。しかも、この既存梁の補強を先に行うことにより、その後この補強梁を利用して建物重量を仮支持して柱を切断する免震装置設置工事に取りかかれるため、仮設工事を大幅に簡略化できるというメリットを有している。   In addition, this reinforcement method allows the work to be performed in the state before the pillar is cut in the seismic isolation work of the existing building, so there is no need to temporarily support the weight of the building and the work can be carried out extremely easily. . Moreover, by reinforcing this existing beam first, it will be used to install a seismic isolation device that uses this reinforcing beam to temporarily support the weight of the building and cut the column, thereby greatly simplifying the temporary work. It has the merit of being able to.

図11は、構成8において既存柱の成(奥行き)が充分でないために、既存柱を貫通する補強鉄筋の定着長が不足する場合の対策を示した構成9の実施例である。
先ず実施例8と同様に、既存柱41に貫通孔80をあけ、大梁補強用の両主筋72および71を挿入し貫通させた後に、両主筋72もしくは71と貫通孔80の間の隙間には、高強度モルタル等のグラウト材81を充填する。
既存柱41の貫通孔端部の外側位置に、貫通させた主筋の定着板82を取り付け、鉄筋用ナット83で定着する。定着板82と鉄筋は溶接により一体化してもよい。
FIG. 11 is an example of the configuration 9 showing a countermeasure in the case where the fixing length of the reinforcing reinforcing bar penetrating the existing column is insufficient because the configuration (depth) of the existing column is not sufficient in the configuration 8.
First, in the same manner as in Example 8, after a through hole 80 is formed in the existing column 41 and both main reinforcing bars 72 and 71 for reinforcing a large beam are inserted and penetrated, in the gap between the main reinforcing bars 72 or 71 and the through hole 80, A grout material 81 such as high-strength mortar is filled.
A fixing plate 82 of the main reinforcing bar is attached to the outside position of the end portion of the through hole of the existing column 41 and fixed by the reinforcing bar nut 83. The fixing plate 82 and the reinforcing bar may be integrated by welding.

貫通孔内部のグラウト81は、定着板取り付け後に行うこともできるが、いずれにしてもグラウト81および定着板82の取り付けの両者を施工した後に、補強梁のコンクリート76を打設することによって、新設補強主筋がしっかり定着された柱・梁接合部を構築することができる。   The grout 81 inside the through-hole can be formed after the fixing plate is attached, but in any case, after both the grout 81 and the fixing plate 82 are attached, the concrete 76 of the reinforcing beam is placed and then newly installed. It is possible to build a column / beam joint where the reinforcement reinforcement is firmly established.

図12は、柱頭や柱脚等の既存柱の中間にすべり支承を取り付ける方法である構成10の実施例を示している。
すべり支承のすべり板は平面寸法が極めて大きく、小さいものでも一辺1.5メートル程度はあり、一辺2メートル前後の矩形平面になることが一般的である。この大きな平面のすべり板を既存柱の中間に挿入し設置するためには、その平面寸法以上の空間を開けた状態で既存柱の鉛直荷重を仮支持する必要があるため、その仮設支持が大変となる。そのため、平面寸法が大きくなるすべり支承は、既存建物の免震化工事にはこれまで採用された実績がないのが実状である。本発明の構成10は、この問題を解決し、既存建物の免震化工法にもすべり支承を採用することを可能にしたものである。
FIG. 12 shows an embodiment of the configuration 10 which is a method of attaching a sliding bearing in the middle of an existing column such as a stigma or a column base.
The sliding plate of the sliding support has a very large planar dimension, and even a small sliding plate has a side of about 1.5 meters and is generally a rectangular plane of about 2 meters on a side. In order to insert and install this large flat slip plate in the middle of an existing column, it is necessary to temporarily support the vertical load of the existing column with a space larger than the plane dimension. It becomes. For this reason, slip bearings with large planar dimensions have not been used for seismic isolation of existing buildings. The configuration 10 of the present invention solves this problem and makes it possible to adopt a sliding bearing in the seismic isolation method of an existing building.

そのために、あらかじめすべり支承のすべり板をスライダーの平面寸法よりも少し大きい「中央部分34B1」とその外側の「外周部分34B2」に分割し、且つ前記外周部分は少なくとも2分割以上に分割しておき、外周部分の表面すべり板34Cを中央部分のすべり板裏板34D上に乗り込ませて皿ボルト34Eで締め付けることにより、すべり板の表面を凹凸・段差・突起物のない1枚の大型すべり板に組立・一体化できる状態にしておく。   For this purpose, the sliding plate of the sliding support is divided in advance into a “central portion 34B1” slightly larger than the slider's planar dimension and an “outer peripheral portion 34B2” outside thereof, and the outer peripheral portion is divided into at least two or more. The surface slide plate 34C of the outer peripheral portion is placed on the slide plate back plate 34D of the central portion and tightened with the countersunk bolt 34E, so that the surface of the slide plate is made into one large slip plate having no irregularities, steps or protrusions. Keep it ready for assembly and integration.

