JP7106288B2 - 血糖値測定システムおよび血糖値測定装置 - Google Patents

血糖値測定システムおよび血糖値測定装置 Download PDF

Info

Publication number
JP7106288B2
JP7106288B2 JP2018027375A JP2018027375A JP7106288B2 JP 7106288 B2 JP7106288 B2 JP 7106288B2 JP 2018027375 A JP2018027375 A JP 2018027375A JP 2018027375 A JP2018027375 A JP 2018027375A JP 7106288 B2 JP7106288 B2 JP 7106288B2
Authority
JP
Japan
Prior art keywords
pulse wave
time
sugar level
blood sugar
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027375A
Other languages
English (en)
Other versions
JP2019141263A (ja
Inventor
定夫 尾股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyberdyne Inc
Original Assignee
Cyberdyne Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyberdyne Inc filed Critical Cyberdyne Inc
Priority to JP2018027375A priority Critical patent/JP7106288B2/ja
Publication of JP2019141263A publication Critical patent/JP2019141263A/ja
Application granted granted Critical
Publication of JP7106288B2 publication Critical patent/JP7106288B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、血糖値測定システムおよび血糖値測定装置に関し、特に非侵襲的測定が可能な血糖値測定システムおよび血糖値測定装置に適用して好適なものである。
血糖値の侵襲的測定法として、グルコースオキシダーゼ法(GOD法)が知られている。GOD法では、採血した血液を用いて、グルコースオキシダーゼの酵素反応過程で消費される酸素を測定して血糖成分であるグルコースを定量する。GOD法は、測定精度が高く、自己血糖測定(SMBG)装置の多くに適用されている。しかしながら、GOD法は、穿刺による採血を必要とするため、血糖値を頻繁に測定しなければならない患者にとっては負担である。
このような状況に鑑みて、血管に照射した赤外光の透過光または反射光のスペクトル変化から血糖値を測定する非侵襲的測定が可能な血糖値測定システムが開示されている(特許文献1)。
特開2011-62335号公報
Paul Valence, Fabrice Extramiana,Celine Large, Martine Cailleau,Abdeddayem Haggui, Pierre Maison Balanche, Jean Tichet, Bervely Balkau;Influence of blood glucose on heart rate and cardiac function, DiabeticMedicine, Wiley 2011,28(4), pp440-9
血糖値が高くなると心拍数が増加することが知られおり(非特許文献1)、脈波の周期特性が血糖値によって変化することが考えられるが、特許文献1に記載の血糖値測定システムでは、脈波が考慮されて血糖値が測定されていない。
本発明は以上の点を考慮してなされたもので、脈波を用いて血糖値を算出可能な血糖値測定システムおよび血糖値測定装置を提案しようとするものである。
かかる課題を解決するため本発明においては、血液中のグルコースにおいて吸光特性を示す波長の光を生体の血流に対して照射可能な発光部と、前記発光部により照射された光であって前記生体の血流で反射された光を受光可能な受光部と、前記発光部への入力波形と前記受光部からの出力波形との間に生じ得る位相差をゼロに補償するための位相シフト部と、前記位相差がゼロに補償された周波数の変化量を生体における血流の脈波として検出する脈波検出部と、前記脈波検出部で検出された脈波に係る解析パラメータを算出し、下記の(式1)に基づいて血糖値を算出する血糖値算出部と、を設けるようにした。
Figure 0007106288000001
a1:脈波の一周期の開始時点を時間原点として脈波が最大値となる時間
b1:脈波が最大値となる時間から一周期の終了時点となる時間
a1:脈波の上昇時における周波数の時間変化の積分値
b1:脈波の減衰時における周波数の時間変化の積分値
b1
Figure 0007106288000002
X:tb1(ta1+tb1
:(2π・(1/(ta1+tb1)))
A,α:係数
また、本発明においては、血液中のグルコースにおいて散乱/反射特性を示す波長の光を生体の血流に対して照射可能な発光部と、前記発光部により照射された光であって前記生体の血流で反射された光を受光可能な受光部と、前記発光部への入力波形と前記受光部からの出力波形との間に生じ得る位相差をゼロに補償するための位相シフト部と、前記位相差がゼロに補償された周波数の変化量を生体における血流の脈波として検出する脈波検出部と、前記脈波検出部で検出された脈波に係る解析パラメータを算出し、下記の(式2)に基づいて血糖値を算出する血糖値算出部と、を設けるようにした。
Figure 0007106288000003
a2:脈波の一周期の開始時点を時間原点として脈波が最大値となる時間
b2:脈波が最大値となる時間から一周期の終了時点となる時間
a2:脈波の上昇時における周波数の時間変化の積分値
b2:脈波の減衰時における周波数の時間変化の積分値
b2
Figure 0007106288000004
X:tb2(ta2+tb2
