JP3690437B2 - Seismic reinforcement structure for existing buildings - Google Patents

Seismic reinforcement structure for existing buildings Download PDF

Info

Publication number
JP3690437B2
JP3690437B2 JP31396496A JP31396496A JP3690437B2 JP 3690437 B2 JP3690437 B2 JP 3690437B2 JP 31396496 A JP31396496 A JP 31396496A JP 31396496 A JP31396496 A JP 31396496A JP 3690437 B2 JP3690437 B2 JP 3690437B2
Authority
JP
Japan
Prior art keywords
existing
pillars
existing building
external frame
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31396496A
Other languages
Japanese (ja)
Other versions
JPH10152998A (en
Inventor
山田  信一
元彦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP31396496A priority Critical patent/JP3690437B2/en
Publication of JPH10152998A publication Critical patent/JPH10152998A/en
Application granted granted Critical
Publication of JP3690437B2 publication Critical patent/JP3690437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、既存建築物の耐震性を向上させるための補強構造に関する。
【0002】
【従来の技術】
近年、建築物にはより高度の耐震性が要求されるようになってきており、新たに構築される建築物にはこれまで以上に耐震性に対して充分なる考慮がなされることが当然となっている。しかし、過去に建設されて現在においても使用されている既存建築物には、建設当時においては充分な耐震性を有していると考えられていたとしても現時点では耐震性が問題とされる場合もあり、そのような既存建築物に対しては耐震性を向上させるための補強が必要とされている。
【0003】
既存建築物に対して耐震性を向上させるために従来実施されている補強手段としては、耐震壁の増設、枠付ブレースの新設、柱への鉄板もしくはカーボン巻き付け、コンクリートの打ち増し等が挙げられる。
ところで、これらの補強手段はいずれも建築物内部の改修工事となるため、既存建築物を普段通りに使用しながらこれら改修工事を実施するのは非常に困難である。また、あえて使用しながら実施する場合には工事を実施する時間が夜間や休日に限定されてしまい工期が長期化する。
そこで、既存建築物に近接して鉄骨造の外部架構を構築し、この外部架構によって既存建築物を外部から支持する補強手段が検討されている。この補強手段を採用すれば既存建築物の使用体制に影響を及ぼすことなく補強工事を実施できる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の補強手段においては外部架構が既存建築物に合わせて巨大になるため、外部架構の剛性が低くなる傾向が強く、既存建築物がRC造、SRC造といった剛性の高い構造である場合には十分補強効果を発揮できない恐れがあった。
【0005】
本発明は上記の事情に鑑みてなされたものであり、既存建築物の使用体制に影響を及ぼすことなく補強工事を実施でき、完成後には当該既存建築物の耐震性を飛躍的に向上させることが可能な既存建築物の耐震補強構造を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の課題を解決するための手段として、既存建築物を構成する既存の柱に近接させて添柱を立設するとともにこの添柱を一部とする外部架構を既存建築物に隣接させて構築し、これら既存の柱と添柱とを間隔を空けてアンカーで連結すると共に添柱の周囲に配筋を施し、該添柱の周囲と前記柱及び添柱の空間とにコンクリートを打設充填することで既存の柱と添柱とを一体化して柱を打ち増しした既存建築物の耐震補強構造を採用する。
この既存建築物の耐震補強構造によれば、既存の柱と添柱とを一体化することで既存建築物と外部架構との間に立体補強効果が生れて既存建築物の耐震性が向上する。
【0007】
加えて、外部架構の添柱間に既存建築物を構成する既存の梁に近接させて添梁を架設し、これら既存の梁と添梁とをアンカーで連結し、さらにこれら梁間にコンクリートを打設充填して既設の梁と添梁とを一体化することで既存建築物と外部架構との間の水平力の伝達性能が増し、既存建築物の耐震補強効果がさらに向上する。
【0008】
【発明の実施の形態】
本発明に係る既存建築物の耐震補強構造の一実施形態を図1ないし図6に示して説明する。
図1および図2に示す既存建築物1は地盤G上に構築された鉄骨鉄筋コンクリート造の構築物であり、この既存建築物1には、当該既存建築物1を内側に配置するように門型の外部架構10が近接して構築されている。
【0009】
外部架構10は、既存建築物1の基礎2と一体となった基礎12上に構築されており、間隔を空けて立設された鉄骨の添柱13と、これら添柱13に架設された同じく鉄骨の添梁14と、これら添柱13および添梁14の間に設置されたブレース15とによって構成されたトラス構造を有している。この鉄骨トラス構造を有する外部架構10が既存建築物1の両側壁面に沿ってそれぞれ立設され、さらに既存建築物1の屋上を跨ぐように架設されて門型を形成している。
【0010】
外部架構10の基礎12は、図3に示すように、地中に打設された基礎杭12a上に構築されており、既存建築物1の基礎2から突出した状態に設置されたアンカー12bを埋設した状態に構築されて基礎2と一体化されている。
【0011】
添柱13はH型鋼からなり、基礎12に間隔を空けて立設され、既存建築物1を構成する既存の柱3にそれぞれ対応するべくそれらに近接して配置されている。
【0012】
近接して配置された既設の柱3と添柱13との間には、図4および図5に示すように、複数のアンカー20が設置されている。これらアンカー20は柱3の高さ方向すなわち鉛直方向に間隔を空けて並設されており、これらアンカー20によって柱3と添柱13とが連結されている。
これらアンカー20の一端は、柱3に形成された孔に挿入されたうえでこれに接着され、他端が添柱13に向けて突出した状態に設置されている。アンカー20の他端は、柱3のフランジにナットにより固定されている。
【0013】
さらに添柱13の周囲に配筋(図示せず)が施され、添柱13の周囲とアンカー20で連結された柱3と添柱13との間の空間にはコンクリートが打設充填され、柱3と添柱13とが一体化されるとともに柱3が打ち増しされた状態となっている。
【0014】
添梁14は添柱13と同じくH型鋼からなり、隣接する添柱13間に架設されており、既存建築物1を構成する既存の梁4にそれぞれ対応するべく近接するべくそれらに隣接して配置されている。
【0015】
近接した配置された梁4および添梁14には、同じく図4および図5に示すように、相対する他方の梁に向けて突出した状態に複数のアンカー30が設置されている。
これらアンカー30はそれぞれの梁の長さ方向すなわち水平方向に間隔を空けて並設されており、これらのうち梁4に設置されたものは梁4に形成された孔に挿入されたうえでこれに接着され、添梁14に設置されたものは添梁14のフランジにナットにより固定されている。
【0016】
これらアンカー30は、一方の梁に設置されたアンカー30が他方の梁に設置されたアンカー30間に先端を突き出した状態に互い違いに配置され、さらにこれらアンカー30には梁4と添梁14との間の割裂を防止するためのスパイラル筋31が梁の長さ方向に添ってからめられて梁4と添梁14とが連結されている。
【0017】
さらに、連結された梁4と添梁14との間の空間には、コンクリートが打設充填されてアンカー30とスパイラル筋31とがこのコンクリートに埋設され、梁4と添梁14とが一体化された状態となっている。
【0018】
上記のように構成された外部架構10を有する既存建築物1について、水平方向の剛性を外部架構10構築前の状態と比較すると、図6に示すように、X方向成分についてはA〜B間、およびC〜D間の各軸部材により外部架構10に既存建築物1の水平力がスムーズに伝達される。Y方向成分についてはa〜b間、およびc〜d間の各軸部材により軸剛性が向上する。
【0019】
すなわち、外部架構10が構築された既存建築物1においては、既存の柱3と添柱13、および既存の梁4と添梁14とが一体化され、これによって鉄骨トラス構造の外部架構10の剛性が増し、既存建築物1と外部架構10との間に立体補強効果が生れて補強されるので、外部架構10を構成する各軸部材の軸剛性が既存建築物1により増大し、外部架構10の負担率が向上するため、既存建築物1の耐震性が格段に向上する。
しかも、既存建築物1内部の改修工事をほどんど必要としないため、既存建築物1の使用体制に影響を及ぼすことがない。そのため補強工事に要する期間を短く済ませられる。
【0020】
なお、本実施形態における外部架構10の形状はその一例であって、補強をなすべき既存建築物の形状、必要となる補強強度等の条件によって様々な形状に構築されることはいうまでもない。
また、本実施形態のように既存躯体と外部架構との間隔が広い場合には、その間にコンクリートを充填するのが有効であるが、既存躯体と外部架構との間隔が狭く、コンクリートの充填性が劣る場合には、例えば無収縮モルタル、樹脂モルタル、エポキシ樹脂を混ぜたモルタルを充填するのが有効である。