図12では、既存柱41の柱頭部にスライダーを下側に、すべり板をその上側に設置する場合を図示している。
先ず上部建物の既存柱41の鉛直荷重を柱や梁を利用して仮支持した状態にしておき、既存柱41のすべり支承の設置予定位置をすべり支承の高さよりも少し大きく切断し、先ず既存柱41の平面中心位置に合わせてスライダー34Aおよびすべり板中央部分34B1を水平に取り付ける。この時、すべり板中央部分34B1の平面寸法はスライダー34Aの平面寸法とほぼ同等か若干大きい程度であるので、積層ゴム体よりもむしろ小型で軽量となり、取り付け工事は容易に行うことができる。
In FIG. 12, the case where the slider is installed on the lower side of the column head of the existing column 41 and the sliding plate is installed on the upper side is illustrated.
First, the vertical load of the existing column 41 of the upper building is temporarily supported using columns and beams, and the planned installation position of the slide support of the existing column 41 is cut slightly larger than the height of the slide support. The slider 34A and the slide plate center portion 34B1 are horizontally mounted in accordance with the planar center position of the column 41. At this time, since the planar dimension of the sliding plate central portion 34B1 is approximately the same as or slightly larger than the planar dimension of the slider 34A, it is smaller and lighter than the laminated rubber body, and the installation work can be easily performed.

このスライダーとすべり板中央部を設定した後、両者の上側および下側のコンクリートを打設して鉛直荷重を支持できる状態とすることによりその後の工事を容易にできるが、全てのすべり板組立終了後にまとめて、配筋およびコンクリート工事を行ってもよい。   After setting the slider and the sliding plate center, placing the concrete on the upper and lower sides to support the vertical load can facilitate the subsequent work, but all the sliding plates are assembled. You may collect reinforcement and concrete work later.

すべり板中央部分34B1が設置された後、その外側にすべり板の外周部分34B2を配置し、中央部分34B1の裏板34Dの上に外周部分34B2の表面すべり板34Cを重ね、皿ボルト34Eを締め付ける。この方法により分割されたすべり板の表面が同一面に揃い、凹凸・段差・突起物のない大きなすべり面を構築することができる。
その後すべり支承34(スライダーおよびすべり板)の上側および下側のコンクリート躯体を構成する配筋およびコンクリート打設を行うことによって、既存柱41の柱頭部に大型平面寸法を有するすべり支承を取り付けることができる。
尚、既存柱41の柱脚部にすべり支承を取り付ける場合も方向が上下逆転するだけで、同じ要領で工事を行うことができる。
After the slip plate central portion 34B1 is installed, the outer peripheral portion 34B2 of the slide plate is disposed on the outer side, the surface slip plate 34C of the outer peripheral portion 34B2 is overlaid on the back plate 34D of the central portion 34B1, and the countersunk bolt 34E is tightened. . The surfaces of the slide plates divided by this method are aligned on the same surface, and a large slip surface having no irregularities, steps or protrusions can be constructed.
After that, the sliding support 34 (slider and sliding plate) is mounted on the upper side and the lower side of the concrete frame by placing reinforcements and placing concrete to attach the sliding support having a large plane size to the column head of the existing column 41. it can.
In addition, also when attaching a slide support to the column base part of the existing column 41, construction can be performed in the same manner only by turning the direction upside down.

大きな平面寸法を有するすべり支承は、その設置工事が難しいため、これまで既存建物の免震化工事には採用されていなかったが、本発明により、既存建物の免震化工法にもすべり支承を採用することが可能になった。このことは、既存建物の免震設計性能を大きく向上させることができ、また比較的小規模で軽量のためこれまで免震化が難しかった多くの既存建物を免震構造化することを可能にしたものである。   Sliding bearings with large plane dimensions have been difficult to install and have not been used for seismic isolation of existing buildings so far. It became possible to adopt. This greatly improves the seismic isolation design performance of existing buildings, and makes it possible to make many existing buildings seismically isolated because of their relatively small size and weight. It is a thing.

わが国においては、住宅戸数のストックは既に十分な数に達しており、今後は住宅の質の向上を図ることが重要である。わが国の経済力や環境保全の観点からも、膨大な数の既存住宅の有効活用が国策としての重要課題の一つであり、国民の安全で豊かな暮らしを維持し発展させるためには、既存建物の耐震安全性能の改善・向上が重要な課題である。   In Japan, the stock of houses has already reached a sufficient number, and it is important to improve the quality of houses in the future. From the viewpoint of Japan's economic power and environmental conservation, the effective use of a huge number of existing houses is one of the important issues as a national policy. In order to maintain and develop a safe and affluent life for the people, Improving and improving the seismic safety performance of buildings is an important issue.