:(2π・(1/(ta2+tb2)))
B,β:係数
上記構成によれば、脈波に係る解析パラメータを算出することで、脈波が形成される現象を利用した血糖値算出のモデルを実現することができ、脈波を用いて非侵襲的に血糖値を算出することができる。
上記構成によれば、血液中のグルコースが有する旋光性と位相シフト法とを用いることで高精度に脈波を測定できるので、血糖値をより正確に算出することができる。
また本発明においては、前記血糖値算出部により算出された血糖値を出力する血糖値出力部を備えることを特徴とする。
上記構成によれば、血糖値が集積可能となるので、Iot(Internet of Things)、Bigデータ、遠隔医療などへの応用展開ができるようになる。
本発明によれば、脈波を用いて血糖値を算出することができる。
本発明の実施の形態に係る血糖値測定システムの構成の一例を示す図である。 同実施の形態に係る血糖値測定システムにおける第1波長(吸光特性)を用いて測定した脈波の平均値をプロットしたときのグラフを示す図である。 同実施の形態に係る血糖値測定システムにおける第2波長(散乱/反射特性)を用いて測定した脈波の平均値をプロットしたときのグラフを示す図である。 同実施の形態にかかる血糖値測定システムにおける血糖値の算出式の解析パラメータを説明するための図である。 同実施の形態に係る血糖値測定システムにおける血糖値測定の処理手順を示すフローチャートである。 同実施の形態にかかる血糖値測定システムにおいて取得される脈波波形を示す略線図である。 同実施の形態にかかる血糖値測定システムにおける位相シフト回路の周波数特性図である。 同実施の形態にかかる血糖値測定システムにおいて、脈波波形をディジタル処理に適した波形とした略線図である。 同実施の形態にかかる血糖値測定システムにおいて、ディジタル信号化した脈波波形の時間変化を示す略線図である。 同実施の形態にかかる血糖値測定システムにおける血糖値測定装置の一例を示す図である。 同実施の形態にかかる血糖値測定システムにおける血糖値測定装置の一例を示す図である。 同実施の形態にかかる血糖値測定システムにより算出される血糖値の測定結果の一例を示す図である。 同実施の形態にかかる血糖値測定システムにおける第2波長(散乱/反射特性)を用いて測定した健常者の脈波の平均値をプロットしたときのグラフを示す図である。 同実施の形態にかかる血糖値測定システムにおける第2波長(散乱/反射特性)を用いて測定した糖尿病患者の脈波の平均値をプロットしたときのグラフを示す図である。 第2の実施の形態に係る血糖値測定システムにおける血糖値測定の処理手順を示すフローチャートである。
以下図面について、本発明の一実施の形態を詳述する。
(1)第1の実施の形態
光に対するグルコースの旋光性により濃度、距離などによって変化する位相を利用して血糖値を求める手法もあるが、外部発振源を必要としない手法で入射波と反射波との位相差を考慮した自励発振する血糖値測定システムがないので、本実施の形態では、グルコース濃度を速度共振周波数に変換する手法を提案する。
(血糖値測定システム)
図1は、血糖値測定システム10の構成の一例を示す図である。血糖値測定システム10は、痛みのない、人に優しい非侵襲的な測定により血糖値を算出するシステムである。かかる血糖値測定システム10において、脈波の周波数特性と血糖値との関数式を導き出して血糖値を算出する方法について説明する。
血糖値測定システム10は、発光部11、受光部12、増幅部13、位相シフト部14、脈波検出部15、記憶部16、血糖値算出部17、および血糖値出力部18を備える。
発光部11は、発光ダイオード(LED)、LEDの点灯および消灯を制御するLED駆動回路等を含んで構成される。LEDは、生体の血管を流れる血流に波長λの光(特定光)を照射可能な発光素子である。LED駆動回路は、電源、スイッチングトランジスタ、スイッチングトランジスタのベース電圧を設定する抵抗素子等を含んで構成される。なお、スイッチングトランジスタを入力信号によってオンさせることでLEDが発光する。
本実施の形態では、特定光の波長λとして、血液中のグルコースの吸光特性と密接な現象を呈する波長(第1波長)、および/または、血液中のグルコースの散乱/反射特性と密接な現象を呈する波長(第2波長)を採用している。第1波長は、2100nmを中心に吸光特性が顕著になるので、血糖値の測定に好適である。また、発光部11および受光部12(光デバイス)を容易に入手できるという観点では、短い波長を用いることが好適である。例えば、1/2波長の1000nm~1100nm、1/4波長の500nm~550nm等が好適である。また、第2波長は、1900nmを中心に散乱/反射特性が顕著になるので、血糖値の測定に好適である。また、発光部11および受光部12(光デバイス)を容易に入手できるという観点では、短い波長を用いることが好適である。例えば、1/2波長の880nm~960nm、1/4波長の440nm~480nm等が好適である。
受光部12は、フォトトランジスタ、フォトトランジスタをオンさせて血流に照射されて反射した特定光を検出可能な状態とする検出回路等を含んで構成される。フォトトランジスタは、LEDから出た光(特定光)を検出可能(受光可能)な受光素子である。例えば、フォトトランジスタは、LEDから照射された光が血管(血流)に当たって反射した光(反射光)を受光して検出する。
また、フォトトランジスタは、受光量に応じたオン電流が流れる素子である。オン電流は、検出回路(抵抗)によって電圧に変換されて出力信号となる。出力信号の大きさは、受光量に依存し、受光量が多くなるほど大きくなる。また、フォトトランジスタが受光する光は、血流に照射されて反射した特定光であって、受光量には脈波の特性が反映される。詳しくは後述するが、特定光が血流に照射され、血流からの特定光がフォトトランジスタにより受光される。また、血液中には、グルコースが存在し、特定光の一部はグルコースに吸収され、グルコース濃度が高くなると心拍数が増加するため、フォトトランジスタの出力信号は、血液中のグルコース濃度(血糖値)と脈波とに関連して増減する。
なお、フォトトランジスタには、公知のフォトトランジスタを適用できる。また、受光素子は、フォトトランジスタに限定されるものではなく、例えば、フォトダイオード等の受光デバイスであってもよい。