さらに、アンカー20、30にかえてスタッドボルトを採用する等してもよい。
【0021】
【発明の効果】
以上説明したように、請求項1に記載された既存建築物の耐震補強構造によれば、既存建築物の柱と外部架構の一部をなす添柱とを間隔を空けてアンカーで連結すると共に添柱の周囲に配筋を施し、該添柱の周囲と前記柱及び添柱の空間とにコンクリートを打設充填することで既存の柱と添柱とが一体化して柱が打ち増しされ、これによって外部架構の剛性が増すとともに既存建築物と外部架構との間に立体補強効果が生れ、外部架構を構成する各軸部材の軸剛性が既存建築物により補強されるので、外部架構の効率が大きく向上し、既存建築物の耐震性を格段に向上させることができる。しかも、既存建築物内部の改修工事をほどんど必要しないので、既存建築物の使用体制に影響を及ぼすことがなく補強工事に要する期間が短い。
【0022】
また、請求項2に記載された既存建築物の耐震補強構造によれば、既存の柱と添柱だけでなく、既存建築物の梁と外部架構の一部をなす添梁とをアンカーで連結するとともにこれら梁間にコンクリートを打設充填することで既設の梁と添梁とを一体化され、これによって外部架構にスムーズに軸力を伝達できるので、既存建築物の耐震性をさらに向上させることができる。
【図面の簡単な説明】
【図1】 本発明に係る既存建築物の耐震補強構造の一実施形態として、外部架構を備える既存建築物を示す正面図である。
【図2】 同じく、外部架構を備える既存建築物の側面図である。
【図3】 外部架構の基礎部分を示す側方断面図である。
【図4】 既存建築物の柱と外部架構の添柱との接合状態を示す側方図である。
【図5】 既存建築物の梁と外部架構の添梁との接合状態を示す平面図である。
【図6】 外部架構を備える既存建築物の水平方向の軸力の伝達性能向上を説明するための平面図である。
【符号の説明】
1 既存建築物
3 既存の柱
4 既存の梁
10 外部架構
13 添柱
14 添梁
20、30 アンカー
G 地盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforcing structure for improving the earthquake resistance of an existing building.
[0002]
[Prior art]
In recent years, more and more earthquake resistance has been required for buildings, and it is natural that new buildings will be more fully considered for earthquake resistance than ever before. It has become. However, existing buildings that have been built in the past and are still in use are still considered to have sufficient earthquake resistance at the time of construction, even if they are currently considered to be a problem. There is also a need to reinforce such existing buildings to improve earthquake resistance.
[0003]
Examples of reinforcement measures that have been implemented to improve earthquake resistance for existing buildings include the addition of earthquake-resistant walls, the establishment of new braces with frames, the winding of steel plates or carbon around pillars, and the addition of concrete. .
By the way, since all these reinforcing means are renovation work inside the building, it is very difficult to carry out the renovation work while using the existing building as usual. In addition, when it is carried out while being used, the time for carrying out the construction is limited to nights and holidays and the construction period is prolonged.
Therefore, a steel frame external frame is constructed in the vicinity of the existing building, and a reinforcing means for supporting the existing building from the outside by this external frame has been studied. If this reinforcement means is adopted, reinforcement work can be carried out without affecting the use system of existing buildings.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned reinforcing means, the external frame becomes enormous in accordance with the existing building, so that the rigidity of the external frame tends to be low, and the existing building has a high rigidity structure such as RC or SRC structure. There was a possibility that the reinforcing effect could not be sufficiently exhibited.
[0005]
The present invention has been made in view of the above circumstances, and can carry out reinforcement work without affecting the use system of existing buildings, and dramatically improve the earthquake resistance of the existing buildings after completion. The purpose is to provide a seismic reinforcement structure for existing buildings.
[0006]
[Means for Solving the Problems]
As a means to solve the above-mentioned problems, an auxiliary pillar is erected in the vicinity of an existing pillar that constitutes an existing building, and an external frame including this auxiliary pillar is constructed adjacent to the existing building. The existing pillars and the supporting pillars are connected with anchors at intervals, and reinforcement is provided around the supporting pillars, and concrete is placed and filled around the supporting pillars and the spaces of the pillars and the supporting pillars. By adopting this method, the existing pillars and supporting pillars will be integrated to increase the number of pillars, and the seismic reinforcement structure for existing buildings will be adopted.
According to the seismic reinforcement structure of the existing building, by integrating the existing column and the supporting column, a three-dimensional reinforcement effect is created between the existing building and the external frame, and the earthquake resistance of the existing building is improved. .
[0007]