そういう観点から、これまでも在来耐震構造による耐震補強、耐震改修が行われてきているが、改修工事のためには、住民は一旦転居する必要があること、建物全体・全階に渡って工事を行う必要がるため費用も時間もかかるなどの問題が大きく、耐震改修工事はあまり進展していないのが実態である。   From that point of view, seismic reinforcement and seismic retrofitting have been carried out using conventional seismic structures, but the residents need to move once for the renovation work. The actual situation is that the earthquake-resistant repair work has not progressed so much because it requires a lot of cost and time since construction is required.

一方、免震構造による既存建物の改修は、建物も収容物も守ることができるので、実現すればその安全性の効果が大きく安心できる方法であるが、これまでの工事方法ではコストが高くつくため実現された例は極一部に留まっているのが実情である。   On the other hand, retrofitting existing buildings with a seismic isolation structure can protect both buildings and containment, so if realized, it is a safe and secure method, but the conventional construction methods are expensive. Therefore, the actual situation is that only a few examples have been realized.

本発明は、既存建物の外側において主要な工事を行うため、居住者がその建物に居住を継続することができ、工事自体が実施しやすい。従来の免震化工事が高くつく第一の理由は、施工費、即ち施工が難しいための工事費および仮設資材費が殆どであり、免震装置等の材料費の割合は小さい。従って、新築工事と同じ要領で工事の大半を実施できる本発明による免震化工事が、従来工法に比べて格段に低コストで行えることは明らかである。
本発明により、わが国のたくさんの既存建物が免震構造化され、安全で安心して暮らせる既存建物を増加させることが容易になったと言える。
Since the present invention performs main construction outside the existing building, the resident can continue living in the building, and the construction itself is easy to implement. The first reason why the conventional seismic isolation work is expensive is the construction cost, that is, the construction cost and the temporary material cost because the construction is difficult, and the ratio of the material cost of the seismic isolation device is small. Therefore, it is clear that the seismic isolation work according to the present invention, which can carry out most of the work in the same manner as the new construction work, can be performed at a much lower cost than the conventional construction method.
With the present invention, it can be said that many existing buildings in Japan have been seismically isolated, and it has become easier to increase the number of existing buildings that can live safely and with peace of mind.

本発明の基本構成(構成1)の実施例1を示す断面図である。It is sectional drawing which shows Example 1 of the basic composition (structure 1) of this invention. 本発明の実施例2(構成1および構成2)を示す平面図である。 (1)本発明が対象とする既存建物の1階平面図で、本発明適用前の状態を示す。 (2)対象既存建物の1階平面図で、本発明による免震化工事後の状態を示す。It is a top view which shows Example 2 (Configuration 1 and Configuration 2) of the present invention. (1) The first floor plan view of an existing building targeted by the present invention shows a state before the present invention is applied. (2) The first floor plan view of the target existing building shows the state after the seismic isolation work according to the present invention. 本発明の実施例3(構成4および構成5)を示す断面図である。It is sectional drawing which shows Example 3 (Structure 4 and Structure 5) of this invention. 本発明の実施例4(構成4および構成5)を示す断面図である。It is sectional drawing which shows Example 4 (Structure 4 and Structure 5) of this invention. 本発明の実施例5(構成4および構成5)を示す断面図である。It is sectional drawing which shows Example 5 (Structure 4 and Structure 5) of this invention. 本発明の実施例6(構成6)を示す断面図である。It is sectional drawing which shows Example 6 (structure 6) of this invention. 本発明の実施例7(構成7)を示す断面図である。It is sectional drawing which shows Example 7 (structure 7) of this invention. 特許文献1による従来の既存建物の免震化工法を示す断面図である。It is sectional drawing which shows the seismic isolation method of the conventional existing building by patent document 1. FIG. 特許文献4による従来の既存建物の免震化工法を示す断面図である。It is sectional drawing which shows the conventional seismic isolation construction method of the existing building by patent document 4. FIG. 本発明の実施例8(構成8)を示す断面図である。It is sectional drawing which shows Example 8 (structure 8) of this invention. 本発明の実施例9(構成9)を示す断面図である。It is sectional drawing which shows Example 9 (structure 9) of this invention. 本発明の実施例10(構成10)を示す断面図である。It is sectional drawing which shows Example 10 (structure 10) of this invention.