増幅部13は、受光部12の出力信号を増幅する電子回路であり、公知の増幅回路を用いることができる。なお、図示は省略するが、増幅部13と受光部12とは、DCカットコンデンサ等を介して接続され、受光部12からの出力信号の直流成分はカットされ、交流成分のみが増幅部13に伝送される。
位相シフト部14は、発光部11のLED駆動回路の電気信号である入力信号の波形(入力波形)と、受光部12の検出回路の電気信号である出力信号の波形(出力波形)との間に位相差があるときに、電気信号の周波数を変化させて位相差をゼロに補償する機能を有する。かかる機能を有する位相シフト回路については、特開平9-145691などに詳細が開示されている。
本実施の形態では、血流が測定対象とされる状態において、発光部11-(血流)-受光部12-増幅部13-位相シフト部14-発光部11の閉ループ(帰還ループ)が構成される。この閉ループの中を、測定対象物(血流)の物性に依存して振動する電気信号が流れる。
位相シフト部14は、この閉ループにおいて、位相シフト部14に入力される入力信号と、出力される出力信号との間に位相差が生じるときは、自励発振回路の発振周波数を変化させて、位相差をゼロとし、自励発振を持続させる機能を有する。
脈波検出部15は、位相シフト部14から出力される自励発振回路の発振周波数(脈波データ)の周波数をデフォルト周波数に調整し、脈波データの繰り返しの一周期波形を検出する。
記憶部16は、血糖値の算出に用いる係数(後述のA、B、α、β)を記憶する。なお、係数の詳細については後述する。
血糖値算出部17は、一周期波形に基づいて血糖値を算出するための解析パラメータを算出し、算出した解析パラメータと記憶部16に記憶された係数とに基づいて血糖値を算出する。
なお、脈波検出部15および血糖値算出部17は、ソフトウェアを実行することで実現できる。より具体的には、血糖値測定プログラムを実行することで実現できる。脈波検出部15および血糖値算出部17の機能の一部をハードウェアで構成してもよい。ここでは、ソフトウェアで実現できる機能を処理するプロセッサを内蔵した1つのICチップで脈波検出部15および血糖値算出部17を構成する。これによって、回路ブロックを小型にできる。
血糖値出力部18は、液晶表示装置、ノート型のパーソナルコンピュータ、スマートフォン等であり、血糖値算出部17により算出された血糖値を出力する。より具体的には、血糖値出力部18は、算出された血糖値を表示可能な液晶表示装置などの表示部、表示部の表示内容を切り替えるための操作部(ボタン、キーボード、タッチパネル等)を含んで構成される。なお、血糖値出力部18は、操作部を有していなくてもよいし、算出された血糖値を印刷可能なプリンタなどの印刷部であってもよいし、印刷部に接続されていて血糖値を印刷可能な構成であってもよい。
(血糖値の算出式)
図2は、横軸に脈波の周期時間X、縦軸に正規化周波数変化量Yをとり、第1波長(吸光特性)を用いて測定した所定数(例えば、10拍)の脈波の平均値をプロットしたときのグラフ(脈波と血糖値の変動特性を解析した結果)を示す図である。図2に示すように、相関曲線Y=A・X-αの決定係数rは、「0.97」となり、脈波の周期時間Xと正規化周波数変化量Yとに相関関係があることが確認され、Y=A・X-αは、精度の高い回帰モデルであることがわかる。このとき、Aとして「65.14」、αとして「2.75」が得られ、これらの値(あくまでも一例である。)が記憶部16に記憶される。
ここで、脈波の周期時間Xは、下記の式で表される。
Figure 0007106288000005
また、正規化周波数変化量Yは、下記の式で表される。
Figure 0007106288000006
したがって、第1波長(吸光特性)を用いて測定した場合の血糖値は、下記の式(1)により算出される。
Figure 0007106288000007
ただし、Fは、下記のとおりである。なお、解析パラメータ(ta1、tb1、Sa1、Sb1、hb1)については後述する。
Figure 0007106288000008
図3は、横軸に脈波の周期時間X、縦軸に正規化周波数変化量Yをとり、第2波長(散乱/反射特性)を用いて測定した所定数(例えば、10拍)の脈波の平均値をプロットしたときのグラフ(脈波と血糖値の変動特性を解析した結果)を示す図である。図3に示すように、相関曲線Y=B・X-βの決定係数rは、0.98となり、脈波の周期時間Xと正規化周波数変化量Yとに相関関係があることが確認され、Y=B・X-βは、精度の高い回帰モデルであることがわかる。このとき、Bとして「48.96」、βとして「2.75」が得られ、これらの値(あくまでも一例である。)が記憶部16に記憶される。
脈波の周期時間Xおよび正規化周波数変化量Yは、第1波長のときと同じであるので、第2波長(散乱/反射特性)を用いて測定した場合の血糖値は、下記の式(2)により算出される。なお、解析パラメータ(ta2、tb2、Sa2、Sb2、hb2)については後述する。
Figure 0007106288000009
次に、図4を用いて、血糖値の算出式の解析パラメータについて説明する。図4は、横軸に時間、縦軸に位相シフト法による正規化周波数(速度共振周波数)fをとり、脈波波形を表したときのイメージ図を示す。下側の脈波波形F1は、第1波長(吸光特性)を用いて測定したときのイメージ図を示し、上側の脈波波形F2は、第2波長(散乱/反射特性)を用いて測定したときのイメージ図を示す。
ここで、脈波波形F2を特徴付ける第2波長(散乱/反射特性)の解析パラメータとして、ta2、tb2、Sa2、Sb2、ha2、hb2がある。ta2は、一周期の開始時点を時間原点として脈波波形F2が最大値(最高値)となる時間である。tb2は、脈波波形F2が最大値(最高値)となる時間から一周期の終了時点となる時間である。Sa2は、脈波の上昇時における周波数面積(時間原点からta2までの脈波波形F2の時間積分値)である。Sb2は、脈波の減衰時における周波数面積(ta2から一周期の終了時点までの脈波波形F2の時間積分値)である。ha2は、脈波の上昇時の高さ(fa2とSa2の関数)である。hb2は、脈波の減衰時の高さ(fb2とSb2の関数)である。
ここで、ha2は、下記の式で表される。
Figure 0007106288000010
また、hb2は、下記の式で表される。
Figure 0007106288000011