In addition, erection beams are installed near the existing beams that make up the existing building between the supporting columns of the external frame, the existing beams and the linking beams are connected by anchors, and concrete is placed between these beams. By installing and filling and integrating the existing beam and the auxiliary beam, the transmission performance of the horizontal force between the existing building and the external frame increases, and the seismic reinforcement effect of the existing building is further improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the seismic reinforcement structure for an existing building according to the present invention will be described with reference to FIGS.
The existing building 1 shown in FIGS. 1 and 2 is a steel-framed reinforced concrete structure built on the ground G. The existing building 1 has a gate shape so that the existing building 1 is arranged inside. The external frame 10 is constructed in close proximity.
[0009]
The external frame 10 is constructed on a foundation 12 that is integrated with the foundation 2 of the existing building 1. It has a truss structure constituted by a steel beam 14 and a brace 15 installed between the beam 13 and the beam 14. The external frame 10 having this steel truss structure is erected along both side wall surfaces of the existing building 1 and is further laid so as to straddle the roof of the existing building 1 to form a gate shape.
[0010]
As shown in FIG. 3, the foundation 12 of the external frame 10 is constructed on a foundation pile 12 a placed in the ground, and an anchor 12 b installed in a state protruding from the foundation 2 of the existing building 1 is provided. It is built in a buried state and integrated with the foundation 2.
[0011]
The accessory pillar 13 is made of H-shaped steel, is erected on the foundation 12 with an interval, and is arranged close to each of the existing pillars 3 constituting the existing building 1.
[0012]
As shown in FIGS. 4 and 5, a plurality of anchors 20 are installed between the existing pillars 3 and the auxiliary pillars 13 arranged close to each other. These anchors 20 are arranged in parallel in the height direction of the columns 3, that is, in the vertical direction, and the columns 3 and the supporting columns 13 are connected by these anchors 20.
One end of the anchor 20 is inserted into a hole formed in the column 3 and bonded thereto, and the other end is installed in a state of protruding toward the accessory column 13. The other end of the anchor 20 is fixed to the flange of the column 3 with a nut.
[0013]
Further, bar arrangement (not shown) is provided around the supporting pillar 13, and the space between the supporting pillar 13 and the pillar 3 connected by the anchor 20 and the supporting pillar 13 is cast and filled with concrete, The pillar 3 and the accessory pillar 13 are integrated and the pillar 3 is increased.
[0014]
The beam 14 is made of H-shaped steel like the beam 13 and is installed between the adjacent beam 13 and adjacent to the existing beams 4 constituting the existing building 1 so as to be close to each other. Has been placed.
[0015]
As shown in FIGS. 4 and 5, a plurality of anchors 30 are installed on the adjacently arranged beam 4 and accessory beam 14 so as to protrude toward the other beam.
These anchors 30 are juxtaposed at intervals in the length direction of each beam, that is, in the horizontal direction. Among these anchors, those installed on the beam 4 are inserted into holes formed in the beam 4 and then installed. Those attached to the beam 14 are fixed to the flange of the beam 14 with nuts.
[0016]
The anchors 30 are alternately arranged in such a manner that the anchors 30 installed on one beam protrude from the anchors 30 installed on the other beam. The beam 4 and the beam 14 are connected to each other after a spiral bar 31 for preventing splitting between them is fitted along the length of the beam.
[0017]
Furthermore, in the space between the connected beam 4 and the beam 14, concrete is cast and filled, and the anchor 30 and the spiral bar 31 are embedded in the concrete, and the beam 4 and the beam 14 are integrated. It has become a state.
[0018]
When comparing the horizontal rigidity of the existing building 1 having the external frame 10 configured as described above with the state before the external frame 10 is constructed, as shown in FIG. And the horizontal force of the existing building 1 is smoothly transmitted to the external frame 10 by each shaft member between C and D. Regarding the Y direction component, the shaft rigidity is improved by the shaft members between a and b and between c and d.