符号の説明Explanation of symbols

1 :地盤
11:既存杭
12:既存基礎躯体
13:既存地下躯体
14:既存地下階柱
15:既存地下階梁
16:既存地下階壁
21:新設杭
22:新設基礎フーチング
23:新設基礎躯体(地中梁・擁壁)
3 :免震装置
31:建物外免震装置
32:建物内免震装置
33:積層ゴム系免震装置
34:すべり支承
34A :スライダー
34B :すべり板
34B1:すべり板中央部
34B2:すべり板外周部
34C :表面すべり板
34D :すべり板裏板
34E :皿ボルト
34F :皿ボルト用袋ナット
34G :スタッドボルト
35:免震用水平クリアランス
36:免震クリアランス用躯体切断部
37:床スラブ用免震装置
4 :既存上部建物
40:既存柱切断部
41:既存柱
42:既存梁
43:既存耐震壁
44:既存床
5 :新設上部構造体
50:新設上部フーチング
51:新設柱
52:新設梁
53:新設壁
54:新設床スラブ
55:新設鉛直荷重伝達部材(壁・斜め柱・ブレース)
56:新設プレストレスケーブル
57:新設の増築階
58:新設外周フレーム
6 :外部フレ−ム
61:新設地下外部躯体
62:新設地上外部柱
63:新設屋上大梁
66:新設吊り下げケーブル
7 :補強大梁
71:補強用梁主筋(下端主筋)
72:補強用梁主筋(上端主筋)
73:補強用せん断補強筋
74:補強用せん断補強筋の溶接接続部
75:補強用せん断補強筋のフラッシュバット接続部
76:補強用コンクリート
77:せん断補強筋用スラブ縦穴
78:コンクリート打設用スラブ穴
79:補強大梁の腹筋
80:既存柱にあける貫通孔
81:グラウト充填部
82:鉄筋用定着板
83:鉄筋・定着板用ナット
1: Ground 11: Existing pile 12: Existing foundation frame 13: Existing underground frame 14: Existing underground floor pillar 15: Existing underground floor beam 16: Existing underground floor wall 21: New pile 22: New foundation footing 23: New foundation frame ( Underground beams and retaining walls)
3: Seismic isolation device 31: Seismic isolation device outside building 32: Seismic isolation device in building 33: Laminated rubber-based seismic isolation device 34: Slide bearing 34A: Slider 34B: Slide plate 34B1: Central portion of slide plate 34B2: Outer portion of slide plate 34C: Surface slip plate 34D: Slide plate back plate 34E: Countersunk bolt 34F: Countersunk bolt nut 34G: Stud bolt 35: Seismic isolation horizontal clearance 36: Seismic isolation clearance frame cutting part 37: Floor slab isolation device 4: Existing upper building 40: Existing column cutting part 41: Existing column 42: Existing beam 43: Existing seismic wall 44: Existing floor 5: New upper structure 50: New upper footing 51: New column 52: New beam 53: Newly installed Wall 54: New floor slab 55: New vertical load transmission member (wall, diagonal column, brace)
56: New prestressed cable 57: New extension floor 58: New outer frame 6: External frame 61: New underground exterior frame 62: New ground external pillar 63: New roof girder 66: New suspended cable 7: Reinforced girder 71: Reinforcement beam reinforcement (lower end reinforcement)
72: Beam reinforcement for reinforcement (upper reinforcement)
73: Reinforcement shear reinforcement bar 74: Weld connection part of reinforcement shear reinforcement bar 75: Flash butt connection part of reinforcement shear reinforcement bar 76: Reinforcement concrete 77: Slab vertical hole for shear reinforcement bar 78: Slab for concrete placement Hole 79: Abdominal rebar of reinforcing beam 80: Through hole in existing column 81: Grout filling part 82: Reinforcing bar fixing plate 83: Reinforcing bar / fixing plate nut

Claims (10)