このように、正規化したha2、hb2を用いることで、測り方による脈波のばらつきを小さくすることができる。
なお、脈波波形F2は、時間原点からta2までの間に速度共振周波数fが急激に増大する。そして、ta2から一周期が終了する時間までの間は、全体としては速度共振周波数fが減少する。
解析パラメータは、光に対するグルコースの旋光性を考慮した位相シフト法による速度共振周波数として変換すると脈波変化の時間パラメータのみではなく、血管の収縮と拡張によって脈波が形成される現象を反映して血糖値を算出しようとするためのパラメータである。
すなわち、ta2の期間は、血管が血流を押し出す収縮期間であり、tb2の期間は、血管が血流を押し出して緩和する拡張期間である。これらの期間について、時間パラメータと波形の積分値、脈波の正規化周波数の最大変化量(脈波の高さ)を求め、これらによって、血管の収縮と拡張に伴って血流がエネルギーを受け取り、またエネルギーを放出することで脈波が形成される現象を利用した血糖値算出のモデルを実現している。
なお、第1波長(吸光特性)の解析パラメータについては、第2波長(散乱/反射特性)の解析パラメータと同様であるので、その説明を省略する。
(血糖値測定処理)
図5は、血糖値測定プログラムの処理手順(血糖値測定方法)の一例を示す。被検査者が希望する測定時間に測定開始操作が行われることにより、血糖値測定処理が開始される。
血糖値測定システム10において、発光部11からの光は、人体の皮膚表面に入射し、当該皮膚表面近傍の血流で反射し、その反射光は、受光部12にて受光される。そして、発光部11-(血流)-受光部12-増幅部13-位相シフト部14-発光部11の閉ループが形成される。
この閉ループは、増幅部13と位相シフト部14によって自励発振回路を形成する。位相シフト部14は、その入力信号に対応する受光部12から出力される検出電気信号と、その出力信号に対応する発光部11に供給される駆動電気信号との間に位相差があるときは、その位相差をゼロにするように、自励発振回路の発振周波数を変化させる。
この発振周波数の変化は、血流の変化を反映したもので、その時間変化の波形は、図6に示す脈波波形F3である(ステップS11)。脈波波形F3は、横軸に時間、縦軸に電圧をとると、例えば図6のように示される。脈波波形F3は、電圧振幅が時間経過に関わらずほぼ一定で、周波数が時々刻々変化する。この周波数変化が血管における収縮の大きさと拡張の大きさとに対応する。
脈波波形F3における周波数変化のダイナミックレンジは、被検査者によって異なる。脈波波形F3の中心周波数に個人差があるため、そのまま脈波波形F3のデータ処理を進めると、メモリ容量も、信号処理回路のダイナミックレンジも、大きなものとなる。このため、脈波波形F3の中心周波数を予め定めたデフォルト周波数fに統一する周波数調整が行われる(ステップS12)。この処理手順は、脈波検出部15の機能によって実行される。
より具体的には、脈波検出部15から位相シフト部14に対して、回路定数を変更させる周波数調整信号が出力される。デフォルト周波数fは、脈波データのサンプリング周期や、脈波データのばらつきを平均化するのに必要なデータ組数等と、回路ブロックの処理速度、メモリ容量等を考慮して決定することができる。ここでは、脈波データのサンプリング周期を毎秒200回、ばらつき平均化に必要なデータ組数を30組、データ処理のビット数を16ビット、処理速度を10MHzとして、デフォルト周波数fを5kHzとした。
デフォルト周波数fは、位相シフト部14の動作中心周波数fと異なるものとする。図7は、位相シフト部14のゲインと位相の周波数特性とを示す図である。位相シフト部14のゲイン特性は、動作中心周波数fを中心として対称形にゲインが低下するバンドパス特性を有するように設定される。したがって、動作中心周波数f付近では、周波数が変化してもゲインがほとんど変化しない。
脈波波形は、自励発振回路の発振周波数の時間的変化を示す波形であるため、周波数変化を感度よく検出する必要がある。そこで、デフォルト周波数fは、ゲイン/周波数の勾配の小さい付近を避けて、ゲイン/周波数の勾配の大きい周波数のところに設定する。図7では、デフォルト周波数fを位相シフト部14の動作中心周波数fより高周波側に設定されるが、これを動作中心周波数fより低周波側に設定してもよい。
このデフォルト周波数fで、脈波波形データのサンプリングを行う。脈波波形は、アナログ波形であるので、適当な閾値を有するコンパレータによるA/D変換を用いて2値化を行い、ディジタル波形に変換し、そのディジタル波形についてサンプリングを行う。図8にA/D変換された脈波波形の例を示す。
サンプリングは、ディジタル波形について、16ビット分のサンプリングを行う。この16ビット分のサンプリングデータを1組として、同じ被検査者に対し、30組のサンプリングデータを取得する。取得した30組のサンプリングデータは一旦記憶部16に記憶する。記憶された30組のサンプリングデータを用いて、データのスムージング処理を行う。スムージング処理としては、隣接するサンプリングデータ間で移動平均を取る方法を用いることができる。このようにして、16ビット分のサンプリングデータにおける異常データ等を取り除き、信頼性の高いサンプリングデータとする(ステップS13)。
図9に、スムージング処理後の16ビット分のサンプリングデータの例を示す。横軸は時間、縦軸はデフォルト周波数fからの周波数偏差である。図9に示されるように、サンプリングデータは、周期性を有するが、時間経過に対し傾斜を有する。この傾斜は、被検査者の測定状態によるものである。
そこで、脈波波形F3に相当する16ビットのサンプリングデータについて、繰り返し単位となる一周期の波形を抜き出すために、一周期分判定を行う(ステップS14)。一周期は、血流の繰り返し周期で、鼓動の周期であるので、経験上、大体の値が分かっている。そこで、サンプリングデータを微分し、得られるゼロクロス点を求める。そして、適当な判定時間間隔を設定し、その間のゼロクロス点の間を一周期と判定する。
一周期分のサンプリングデータが得られると、次に傾斜補正を行う(ステップS15)。傾斜補正は、一周期のサンプリングデータの開始点となるゼロクロス点のΔfの値と、一周期の終了点となるゼロクロス点のΔfの値を同じとするように、各サンプリングデータを補正することで行う。傾斜補正が行われた一周期分の脈波波形を算出して取得する上記の手順は、脈波検出部15の機能によって実行される。