[0019]
That is, in the existing building 1 in which the external frame 10 is constructed, the existing column 3 and the auxiliary column 13, and the existing beam 4 and the auxiliary beam 14 are integrated, thereby the steel frame truss structure of the external frame 10. Since the rigidity is increased and a three-dimensional reinforcement effect is generated between the existing building 1 and the external frame 10 to be reinforced, the shaft rigidity of each shaft member constituting the external frame 10 is increased by the existing building 1, and the external frame Since the load factor of 10 is improved, the earthquake resistance of the existing building 1 is significantly improved.
Moreover, since the renovation work inside the existing building 1 is hardly required, the use system of the existing building 1 is not affected. Therefore, the period required for the reinforcement work can be shortened.
[0020]
In addition, the shape of the external frame 10 in this embodiment is an example, and it is needless to say that the external frame 10 is constructed in various shapes depending on conditions such as the shape of an existing building to be reinforced and required reinforcement strength. .
In addition, when the interval between the existing frame and the external frame is wide as in the present embodiment, it is effective to fill the concrete between them, but the interval between the existing frame and the external frame is narrow, and the concrete filling property Is inferior, for example, it is effective to fill non-shrink mortar, resin mortar, and mortar mixed with epoxy resin.
Furthermore, a stud bolt may be employed instead of the anchors 20 and 30.
[0021]
【The invention's effect】
As described above, according to the earthquake-proof reinforcement structure for an existing building described in claim 1, the pillar of the existing building and the accessory pillar that forms a part of the external frame are connected by the anchor with a space therebetween. Reinforcing bars around the supporting pillars, and placing and filling concrete around the supporting pillars and the space of the pillars and the supporting pillars, the existing pillars and the supporting pillars are integrated to increase the number of pillars , This increases the rigidity of the external frame and creates a three-dimensional reinforcement effect between the existing building and the external frame. The axial rigidity of each shaft member constituting the external frame is reinforced by the existing building. Greatly improves the earthquake resistance of existing buildings. Moreover, it does not require Dondo ho the renovation of internal existing buildings, a short period of time required for reinforcement work without affecting the use structure of the existing building.
[0022]
Further, according to the seismic reinforcement structure for an existing building described in claim 2, not only the existing pillar and the supporting pillar but also the beam of the existing building and the supporting beam forming a part of the external frame are connected by the anchor. At the same time, by placing concrete between these beams and filling them, the existing beams and the auxiliary beams are integrated, so that the axial force can be smoothly transmitted to the external frame, further improving the earthquake resistance of the existing building Can do.
[Brief description of the drawings]
FIG. 1 is a front view showing an existing building having an external frame as an embodiment of the seismic reinforcement structure for an existing building according to the present invention.
FIG. 2 is also a side view of an existing building having an external frame.
FIG. 3 is a side sectional view showing a basic portion of an external frame.
FIG. 4 is a side view showing a joined state between a pillar of an existing building and a supporting pillar of an external frame.
FIG. 5 is a plan view showing a joining state of a beam of an existing building and a beam of an external frame.
FIG. 6 is a plan view for explaining an improvement in transmission performance of an axial force in an existing building having an external frame.
[Explanation of symbols]
1 Existing Building 3 Existing Column 4 Existing Beam 10 External Frame 13 Side Pillar 14 Side Beam 20 and 30 Anchor G Ground