既存建物の1階床から上部を免震建物にする免震化工法であって、
既存外周柱の外側で既存建物から少し離れた位置の少なくとも4カ所に新設杭を打設するか直接基礎を設け、その上に免震装置を受ける新設基礎フーチングを設け、
前記新設基礎フーチングの上に建物外免震装置を置き、
前記建物外免震装置の上に少なくとも1階梁で構成される新設外周フレームを構成し、
前記既存建物の各既存柱の1階の鉛直荷重を仮受した上で、その既存柱の1階柱の一部を水平方向に切断しこの切断部内に建物内免震装置を配置し、
その切断した1階柱の切断部直上を水平方向に連結し、且つ既存の1階床スラブからは浮き上がっているか、もしくは既存の1階床スラブ上に床スラブ用免震装置で水平方向に移動可能に支持されている新設床スラブを構築し、
前記新設外周フレームと前記新設床スラブとを水平方向に連結することを特徴とする既存建物の免震化工法。
It is a seismic isolation method that changes the upper part from the first floor of an existing building
Place new piles or install direct foundations in at least four places outside the existing outer peripheral pillars and slightly away from existing buildings, and install new foundation footings that receive seismic isolation devices on top of them.
Place the seismic isolation device outside the building on the new foundation footing,
A new outer peripheral frame composed of at least one floor beam is formed on the seismic isolation device outside the building,
After provisionally receiving the vertical load of the first floor of each existing pillar of the existing building, a part of the first floor pillar of the existing pillar is cut in the horizontal direction, and the in-building seismic isolation device is disposed in the cut portion,
Directly connect the cut section of the cut first-floor pillar in the horizontal direction, and lift from the existing first-floor floor slab or move horizontally on the existing first-floor floor slab with a seismic isolation device for floor slabs Build a new floor slab that is supported as possible,
A seismic isolation method for an existing building, wherein the new outer peripheral frame and the new floor slab are connected in a horizontal direction.
請求項1に記載の既存建物の免震化工法において、
前記建物外免震装置には、復元力を負担する積層ゴム系免震装置を配置し、
前記建物内免震装置には、既存柱の軸力を支持するすべり支承もしくは転がり支承を配置し、
前記床スラブ用免震装置には、前記新設床スラブを支持するすべり支承もしくは転がり支承を配置することを特徴とする既存建物の免震化工法。
In the seismic isolation method of the existing building according to claim 1,
In the seismic isolation device outside the building, a laminated rubber-based seismic isolation device that bears the restoring force is arranged,
In the building seismic isolation device, a sliding bearing or a rolling bearing that supports the axial force of the existing column is arranged,
A seismic isolation method for an existing building, wherein the seismic isolation device for a floor slab is provided with a sliding bearing or a rolling bearing that supports the new floor slab.
請求項1又は請求項2に記載の既存建物の免震化工法において、
前記建物内免震装置の一部に、積層ゴム系免震装置を混用することを特徴とする既存建物の免震化工法。
In the seismic isolation method for an existing building according to claim 1 or claim 2,
A seismic isolation method for an existing building, wherein a laminated rubber seismic isolation device is mixed with a part of the in-building seismic isolation device.
既存建物の1階床から上部を免震建物にする免震化工法であって、
既存外周柱の外側で既存建物から少し離れた位置の少なくとも4カ所に新設杭を打設するか直接基礎を設け、その上に免震装置を受ける新設基礎フーチングを設け、
前記新設基礎フーチングの上に建物外免震装置を置き、
前記建物外免震装置の上に少なくとも1階梁および1階柱で構成される新設外周フレームを構成し、
前記既存外周柱の鉛直荷重を前記新設外周フレームに伝達できる柱、壁もしくは斜材ブレースのいずれかからなる鉛直荷重伝達部材を配置し、
前記鉛直荷重伝達部材に隣接する既存柱の1階柱脚部は切断したままとし、
それ以外の既存柱は、1階の鉛直荷重を仮受した上で、その既存柱の1階柱の一部を水平方向に切断しこの切断部内に建物内免震装置を配置し、
切断された全既存柱の1階柱の切断部直上を水平方向に連結し、且つ既存の1階床スラブからは浮き上がっているか、もしくは既存の1階床スラブ上に免震装置で水平方向に移動可能に支持されている新設床スラブを構築し、
前記新設外周フレームと前記新設床スラブとを水平方向に連結することを特徴とする既存建物の免震化工法。
It is a seismic isolation method that changes the upper part from the first floor of an existing building
Place new piles or install direct foundations in at least four places outside the existing outer peripheral pillars and slightly away from existing buildings, and install new foundation footings that receive seismic isolation devices on top of them.
Place the seismic isolation device outside the building on the new foundation footing,
A new outer peripheral frame composed of at least a first floor beam and a first floor pillar is formed on the seismic isolation device outside the building,
A vertical load transmitting member consisting of a column, a wall, or a diagonal brace capable of transmitting the vertical load of the existing outer peripheral column to the newly installed outer peripheral frame is disposed,
The first floor column base of the existing column adjacent to the vertical load transmission member remains cut,
Other existing pillars received a vertical load on the first floor, cut a part of the first-floor pillar of the existing pillars in the horizontal direction, and placed the seismic isolation device in the building in this cut section,