続いて、解析パラメータの算出が行われる(ステップS16)。解析パラメータの算出は、血糖値算出部17の機能によって実行される。より具体的には、血糖値算出部17は、第1波長の場合、脈波波形のピーク検出を行ってta1を求め、tb1=(一周期期間t-ta1)を求める。そして、ta1、tb1のそれぞれの期間について脈波波形の時間積分を行ってSa1、Sb1を算出する。また、ta1、tb1、Sa1、Sb1を用いて、演算によりha1、hb1を算出する。なお、ha1は、上昇時側から見た高さを示し、hb1は、減衰時側から見た高さを示すものであり、ta1においては、ha1とhb1とは、同じ値である。また、血糖値算出部17は、第2波長の場合、脈波波形のピーク検出を行ってta2を求め、tb2=(一周期期間t-ta2)を求める。そして、ta2、tb2のそれぞれの期間について脈波波形の時間積分を行ってSa2、Sb2を算出する。また、ta2、tb2、Sa2、Sb2を用いて、演算によりha2、hb2を算出する。なお、ha2は、上昇時側から見た高さを示し、hb2は、減衰時側から見た高さを示すものであり、ta2においては、ha2とhb2とは、同じ値である。血糖値算出部17は、算出した解析パラメータを記憶部16に記憶する。付言するならば、算出されたこれらの解析パラメータは規格化されたものであり、その単位は、必ずしも時間や圧力ではない。
続いて、血糖値の算出が行われる(ステップS17)。血糖値の算出は、血糖値算出部17の機能によって実行される。より具体的には、血糖値算出部17は、記憶部16に記憶した係数(A、α、B、β)と、解析パラメータ(ta(ta1、ta2)、tb(tb1、tb2)、Sa(Sa1、Sa2)、Sb(Sb1、Sb2)、hb(hb1、hb2))とを用いて血糖値を算出する。なお、血糖値算出部17は、第1波長を用いて測定した場合には、式(1)により血糖値を算出し、第2波長を用いて測定した場合には、式(2)により血糖値を算出する。
続いて、血糖値が出力される(ステップS18)。血糖値の出力は、血糖値出力部18によって行われる。
上述した構成によれば、検査対象の生体の種類(人体、家畜等)や被検査者の個人差(緩慢な脈動や急峻な脈動等)や脈波センサ(光学センサ、振動センサ、変位センサ等)の種類や脈波の検出値の単位(電位、周波数、mm等)によらず、血糖値を算出することができる。
上述した構成では、脈波センサとして、人体の表面に発光部11によって光を入射し、反射した光を受光部12で受光する反射型受光光センサを説明した。これに代えて、人体に向けて発光部11によって光を入射し、透過した光を受光部12で受光する透過型受発光センサを用いてもよい。また、人体に向けて発光素子によって光を入射し、そのときに発生する超音波を超音波検出素子で検出し、血糖値を算出するようにしてもよい。
このように、波形入力部と波形検出部とを有するセンサを用いる場合には、位相シフト法を利用できる。例えば、超音波型の脈波センサとして、超音波検出素子に増幅器を接続し、増幅器の出力端子と発光素子との間に位相シフト回路を配置し、人体の血流部と超音波検出素子と増幅器と位相シフト回路と発光素子とで構成される自励発振回路の発振周波数の中心周波数をデフォルト周波数に調整する周波数調整部を備える構成とすることができる。
この他に、位相シフト法を用いない単純なセンサを脈波センサとして用いることもできる。例えば、変位センサ、振動検出センサ等、脈波波形を検出するものであれば、脈波センサとして用いることができる。脈波センサが代わっても、相関曲線が得られれば、様々な脈波検出センサを用いることができる。
また、生体として人体の場合について述べたが、人体以外の生体であっても、血管の収縮と拡張とによって脈波波形が形成されるものであれば、血糖値を算出することができる。
(血糖値測定装置)
血糖値測定システム10に係る血糖値測定装置の例を図10および図11に示す。
図10は、クリップ型の血糖値測定装置21を示す。血糖値測定装置21は、第1波長または第2波長を用いて血糖値を測定する装置である。クリップ型によれば、指を固定してセンサ(発光部11および受光部12)に接触させることにより、安定的な測定が可能となる。
図11は、腕時計型の血糖値測定装置22を示す。腕時計型によれば、ベルトで血糖値測定装置22を腕に固定し、センサ(発光部11および受光部12)に腕を接触させることにより、安定的な測定が可能となる。血糖値測定装置22では、血糖値の測定に加えて血圧の測定(同時測定)も可能である。血圧の測定には、例えば、特開2017-109063号公報に記載の技術を採用することができる。
血糖値測定システム10に係る血糖値測定装置は、上述の例に限られるものではなく、皮膚表面近傍に血管が存在する部位に装着可能な他の形態であってもよい。
例えば、被検査者の身体のうち活動時に最も皮膚表面の動きの少ない部位に、血糖値測定装置を装着することが有効であり、特に胸部中央の骨表層面に貼り付け可能な絆創膏型の血糖値測定装置であってもよい。その他にも皮膚表面近傍に血管が存在する部位としては、頭部(特に顔)、胸部、手(指を含む)、腕部、足(特に足裏)、脚部など広く対象となる。これらの各部位に対応する血糖値測定装置として、絆創膏型、機器内蔵型など小型かつワイヤレス通信および受電が可能なものを適用することができる。
例えば、顔を中心とした頭部においては、メガネの鼻当て、テンプル等に血糖値測定装置を搭載してもよい。胸部においては、ネックレス、ネクタイ、ネックストラップIDカード、シャツの裏地に血糖値測定装置を搭載してもよい。特に胸部中央の骨表層面に近い部位に装着できることが望ましい。
また手や腕部においては、腕時計、リストバンド、指輪などに血糖値測定装置を搭載するようにしてもよい。特に掌(把持部)においては、自動車のステアリング、二輪車のハンドル、鞄の持ち手、歯ブラシやシェーバーの柄、筆記具、パーソナルコンピュータのマウス等、被検査者が所定時間把持する対象物に血糖値測定装置を搭載するようにしてもよい。
さらに足や脚部においては、靴の中敷き、くつ下、シューズ、アンクルバンド、ズボンなどに血糖値測定装置を搭載するようにしてもよい。これ以外にも被検査者の携行品にも血糖値測定装置を搭載してもよく、例えば、スマートフォン(携帯電話)、スマートフォンのカバーケース、タブレット端末、タブレット端末のカバーケース等が挙げられる。