Claims (2)

既存建築物の耐震性を向上させるための補強構造であって、前記既存建築物を構成する既存の柱に近接させて添柱を立設するとともに該添柱を一部とする外部架構を既存建築物に隣接させて構築し、これら既存の柱と添柱とを間隔を空けてアンカーで連結すると共に添柱の周囲に配筋を施し、該添柱の周囲と前記柱及び添柱の空間とにコンクリートを打設充填することで前記柱と添柱とを一体化して前記柱を打ち増ししたことを特徴とする既存建築物の耐震補強構造。A reinforcing structure for improving the earthquake resistance of an existing building, where an existing external structure is installed in the vicinity of an existing pillar that constitutes the existing building and a part of the auxiliary pillar. It is constructed adjacent to the building, and these existing pillars and accessory pillars are connected with anchors at intervals, and reinforcement is provided around the accessory pillars, and the surroundings of the accessory pillars and the spaces of the pillars and accessory pillars. An anti- seismic reinforcement structure for an existing building , wherein the pillars and the accessory pillars are integrated by placing concrete into the wall, and the pillars are added . 請求項1に記載された既存建築物の耐震補強構造であって、前記既存建築物を構成する既存の梁に近接させて前記添柱間に添梁を架設し、これら既存の梁と添梁とをアンカーで連結し、該梁間にコンクリートを打設充填して構築されることを特徴とする既存建築物の耐震補強構造。   The seismic reinforcement structure for an existing building according to claim 1, wherein a supporting beam is installed between the supporting pillars in the vicinity of the existing beams constituting the existing building, and the existing beams and the supporting beams are installed. An earthquake-proof reinforcing structure for an existing building, which is constructed by connecting and connecting with anchors and placing and filling concrete between the beams.
JP31396496A 1996-11-25 1996-11-25 Seismic reinforcement structure for existing buildings Expired - Lifetime JP3690437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31396496A JP3690437B2 (en) 1996-11-25 1996-11-25 Seismic reinforcement structure for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31396496A JP3690437B2 (en) 1996-11-25 1996-11-25 Seismic reinforcement structure for existing buildings