Connect the cut portion of the first floor column of all existing pillars directly above the horizontal section and lift from the existing first floor slab, or use the seismic isolation device on the existing first floor slab. Build a new floor slab supported movably,
A seismic isolation method for an existing building, wherein the new outer peripheral frame and the new floor slab are connected in a horizontal direction.
請求項1乃至請求項4のいずれかに記載の既存建物の免震化工法において、
前記建物外免震装置を支持する新設基礎フーチングと、前記既存建物の基礎構造体もしくは地下構造体とを水平力が伝達できるように連結し一体化することを特徴とする既存建物の免震化工法。
In the seismic isolation method for an existing building according to any one of claims 1 to 4,
A seismic isolation system for an existing building, wherein a new foundation footing for supporting the seismic isolation device outside the building and a foundation structure or an underground structure of the existing building are connected and integrated so that a horizontal force can be transmitted. Law.
地下階を有する既存建物の1階床から上部を免震建物にする免震化工法であって、
少なくとも既存外周柱の外側4カ所に、既存建物から少し離れた位置に新設杭を打設するか、既存地下躯体に一体化した跳ねだし躯体を構築し、その上に新設基礎フーチングを設けて建物外免震装置を配置し、
前記建物外免震装置の上に少なくとも1階梁で構成される新設外周フレームを構成し、
前記新設外周フレームを、水平力が伝達できるように前記既存建物の1階床スラブおよび1階梁に連結・一体化し、
前記新設基礎フーチングを、水平力が伝達できるように前記既存建物の地下躯体に連結・一体化した上で、
地下1階柱頭部を切断して、その切断部の下側(地下1階柱頭部側)にすべり支承のスライダーを取り付け、切断部の上側(1階床・大梁側)にすべり支承のすべり板を取り付けることを特徴とする既存建物の免震化工法。
It is a seismic isolation method that changes the upper part from the first floor of an existing building that has a basement floor,
Build new piles at least 4 places outside the existing outer peripheral pillars at a position slightly away from the existing building, or construct a jumping frame integrated with the existing underground frame, and install a new foundation footing on it. Place the seismic isolation device outside,
A new outer peripheral frame composed of at least one floor beam is formed on the seismic isolation device outside the building,
The new outer frame is connected and integrated with the first floor slab and the first floor beam of the existing building so that horizontal force can be transmitted,
After connecting and unifying the new foundation footing to the underground building of the existing building so that horizontal force can be transmitted,
Cut the 1st basement column head, attach the slide support slider to the lower side of the cut (basement 1st column head side), and slide the slide support to the upper side (1st floor / large beam side) of the cut part. Seismic isolation method for existing buildings, characterized by attaching
請求項1乃至請求項6のいずれかに記載の既存建物の免震化工法において、
前記既存建物の1階既存大梁の下面および側面に補強後大梁の下端主筋となる配筋を行い、
前記1階既存大梁の上部に位置する1階既存床スラブ上面の仕上げ材を撤去し、上面を目荒らしした上で前記補強後大梁の上端主筋となる配筋を行い、
前記1階既存床スラブの、前記補強後大梁の側面位置からかぶり厚さだけ内側にはいった平面位置に等間隔のスラブ縦穴を設け、
前記スラブ縦穴を通してせん断補強筋を配筋した上で、
前記1階既存床スラブの上部および前記1階既存大梁の側面および下面にコンクリートを打設することによって既存建物の1階大梁を補強したことを特徴とする既存建物の免震化工法。
In the seismic isolation method for an existing building according to any one of claims 1 to 6,
Reinforcing the lower main bar of the main beam after reinforcement on the lower and side surfaces of the existing first floor of the existing building
Removing the finishing material on the upper surface of the first floor existing floor slab located on the upper part of the first floor existing large beam, roughening the upper surface, and then arranging the upper main bar of the post-reinforcing large beam;
The first floor existing floor slab is provided with slab vertical holes at equal intervals in a plane position that is inside the cover thickness from the side position of the post-reinforced large beam,
After arranging the shear reinforcement through the slab vertical hole,
A seismic isolation method for an existing building, in which the first-floor large beam of the existing building is reinforced by placing concrete on the upper part of the first-floor existing floor slab and the side and bottom surfaces of the first-floor existing large beam.
請求項7に記載の既存建物の免震化工法において、
前記1階既存大梁の上部および下部に配置された補強後大梁用の前記上端主筋および前記下端主筋の内、それぞれ既存柱に対向する両主筋の位置に、同主筋の直径よりも僅かに大きな直径の貫通孔を水平に設け、
前記両主筋を前記貫通孔の中に挿入し、貫通させた後に、
前記両主筋と前記貫通孔の間の隙間に、高強度モルタルあるいは高強度樹脂等の充填材料を充填し硬化させることによって、前記既存柱と補強梁の新設補強主筋とが交差する補強された柱・梁接合部を構築することを特徴とする既存建物の免震化工法。
In the seismic isolation method for an existing building according to claim 7,