(測定結果)
図12は、血糖値測定システム10により算出される血糖値の測定結果の一例を示す図である。図12には、食後1時間と食後3時間とにおいて、第2波長を用いて血糖値を測定したときの測定結果が示されている。図12では、食後の血糖値が3時間後には低下していることが示されている。また、血糖値は、一拍毎に変動することが示されている。
(健常者と糖尿病患者について)
図13は、横軸に脈波の周期時間X、縦軸に正規化周波数変化量Yをとり、第2波長(散乱/反射特性)を用いて測定した健常者の脈波の平均値をプロットしたときのグラフ(測定例)を示す図である。
図14は、横軸に脈波の周期時間X、縦軸に正規化周波数変化量Yをとり、第2波長(散乱/反射特性)を用いて測定した糖尿病患者の脈波の平均値をプロットしたときのグラフ(測定例)を示す図である。
図13および図14に示すグラフより、健常者と糖尿病患者のグラフ特性は顕著に異なることがわかる。また、血液中のグルコースの影響で脈波パラメータ(ta2、tb2)による糖尿病患者の特性は変動範囲が小さく、健常者の1/2程度のシフト量であることがわかる。
付言するならば、図13および図14に示すように、XとYとに相関関係があることが確認されたので、健常者であっても糖尿病患者であっても式(2)を用いて血糖値を算出することができる。
(本実施の形態に係る効果)
上述したように、脈波に係る解析パラメータを算出することで、脈波が形成される現象を呈する血糖値算出のモデルを実現することができ、脈波を用いて血糖値を算出することができる。
また、従来は、血糖値の測定において校正曲線(検量線)が不可欠であるが、上述した構成によれば、解析パラメータを算出することで、脈波が形成される現象を呈する血糖値算出のモデルを実現することができ、校正曲線が不要となる。
また、上述した構成によれば、脈波の周波数シフト特性を利用するので、血糖値をリアルタイムに測定できる。
また、上述した構成によれば、血液中のグルコースが有する旋光性と位相シフト法とを用いることで高精度に脈波を測定できるので、血糖値をより正確に算出することができる。
また、上述した構成によれば、血糖値を出力することで血糖値が集積可能となるので、Iot(Internet of Things)、Bigデータ、遠隔医療などへの応用展開ができるようになる。
また、脈波特性の利用は、簡便かつ外乱の影響が少ないので、応用展開が容易となる。
(2)第2の実施の形態
本実施の形態では、第1の実施の形態とは異なる方法で脈波を取り出して血糖値を算出する例について説明する。以下では、第1の実施の形態と異なる構成について主に説明する。
図15は、血糖値測定プログラムの処理手順(血糖値測定方法)の一例を示す。被検査者が希望する測定時間に測定開始操作が行われることにより、血糖値測定処理が開始される。
まず、脈波検出部15は、発振周波数を取得する(ステップS21)。この際、2チャンネルを用いる場合(発光部11、受光部12、増幅部13、位相シフト部14と同様の構成が更に1組あり、第1波長(例えば、525nmの波長)および第2波長(例えば、460nmの波長)の各々を用いて血糖値を算出する場合)、2チャンネル同時に発振周波数を取得する。
続いて、脈波検出部15は、発振周波数を取得時間測定する(ステップS22)。そして、脈波検出部15は、X軸を時間とし、Y軸を発振周波数として生波形を生成する。
続いて、脈波検出部15は、波形をフィルタリング(ノイズを除去)する(ステップS23)。
続いて、脈波検出部15は、波形のエッジ(立上りおよび立下り)を検知する(ステップS24)。
続いて、脈波検出部15は、生波形では脈波が連続して続いているので、エッジで一拍ごとに波形を分離する(ステップS25)。
続いて、脈波検出部15は、一拍ごとに分離した波形(分離波形)の各々の始点および終点のズレを補正する(ステップS26)。なお、生波形には、傾斜があるため、脈波検出部15は、始点および終点のズレから傾きを演算し、ベースラインを合わせる(「0」にする)。
続いて、血糖値算出部17は、各分離波形のピーク(最大値および最小値)を検知する(ステップS27)。2チャンネルを用いる場合、血糖値算出部17は、第1波長については最小値をピークとして検知し、第2波長については最大値をピークとして検知する。
続いて、血糖値算出部17は、各分離波形のtaおよびtbを測定する(ステップS28)。血糖値算出部17は、分離波形のピークからtaを求め、分離波形の終点時間からtaを減算してtbを算出する。
続いて、血糖値算出部17は、各分離波形のSaおよびSbを測定する(ステップS29)。血糖値算出部17は、taおよびtbのそれぞれの期間について分離波形の時間積分を行ってSaおよびSbを算出する。なお、算出(測定)された解析パラメータは、記憶部16に記憶される。
続いて、血糖値算出部17は、血糖値を算出する(ステップS30)。血糖値算出部17は、記憶部16に記憶した係数(A、α、B、β)と、解析パラメータ(ta、tb、Sa、Sb、hb)とを用いて血糖値を算出する。
続いて、血糖値出力部18は、血糖値を出力する(ステップS31)。
上述した構成により脈波を取り出した場合でも、第1の実施の形態と同様の効果が得られる。
(3)他の実施の形態
なお上述の実施の形態においては、本発明を血糖値測定システム10に適用するようにした場合について述べたが、本発明はこれに限らず、この他種々の血糖値測定システムに広く適用することができる。
また上述の実施の形態においては、発光部11および受光部12を1つずつ設ける場合について述べたが、本発明はこれに限らず、設ける個数は適宜に採用してもよい。例えば、発光部11を複数設けてもよい。
また上述の実施の形態においては、主に、吸光特性の波長(第1波長)または散乱/反射特性の波長(第2波長)を用いる場合について述べたが、本発明はこれに限らず、両方の波長を測定可能な構成を採用し、両方の波長を用いてもよい。例えば、一方の波長では測定ができない場合、他方の波長で測定できるように、第1波長と第2波長とを切替可能な構成としてもよい。
上述した構成については、発明の要旨の範囲内において、適宜に、変更したり、組み合わせたり、省略したりすることができる。
10 血糖値測定システム、11 発光部、12 受光部、13 増幅部、14 位相シフト部、15 脈波検出部、16 記憶部、17 血糖値算出部、18 血糖値出力部