Publications (2)

Publication Number Publication Date
JPH10152998A JPH10152998A (en) 1998-06-09
JP3690437B2 true JP3690437B2 (en) 2005-08-31

Family

ID=18047609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31396496A Expired - Lifetime JP3690437B2 (en) 1996-11-25 1996-11-25 Seismic reinforcement structure for existing buildings

Country Status (1)

Country Link
JP (1) JP3690437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397800B1 (en) * 2013-08-13 2014-05-20 (주)한국방재기술 Method for reinforcing seismic capability of existing moment frames buildings of reinforced concrete by section enlargement

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396601B2 (en) * 1997-07-11 2003-04-14 戸田建設株式会社 Seismic reinforcement structure of existing building
JP4032331B2 (en) * 1999-05-02 2008-01-16 株式会社環境開発研究所 Extension method of existing building
JP2000320152A (en) * 1999-05-13 2000-11-21 Shimizu Corp Earthquake resistant reinforcing method and earthquake resistant reinforcing structure for existing pile foundation building
JP3782802B2 (en) * 2003-09-26 2006-06-07 元旦ビューティ工業株式会社 Renovation structure of building
JP4917179B1 (en) * 2011-06-24 2012-04-18 正男 脇田 Seismic maintenance method for existing buildings
JP6342743B2 (en) * 2014-08-01 2018-06-13 株式会社竹中工務店 Existing building reinforcement structure
JP6832053B2 (en) * 2014-09-26 2021-02-24 株式会社竹中工務店 Seismic retrofitting structure
JP5759608B1 (en) 2014-12-08 2015-08-05 新日鉄住金エンジニアリング株式会社 Reinforcement structure of existing building
JP6478832B2 (en) * 2015-06-24 2019-03-06 株式会社竹中工務店 Seismic reinforcement structure
KR101977266B1 (en) * 2019-02-14 2019-09-10 천종우 Structure for earthquake proofing and reinforcing building structure using high strength polymer mortar and steel structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397800B1 (en) * 2013-08-13 2014-05-20 (주)한국방재기술 Method for reinforcing seismic capability of existing moment frames buildings of reinforced concrete by section enlargement

Also Published As

Publication number Publication date
JPH10152998A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3899354B2 (en) Seismic isolation building
JP3799036B2 (en) Building basic structure and construction method
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP3991876B2 (en) Seismic reinforcement structure
JP3603130B2 (en) Root-wound reinforcement structure for column bases such as steel columns
JP2001262774A (en) Steel concrete composite structural member
JP5509380B1 (en) Seismic reinforcement method and structure for existing buildings
JP3929006B2 (en) Construction method for expanded seismic walls
JP4449595B2 (en) Column-beam joint structure, method for constructing column-beam joint structure, method for constructing underground structure, and building
JP2006037530A (en) Building structure skeleton and building structure making use thereof
JP3138317U (en) Building
JP2000034732A (en) Steel column mounting hardware, steel column mounting structure and steel column building method
JP4660810B2 (en) Boundary beam damper
JP3116767B2 (en) Existing building seismic isolation structuring method
JP3851563B2 (en) Frame reinforcement structure and its construction method
JP6122740B2 (en) Seismic reinforcement structure
JP3608130B2 (en) Out-of-plane fall prevention structure for expanded seismic walls
KR20120037222A (en) Precast concrete member with junction for reinforcing earthquake resistance of building and method of constructing using it
JPH06185111A (en) Precast concrete beam and column and construction method of earthquake-proof wall using them
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
JP4072274B2 (en) Building unit
JP4733496B2 (en) Seismic retrofit structure
JP2004060245A (en) Framework reinforcing structure
JPH09324418A (en) Foundation pile structure and construction method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

EXPY Cancellation because of completion of term