A diameter slightly larger than the diameter of the main bar at the position of both main bars of the upper main bar and the lower bar main bar for the post-reinforcing beam placed at the upper and lower parts of the first-floor existing big beam. The through-holes are provided horizontally,
After inserting both the main muscles into the through hole and penetrating,
A reinforced column in which a gap between the two main bars and the through hole is filled with a filling material such as high-strength mortar or high-strength resin and cured to intersect the existing column and the new reinforcing main bar of the reinforcing beam.・ A seismic isolation method for existing buildings, characterized by building beam joints.
請求項8に記載の既存建物の免震化工法において、
前記既存柱の貫通孔に、前記上端主筋および前記下端主筋の内、前記既存柱に対向する両主筋をそれぞれ挿入し貫通させた後に、
前記主筋と前記貫通孔の間の隙間には、高強度モルタル等のグラウト材を充填し、
前記既存柱の貫通孔端部の外側位置に、貫通させた主筋の定着板を取り付け、
鉄筋用ナットもしくは溶接等により定着板と主筋を固定した上で、
補強梁のコンクリートを打設することによって、既存柱と補強梁の新設補強主筋とが交差する補強された柱・梁接合部を構築することを特徴とする既存建物の免震化工法。
In the seismic isolation method for an existing building according to claim 8,
After inserting and penetrating both main bars opposed to the existing pillars among the upper and lower main bars in the through holes of the existing columns,
In the gap between the main bar and the through hole, filled with a grout material such as high-strength mortar,
At the outer position of the end of the through hole of the existing pillar, attach the fixing plate of the penetrated main muscle,
After fixing the fixing plate and the main bar with a reinforcing bar nut or welding,
A seismic isolation method for an existing building, in which a reinforced column / beam joint is constructed in which the existing column and the new reinforcement reinforcement of the reinforcing beam intersect by placing concrete in the reinforcing beam.
請求項1乃至請求項9のいずれかに記載の既存建物の免震化工法において、
前記既存建物の既存柱の柱脚部もしくは柱頭部にすべり支承を取り付ける工法であり、
あらかじめ前記すべり支承のすべり板をスライダーの平面寸法よりも少し大きい「中央部分」とその外側の「外周部分」に分割し、且つ前記外周部分は少なくとも2分割以上に分割しておき、
前記外周部分の表面すべり板を前記中央部分のすべり板裏板上に乗り込ませて皿ボルトで締め付けることにより、すべり板の表面を凹凸・段差・突起物のない1枚の大型すべり板に再構築できる状態にしておき、
前記既存柱の鉛直荷重を仮支持した状態において、前記既存柱の前記すべり支承の設置予定位置を前記すべり支承の高さよりも少し大きく切断し、
先ず前記既存柱の中心位置に合わせて前記スライダーおよび前記すべり板の中央部分を水平に取り付け、
その後で、前記すべり板の外周部分を前記中央部分の外側に配置し、皿ボルト等により水平、且つ平滑な表面となるようにすべり板を構成し、
合わせて前記スライダーおよび前記すべり板の上側および下側のコンクリート躯体を打設・構築して前記スライダーおよび前記すべり板を固定することによって既存柱の柱脚もしくは柱頭位置にすべり支承を取り付けることを特徴とする既存建物の免震化工法。
In the seismic isolation method for an existing building according to any one of claims 1 to 9,
It is a method of attaching a sliding support to the column base or the column head of the existing column of the existing building,
In advance, the sliding plate of the sliding support is divided into a “central portion” slightly larger than the planar size of the slider and an “outer peripheral portion” outside the slider, and the outer peripheral portion is divided into at least two or more parts.
The surface slide plate of the outer peripheral part is placed on the back plate of the slide part of the central part and tightened with a countersunk bolt, so that the surface of the slide plate is reconstructed into a single large slip board with no irregularities, steps or protrusions. Leave it ready,
In a state where the vertical load of the existing column is temporarily supported, the installation position of the sliding bearing of the existing column is cut slightly larger than the height of the sliding bearing,
First, horizontally attach the slider and the central part of the sliding plate according to the center position of the existing pillar,
Thereafter, the outer peripheral portion of the sliding plate is arranged outside the central portion, and the sliding plate is configured to have a horizontal and smooth surface with a flat bolt or the like,
In addition, the upper and lower concrete frames of the slider and the slide plate are placed and constructed, and the slider and the slide plate are fixed to attach the slide support to the column base or the head position of the existing column. Seismic isolation method for existing buildings.
JP2007327601A 2007-11-21 2007-12-19 Base-isolating work method for existing buildings Pending JP2009144494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327601A JP2009144494A (en) 2007-11-21 2007-12-19 Base-isolating work method for existing buildings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007301544 2007-11-21
JP2007327601A JP2009144494A (en) 2007-11-21 2007-12-19 Base-isolating work method for existing buildings