Claims (5)

  1. 血液中のグルコースにおいて吸光特性を示す波長の光を生体の血流に対して照射可能な発光部と、
    前記発光部により照射された光であって前記生体の血流で反射された光を受光可能な受光部と、
    前記発光部への入力波形と前記受光部からの出力波形との間に生じ得る位相差をゼロに補償するための位相シフト部と、
    前記位相差がゼロに補償された周波数の変化量を生体における血流の脈波として検出する脈波検出部と、
    前記脈波検出部で検出された脈波に係る解析パラメータを算出し、下記の(式1)に基づいて血糖値を算出する血糖値算出部と、
    を備えることを特徴とする血糖値測定システム。
    Figure 0007106288000012
    a1:脈波の一周期の開始時点を時間原点として脈波が最大値となる時間
    b1:脈波が最大値となる時間から一周期の終了時点となる時間
    a1:脈波の上昇時における周波数の時間変化の積分値
    b1:脈波の減衰時における周波数の時間変化の積分値
    b1
    Figure 0007106288000013
    X:tb1(ta1+tb1
    :(2π・(1/(ta1+tb1)))
    A,α:係数
  2. 血液中のグルコースにおいて散乱/反射特性を示す波長の光を生体の血流に対して照射可能な発光部と、
    前記発光部により照射された光であって前記生体の血流で反射された光を受光可能な受光部と、
    前記発光部への入力波形と前記受光部からの出力波形との間に生じ得る位相差をゼロに補償するための位相シフト部と、
    前記位相差がゼロに補償された周波数の変化量を生体における血流の脈波として検出する脈波検出部と、
    前記脈波検出部で検出された脈波に係る解析パラメータを算出し、下記の(式2)に基づいて血糖値を算出する血糖値算出部と、
    を備えることを特徴とする血糖値測定システム。
    Figure 0007106288000014
    a2:脈波の一周期の開始時点を時間原点として脈波が最大値となる時間
    b2:脈波が最大値となる時間から一周期の終了時点となる時間
    a2:脈波の上昇時における周波数の時間変化の積分値
    b2:脈波の減衰時における周波数の時間変化の積分値
    b2
    Figure 0007106288000015
    X:tb2(ta2+tb2
    :(2π・(1/(ta2+tb2)))
    B,β:係数
  3. 前記血糖値算出部により算出された血糖値を出力する血糖値出力部を備えることを特徴とする請求項1または2に記載の血糖値測定システム。
  4. 血液中のグルコースにおいて吸光特性を示す波長の光を生体の血流に対して照射可能な発光部と、
    前記発光部により照射された光であって前記生体の血流で反射された光を受光可能な受光部と、
    前記発光部への入力波形と前記受光部からの出力波形との間に生じ得る位相差をゼロに補償するための位相シフト部と、
    前記位相差がゼロに補償された周波数の変化量を生体における血流の脈波として検出する脈波検出部と、
    前記脈波検出部で検出された脈波に係る解析パラメータを算出し、下記の(式1)に基づいて血糖値を算出する血糖値算出部と、
    を備えることを特徴とする血糖値測定装置。
    Figure 0007106288000016
    a1:脈波の一周期の開始時点を時間原点として脈波が最大値となる時間
    b1:脈波が最大値となる時間から一周期の終了時点となる時間
    a1:脈波の上昇時における周波数の時間変化の積分値
    b1:脈波の減衰時における周波数の時間変化の積分値
    b1
    Figure 0007106288000017
    X:tb1(ta1+tb1
    :(2π・(1/(ta1+tb1)))
    A,α:係数
  5. 血液中のグルコースにおいて散乱/反射特性を示す波長の光を生体の血流に対して照射可能な発光部と、
    前記発光部により照射された光であって前記生体の血流で反射された光を受光可能な受光部と、
    前記発光部への入力波形と前記受光部からの出力波形との間に生じ得る位相差をゼロに補償するための位相シフト部と、
    前記位相差がゼロに補償された周波数の変化量を生体における血流の脈波として検出する脈波検出部と、
    前記脈波検出部で検出された脈波に係る解析パラメータを算出し、下記の(式2)に基づいて血糖値を算出する血糖値算出部と、
    を備えることを特徴とする血糖値測定装置。
    Figure 0007106288000018
    a2:脈波の一周期の開始時点を時間原点として脈波が最大値となる時間
    b2:脈波が最大値となる時間から一周期の終了時点となる時間
    a2:脈波の上昇時における周波数の時間変化の積分値
    b2:脈波の減衰時における周波数の時間変化の積分値
    b2
    Figure 0007106288000019
    X:tb2(ta2+tb2
    :(2π・(1/(ta2+tb2)))
    B,β:係数
JP2018027375A 2018-02-19 2018-02-19 血糖値測定システムおよび血糖値測定装置 Active JP7106288B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027375A JP7106288B2 (ja) 2018-02-19 2018-02-19 血糖値測定システムおよび血糖値測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027375A JP7106288B2 (ja) 2018-02-19 2018-02-19 血糖値測定システムおよび血糖値測定装置

Publications (2)

Publication Number Publication Date
JP2019141263A JP2019141263A (ja) 2019-08-29
JP7106288B2 true JP7106288B2 (ja) 2022-07-26

Family

ID=67771504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027375A Active JP7106288B2 (ja) 2018-02-19 2018-02-19 血糖値測定システムおよび血糖値測定装置

Country Status (1)

Country Link
JP (1) JP7106288B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991634B1 (ja) * 2021-04-13 2022-01-12 メディカルフォトニクス株式会社 脂質濃度計測装置、プログラム、及び、方法
CN113288132B (zh) * 2021-05-06 2023-04-14 广东工业大学 用于预测血糖值的方法、装置、存储介质及处理器
WO2023100536A1 (ja) * 2021-12-03 2023-06-08 太陽誘電株式会社 測定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008139A (ja) 2012-06-28 2014-01-20 Tauzaa Kenkyusho:Kk 血糖値測定装置
JP2016087209A (ja) 2014-11-07 2016-05-23 Jsr株式会社 生体情報測定システム、及びそれに用いられる生体情報測定用血管脈波データ取得装置
JP2017109063A (ja) 2015-12-18 2017-06-22 Cyberdyne株式会社 血圧測定システム
JP2018118034A (ja) 2017-01-23 2018-08-02 Cyberdyne株式会社 血糖値測定システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008139A (ja) 2012-06-28 2014-01-20 Tauzaa Kenkyusho:Kk 血糖値測定装置
JP2016087209A (ja) 2014-11-07 2016-05-23 Jsr株式会社 生体情報測定システム、及びそれに用いられる生体情報測定用血管脈波データ取得装置
JP2017109063A (ja) 2015-12-18 2017-06-22 Cyberdyne株式会社 血圧測定システム
JP2018118034A (ja) 2017-01-23 2018-08-02 Cyberdyne株式会社 血糖値測定システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伊藤 裕佑 他,「8I-19 位相シフト法を用いた光センサによる非侵襲血糖値計測システムの試作開発」,バイオエンジニアリング講演会講演論文集,2011年01月07日,Vol. 2010、No. 23,pp. 297-298

Also Published As

Publication number Publication date
JP2019141263A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
US20220409069A1 (en) Methods and systems for detecting physiology for monitoring cardiac health
CN106231995B (zh) 脉搏波传播时间测量装置及生命体状态推定装置
JP6126220B2 (ja) 生体状態推定装置
US9480407B2 (en) Device and method for removal of ambient noise signal from a photoplethysmograph
JP7106288B2 (ja) 血糖値測定システムおよび血糖値測定装置
US20060009698A1 (en) Hand-held monitor for measuring vital signs
JP2021519621A (ja) フォトプレチスモグラフィック(ppg)シグナルに基づいて血圧および動脈壁の硬化を推定する方法
JP2009072417A (ja) 生体情報処理装置及び方法
JP2006239114A (ja) カフレス電子血圧計
US9826940B1 (en) Optical tracking of heart rate using PLL optimization
WO2018043692A1 (ja) 血圧測定装置、血圧測定方法及び血圧測定プログラムを記録した記録媒体
JP2016112277A (ja) 血圧計測装置、電子機器及び血圧計測方法
Lu et al. A prototype of reflection pulse oximeter designed for mobile healthcare
CN112426141A (zh) 血压检测方法、装置以及电子设备
WO2021024460A1 (ja) 血圧計
Samartkit et al. A non-invasive heart rate and blood pressure monitoring system using piezoelectric and photoplethysmographic sensors
Fischer et al. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval
JP2018149183A (ja) 血圧データ処理装置、血圧データ処理方法、およびプログラム
JP5582051B2 (ja) 脈波計測装置、およびプログラム
JP6103373B2 (ja) 脈波計測装置
US10772513B2 (en) Blood pressure ratio calculation device, blood pressure ratio calculation method, blood pressure ratio calculation program, and recording medium recording said program
JP5471297B2 (ja) 拍動検出装置及び拍動検出方法
JP2014057622A (ja) 波形データ処理装置、波形データ処理方法及びプログラム
JP6901962B2 (ja) 血糖値測定システム
JP2017109063A (ja) 血圧測定システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220713

R150 Certificate of patent or registration of utility model

Ref document number: 7106288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150