Publications (1)

Publication Number Publication Date
JP2009144494A true JP2009144494A (en) 2009-07-02

Family

ID=40915409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327601A Pending JP2009144494A (en) 2007-11-21 2007-12-19 Base-isolating work method for existing buildings

Country Status (1)

Country Link
JP (1) JP2009144494A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045199A (en) * 2013-08-29 2015-03-12 鹿島建設株式会社 Reinforcement structure for existing foundation of existing structure
JP2016223521A (en) * 2015-05-29 2016-12-28 株式会社Nttファシリティーズ Aseismic base isolation device structure and method for fixing aseismic base isolation device
JP2017115475A (en) * 2015-12-25 2017-06-29 前田建設工業株式会社 Expansion frame type reinforcing structure
JP2018058705A (en) * 2017-12-22 2018-04-12 株式会社奥村組 Vibration damping structure for construction
CN108088736A (en) * 2018-01-16 2018-05-29 中国地震局工程力学研究所 Sub-structural test loading device
JP2018083717A (en) * 2017-12-22 2018-05-31 株式会社奥村組 Vibration control structure of structure
CN111622525A (en) * 2020-05-26 2020-09-04 中铁大桥科学研究院有限公司 Thin-wall high-rise hollow tower column cultural relic displacement safety protection method
JP2021017779A (en) * 2019-07-23 2021-02-15 株式会社竹中工務店 Seismic isolation structure
CN114991529A (en) * 2022-05-30 2022-09-02 江苏鸿基节能新技术股份有限公司 Integral translation device for building and construction method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045199A (en) * 2013-08-29 2015-03-12 鹿島建設株式会社 Reinforcement structure for existing foundation of existing structure
JP2016223521A (en) * 2015-05-29 2016-12-28 株式会社Nttファシリティーズ Aseismic base isolation device structure and method for fixing aseismic base isolation device
JP2017115475A (en) * 2015-12-25 2017-06-29 前田建設工業株式会社 Expansion frame type reinforcing structure
JP2018058705A (en) * 2017-12-22 2018-04-12 株式会社奥村組 Vibration damping structure for construction
JP2018083717A (en) * 2017-12-22 2018-05-31 株式会社奥村組 Vibration control structure of structure
CN108088736A (en) * 2018-01-16 2018-05-29 中国地震局工程力学研究所 Sub-structural test loading device
CN108088736B (en) * 2018-01-16 2024-04-30 中国地震局工程力学研究所 Substructure test loading device
JP7261377B2 (en) 2019-07-23 2023-04-20 株式会社竹中工務店 Seismic isolation structure
JP2021017779A (en) * 2019-07-23 2021-02-15 株式会社竹中工務店 Seismic isolation structure
CN111622525A (en) * 2020-05-26 2020-09-04 中铁大桥科学研究院有限公司 Thin-wall high-rise hollow tower column cultural relic displacement safety protection method
CN111622525B (en) * 2020-05-26 2022-02-01 中铁大桥科学研究院有限公司 Thin-wall high-rise hollow tower column cultural relic displacement safety protection method
CN114991529A (en) * 2022-05-30 2022-09-02 江苏鸿基节能新技术股份有限公司 Integral translation device for building and construction method
CN114991529B (en) * 2022-05-30 2024-01-30 江苏鸿基节能新技术股份有限公司 Integral translation device for building and construction method

Similar Documents

Publication Publication Date Title
JP2009144494A (en) Base-isolating work method for existing buildings
JP5955108B2 (en) Pile reinforcement structure of existing building and its construction method
KR100956974B1 (en) Building remodeling construction method using precast concrete panel, and remodeled building thereof
CN110805144B (en) Full-assembly type high-rise/super high-rise concrete frame support structure system and construction method thereof
JP3799036B2 (en) Building basic structure and construction method
JP3780816B2 (en) Seismic isolation method for existing buildings
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
JP5865567B2 (en) Connecting slab and its construction method
JP2009007865A (en) Building structure
CN110700274A (en) Mechanically-connected assembled stand column and stand column pile
KR100628537B1 (en) Pc structure wall system with high earthquake resistance capacity
JP3641227B2 (en) Construction method of underground structure
KR200450899Y1 (en) Earthquake shelter
JP2003003690A (en) Base isolation building and method for base isolation of exisiting building
JP7106305B2 (en) Structural columns and seismically isolated buildings
KR101481152B1 (en) Seismic resistant reinforcement structures and the reinforcing method using it
JP2006002428A (en) Reinforcing method of existing floor and base isolation method of existing building
JP3322259B2 (en) Earthquake countermeasures during construction during seismic isolation construction
KR20110043976A (en) Top-down method using precast column and building structure thereof
RU2581853C1 (en) Method for construction of pile foundation
JP7502208B2 (en) Building
JP7571356B2 (en) Earthquake-proof building
JPH1130053A (en) Construction method of base isolation building
JP5541520B2 (en) Underground construction